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General Introduction

Economists and other applied researchers use game theory to study industrial organization, financial markets, and the

theory of the firm.  In an earlier article in the Mathematica  Journal, [Dickhaut and Kaplan 1991] present a procedure for

solving two-person games of  complete information.  In many applications, however,  "asymmetric information" is a central

issue.  By asymmetric information, we mean that one party has access to information that the other party lacks.  The branch

of game theory that deals with this problem is known as "games of incomplete information"; the formal model  is discussed

in [Harsanyi 1967].  [Myerson 1991, Tirole 1989] et al, discuss the applications but do not focus on computational proce-

dures.  We provide, in this article, an application of Mathematica  to games of incomplete information that should be of

interest  for  two reasons:  (i)  as a basis  for thinking about solutions to games of incomplete  information, and (ii)  as an

approach to understanding the particular application presented here, namely, the effect of strategic information transmission

in firms and markets.

A game of strategic information transmission is played by a Sender and a Receiver.  The Sender has private informa-

tion about some random state of nature, which he will have the opportunity to communicate to the Receiver.  The Receiver

can take an action that affects the welfare of both parties.  The Sender and  Receiver have preferences (defined in terms of

utility functions) over states m and actions y.  Since the state affects the payoffs, players may wish to condition actions on

the state.  However, the Receiver and  Sender can have divergent preferences, with a parameter  b measuring the extent to

which they disagree.  Thus, the Sender's favorite action for a given state, m, is potentially different from the Receiver's

favorite action for the same state.  Once Nature has chosen a particular state, the Sender may decide not to reveal fully his

information about the state, for such a policy could guarantee that the Receiver's favorite action will be selected.  However,

even though there is some divergence in preferences, there may still  be an underlying gain  that can be achieved from

coordination.  Since the  Sender does,  in general,  send a message that is partially informative, the Receiver does learn

something about m given the message, as he takes account of the incentives of the Sender.  Given this partial knowledge, the

Receiver chooses an optimal action y to maximize his own payoff.  The Sender decides on the degree of disclosure after

considering how  the Receiver will respond to the message sent.

The strategic element in this setting is the fact that the Sender considers the effect of the disclosure on the Receiver's

action choice, and the Receiver considers the impact of how he responds to information on the Sender's disclosure plans.

Combined appropriately with statistical conditions that  reflect the Receiver's beliefs,  the main solution concept  used in

games of incomplete  information is  that of Bayesian-Nash equilibrium.  Broadly speaking, this  states that the Sender's
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disclosure strategy must be optimal given the Receiver's action strategy, and vice versa.  

The following examples illustrate the forces outlined above. First, consider a lobbyist who has private information

about the efficacy of a desired program.  The lobbyist  may realize that disclosing some of the information could influence

legislators to support the program; however, disclosing too much might reveal some defects which could reduce the appropri-

ation.  Similarly, a sales representative could truthfully report potential sales so that  the company would be well-served, but

leaving himself some slack could protect him from unforeseen demand shifts.  In either case the Receiver of the information

will no doubt be aware of the  Sender's motives.   Given each party can properly anticipate the other's intentions, the crucial

question is what messages are transmitted.  Crawford and Sobel show that as long as interests are not perfectly aligned,

information is conveyed  noisily (that is, private information is not fully revealed). 

The package strategic solves two-person  Sender-Receiver games in which the Sender holds private information

about the true state, and the welfare of the parties is state-dependent.   In the above examples the appropriation by Congress

and the production budget chosen by the supervisor, respectively, affect the welfare of the lobbyist and the sales representa-

tive. The inputs to the program are the tastes (utility functions) of the parties, and the underlying state uncertainty.  For the

case  where   private  information  can  assume  finitely  many  values,  the  output  of  the  program  includes  the  Sender's

message(depending on which state he observes), the action that the Receiver will take in response to each  potential mes-

sage, and the Receiver's  inferences.    If there are multiple equilibria, they are distinguished according to the fineness of the

disclosure.  Such equilibria can be ranked.  

The package solves the problem both when the states are finite, and when they are an interval.   For finitely many

states, the program recursively identifies the set of partitions that constitute the potential messages of the Sender;  it uncov-

ers fixed points  from best  responses using pure functions.   With a  continuum, the package solves difference equations

(numerically),  then graphs  the key features of partitions, as well as the change in welfare .

Example 1: A Simple Numerical Illustration

We consider a world in which there are two equally likely states of nature, s1 and s2.  There are two players, a

Sender and Receiver.  The  Sender alone observes the state and delivers a message to the Receiver.  The Receiver takes one

of two actions, a1 or a2. Payoffs to both parties depend on the coordination of state and action.  When preferences are

aligned, both Sender and Receiver prefer the same action be taken; this gives the Sender has an incentive to report truthfully.

When preferences are not aligned, naive truthful reporting would be foolhardy permitting the reciever to implement his

favorite action to the Sender's  detriment. A setting in which preferences are aligned is  

Actions of the Receiver

a 1 a 2

States s 1 �1, 4� �0, 0�

s 2 �0, 0� �1, 1�

The first number of a cell is the payoff to the  Sender and the second the payoff to the Receiver.  

A setting in which preferences are not aligned is  
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Actions of the Receiver

a 1 a 2

States s 1 �1, 0� �0, 4�

s2 �0, 1� �1, 0�

The messages that can be sent are nonempty subsets of {s1,s2}.  An equilibrium consists of  three components. 

 a)a strategy for the  Sender mapping {s1,s2} to messages,  

              b)a mapping from messages to actions for the Receiver, and

              c)a set of posterior beliefs of the Receiver given the message. 

             

              For an equilibrium in such a game of incomplete information, the three components must be self-fulfilling in the

sense that

1)The strategy in (a) has to be optimal given (b) and (c). 

2)The strategy in  (b) has to be optimal given (a) and (c).

3)The beliefs in (c) must be derived from Bayes rule given (a). 

When preferences are not aligned, the equilibrium involves the Sender sending the message {s1,s2} regardless of the state.

The Receiver's posteriors are the same as his priors, so he chooses action a2.   When preferences are aligned there are two

equilibria, one of which is preferred by both players.   In the first equlibirum, the  Sender truthfully reports the state, the

Receiver believes the  Sender, and takes the appropriate action.  This equilibrium is preferred by both  Sender and Receiver

to the equilibrium in which the  Sender's message is {s1,s2}, beliefs of the Receiver are unchanged, and the Reciever takes

action a1.

Example 2: A More Complex Illustration

The structure of the problem can be extended to more complicated settings.   The way that we characterize the

conflict of interest is in terms of the distance of preferred actions given a state.  In the examples below we assume that each

state is equally likely. First, we consider an extended structure of the problem when the preferences are aligned. In this case,

given a particular action, both the  Sender and Receiver would prefer that the Reciever take the action which is reflected in

the diagonal payoffs.  

Actions of the Receiver

a 1 a 2 a 3 a 4

s 1 �242, 274� �242, 214� �176, 145� �105, 73�

State s 2 �176, 214� �242, 274� �242, 214� �176, 145�

s 3 �105, 145� �176, 214� �242, 274� �242, 214�

s 4 �31, 73� �105, 145� �176, 214� �242, 242�

By contrast, the following is a case in which preferences are not aligned: 
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Actions of the Receiver

a 1 a 2 a 3 a 4

s1 �141, 274� �210, 214� �270, 145� �210, 73�

State s2 �69, 214� �141, 274� �210, 214� �270, 145�

s3 �−6, 145� �69, 214� �141, 274� �210, 214�

s4 �−83, 73� �−6, 145� �69, 214� �141, 242�

In each of these cases the set of messages would be subsets of  {s1,s2,s3,s4}.  However the equilibria that would emerge

would be quite different.  For the setting in which preferences are not aligned, the equilbrium signal would be only the

set{s1,s2,s3,s4}, the Receiver's beliefs would be the same as prior to receiving the message,  and the action taken by the

Receiver would consistently be a2, or a3.

In the setting where preferences are aligned, there are several different equilibria.  There is the completely informa-

tive equilibrium, in which the  Sender reveals the state truthfully, the Receiver assigns probability 1 to the state reported and

0 to all other states, and the Receiver takes the his preferred action(which the sender also prefers).  There are, however,

several  other  equilbria  which involve different  messages  conveyed by the  Sender.   In fact  the following partitions of

{s1,s2,s3,s4} constitute equilibria in the setting when preferences are aligned. 

{{{s1}, {s2}, {s3}, {s4}},{{s1}, {s2, s3, s4}}, {{s1},{s1,s2,s3,s4}},

{{s1, s2}, {s3,s4}},{{s1,s2},{s2,s3,s4}}

{{{s1}, {s2}, {s3, s4}},{{s1},{s2},{s2,s3,s4}},{{s1},{s2,s3},{s4}},

{{s1}, {s2, s3}, {s4}}

{{s1,s2},{s3},{s3,s4}}, {{s1, s2}, {s3},{s4}}, {{s1},{s2},{s3},{s4}},{{s1},{s2},{s3},{s3,s4}}}

The notation {{s1},{s1,s2,s3,s4}} means that the sender is indifferent between sending{s1} or{s1,s2,s3,s4} when s1 occurs.

There are intermediate settings, i.e., settings in which the partitions reveal some information but are not fully truth-re-

vealing. For example:

Actions of the Receiver

a1 a2 a3 a4

s1 �216, 274� �276, 214� �216, 145� �147, 73�

State s2 �147, 214� �216, 274� �276, 214� �216, 145�

s3 �75, 145� �147, 214� �216, 274� �276, 214�

s4 �0, 73� �75, 145� �147, 214� �216, 242�

           

  The equilibria for this game are supported by the following partitions, 

  {{{s1}, {s2, s3, s4}},{{s1,s2,s3,s4}}} but not  {{s1}, {s2}, {s3}, {s4}}.       
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Finding Solutions to the Finite Problem

� The Three Functions: EqMessages, EqBeliefs,  and ReActions

The three functions EqMessages,EqBeliefs, and ReActions are used to solve for equilibria of Sender-Re-

ceiver games with a finite number of states and actions.   The function EqMessages assumes that both states and actions

can be ordered as sequences of consecutive integers starting with one. EqMessages assumes that utilities for  Sender and

Receiver (defined on the Cartesian Product of states and actions) and state probabilities are known. The output from this

function consists of sets of subsets of integers, corresponding to  partitions  of the set of states that can be parts of equilibria

in the specified  Sender-Receiver game.  In the following section, we will introduce the functions and show how they are use

to solve problems.  

� Applications

We begin by defining the utility functions for Receiver and  Sender and a probability function.  At this point we load

in the package, strategic, which contains functions that will be used in this notebook.

SetDirectory["/ari"];

<<strategic

Ur[y_,m_]:=-(y-m)^2;

Us[y_,m_,b_]:=- (y-m-b)^2;
Prob[x_]:=1/4;

To see what these imply consider the following

ReceiversUtilities[A_,  S_,Ur_] := 
  Table[Ur[a,s], 
  {a, 1, Length[A]}, 
  {s, 1, Length[S]}]

In the case when the actions and states are the sets {1,2,3,4}, we get the entries for the Receiver's payoffs illustrated in

Example #2.

MatrixForm[ReceiversUtilities[Range[4],Range[4],Ur]]

0    -1   -4   -9

-1   0    -1   -4

-4   -1   0    -1

-9   -4   -1   0

dkmpaper.nb 5



For a specific state, we represent the degree of divergence of utilities between  Sender and Receiver by an index paramater

b.  

SendersPossibleUtilities[A_, s_, b_] := 
  Table[Us[a,s,b],
  {a, 1, Length[A]}]

For the case in which preferences are aligned, we take b to be .5.  The  Sender's utilities look like the following:

b=.5;
MatrixForm[
Table[SendersPossibleUtilities[Range[4],s,b],{s,1,4}]]

-0.25    -0.25    -2.25    -6.25

-2.25    -0.25    -0.25    -2.25

-6.25    -2.25    -0.25    -0.25

-12.25   -6.25    -2.25    -0.25

Now to solve this problem we use the function EqMessages, which is defined by 

EqMessages[states_, actions_,b_,Ur_,Us_,Prob_] := 
  Join[{{Range[states]}}, Complement[Flatten[
  Table[
         Table[IsEquilibrium[Range[states],
         Range[actions],Flatten[
             completegroup /@ 
             partition[Range[states],i], 1][[j]],
             b,Ur,Us,Prob], 
          {j, 1, Length[Flatten[completegroup /@
           partition[Range[states], i], 1]]}],
      {i, 2, states}], 1], 
   {{}}]]

With aligned preferences, we write the following:

b=.5;
Example2=EqMessages[4,4,.5,Ur,Us,Prob]

{{{1, 2, 3, 4}}, {{1}, {2, 3, 4}}, {{1}, {1, 2, 3, 4}}, 
 
  {{1, 2}, {3, 4}}, {{1, 2}, {2, 3, 4}}, {{1}, {2}, {3, 4}}, 
 
  {{1}, {2}, {2, 3, 4}}, {{1}, {1, 2}, {3, 4}}, 
 
  {{1}, {1, 2}, {2, 3, 4}}, {{1}, {2, 3}, {4}}, {{1}, {2, 3}, {3, 4}}, 
 
  {{1, 2}, {3}, {4}}, {{1, 2}, {3}, {3, 4}}, {{1, 2}, {2, 3}, {4}}, 
 
  {{1, 2}, {2, 3}, {3, 4}}, {{1}, {2}, {3}, {4}}, 
 
  {{1}, {2}, {3}, {3, 4}}, {{1}, {2}, {2, 3}, {4}}, 
 
  {{1}, {2}, {2, 3}, {3, 4}}, {{1}, {1, 2}, {3}, {4}}, 
 
  {{1}, {1, 2}, {3}, {3, 4}}, {{1}, {1, 2}, {2, 3}, {4}}, 
 
  {{1}, {1, 2}, {2, 3}, {3, 4}}}

There are many equilibria in this case. We can determine the beliefs associated with these equilibria in messages using the

EqBeliefs function. That is, EqBeliefs shows the Receiver's posterior beliefs, given a message from the Sender when

the Sender is playing an equilibrium strategy.
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EqBeliefs[Example2,Prob]

   1  1  1  1                       1  1  1
{{{-, -, -, -}}, {{1, 0, 0, 0}, {0, -, -, -}}, 
   4  4  4  4                       3  3  3
 
                  1  1  1  1      1  1                1  1
  {{1, 0, 0, 0}, {-, -, -, -}}, {{-, -, 0, 0}, {0, 0, -, -}}, 
                  4  4  4  4      2  2                2  2
 
    1  1             1  1  1
  {{-, -, 0, 0}, {0, -, -, -}}, 
    2  2             3  3  3
 
                                      1  1
  {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -, -}}, 
                                      2  2
 
                                   1  1  1
  {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, -, -, -}}, 
                                   3  3  3
 
                  1  1                1  1
  {{1, 0, 0, 0}, {-, -, 0, 0}, {0, 0, -, -}}, 
                  2  2                2  2
 
                  1  1             1  1  1
  {{1, 0, 0, 0}, {-, -, 0, 0}, {0, -, -, -}}, 
                  2  2             3  3  3
 
                     1  1
  {{1, 0, 0, 0}, {0, -, -, 0}, {0, 0, 0, 1}}, 
                     2  2
 
                     1  1             1  1
  {{1, 0, 0, 0}, {0, -, -, 0}, {0, 0, -, -}}, 
                     2  2             2  2
 
    1  1
  {{-, -, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, 
    2  2
 
    1  1                              1  1
  {{-, -, 0, 0}, {0, 0, 1, 0}, {0, 0, -, -}}, 
    2  2                              2  2
 
    1  1             1  1
  {{-, -, 0, 0}, {0, -, -, 0}, {0, 0, 0, 1}}, 
    2  2             2  2
 
    1  1             1  1             1  1
  {{-, -, 0, 0}, {0, -, -, 0}, {0, 0, -, -}}, 
    2  2             2  2             2  2
 
  {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, 
 
                                                    1  1
  {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, -, -}}, 
                                                    2  2
 
                                   1  1
  {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, -, -, 0}, {0, 0, 0, 1}}, 
                                   2  2
 
                                   1  1             1  1
  {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, -, -, 0}, {0, 0, -, -}}, 
                                   2  2             2  2
 
                  1  1
  {{1, 0, 0, 0}, {-, -, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, 
                  2  2
 
                  1  1                              1  1
  {{1, 0, 0, 0}, {-, -, 0, 0}, {0, 0, 1, 0}, {0, 0, -, -}}, 
                  2  2                              2  2
 
                  1  1             1  1
  {{1, 0, 0, 0}, {-, -, 0, 0}, {0, -, -, 0}, {0, 0, 0, 1}}, 
                  2  2             2  2
 
                  1  1             1  1             1  1
  {{1, 0, 0, 0}, {-, -, 0, 0}, {0, -, -, 0}, {0, 0, -, -}}}
                  2  2             2  2             2  2

The actions taken in each setting are given by ReActions:
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Table[ReActions[Range[4],Range[4],Example2[[j]],Ur,Prob],
{j,1,Length[Example2]}]

{{{2, 3}}, {{1}, {3}}, {{1}, {2, 3}}, {{1, 2}, {3, 4}}, {{1, 2}, {3}}, 
 
  {{1}, {2}, {3, 4}}, {{1}, {2}, {3}}, {{1}, {1, 2}, {3, 4}}, 
 
  {{1}, {1, 2}, {3}}, {{1}, {2, 3}, {4}}, {{1}, {2, 3}, {3, 4}}, 
 
  {{1, 2}, {3}, {4}}, {{1, 2}, {3}, {3, 4}}, {{1, 2}, {2, 3}, {4}}, 
 
  {{1, 2}, {2, 3}, {3, 4}}, {{1}, {2}, {3}, {4}}, 
 
  {{1}, {2}, {3}, {3, 4}}, {{1}, {2}, {2, 3}, {4}}, 
 
  {{1}, {2}, {2, 3}, {3, 4}}, {{1}, {1, 2}, {3}, {4}}, 
 
  {{1}, {1, 2}, {3}, {3, 4}}, {{1}, {1, 2}, {2, 3}, {4}}, 
 
  {{1}, {1, 2}, {2, 3}, {3, 4}}}

For the case in which preferences are not aligned, we take b to be 2.0.  The  Senders utilities look like the following.

b=2.0;MatrixForm[
Table[SendersPossibleUtilities[Range[4],s,b],{s,1,4}]]

-4.    -1.    0.     -1.

-9.    -4.    -1.    0.

-16.   -9.    -4.    -1.

-25.   -16.   -9.    -4.

EqMessages[4,4,2.0,Ur,Us,Prob]

{{{1, 2, 3, 4}}}

We now turn to the setting in which the states and actions can fall on a continuum.

The Continuous Crawford-Sobel Model

� Connection to the previous section.

So far we have discussed how to solve games of strategic infromation transmission where the set of states and of

actions is finite.   A probability mass function describes the relative likelihood of finitely many states.  In many applications

the set of states is modelled as a continuum.  We assume that the state is a random variable with a known density function.

The model with a continuum of states (m in M) has the feature that the message space of the  Sender consists of the

set of all non-empty subsets of M.  In equilibrium, if preferences are well-behaved (Utility functions increase in the action,

are concave in the action, and marginal utility for the action changes monotonically with the state) then Crawford and Sobel

(Econometrica 1982) show that 

(i) Equilibria are  partition equilibria.

(ii)Actions are a step function.

(iii)Multiple equilibria may exist.

Essentially the  Sender's types (the states) can be divided into n different non-overlapping sub-intervals of M: over a

particular region, all Sender types send the same message, inducing the Receiver to take the same action.  Solving for a
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partition involves finding the n-1 points where the sub-intervals meet.  At these points, the  Sender must be indifferent

between claiming to be in one of the adjacent sub-intervals.

a0 a1 a4a3 a5a2

A five element partition.

A partition equilibrium is characterized by the solution to a system of difference equations.

In the first example, we replicate a simple illustration in Crawford and Sobel's original paper;  in the second, we

examine a variation on their model to address a question on which the literature has been silent.

� Example 3: Crawford-Sobel's model (1982) of coordination with similar interests

� Preliminaries

In this game, Nature chooses an m . The  Sender is aware of the value of m, while the Receiver  knows only the

distribution function of m, which is uniform on the interval [0,1]. The  Sender chooses a message (a subset of [0,1])  to send

to the Receiver which may include information about m. Using this message, the Receiver chooses an action y so that he

maximizes the expected value of his utility function.

We define an equilibrium to be a pair (m*(m), y*(m*(m)) where m* and y* can 

be correspondences, such that m*( ) is the argument that maximizes Us[y*(m(m)),m,b]  over m( ) and y*( ) is the argument

that maximizes E[Ur[y(m*(m)),m] | m ~ U[0,1],m*(m)] over

 y( ).

� Existence of Fully Revealing Equilibria

There is no fully revealing equilibrium when b - 0 since in this case preferences are imperfectly aligned.   One can

see this by assuming that the  Sender reveals his information m to the Receiver. In this case, the Receiver chooses y=m.

Now the  Sender's utility is

Clear[b];

Us[m,m,b]

  2
-b

If the  Sender, instead lies about m, then he could get a higher utility:
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foc=D[Us[ym,m,b],ym]==0;
ans=Solve[foc,ym]
Us[ym,m,b]/.ans

{{ym -> b + m}}

{0}

In other words, the  Sender wishes the Receiver to choose y=b+m, giving himself  a utility of 0 rather than  -b2.  Knowing

this the Receiver will never choose y=m. Therefore, the only candidates for types of equilibria are partial-disclosure equilib-

ria or no-disclosure equilibria.

� No disclosure equilibria

In the no-disclosure equilibrium, the  Sender's message is completely uninformative: that is, he announces the entire set

[0,1],  so the Receiver learns nothing new.  Now the Receiver chooses an action that maximizes his expected utility, the

expectation being taken with respect to the prior distribution.

ExpUtil=Integrate[Ur[y,m],{m,0,1}]

  1         2
-(-) + y - y
  3

foc=D[ExpUtil,y]==0

1 - 2 y == 0

1 - 2 y == 0

1 - 2 y == 0

Solve[foc,y]

       1
{{y -> -}}
       2

       1
{{y -> -}}
       2

       1
{{y -> -}}
       2

The  Sender has no incentive to change his no-disclosure strategy because the Receiver will still choose y=1/2, believing that

any value of m in [0,1] is equally likely. The expected utilities in this equilibrium are, respectively for the Sender and the

Receiver:
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Simplify[Integrate[Us[1/2,m,b],{m,0,1}]]
Integrate[Ur[1/2,m],{m,0,1}]

  1      2
-(--) - b  -      
  12

  1
-(--)  -  
  12

� Partition Equilibria

In a partition equilibrium, the set [0,1] is divided into partitions {a[0],...,a[n]} where a[0]=0, a[n]=1 and a[i+1] > a[i].   Each

Sender announces the partition (a[i], a[i+1]).   This could be interpreted as the Sender randomly choosing a point from the

subinterval (a[i], a[i+1]) and the Receiver interpreting it as if the Sender's type were in ([a[i], a[i+1]).

Therefore, for each message in (a[i],a[i+1]), the Receiver chooses y so as to maximize his expected utility given posterior

beliefs  concentrated on the sub-interval  (a[i],  a[i+1]).   We first  compute ExpUtil  which is  the expected  utility of  the

Receiver from choosing action y given that m is in the interval (a[i], a[i+1]).  The foc is the first order condition with respect

to y, and ans is the solution.

ExpUtil=Integrate[Ur[y,m],{m,a[i],a[i+1]}];
foc=D[ExpUtil,y]==0;
ans=Simplify[Solve[foc,y]]

       a[i] + a[1 + i]
{{y -> ---------------}}       --------------   
              2

We need to create a set of n different actions, one for each sub-interval in the partition.  We define y[i] as the action taken if

a message is sent in the partition (a[i],a[i+1]).

y[i_]:=Evaluate[(y/.ans)]

The  Sender must have no incentive to lie, so 

Us[y[i],m,b]>=Us[y[j],m,b]

            a[i] + a[1 + i] 2                 a[j] + a[1 + j] 2
{-(-b - m + ---------------) } >= {-(-b - m + ---------------) }            --------------                    --------------    
                   2                                 2

Notice the RHS is decreasing in j>i if b is small enough. For small enough b, the RHS is increasing in j<i as well Notice that

adjacent partitions have a single point in common.  At that point, both constraints must hold:

(Us[y[i+1],m,b]>=Us[y[i],m,b] && 
Us[y[i],m,b]>=Us[y[i+1],m,b] )/. {m->a[i+1]}

This is equivalent to having the  Sender indifferent to being in either partition at the point in common.

Simplify[Us[y[i],m,b]==Us[y[i+1],m,b] /. {m->a[i+1]}]

                         2                                   2
 -(2 b - a[i] + a[1 + i])       -(-2 b - a[1 + i] + a[2 + i])
{-------------------------} == {------------------------------} ------------------------       -----------------------------  
             4                                4
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Crawford and Sobel term these  "indifference" or "arbitrage" conditions. We now need to check that the Receiver is taking

an appropriate action given that he infers from a message that a  Sender is in the interval (y[i],[y[i+1]):

y[4]

 a[4] + a[5]
{-----------} ----------  
      2

Notice that y is strictly increasing in i.  In order for the  Sender to have no incentive to change message partitions, his utility

must be continuous in message sent.  If this is not the case, Us[y[i],m,b]>Us[y[i+1],m,b].  Notice that the y's are a step

function.

� Using the PartitionEq function:

We now present the PartitionEq function.  We first set up a group of equations eq which describe the indifference condi-

tions. If there is a different utility function with no default equations provided, we run Boundcond which calculates the

indifference conditions for that utility function.   We append the boundary conditions to have a set of equations eqns to be

solved for n+1 variables a[i], i=0,1,...n.  The solutions are stored in g and tabulated in ans1.   We prune the output to rule

out complex solutions and also to guarantee that the numbers a[i] form a strictly increasing sequence.  The output is a list of

lists of indifference points, which completely characterizes the partition equilibrium. Note that if this list of lists is properly

pruned, then it should be of dimensions 1 by n.
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PartitionEq[n_,bb_,us_:1,eqopt_:1,vars_:1]:=Block[
{ans1,ans2,ans,eq,f,eqns,i,j,g},
If[n==1,Return[{{0.,1.}}] ];
If[eqopt===1,
  If[us===1,
    eq[i_]:=a[i+1]==2 a[i]-a[i-1]+4 bb,
    eq[i_]:=Evaluate[boundcond[us]/.b->bb]; 
  ];,
 If[vars===1 || Length[vars]!=3 ,eq[i_]:=Evaluate[eqopt/.b->bb] ,
  eq[i_]:=Evaluate[eqopt/.vars[[2]]->bb/.vars[[1]]->a/.vars[[3]]->i];];
];
eqns=Join[Table[eq[i],{i,1,n-1}],{a[0]==0,a[n]==1}]; 
g=NSolve[eqns,Table[a[i],{i,0,n}]];
ans1=Table[Table[a[i],{i,0,n}]/.g[[j]],

{j,1,Length[g]}];
f[a_]:=Apply[And,Table[a[[i]]>a[[i-1]],{i,2,Length[a]}]];
ans=Select[ans1,f];
ans2=Select[ans1,Not[Apply[And,Map[NumberQ,#1]]] &];
If[Length[ans2]>0,ans=Join[ans,
{"Warning! Some partitions might not be increasing."},
ans2] ];
Return[ans];
] 

boundcond[us_]:=Block[{y,m,a},
  ExpUtil=Integrate[us[y,m,0],{m,a[i],a[i+1]}];
  foc=D[ExpUtil,y]==0;
  y[i_]:=Evaluate[y/.Flatten[Simplify[Solve[foc,y]]]];
 Return[ us[y[i],a[i],b]==us[y[i-1],a[i],b]]
  ]
  

As a test, we work out what happens when we look for a 5 element partition with the preference parameter of 0.003.

atable=Flatten[PartitionEq[5,.003,1,1]];
ListPlot[atable, PlotStyle->{PointSize[.02]}]

2 3 4 5 6

0.2

0.4

0.6

0.8

1

-Graphics-
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� Welfare Comparisons

One can compute expected utilities of both parties by integrating each utility function over each partition element and then

taking the Sum over different sub-intervals.   The results are stored in welfares  and welfarer  for the Sender and

Receiver, respectively. 

ExpUtilSend[a_,b_]:=Sum[Integrate
[Us[(a[[i]]+a[[i+1]])/2,
m,b],{m,a[[i]],a[[i+1]]}],{i,1,Length[a]-1}];
ExpUtilRec[a_,b_]:=Sum[Integrate
[Ur[(a[[i]]+a[[i+1]])/2,m],
{m,a[[i]],a[[i+1]]}],{i,1,Length[a]-1}];
welfares=Table[ExpUtilSend

[PartitionEq[n,.02],.02],{n,1,5}];
welfarer=Table[ExpUtilRec

[PartitionEq[n,.02],.02],{n,1,5}];

Our next series of graphs helps to show how expected utility varies with the state, as the fineness of the partition changes.

Crawford and Sobel show that although multiple partition equilibria can exist, they can be Pareto ordered (from best to

worst) and ranked unanimously by both parties.  

� Comparative Statics  

In this section we show how the utility changes as a function of the state given a partition, and then we determine

how this relationship changes as the size of the partition changes. 

parts=N[Table[PartitionEq[n,.05][[1]],{n,1,3}]];
toleft[a_,m_]:=Position[a,Join[Select

[a,Function[x,x>m]],{1.}][[1]]][[1]]-1;
y[a_,m_]:=Block[{lpos},

lpos=toleft[a,m];
Return[(a[[lpos]]+a[[lpos+1]])/2] ];

graphs=Table[Plot[Us[y[parts[[n]],m],m,.05],
   {m,0,1},DisplayFunction->Identity],{n,1,3}]

{-Graphics-, -Graphics-, -Graphics-}

parts

{{0., 1.}, {0., 0.4, 1.}, {0., 0.133333, 0.466667, 1.}}

In the above, parts represents the three different partitions of [0,1] that are equilibria.  One of these is the uninforma-

tive  partition  {[0,1]}.   The  second  has  two  elements,  {[0,.0.4],[0.4,1]}.   The  third  has  three  elements  ,

{[0,.0.1333],[0.1333,.46667],[[0.46667,1]}.  
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Show[graphs,
AxesLabel->{"Type","Utility of Sender"},
PlotLabel->"Payoffs at Equilibria",
DisplayFunction->$DisplayFunction]

0.2 0.4 0.6 0.8 1
Type

Payoffs at Equilibria

-0.08

-0.06

-0.04

-0.02

Utility of Sender

-Graphics-

This graph shows the utility of the Sender as a function of the state. The curve with one peak involves the no-communication

partition  {0,1}.   The  other  two  curves  represent  the  two-element  partition  {0,.4,1}  and  three-element  partition

{0,.133,.4667,1} respectively.  

Notice for the two and three element partitions the curves are continuous where they

meet . This is due to the indifference condition that we used to solve this problem.
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graphr=Table[Plot[Ur[y[parts[[n]],m],m],
   {m,0,1},PlotPoints->80,DisplayFunction->Identity],
   {n,1,3}];
Show[graphr,
AxesLabel->{"Type","Utility of Receiver"},
PlotLabel->"Payoffs at Equilibria",
DisplayFunction->$DisplayFunction]

0.2 0.4 0.6 0.8 1
Type

Payoffs at Equilibria

-0.1

-0.08

-0.06

-0.04

-0.02

Utility of Receiver

-Graphics-

This graph shows the utility of the Receiver as a function of the state. Now notice the jump of the curve between elements.

This represents a discontinuity that exists because the Receiver is not aware when the state is on the border of two elements,

thus he need not be indifferent.

� Example 4: If interests coincide at a point, does that imply full disclosure 

everywhere?

� Preliminaries

In this second example we consider a variation on the standard Crawford-Sobel model in which the interests of the  Sender

and the Receiver do coincide, although at only one point.  In the above examples, the interests of the two parties never

coincided.  A slight modification of the payoff functions ensures that at m=0 the two sides have identical interests.  An

interesting question to investigate is what happens as n, the number of partition elements, increases without bound. 

� Payoff functions

The utility functions are now 
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Us[y_,m_,b_]:=- (y-m -b m)^2;
Ur[y_,m_]:=-(y-m)^2;
{Us[y,0,b],Ur[y,0]}

   2    2
{-y , -y }

Clearly, the players' preferences coincide at m=0. 

The  Sender's most preferred action and corresponding utility are

Sendersbest=Solve[D[Us[ym,m,b],ym]==0,ym]
Us[ym,0,b]/. Sendersbest

{{ym -> m + b m}}

           2
{-(m + b m) }

Receiversbest=Solve[D[Ur[ym,m],ym]==0,ym]
Us[ym,0,b]/.Receiversbest

{{ym -> m}}

   2
{-m }

� Indifference Conditions

Now the conditions that generate a partition are for type a[i] to be indifferent between claiming to be in [a[i-1], a[i]] and

claiming to be in [a[i], a[i+1]] .

-((a[i-1]+a[i])/2 -a[i] -b a[i])^2==
-((a[i]+a[i+1])/2 -a[i] -b a[i])^2

which can be simplified to

-(a[i-1]/2 -(2 b+1)a[i]/2)^2==
-(a[i]/2 -(2 b+1)a[i]/2)^2

Notice this is a quadratic and is of the form p^2 -q^2==0 which yields the root p+q=0 because p-q.  

Simplify[(a[i-1]/2 -(2 b+1)a[i]/2)+
(a[i+1]/2 -(2 b+1)a[i]/2)]

a[-1 + i] - 2 a[i] - 4 b a[i] + a[1 + i]
------------------------------------------------------------------------------- 
                   2

� Solving the indifference conditions

We solve the indifference conditions by using the function values, which then calls PartitionEq. We send PartitionEq the

parameter n and the reduced indifference condition (a[i+1]+a[i-1])/2 -a[i]-2 b a[i]==0. We must also inform PartitionEq

what variables are used in the indifference condition so we send it {a,b,i}.  Since PartitionEq  sometimes gives warning

messages (see Package), we must prune it using Select. 
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values[n_]:=Select[PartitionEq[n,.03,,
(a[i+1]+a[i-1])/2 -a[i]-2 b a[i]==0,{a,b,i}],
Head[#1]===List &][[1]]

values[4]

{0., 0.189103, 0.400898, 0.660801, 1.}

� Asymptotic Results

At the beginning of this section, we mentioned that an unanswered question was what happened as N increases.  Does full

disclosure occur over the entire interval of types rather than in an neighborhood of zero?  A sufficient condition for this not

to occur is that the last partition has strictly positive length as N increases.  We store the position of a[N-1] in soltable.  As

we try large values of N we see that a[N-1] converges.

soltable[i_]:=Block[{j},
     v=Table[values[j],{j,1,i}];
     Return[Table[v[[j]][[Length[v[[j]]]-1]],{j,1,i}]]];
soltable[50]
ListPlot[%,PlotJoined->True]

{0., 0.471698, 0.606685, 0.660801, 0.685307, 0.697013, 0.702747, 
 
  0.70559, 0.707009, 0.707719, 0.708074, 0.708252, 0.708342, 
 
  0.708387, 0.708409, 0.708421, 0.708426, 0.708429, 0.708431, 
 
  0.708431, 0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 
 
  0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 
 
  0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 
 
  0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 
 
  0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 0.708432, 
 
  0.708432}
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-Graphics-
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How the Functions Work

Given a set of partitions that are equilibrium partitions,the function, EqBeliefs, can be used to calculate the

conditional beliefs of the Receiver that exist in equilibrium for each message in each equilibrium set.  Thus, if we had the

following equilibrium  partitions and probability function,

samplepartitions={{{1,2,3},{4}},{{1,2,3,4}}};
Us[y_,m_,b_]:=- (y-m-b)^2;
Ur[y_,m_]:=-(y-m)^2;Prob[x_]:=.25

iwe could calculate the beliefs regarding each of the underlying states when the different messages occur under the different

partitions.

EqBeliefs[samplepartitions,Prob]

{{{0.333333, 0.333333, 0.333333, 0}, {0, 0, 0, 1.}}, 
 
  {{0.25, 0.25, 0.25, 0.25}}}

The function EqBeliefs is constructed from several straightforward calculations which depend on  any prespecified

probability function, Prob.  The most primitive of these functions is aggregator which determines the probability of

sets occurring. Thus, if one such set is {1,2,3}, the probability of such a message is

aggregator[{1,2,3},Prob]

aggregator[{1, 2, 3}, Prob]

The function is defined in the following way

aggregator[x_,Prob_] := Apply[Plus, Prob /@ x]

With this function, it is possible to build conditional probabilities of  states, given messages, as well as the collection of such

conditional probabilties:

CondProb[state_, message_, Prob_] := 
  aggregator[Intersection[
  state, message],Prob]/aggregator[message,Prob]
      
 CondProbSet[S_,message_,Prob_] := 
    Table[CondProb[{s},message,Prob], {s,1,Length[S]}]

Thus the conditiional probability of state 1,{1}, given the message of {1,2,3}, the  is

CondProb[{1},{1,2,3},Prob]

0.333333

To consider all states given {1,2,3} we would use
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CondProbSet[{1,2,3,4},{1,2,3},Prob]

{0.333333, 0.333333, 0.333333, 0}

EqBeliefs performs this calculation for each member of the given partition. 

EqBeliefs[k_,Prob_] := 
     Table[Table[CondProbSet[Flatten[k[[1]]],
     k[[j]][[i]],Prob], 
    {i, 1, Length[k[[j]]]}], {j, 1, Length[k]}]

Thus, if only one partition is an equilibrium partition, say,{{1},{1,2,3}} , then the calculations are  

EqBeliefs[{{{1},{2,3,4}}},Prob]

{{{1., 0, 0, 0}, {0, 0.333333, 0.333333, 0.333333}}}

We now turn to the  task of computing  what the equilbrium partitions are using EqMessages. The function  EqMes-

sages is composed of two basic operations: first, the function determines the candidates of sets of subsets of the message

space that are  potential equlibria.   After selecting  candidates,  EqMessages  uses the function IsEquilibrium   to

determine whether each candidate is an equilibrium. 

The arguments of EqMessages include the number of states, the number of actions, the measure of the difference in

preferences, the utility functions of the Receiver and  Sender, and the underlying probability function  defined on states. We

will use four states, four actions, the utility functions used in our earlier discussion, and the constant probability function.

Us[y_,m_,b_]:=- (y-m-b)^2;
Ur[y_,m_]:=-(y-m)^2;Prob[x_]:=.25

These functions together with the number of states are used to create the basic representation  of outcomes for both Receiver

and  Sender. 

RUtils[A_, S_, Ur_] := 
  Table[Ur[a, s], {a, 1, Length[A]}, {s, 1, Length[S]}]

SUtils[A_, s_, b_,Us_] := Table[Us[a, s, b], 
{a, 1, Length[A]}] 

For the Receiver, we would have

MatrixForm[RUtils[Range[4],Range[4],Ur]]

0    -1   -4   -9

-1   0    -1   -4

-4   -1   0    -1

-9   -4   -1   0

Because the Sender knows what the state is when choosing a message, the basic representation of the Sender's preferences is

state-dependent.
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SUtils[Range[4],1,2.0,Us]

{-4., -1., 0., -1.}

The table of overall Sender's values would be

MatrixForm[Table[SUtils[Range[4],s,2.0,Us],{s,1,4}]]

-4.    -1.    0.     -1.

-9.    -4.    -1.    0.

-16.   -9.    -4.    -1.

-25.   -16.   -9.    -4.

Thus we are working with the setting in which preferences are not aligned. 

We  first discuss the function IsEquilibrium. It will help to begin with a candidate  for an equilbrium message set ,

such as {{1},{1,2,3}}. With each message in the set, condidtional probabilities of each of the states can be formed in

the manner described earlier, and from this calculation we can determine the expected utility of each action for a particular

message.

ExpUtilR[A_, S_, message_,Prob_,Ur_] := 
  Transpose[CondProbSet[S,message,Prob]] . 
  RUtils[A, S,Ur] 

Thus, for the second message, {2,3,4}, we have

ExpUtilR[Range[4],Range[4],{2,3,4},Prob,Ur]

{-4.66667, -1.66667, -0.666667, -1.66667}

Thus the best response for Receiver given the message {1,2,3}, would be action 2, since it yields the highest utility. This

is directly established by

 
BestResponse[A_, S_, message_,Prob_,Ur_]:= 
  Flatten[
  Position[
  ExpUtilR[A, S, message,Prob,Ur], 
    Max[ExpUtilR[A, S, message,Prob,Ur]]]
] 

The function locates the positions where a maximum occurs and then returns the appropriate action:

BestResponseSet[A_, S_, PART_,Prob_,Ur_] := 
  Table[BestResponse[A, S, PART[[i]],Prob,Ur], 
  {i, 1, Length[PART]}] 

BestResponseSet[Range[4],Range[4],{{1},{2,3,4}},Prob,Ur]

{{1}, {3}}

Thus we have the collection of best responses for the Receiver in this setting, given the underlying set of possible messages.

However, we do not know that the  Sender will, in fact, send the appropriate message, when the  Sender knows how the
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Receiver will react. To have an equilibrium, it must be the case that the actions the  Sender attempts to induce are in fact the

actions  the Receiver will take.  Thus, given a Sender knows a particular state, we need to examine what  action, from those

available in the best response set of the Receiver, that the  Sender will attempt to induce.  This is accomplished by the

function

SendersBest[A_, S_, s_, PART_, b_,Ur_,Us_,Prob_] := 
  coord[Flatten[BestResponseSet[A, S, PART,Prob,Ur]]] /@ 
   Position[
       SUtils[Flatten[BestResponseSet[A, S,PART,Prob,Ur]],      

s, b,Us],
       SMax[BestResponseSet[A, S, PART,Prob,Ur], s, b,Us]
       ]

The function first determines the BestResponseSet of the Receiver,then determines the utility for the  Sender for each

of these responses, then determines which of these utilities is the maximum in the set of utilities, and finally picks out those

Receiver's actions that yield this utility.  Consider how this function builds up. First consider

BestResponseSet[Range[4],Range[4],{{1},{2,3,4}},Prob,Ur]

{{1}, {3}}

Then for a particular state, say 3, the Sender's possible utilties are

SUtils[Flatten[BestResponseSet[Range[4],Range[4],{{1},
{2,3,4}},Prob,Ur]],1,2.0,Us]

{-4., -1.}

SMax[A_, s_, b_,Us_] := Max[SUtils[Flatten[A], s, b,Us]]

SMax[BestResponseSet[Range[4],Range[4], {{1},
{2,3,4}},Prob,Ur], 1, 2.0,Us] 

-1.

coord[set_] := Function[x, set[[x]]]

Thus, the Sender would like to see action 3 taken, i.e.,

SendersBest[Range[4],Range[4],1,{{1},{2,3,4}},2.0,Ur,
Us,Prob]

{{3}}

Thus the Sender's desired action and Receiver's desired action do not match, given the partition.  We check this out with the

function Match 

Match[A_, S_, s_, PART_,b_,Ur_,Us_,Prob_] := 
  Intersection[
  SendersBest[A, S, s, PART, b,Ur,Us,Prob][[1]], 
   {BestResponseSet[A, S, PART,Prob,Ur][[s]]}[[1]]]
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Match[Range[4],Range[4],1,{{1},{2,3,4}},2.0,Ur,Us,Prob]

{}

When any particular state leads to Match being the null set, there cannot be an equilibrium, which we find out by using

IsEquilbrium:

 
IsEquilibrium[A_, S_, PART_, b_,Ur_,Us_,Prob_] := 
  Module[{a1, b1, c1, d1, e1,f1,g1,h1}, 
  a1 = 1; b1 = b; c1 = A; d1 = S; e1 = PART;
  f1=Ur;g1=Us;h1=Prob; 
  While[a1 <= Length[S], 
  If[Match[c1, d1, a1, e1, b1,f1,g1,h1] == {}, 
        Return[{}]]; a1++]; 
   Return[e1]] 

that is

IsEquilibrium[Range[4],Range[4],{{1},{2,3,4}},2.0,Ur,
Us,Prob]

{}

The final element of the calculations is to determine the set of candidates for equilibrium sets of messages.  The

fundamental  part of the calculation is a function, partition, which for a given set  and a number, n, will determine all

partitions which contain n subsets of the set. For example 

partition[{1,2,3,4}, 3]

partition[{1, 2, 3, 4}, 3]

The function is defined recursively with

partition[set_, 1] := {set}
 
partition[set_, 2] := Table[part[i][set], 
{i, 1, Length[set] - 1}] 

part[i_] := Function[x, {Take[x, i], 
Take[x, -(Length[x] - i)]}]

When the partition is of size one the function is obvious. For partitions of size 2 the determination depends on a pure

function part[i_] which will divide a set into its first i and remaining elements. For example,

part[2][{1,2,3,4}]

{{1, 2}, {3, 4}}

The collection over i will be the partitions of size 2.
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Table[part[i][{1,2,3,4}], {i, 1, Length[{1,2,3,4}] - 1}] 

{{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{1, 2, 3}, {4}}}

We now consider the recursive formula which is

partition[set_, n_] := 
  partition[set, n] = 
   Flatten[
   Table[
   Table[Insert[
    partition[Take[set, -(Length[set] - i)], 
   n - 1][[j]],
     Take[set, i], 1], 
         {j, 1, Length[partition[Take[
                   set, -(Length[set] - i)], n - 1]]}], 
     {i, 1, Length[set] - (n - 1)}], 
    1]

The recursion works on the principle that if we take increasingly large subsets of the set to be partitioned and append all

partitions  of  size  n-1,  then  we  ultimately  have  all  the  partitions  of  size  n.   Thus,  suppose  we  start  with  the  set,

{1,2,3,4},and wish to find the partitions of size 3. We work succesively with the sets, {1} and {1,2},and append

to them subsets of the remaining numbers of size 2.  Thus, if we append {1} to   

partition[{2,3,4},2]

{{{2}, {3, 4}}, {{2, 3}, {4}}}

we will have the desired partitions with {1} as the first subset of the partition.  When we look at both sets {1} and {1,2}, we

have

partition[{1,2,3,4},3] 

{{{1}, {2}, {3, 4}}, {{1}, {2, 3}, {4}}, {{1, 2}, {3}, {4}}}

Thus, we have a method of determining the set of all connected possible partitions of any set.

We will now enumerate  some partitions of the set of types,  and check whether  sending a particular  subset from those

partitions is an equilibrium.  In doing so, we will not  enumerate all possible subsets of the set of types.  We will restrict our

search to "connected" partititions of the set of types.  

Formally, a partition P of the set of types is said to be connected if, for every partition element Pi , if two non-adjacent types

tj and tk are in Pi,  then all intermediate types are also in Pi.   For instance if the set of types is {1,2,3,4} we will ignore

partitions of the form {{1,3},{2},{4}} because they are disconnected.  This is because {2} is between {1} and {3} so the

partition {1,3} has a "hole" at {2}.  Partitions such as {{1,2,3},{4}} or {{1,2,3},{3,4}}are, by contrast, connected.  Con-

nected partitions such as {{1,2,3},{4}} do not overlap;  others such as {{1,2,3},{3,4}} do overlap in the sense that adjacent

elements in the partition share one or more states.

If preferences satisfy the "single-crossing" property then disconnected partitions cannot be equilibria.  Crawford and Sobel

assume the "single-crossing property", and this is satisfied by the utility functions we have specified.  The single-crossing
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property is used in the economics literature to study optimal taxation, signalling and incentive contracts.  Intuitively, the

property implies that "higher" types care more about the action than "lower" types: in our problem, the marginal utility of

the action increases with the type.

The set of all partitions we have derived is not the set of all combinations of message sets that are candidates for equilbria.

It may be that overlapping connected partitions constitute possible equilibrium message sets.  For example, we may have, in

addition to the partition{{1},{2},{3,4}}, the sets, {{1,2},{2,3},{3,4}} as  possible message sets in equilibrium.  Not only is

the above set a viable message set but also combinations of this set and the original partition are.  So, for example, the set

{{1},{2},{2,3,4}} is a viable message set.  We derive the set of all possibilities in two steps.  First, to find the message set

in which the last member of a subset of the  initial  partition is added to the next element of the partition, we employ two

functions, overlapping and augment.

overlapping[par_] := Fold[augment, {par[[1]]}, Rest[par]]
 
augment = Join[#1, {Join[{#1[[-1]][[-1]]}, #2]}] &  

Join[#1, {Join[{#1[[-1]][[-1]]}, #2]}] &

If we apply augment to the two sets {{1}} and {2} we get  

augment[{{1}},{2}]

{{1}, {1, 2}}

If we combine the result with the remaining set, {3,4}, we get  

augment[augment[{{1}},{2}],{3,4}]

{{1}, {1, 2}, {2, 3, 4}}

The repeated use of augment to any partition can be accomplished through the function overlapping. 

overlapping[{{1},{2},{3,4}}]

{{1}, {1, 2}, {2, 3, 4}}

To find the set of all combinations of these sets, we use the functions

completegroup[set_] := 
  create[Transpose[{set, overlapping[set]}]]
 
create[setoverlap_] := 
  Union[Fold[add, List /@ setoverlap[[-1]], 
  Reverse[Drop[setoverlap, -1]]]]
 
add = Flatten[Table[Table[Insert[#1[[i]], #2[[j]], 1], 
      {i, 1, Length[#1]}], {j, 1, 2}], 1] & 

Flatten[Table[Table[Insert[#1[[i]], #2[[j]], 1], {i, 1, Length[#1]}], 
 
    {j, 1, 2}], 1] &
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add[{{a1},{b1}},{c1,d1}]

{{c1, a1}, {c1, b1}, {d1, a1}, {d1, b1}}

add[%,{e1,f1}]

{{e1, c1, a1}, {e1, c1, b1}, {e1, d1, a1}, {e1, d1, b1}, {f1, c1, a1}, 
 
  {f1, c1, b1}, {f1, d1, a1}, {f1, d1, b1}}

The function  add, then is a method of augmenting pairs to create triples with each element of the pair positioned  in front

of the previous pair.   

create[{{a1,b1},{c1,d1},{e1,f1}}]

{{a1, c1, e1}, {a1, c1, f1}, {a1, d1, e1}, {a1, d1, f1}, {b1, c1, e1}, 
 
  {b1, c1, f1}, {b1, d1, e1}, {b1, d1, f1}}

The function add is applied, the same sets are created, but the ordering is reversed for each of the sets.  Note that the set

{{a1,b1},{c1,d1},{e1,f1}} is the transpose of {{a1,c1,e1},{b1,d1,f1}}.  Using this observation we

apply create to the original partition and its overlap, 

completegroup[{{1},{2},{3,4}}]

{{{1}, {2}, {3, 4}}, {{1}, {2}, {2, 3, 4}}, {{1}, {1, 2}, {3, 4}}, 
 
  {{1}, {1, 2}, {2, 3, 4}}}

The function EqMessages has  been explained in terms of its two major components.  The function, completegroup,

is used in determining the set of all possible candidates for equilibrium messages, and the function IsEquilibrium is

used to evaluate each of these candidates.

The package, strategic, provides a useful vehicle for examining  sender-receiver games, and thus provides a first applica-

tions to games of incomplete information, i.e. games with information asymmetry.  We appreciate Jack Stecher's comments

on this manuscript. 

dkmpaper.nb 26



The Package

BeginPackage["cspackage`"]

PartitionEq::usage="PartitionEq[n,b] calculates

the n partitions for a continuum of types on [0,1] given a preference parameter b. 

PartitionEq[n,b,us] calculates the n partitions for a continuum of types on [0,1] given a 

preference parameter b and a utility function us for  the  Sender. PartitionEq[n,b,,eqopt] 

calculates the n partitions for a continuum of types on [0,1] given a preference parameter b 

uses a reduced difference equation eqopt to simplify the calculation.  Defaults are uniform 

prior distribution on [0,1] and quadratic preferences if no other utility function is given."

EqMessages::usage="EqMessages[states,actions,b,Ur,Us,Prob]

calculates the sets of equilibrium messages for the

case of finitely many states, drawn from the set 

{1,states}, on the set {1,actions}, where actions and states are positive integers.  Ur and Us 

are the utility functions of the Receiver and the Sender, with b a non-zero measure of the 

divergence in their preferences. Prob is the prior probability distribution on the 

set{1,states}. "

EqBeliefs::usage="EqBeliefs[k,Prob] calculates the equilibrium beliefs, for the case of 

discretely many states, for sets of equilibrium messages found by the function EqMessages, and 

a prior probability distribution Prob on the set {1,states} where states is a positive integer."

ReActions::usage="ReActions[A, S, PART,Ur,Prob] :=calculates  the sets of optimal actions from 

the set A by the Receiver for the case of discretely many states (drawn from the set S), given 

a partition (PART) of S and a utility function Ur for the Receiver when Prob is the prior 

probability  distribution on S. "

Begin["`Private`"]

EqBeliefs[k_,Prob_] := 

     Table[Table[CondProbSet[Flatten[k[[1]]],

     k[[j]][[i]],Prob], 

    {i, 1, Length[k[[j]]]}], {j, 1, Length[k]}]

   

CondProbSet[S_,message_,Prob_] := 

    Table[CondProb[{s},message,Prob], {s,1,Length[S]}]

 

CondProb[state_, message_, Prob_] := 

  aggregator[Intersection[

  state, message],Prob]/aggregator[message,Prob]

 

aggregator[x_,Prob_] := Apply[Plus, Prob /@ x]

 

EqMessages[actions_, states_,b_,Ur_,Us_,Prob_] := 

  Join[{{Range[states]}}, Complement[Flatten[

  Table[

         Table[IsEquilibrium[Range[actions],             Range[states],Flatten[

             completegroup /@ 

             partition[Range[states],i], 1][[j]],         b,Ur,Us,Prob], 

          {j, 1, Length[Flatten[completegroup /@                             

partition[Range[states], i], 1]]}],

      {i, 2, states}], 1], 

   {{}}]]

IsEquilibrium[A_, S_, PART_, b_,Ur_,Us_,Prob_] := 

  Module[{a1, b1, c1, d1, e1,f1,g1,h1}, 

  a1 = 1; b1 = b; c1 = A; d1 = S; e1 = PART;

  f1=Ur;g1=Us;h1=Prob; 

  While[a1 <= Length[S], 

  If[Match[c1, d1, a1, e1, b1,f1,g1,h1] == {}, 

        Return[{}]]; a1++]; 

   Return[e1]]

Match[A_, S_, s_, PART_,b_,Ur_,Us_,Prob_] := 
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  Intersection[

  SendersBest[A, S, s, PART, b,Ur,Us,Prob][[1]], 

   ResponseState[A, S, PART,Ur,Prob][[s]]]

SendersBest[A_, S_, s_, PART_, b_,Ur_,Us_,Prob_] := 

  coord[Flatten[BestResponseSet[A, S, PART,Prob,Ur]]] /@ 

   Position[

       SUtils[Flatten[BestResponseSet[A, S,PART,Prob,Ur]],      s, b,Us],

       SMax[BestResponseSet[A, S, PART,Prob,Ur], s, b,Us]

       ]

 

coord[set_] := Function[x, set[[x]]]

BestResponseSet[A_, S_, PART_,Prob_,Ur_] := 

  Table[BestResponse[A, S, PART[[i]],Prob,Ur], 

  {i, 1, Length[PART]}]

  

BestResponse[A_, S_, message_,Prob_,Ur_]:= 

  Flatten[

  Position[

  ExpUtilR[A, S, message,Prob,Ur], 

    Max[ExpUtilR[A, S, message,Prob,Ur]]]

]

ExpUtilR[A_, S_, message_,Prob_,Ur_] := 

  Transpose[CondProbSet[S,message,Prob]] . 

  RUtils[A, S,Ur]

  

RUtils[A_, S_, Ur_] := 

  Table[Ur[a, s], {a, 1, Length[A]}, {s, 1, Length[S]}]

SUtils[A_, s_, b_,Us_] := Table[Us[a, s, b], 

{a, 1, Length[A]}]

SMax[A_, s_, b_,Us_] := Max[SUtils[Flatten[A], s, b,Us]]

 

RBestActions[A_, S_, PART_,Prob_,Ur_] := 

  Flatten[Table[Table[BestResponse[A, S, 

  PART[[i]],Prob,Ur], 

     {j, 1, Length[PART[[i]]]}], {i, 1, Length[PART]}], 1]

 

ResponseState[A_,S_,PART_,Ur,Prob_]:=

Flatten[Table[Table[BestResponse[A,S,PART[[i]],

Prob,Ur],{j,1,Length[PART[[i]]]}],{i,1,Length[

PART]}],1]

completegroup[initpart_] :=  

 create[Transpose[{initpart, overlapping[initpart]}]]

 

create[setoverlap_] := 

  Union[Fold[add, List /@ setoverlap[[-1]], 

  Reverse[Drop[setoverlap, -1]]]]

 

add = Flatten[Table[Table[Insert[#1[[i]], #2[[j]], 1], 

      {i, 1, Length[#1]}], {j, 1, 2}], 1] & 

 

overlapping[par_] := Fold[augment, {par[[1]]}, Rest[par]]

 

augment = Join[#1, {Join[{#1[[-1]][[-1]]}, #2]}] & 

 

partition[set_, 1] := {set}

 

partition[set_, 2] := Table[part[i][set], 

{i, 1, Length[set] - 1}]

 

partition[set_, n_] := 

  partition[set, n] = 

   Flatten[

   Table[
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   Table[Insert[

    partition[Take[set, -(Length[set] - i)], 

   n - 1][[j]],

     Take[set, i], 1], 

         {j, 1, Length[partition[Take[

                   set, -(Length[set] - i)], n - 1]]}], 

     {i, 1, Length[set] - (n - 1)}], 

    1]  

part[i_] := Function[x, {Take[x, i], Take

[x, -(Length[x] - i)]}]

ReActions[A_, S_, PART_,Ur_,Prob_] := 

  Table[BestResponse[A, S, PART[[i]],Prob,Ur], 

  {i, 1, Length[PART]}]

boundcond[us_]:=Block[{y,m,a},

  ExpUtil=Integrate[us[y,m,0],{m,a[i],a[i+1]}];

  foc=D[ExpUtil,y]==0;

  y[i_]:=Evaluate[y/.Flatten[Simplify[Solve[foc,y]]]];

 Return[ us[y[i],a[i],b]==us[y[i-1],a[i],b]]

  ];

PartitionEq[n_,bb_,us_:1,eqopt_:1]:=Block[

{ans1,ans2,ans,eq,f,eqns,i,j,g},

If[n==1,Return[{0.,1.}] ];

If[eqopt===1,

  If[us===1,

    eq[i_]:=a[i+1]==2 a[i]-a[i-1]+4 bb,

    eq[i_]:=Evaluate[boundcond[us]/.b->bb]; 

  ];,

eq[i_]:=Evaluate[eqopt/.b->bb] ];

eqns=Join[Table[eq[i],{i,1,n-1}],{a[0]==0,a[n]==1}]; 

g=NSolve[eqns,Table[a[i],{i,0,n}]];

ans1=Table[Table[a[i],{i,0,n}]/.g[[j]],

{j,1,Length[g]}];

f[a_]:=Apply[And,Table[a[[i]]>a[[i-1]],{i,2,Length[a]}]];

ans=Select[ans1,f];

ans2=Select[ans1,Not[Apply[And,Map[NumberQ,#1]]] &];

If[Length[ans2]>0,ans=Join[ans,

{"Warning! Some partitions might not be increasing."},

ans2] ];

Return[ans];

];

 End[]

 EndPackage[]
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