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Abstract: The equivalence of markets and games concerns the relationship between
two sorts of structures that appear fundamentally di¤erent � markets and games.
Shapley and Shubik (1969) demonstrates that: (1) games derived from markets with
concave utility functions generate totally balanced games where the players in the
game are the participants in the economy and (2) every totally balanced game gen-
erates a market with concave utility functions. A particular form of such a market
is one where the commodities are the participants themselves, a labor market for
example.
But markets are very special structures, more so when it is required that utility

functions be concave. Participants may also get utility from belonging to groups,
such as marriages, or clubs, or productive coalitions. It may be that participants in
an economy even derive utility (or disutility) from engaging in processes that lead
to the eventual exchange of commodities. The question is when are such economic
structures equivalent to markets with concave utility functions.
This paper summarizes research showing that a broad class of large economies

generate balanced market games. The economies include, for example, economies
with clubs where individuals may have memberships in multiple clubs, with indi-
visibile commodities, with nonconvexities and with non-monotonicities. The main
assumption are: (1) that an option open to any group of players is to break into
smaller groups and realize the sum of the worths of these groups, that is, essential
superadditivity is satis�ed and :(2) relatively small groups of participants can realize
almost all gains to coalition formation.
The equivalence of games with many players and markets with many participants

indicates that relationships obtained for markets with concave utility functions and
many participants will also hold for diverse social and economic situations with many
players. These relationships include: (a) equivalence of the core and the set of com-
petitive outcomes; (b) the Shapley value is contained in the core or approximate
cores; (c) the equal treatment property holds � that is, both market equilibrium and
the core treat similar players similarly. These results can be applied to diverse eco-
nomic models to obtain the equivalence of cooperative outcomes and competitive,
price taking outcomes in economies with many participants and indicate that such
results hold in yet more generality.
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1 Introduction

One of the subjects that has long intrigued economists and game theorists is the
relationship between games, both cooperative and noncooperative, and economies.
Seminal works making such relationships include Shubik (1959), Debreu and Scarf
(1963), Aumann (1964), Shapley and Shubik (1969,1975) and Aumann and Shapley
(1974), all connecting outcomes of price-taking behavior in large economies with cores
of games. See also Shapley and Shubik (1977) and an ongoing stream of papers con-
necting strategic behavior to market behavior. Our primary concern here, however,
is not with the equivalence of outcomes of solution concepts for economies, as is De-
breu and Scarf (1963) or Aumann (1964) for example, but rather with equivalences of
the structures of markets and games. Solution concepts play some role, however, in
establishing these equivalences and in understanding the meaning of the equivalence
of markets and games.
In this entry, following Shapley and Shubik (1969), we focus on markets in which

utility functions of participants are quasi-linear, that is, the utility function u of a
participant can be written as u(x; �) = bu(x)+� where x 2 RL+ is a commodity bundle,
� 2 R is interpreted as money and bu is a continuous function. Each participant in
an economy has an endowment of commodities and, without any substantive loss of
generality, it is assumed that no money is initially endowed. The price of money is
assumed equal to one. A price taking equilibrium for a market then consists of a price
vector p 2 RL for the commodities.and an assignment of commodities to participants
such that: the total amounts of commodities assigned to participants equals the total
amount of commodities with which participants are endowed and; given prices, each
participant can a¤ord his assignment of commodities and no participant, subject to
his budget constraint, can a¤ord a preferred commodity bundle.
We also treat games with side payments, alternatively called games with transfer-

able utility or, in brief, TU games. Such a game consists of a �nite set N of players
and a worth function that assigns to each group of players S � N a real number
v(S) 2 R+, called the worth of the group. In interpretation, v(S) is the total payo¤
that a group of players can realize by cooperation. A central game-theoretic concept
for the study of games is the core. The core consists of those divisions of the maximal
total worth achievable by cooperation among the players in N so that each group of
players is assigned at least its worth. A game is balanced if it has a nonempty core
and totally balanced if all subgames of the game have nonempty cores. A subgame
of a game is simply a group of players S � N and the worth function restricted to
that group and the smaller groups that it contains.
Given an economy any feasible state of the economy generates a total worth of

each group of participants. The worth of a group of participants (viewed as players
of a game) is the maximal total utility achievable by the members of the group using
only those resources they control. In this way a market generates a game � a set of
players (the participants in the economy) and a worth for each group of players.
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Shapley and Shubik (1969) demonstrate that any market where all participants
have concave, monotonic increasing utility functions generates a totally balanced
game and that any totally balanced game generates a market, thus establishing an
equivalence between a class of markets and totally balanced cooperative games. A
particular sort of market is canonical; one where each participant in the market is
endowed with one unit of a commodity, his �type�. Intuitively, one might think of
the market as one where each participant owns one unit of himself or of his labor.
In the last twenty years or so there has been substantial interest in broader classes

of economies, including those with indivisibilities, nonmonotonicities, local public
goods or clubs, where the worth of a group depends not only on the private goods en-
dowed to members of the group but also on the characteristics of the group members.
For example, the success of the marriage of a man and a woman depends on their
characteristics and on whether their characteristics are complementary. Similarly,
the output of a machine and a worker using the machine depends on the quality and
capabilities of the machine and how well the abilities of the worker �t with the char-
acteristics of the machine � a concert pianist �ts well with an high quality piano but
perhaps not so well with a sewing machine. Or how well a research team functions
depends not only on the members of the team but also on how well they interact.
For simplicity, we shall refer to these economies as club economies. Such economies
can be modelled as cooperative games.
In this entry we discuss and summarize literature showing that economies with

many participants are approximated by markets where all participants have the same
concave utility function and for which the core of the game is equivalent to the set of
price-taking economic equilibrium payo¤s. The research presented is primarily from
Shubik and Wooders (1982), Wooders (1994) and earlier papers due to this author.
For the most recent results in this line of research we refer the reader to Wooders
(2007a,b, 2008). We also discuss other related works throughout the course of the
entry. The models and results are set in a broader context in the conclusions.
The importance of the equivalence of markets and games with many players relates

to the hypothesis of perfect competition, that large numbers of participants leads to
price-taking behavior, or behavior �as if� participants took prices as given. Von
Neumann and Morgenstern perceived that even though individuals are unable to
in�uence market prices and cannot bene�t from strategic behavior in large markets,
large �coalitions� might form. Von Neumann and Morgenstern write:

It is neither certain nor probable that a mere increase in the number of participants
might lead in �ne to the conditions of free competition. The classical de�nitions
of free competition all involve further postulates besides this number. E.g., it is
clear that if certain great groups of individuals will � for any reason whatsoever�
act together, then the great number of participants may not become e¤ective;
the decisive exchanges may take place directly between large �coalitions,� few
in number and not between individuals, many in number acting independently.
... Any satisfactory theory ...will have to explain when such big coalitions will
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or will not be formed �i.e., when the large numbers of participants will become
e¤ective and lead to more or less free competition.

The assumption that small groups of individuals cannot a¤ect market aggregates,
virtually taken for granted by von Neumann and Morgenstern, lies behind the answer
to the question they pose. The results presented in this entry suggest that the great
number of participants will become e¤ective and lead to more or less free competition
when small groups of participants cannot signi�cantly a¤ect market outcomes. Since
all or almost all gains to collective activities can be captured by relatively small
groups, large groups gain no market power from size; in other words, large groups are
inessential. That large groups are inessential is equivalent to small group e¤ectiveness
(Wooders (1992b). A remarkable feature of the results discussed in this essay is they
are independent of any particular economic structure.

2 Transferable utility games; some standard de�-

nitions

Let (N; �) be a pair consisting of a �nite set N , called a player set, and a function v,
called a worth function, from subsets of N to the real numbers R with v(�) = 0. The
pair (N; �) is a TU game (also called a game with side payments). Nonempty subsets
S of N are called groups (of players) and the number of members of the group S is
given by jSj. Following is a simple example.

Example 1. A glove game: Suppose that we can partition a player set N into
two groups, say N1 and N2. In interpretation, a member of N1 is endowed with
a right-hand (RH) glove and a member of N2 is endowed with a left-hand (LH)
glove. The worth of a pair of gloves is $1; and thus the worth of a group of players
consisting of player i 2 N1 and player j 2 N2 is $1: The worth of a single glove
and hence of a one-player group is $0: The worth of a group S � N is given by
v(S) = minfjS \N1j ; jS \N2jg: The pair (N; �) is a game.

A payo¤ vector for a game (N; �) is a vector u 2 RN . We regard vectors in �nite
dimensional Euclidean space RT as functions from T to R, and write ui for the ith

component of u, etc. If S � T and u 2 RT , we shall write uS := (ui : i 2 S) for the
restriction of u to S. We write 1S for the element of RS all of whose coordinates are
1 (or simply 1 if no confusion can arise.) A payo¤ vector u is feasible for a group
S � N if

u(S)
def
=
X

i2S

ui �
KX

k=1

v(Sk) (1)

for some partition fS1; :::; SKg of S.
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Given " � 0, a payo¤ vector u 2 RN is in the weak "-core of the game (N; �) if it
is feasible and if there is a group of players N0 � N such that

jNnN0j

jN j
� " (2)

and, for all groups S � N0,
u(S) � v(S)� "jSj (3)

where jSj is the cardinality of the set S. (It would be possible to use two di¤erent
values for epsilon in expressions (2) and ( 3). For simplicity, we have chosen to take
the same value for epsilon in both expressions.) A payo¤ vector u is in the uniform "-
core (or simply in the "-core) if if is feasible and if (3) holds for all groups S � N .
When " = 0, then both notions of "-cores will be called simply the core.

Example 1 continued. The glove game (N; �) described in Example 1 has the
happy feature that the core is always nonempty. For the game to be of interest, we
will suppose that there is least one player of each type (that is, there is at least one
player with a RH glove and one player with a LH glove). If jN1j = jN2j any payo¤
vector assigning the same share of a dollar to each player with a LH glove and the
remaining share of a dollar to each player with a RH glove is in the core. If there
are more players of one type, say jN1j > jN2j for speci�city, then any payo¤ vector in
the core assigns $1 to each player of the scarce type; that is, players with a RH glove
each receive 0 while players with a LH glove each receive $1.

Not all games have nonempty cores, as the following example illustrates.

Example 2. A simple majority game with an empty core. Let N = f1; 2; 3g and
de�ne the function v as follows:

v(S) =

�
0 if jSj = 1;
1 otherwise.

It is easy to see that the core of the game is empty. For if a payo¤ vector u were
in the core, then it must hold that for any i 2 N; ui � 0 and for any i; j 2 N ,
ui + uj � 1. Moreover, feasibility dictates that u1 + u2 + u3 � 1. This is impossible;
thus, the core is empty.
Before leaving this example, let us ask whether it would be possible to subsidize

the players by increasing the payo¤ to the total player set N and, by doing so, ensure
that the core of the game with a subsidy is nonempty. We leave it to the reader to
verify that if v(N) were increased to $3=2 (or more), the new game would have a
nonempty core.

Let (N; �) be a game and let i; j 2 N . Then players i and j are substitutes if, for
all groups S � N with i; j =2 S it holds that

v(S [ fig) = v(S [ fjg).
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Let (N; �) be a game and let u 2 RN be a payo¤ vector for the game. If for all
players i and j who are substitutes it holds that ui = uj then u has the equal treatment
property. Note that if there is a partition of N into T subsets, say N1; :::; NT , where
all players in each subset Nt are substitutes for each other, then we can represent u
by a vector u 2 RT where, for each t; it holds that ut = ui for all i 2 Nt.

2.0.1 Essential superadditivity

We wish to treat games where the worth of a group of players is independent of the
total player set in which it is embedded and an option open to the members of a
group is to partition themselves into smaller groups; that is, we treat games that
are essentially superadditive. This is built into our the de�nition of feasibility above,
(1). An alternative approach, which would still allow us to treat situations where it
is optimal for players to form groups smaller than the total player set, would be to
assume that v is the �superadditive cover� of some other worth function v0. Given a
not-necessarily-superadditive function v0, for each group S de�ne v(S) by:

v(S) = max
X

v0(Sk) (4)

where the maximum is taken over all partitions fSkg of S; the function v is the
superadditive cover of v0. Then the notion of feasibility requiring that a payo¤ vector
u is feasible only if

u(N) � v(N); (5)

gives an equivalent set of feasible payo¤ vectors to those of the game (N; v0) with the
de�nition of feasibility given by (1).
The following Proposition may be well known and is easily proven. This result

was already well understood in Gillies (1953) and applications have appeared in a
number of papers in the theoretical literature of game theory; see, for example (for
" = 0) Aumann and Dreze (1974) and Kaneko and Wooders (1982). It is also well
known in club theory and the theory of economies with many players and local public
goods.

Proposition 1: Given " � 0; let (N; v0) be a game. A payo¤ vector u 2 RN is
in the weak, respectively uniform, "-core of (N; v0) if and only if it is in the weak,
respectively uniform, "-core of the superadditive cover game, say (N; �), where v is
de�ned by (4).

3 A market

In this section we introduce the de�nition, from Shapley and Shubik (1969), of a
market. Unlike Shapley and Shubik, however, we do not assume concavity of utility
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functions. Amarket is taken to be an economy where all participants have continuous
utility functions over a �nite set of commodities that are all linear in one commodity,
thought of as an �idealized� money. Money can be consumed in any amount, possibly
negative. For later convenience we will consider an economy where there is a �nite
set of types of participants in the economy and all participants of the same type have
the same endowments and preferences.
Consider an economy with T + 1 types of commodities. Denote the set of partic-

ipants by
N = f(t; q) : t = 1; � � �; T; and q = 1; � � �; ntg:

Assume that all participants of the same type, (t; q), q = 1; :::; nt have the same utility
functions given by

but(y; �) = ut(y) + �
where y 2 RT+ and � 2 R. Let a

tq 2 RT+ be the endowment of the (t; q)
th player of the

�rst T commodities. The total endowment is given by
P

(t;q)2N a
tq. For simplicity

and without loss of generality, we can assume that no participant is endowed with
any nonzero amount of the (T +1)th good, the �money� or medium of exchange. One
might think of utilities as being measured in money. It is because of the transferability
of money that utilities are called �transferable�.

Remark 1: Instead of assuming that money can be consumed in negative amounts
one might assume that endowments of money are su¢ciently large so that no equilib-
rium allocates any participant a negative amount of money. For further discussion
of transferable utility see, for example, Bergstrom and Varian (1985) or Kaneko and
Wooders (2004).

Given a group S � N , a S-allocation of commodities is a set

f(ytq; �tq) 2 RT+ � R :
X

(t;q)2S

ytq �
X

(t;q)2S

atq and
X

(t;q)2S

�tq � 0g;

that is, a S-allocation is a redistribution of the commodities owned by the members of
S among themselves and monetary transfers adding up to no more than zero. When
S = N , a S-allocation is called simply an allocation.
With the price of the (T +1)th commodity � set equal to 1, a competitive outcome

is a price vector p in RT , listing prices for the �rst T commodities, and an allocation
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f(ytq; �tq) 2 RT � R : (t; q) 2 Ng for which

(a) ut(ytq)� p � (ytq � atq) � ut(by)� p � (by � atq)
for all by 2 RT+, (t; q) 2 N;

(b)
P

(t;q)2N y
tq =

P
(t;q) a

tq = y,

(c) �tq = p � (ytq � atq) for all (t; q) 2 N and

(d)
P

(t;q)2N �
tq = 0:

(6)

Given a competitive outcome with allocation f(ytq; �tq) 2 RT+ � R : (t; q) 2 Ng and
price vector p, the competitive payo¤ to the (t; q)th participant is u(ytq)�p �(ytq�atq).
A competitive payo¤ vector is given by

(u(ytq)� p � (ytq � atq) : (t; q) 2 N):

In the following we will assume that for each t, all participants of type t have the
same endowment; that is, for each t, it holds that atq = atq

0

for all q; q0 = 1; :::; nt. In
this case, every competitive payo¤ has the equal treatment property;

ut(y
tq)� p � (ytq � atq) = ut(y

tq0)� p � (ytq
0

� atq
0

)

for all q; q0 and for each t. It follows that a competitive payo¤ vector can be repre-
sented by a vector in RT with one component for each player type.
It is easy to generate a game from the data of an economy. For each group of

participants S � N , de�ne

v(S) = max
P
tq2S

ut(y
tq; �tq)

where the maximum is taken over the set of S-allocations. Let (N; �) denote a game
derived from a market.
Under the assumption of concavity and monotonicity of the utility functions of

the participants in an economy, Shapley and Shubik (1969) show that a competitive
outcome for the market exists and that the competitive payo¤ vectors are in the
core of the game. (Since Debreu and Scarf, 1963, such results have been obtained in
substantially more general models of economies.)

4 Market-game equivalence

To facilitate exposition of the theory of games with many players and the equivalence
of markets and games, we consider games derived from a common underlying structure
and with a �xed number of types of players, where all players of the same type are
substitutes for each other.
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4.1 Pregames

Let T be a positive integer, to be interpreted as a number of player types. A pro�le
s = (s1; � � �; sT ) 2 Z

T
+, where Z

T
+ is the T -fold Cartesian product of the non-negative

integers Z+, describes a group of players by the numbers of players of each type in
the group. Given pro�le s, de�ne the norm or size of s by

ksk
def
=
X

t

st;

simply the total number of players in a group of players described by s. A subpro�le
of a pro�le n 2 ZT+ is a pro�le s satisfying s � n. A partition of a pro�le s is a
collection of subpro�les fskg of n, not all necessarily distinct, satisfying

X

k

sk = s:

A partition of a pro�le is analogous to a partition of a set except that all members
of a partition of a set are distinct.
Let 	 be a function from the set of pro�les ZT+ to R+ with 	(0) = 0. The value

	(s) is interpreted as the total payo¤ a group of players with pro�le s can achieve
from collective activities of the group membership and is called the worth of the pro�le
s.
Given 	, de�ne a worth function 	�, called the superadditive cover of 	, by

	�(s)
def
= max

X

k

	(sk);

where the maximum is taken over the set of all partitions fskg of s. The function 	
is said to be superadditive if the worth functions 	 and 	� are equal.
We de�ne a pregame as a pair (T;	) where 	 : ZT+ ! R+. As we will now

discuss, a pregame can be used to generate multiple games. To generate a game
from a pregame, it is only required to specify a total player set N and the numbers of
players of each of T types in the set. Then the pregame can be used to assign a worth
to every group of players contained in the total player set, thus creating a game.
A game determined by the pregame (T;	), which we will typically call a game or

a game with side payments, is a pair [n; (T;	)] where n is a pro�le. A subgame of a
game [n; (T;	)] is a pair [s; (T;	)] where s is a subpro�le of n:
With any game [n; (T;	)] we can associate a game (N; �) in the form introduced

earlier as follows: Let

N = f(t; q) : t = 1; � � �; T and q = 1; � � �; ntg

be a player set for the game. For each subset S � N de�ne the pro�le of S, denoted
by prof(S)2 ZT+; by its components

prof(S)t
def
= jfS \ f(t0; q) : t0 = t and q = 1; � � �; ntgj
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and de�ne
v(S)

def
= 	(prof(S)).

Then the pair (N; �) satis�es the usual de�nition of a game with side payments. For
any S � N , de�ne

v�(S)
def
= 	�(prof(S)).

The game (N; ��) is the superadditive cover of (N; �).
A payo¤ vector for a game (N; �) is a vector u 2 RN . For each nonempty subset

S of N de�ne
u(S)

def
=

X

(t;q)2S

utq:

A payo¤ vector u is feasible for S if

u(S) � v�(S) = 	�(prof(S)):

If S = N we simply say that the payo¤ vector u is feasible if

u(N) � v�(N) = 	�(prof(N))

Note that our de�nition of feasibility is consistent with essential superadditivity; a
group can realize at least as large a total payo¤ as it can achieve in any partition of
the group and one way to achieve this payo¤ is by partitioning into smaller groups.
A payo¤ vector u satis�es the equal-treatment property if utq = utq

0

for all q; q0 2
f1; � � �; ntg and for each t = 1; � � �; T .
Let [n; (T;	)] be a game and let � be a collection of subpro�les of n. The collection

is a balanced collection of subpro�les of n if there are positive real numbers 

s
for

s 2 � such that
P
s2�



s
s = n. The numbers 


s
are called balancing weights. Given real

number " � 0, the game [n; (T;	)] is "-balanced if for every balanced collection � of
subpro�les of n it holds that

	�(n) �
X

s2�



s
(	(s)� "ksk) (7)

where the balancing weights for � are given by 

s
for s 2 �. This de�nition extends

that of Bondareva (1983) and Shapley (1967) to games with player types. Roughly, a
game is (") balanced if allowing �part time� groups does not improve the total payo¤
(by more than " per player). A game [n; (T;	)] is totally balanced if every subgame
[s; (T;	)] is balanced.
The balanced cover game generated by a game [n; (T;	)] is a game [n; (T;	b)]

where

1. 	b(s) = 	(s) for all s 6= n and
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2. 	b(n) � 	(n) and	b(n) is as small as possible consistent with the nonemptiness
of the core of [n; (T;	b)].

From the Bondareva-Shapley Theorem it follows that 	b(n) = 	�(n) if and only if
the game [n; (T;	)] is balanced ("-balanced, with " = 0).
For later convenience, the notion of the balanced cover of a pregame is introduced.

Let (T;	) be a pregame. For each pro�le s, de�ne

	b(s)
def
= max

�

X

g2�


g	(g), (8)

where the maximum is taken over all balanced collections � of subpro�les of s with
weights 
g for g 2 �. The pair (T;	

b) is called the balanced cover pregame of (T;	).
Since a partition of a pro�le is a balanced collection it is immediately clear that
	b(s) � 	�(s) for every pro�le s.

4.2 Premarkets

In this section, we introduce the concept of a premarket and re-state results from
Shapley and Shubik (1969) in the context of pregames and premarkets.
Let L + 1 be a number of types of commodities and let fbut(y; �) : t = 1; :::; Tg

denote a �nite number of functions, called utility functions of the form

but(y; �) = ut(y) + �,

where y 2 R
L
+ and � 2 R. (Such functions, in the literature of economics, are

commonly called quasi-linear.) Let fat 2 R
L
+ : t = 1; :::; Tg be interpreted as a

set of endowments. We assume that ut(at) � 0 for each t. For t = 1; :::; T we

de�ne ct
def
= (ut(�); a

t) as a participant type and let C = fct : t = 1; :::; Tg be the
set of participant types. Observe that from the data given by C we can construct a
market by specifying a set of participants N and a function from N to C assigning
endowments and utility functions � types � to each participant in N . A premarket is
a pair (T;C).
Let (T;C) be a premarket and let s = (s1; :::; sT ) 2 ZT+. We interpret s as repre-

senting a group of economic participants with st participants having utility functions
and endowments given by ct for t = 1; :::; T ; for each t, that is, there are st par-
ticipants in the group with type ct: Observe that the data of a premarket gives us
su¢cient data to generate a pregame. In particular, given a pro�le s = (s1; :::; sT )
listing numbers of participants of each of T types, de�ne

W (s)
def
= max

P
t

stut(y
t)

where the maximum is taken over the set fyt 2 R
L
+ : t = 1; :::; T and

P
t

sty
t =

P
t

atytg. Then the pair (T;W ) is a pregame generated by the premarket.
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The following Theorem is an extension to premarkets or a restatement of a result
due to Shapley and Shubik (1969).

Theorem 1. Let (T;C) be a premarket derived from economic data in which all
utility functions are concave. Then the pregame generated by the premarket is totally
balanced.

4.3 Direct markets and market-game equivalence

Shapley and Shubik (1969) introduced the notion of a direct market derived from
a totally balanced game. In the direct market, each player is endowed with one
unit of a commodity (himself) and all players in the economy have the same utility
function. In interpretation, we might think of this as a labor market or as a market
for productive factors, (as in Owen 1975, for example) where each player owns one
unit of a commodity. For games with player types as in this essay, we take the player
types of the game as the commodity types of a market and assign all players in the
market the same utility function, derived from the worth function of the game.
Let (T;	) be a pregame and let [n; (T;	)] be a derived game. Let N = f(t; q) :

t = 1; :::; T and q = 1; :::; nt for each tg denote the set of players in the game where all
participants f(t0; q) : q = 1; :::; nt0g are of type t0 for each t0 = 1; :::; T . To construct the
direct market generated by a derived game [n; (T;	)], we take the commodity space
as RT+ and suppose that each participant in the market of type t is endowed with one
unit of the tth commodity, and thus has endowment 1t = (0; � � �; 0; 1; 0; � � �; 0) 2 RT+
where �1� is in the tth position. The total endowment of the economy is then given
by
P
nt1t = n:

For any vector y 2 RT+ de�ne

u(y)
def
= max

X

s�n


s	(s); (9)

the maximum running over all f
s � 0 : s 2 Z
T
+; s � ng satisfying

X

s�n


ss = y: (10)

As noted by Shapley and Shubik (1969), but for our types case, it can be veri�ed
that the function u is concave and one-homogeneous. This does not depend on the
balancedness of the game [n; (T;	)]. Indeed, one may think of u as the �balanced
cover of [n; (T;	)] extended to RT+�. Note also that u is superadditive, independent of
whether the pregame (T;	) is superadditive. We leave it to the interested reader to
verify that if 	 were not necessarily superadditive and 	� is the superadditive cover
of 	 then it holds that max

P
s�n 
s	(s) = max

P
s�n 
s	

�(s).
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Taking the utility function u as the utility function of each player (t; q) 2 N
where N is now interpreted as the set of participants in a market, we have generated
a market, called the direct market, denoted by [n; u; (T;	)], from the game [n; (T;	)].

Again, the following extends a result of Shapley and Shubik (1969) to pregames.

Theorem 2. Let [n; u; (T;	)] denote the direct market generated by a game [n; (T;	)]
and let [n; (T; u)] denote the game derived from the direct market. Then, if [n; (T;	)]
is a totally balanced game, it holds that [n; (T; u)] and [n; (T;	)] are identical.

Remark 2. If the game [n; (T;	)] and every subgame [s; (T;	)] has a nonempty core
� that is, if the game is �totally balanced�� then the game [n; (T; u)] generated by the
direct market is the initially given game [n; (T;	)]. If however the game [n; (T;	)] is
not totally balanced then u(s) � 	(s) for all pro�les s � n: But, whether or not
[n; (T;	)] is totally balanced, the game [n; (T; u)] is totally balanced and coincides
with the totally balanced cover of [n; (T;	)].

Remark 3. Another approach to the equivalence of markets and games is taken by
Garratt and Qin (1997), who de�ne a class of direct lottery markets. While a player
can participate in only one coalition, both ownership of coalitions and participation
in coalitions is determined randomly. Each player is endowed with one unit of prob-
ability, his own participation. Players can trade their endowments at market prices.
The core of the game is equivalent to the equilibrium of the direct market lottery.

5 Equivalence of markets and games with many

players

The requirement of Shapley and Shubik (1969) that utility functions be concave is
restrictive. It rules out, for example situations such as economies with indivisible
commodities. It also rules out club economies; for a given club structure of the set
of players � in the simplest case, a partition of the total player set into groups where
collective activities only occur within these groups � it may be that utility functions
are concave over the set of alternatives available within each club, but utility functions
need not be concave over all possible club structures. This rules out many examples;
we provide a simple one below.
To obtain the result that with many players, games derived from pregames are

market games, we need some further assumption on pregames. If there are many
substitutes for each player, then the simple condition that per capita payo¤s are
bounded � that is, given a pregame (T;	), that there exists some constant K such
that 	(s)

ksk
< K for all pro�les s � su¢ces. If, however, there may be �scarce types�,

that is, players of some type(s) become negligible in the population, then a stronger
assumption of �small group e¤ectiveness� is required. We discuss these two conditions
in the next section.
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5.1 Small group e¤ectiveness and per capita boundedness

This section discusses conditions limiting gains to group size and their relationships.
This de�nition was introduced in Wooders (1983), for NTU, as well as TU, games.

PCB A pregame (T;	) satis�es per capita boundedness (PCB) if

PCB : sup
s2ZT

+

	(s)

ksk
is �nite (11)

or equivalently,

sup
s2ZT

+

	�(s)

ksk
is �nite:

It is known that under the apparently mild conditions of PCB and essential su-
peradditivity, in general games with many players of each of a �nite number of
player types and a �xed distribution of player types have nonempty approximate
cores; Wooders (1977,1983). (Forms of these assumptions were subsequently also
used in Shubik and Wooders, 1982,1983; Kaneko and Wooders, 1986; and Wood-
ers 1992b,1994 among others.) Moreover, under the same conditions, approximate
cores have the property that most players of the same type are treated approximately
equally (Wooders 1977,1992b; see also Shubik and Wooders 1982). These results,
however, either require some assumption ruling out �scarce types� of players, for ex-
ample, situations where there are only a few players of some particular type and these
players can have great e¤ects on total feasible payo¤s. Following are two examples.
The �rst illustrates that PCB does not control limiting properties of the per capita
payo¤ function when some player types are scarce.

Example 3. (Wooders 2008a) Let T = 2 and let (T;	) be the pregame given by

	(s1; s2) =

8
<
:

s1 + s2 when s1 > 0

0 otherwise

The function 	 obviously satis�es PCB. But there is a problem in de�ning lim	(s1;s2)
s1+s2

as s1+ s2 tends to in�nity, since the limit depends on how it is approached. Consider
the sequence (s�1; s

�
2) where (s

�
1; s

�
2) = (0; �); then lim

	(s�
1
;s�
2
)

s�
1
+s�

2

= 0. Now suppose in

contrast that (s�1; s
�
2) = (1; �); then lim	(s�

1
;s�
2
)

s�
1
+s�

2

= 1. This illustrates why, to obtain
the result that games with many players are market games either it must be required
that there are no scarce types or some some assumption limiting the e¤ects of scarce
types must be made. We return to this example in the next section.

The next example illustrates that, with only PCB, uniform approximate cores of
games with many players derived from pregames may be empty.
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Example 4 . (Wooders 2008a) Consider a pregame (T;	) where T = f1; 2g and 	
is the superadditive cover of the function 	0 de�ned by:

	0(s)
def
=

�
jsj if s1 = 2,
0 otherwise.

Thus, if a pro�le s = (s1; s2) has s1 = 2 then the worth of the pro�le according to 	0

is equal to the total number of players it represents, s1 + s2, while all other pro�les
s have worth of zero. In the superadditive cover game the worth of a pro�le s is 0 if
s1 < 2 and otherwise is equal to s2 plus the largest even number less than or equal
to s1.
Now consider a sequence of pro�les (s�)� where s�1 = 3 and s�2 = � for all �.

Given " > 0, for all su¢ciently large player sets the uniform "-core is empty. Take,
for example, " = 1=4: If the uniform "-core were nonempty, it would have to contain
an equal-treatment payo¤ vector.1 For the purpose of demonstrating a contradiction,
suppose that u� = (u�1; u

�
2) represents an equal treatment payo¤ vector in the uniform

"-core of [s� ; (T;	)]. The following inequalities must hold:

3u�1 + �u
�
2 � � + 3;

2u�1 + �u
�
2 � � + 3; and
u�1 �

3
4
.

which is impossible. A payo¤ vector which assigns each player zero is, however, in
the weak "-core for any " > 3

�+3
. But it is not very appealing, in situations such as

this, to ignore a relatively small group of players (in this case, the players of type 1)
who can have a large e¤ect on per capita payo¤s. This leads us to the next concept.�

To treat the scarce types problem, Wooders (1992a,b,1994) introduced the condi-
tion of small group e¤ectiveness (SGE). SGE is appealing technically since it resolves
the scarce types problem. It is also economically intuitive and appealing; the condition
de�nes a class of economies that, when there are many players, generate competitive
markets. Informally, SGE dictates that almost all gains to collective activities can
be realized by relatively small groups of players. Thus, SGE is exactly the sort of
assumption required to ensure that multiple, relatively small coalitions, �rms, juris-
dictions, or clubs, for example, are optimal or near-optimal in large economies.
A pregame (T;	) satis�es small group e¤ectiveness, SGE, if:

SGE :

For each real number " > 0; there is an integer �0(") such that
for each pro�le s, for some partition fskg of s with
kskk � �0(") for each subpro�le s

k, it holds that
	�(s)�

P
k	(s

k) � "ksk;

(12)

1It is well known and easily demonstrated that the uniform "-core of a TU game is nonempty if
and only if it contains an equal treatment payo¤ vector. This follows from the fact that the uniform
"-core is a convex set.
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given " > 0 there is a group size �0(") such that the loss from restricting collective
activities within groups to groups containing fewer that �0(") members is at most "
per capita (Wooders 1992a).2

SGE also has the desirable feature that if there are no �scarce types� � types
of players that appear in vanishingly small proportions� then SGE and PCB are
equivalent.

Theorem 3 (Wooders 1994). With �thickness,� SGE=PCB.
(1) Let (T;	) be a pregame satisfying SGE. Then the pregame satis�es PCB.
(2) Let (T;	) be a pregame satisfying PCB. Then given any positive real number

�, construct a new pregame (T;	�) where the domain of 	� is restricted to pro�les s
where, for each t = 1; � � �; T , either st

ksk
> � or st = 0: Then (T;	�) satis�es SGE on

its domain.

It can also be shown that small groups are e¤ective for the attainment of nearly all
feasible outcomes, as in the above de�nition, if and only if small groups are e¤ective
for improvement � any payo¤ vector that can be signi�cantly improved upon can be
improved upon by a small group (see Proposition 3.8 in Wooders 1992b).

Remark 4: Under a stronger condition of strict small group e¤ectiveness, which
dictates that �(") in the de�nition of small group e¤ectiveness can be chosen inde-
pendently of ", stronger results can be obtained than those presented in this section
and the next. We refer to Winter and Wooders (1990) for a treatment of this case.

Remark 5. On the importance of taking into account scarce types. Recall the
quotation from von Neumann and Morgenstern and the discussion following the quo-
tation. The assumption of per capita boundedness has signi�cant consequences but
is quite innocuous � ruling out the possibility of average utilities becoming in�nite as
economies grow large does not seem restrictive. But with only per capita bounded-
ness, even the formation of small coalitions can have signi�cant impacts on aggregate
outcomes. With small group e¤ectiveness, however, there is no problem of either
large or small coalitions acting together � large coalitions cannot do signi�cantly
better then relatively small coalitions.

Roughly, the property of large games we next introduce is that relatively small
groups of players make only �asymptotic negligible� contributions to per-capita pay-
o¤s of large groups. A pregame (
;	) satis�es asymptotic negligibility if, for any
sequence of pro�les ff �g where

kf �k ! 1 as � !1;

�(f �) = �(f �
0

) for all � and � 0 and

lim�!1
	�(f�)
kf�k

exists,

(13)

2Exactly the same de�nition applies to situations with a compact metric space of player types,
c.f. Wooders (1988,1992a).
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then for any sequence of pro�les f`�g with

lim
�!1

k`�k

kf �k
= 0; (14)

it holds that

lim�!1
	�kf�+`�k
kf�+`�k

exists, and

lim�!1
	�kf�+`�k
kf�+`�k

= lim�!1
	�(f�)
kf�k

.
(15)

Theorem 4 (Wooders (1992b, 2008b). A pregame (T;	) satis�es SGE if and only
if it satis�es PCB and asymptotic negligibility.

Intuitively, asymptotic negligibility ensures that vanishingly small percentages of
players have vanishingly small e¤ects on aggregate per-capita worths. It may seem
paradoxical that SGE, which highlights the importance of relatively small groups, is
equivalent to asymptotic negligibility. To gain some intuition, however, think of a
marriage model where only two person marriages are allowed. Obviously two-person
groups are (strictly) e¤ective, but also, in large player sets, no two persons can have
a substantial a¤ect on aggregate per-capita payo¤s.

Remark 6Without some assumptions ensuring essential superadditivity, at least as
incorporated into our de�nition of feasibility, nonemptiness of approximate cores of
large games cannot be expected; superadditivity assumptions (or the close relative,
essential superadditivity) are heavily relied upon in all papers on large games cited.
In the context of economies, superadditivity is a sort of montonicity of preferences
or production functions assumption, that is, superadditivity of 	 implies that for all
s; s0 2 ZT+, it holds that 	(s + s

0) � 	(s) + 	(s0). Our assumption of small group
e¤ectiveness, SGE, admits non-monotonicities. For example, suppose that �two is
company, three or more is a crowd,� by supposing there is only one commodity and
by setting 	(2) = 2, 	(n) = 0 for n 6= 2: The reader can verify, however, that this ex-
ample satis�es small group e¤ectiveness since	�(n) = n if n is even and	�(n) = n�1
otherwise. Within the context of pregames, requiring the superadditive cover payo¤
to be approximately realizable by partitions of the total player set into relatively
small groups is the weakest form of superadditivity required for the equivalence of
games with many players and concave markets.

5.2 Derivation of markets from pregames satisfying SGE

With SGE and PCB in hand, we can now derive a premarket from a pregame and
relate these concepts.
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To construct a limiting direct premarket from a pregame, we �rst de�ne an ap-
propriate utility function. Let (T;	) be a pregame satisfying SGE. For each vector
x in RT+ de�ne

U(x)
def
= kxk lim

�!1

	�(f �)

kf �k
(16)

where the sequence ff �g satis�es

lim�!1
f�

kf�k
= x

kxk

and

kf �k ! 1:

(17)

Theorem 5. (Wooders 1988; 1994). Assume the pregame (T;	) satis�es small
group e¤ectiveness. Then for any x 2 RT+ the limit (16) exists. Moreover, U(�) is
well-de�ned, concave and 1-homogeneous and the convergence is uniform in the sense
that, given " > 0 there is an integer � such that for all pro�les s with ksk � � it holds
that ����U(

s

ksk
)�

	�(s)

ksk

���� � ".

From Wooders (1994, Theorem 4), if arbitrarily small percentages of players of any
type that appears in games generated by the pregame are ruled out, then the above
result holds under per capita boundedness (Wooders 1994, Theorem 6). As noted in
the introduction to this paper, for the TU case, the concavity of the limiting utility
function, for the model of Wooders (1983) was �rst noted by Aumann (1987). The
concavity is shown to hold with a compact metric space of player types in Wooders
(1988) and is simpli�ed to the �nite types case in Wooders, (1994).

Theorem 5 follows from the facts that the function U is superadditive and 1-
homogeneous on its domain. Since U is concave, it is continuous on the interior of its
domain; this follows from PCB. Small group e¤ectiveness ensures that the function
U is continuous on its entire domain (Wooders 1994, Lemma 2).

Theorem 6. (Wooders 1994) Let (T;	) be a pregame satisfying small group e¤ec-
tiveness and let (T; U) denote the derived direct market pregame. Then (T; U) is a
totally balanced market game. Moreover, U is one-homogeneous, that is, U(�x) =
�U(x) for any non-negative real number �.

In interpretation, T denotes a number of types of players/commodities and U
denotes a utility function on RT+. Observe that when U is restricted to pro�les (in
Z
T
+), the pair (T; U) is a pregame with the property that every game [n; (T; U)] has
a nonempty core; thus, we will call (T; U) the premarket generated by the pregame
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(T;	). That every game derived from (T; U) has a nonempty core is a consequence of
the Shapley and Shubik (1969) result that market games derived from markets with
concave utility functions are totally balanced.
It is interesting to note that, as discussed in Wooders (1994, Section 6), if we

restrict the number of commodities to equal the number of player types, then the
utility function U is uniquely determined. (If one allowed more commodities then
one would e¤ectively have �redundant assets�.) In contrast, for games and markets
of �xed, �nite size, as demonstrated in Shapley and Shubik (1975), even if we restrict
the number of commodities to equal the number of player types, given any nonempty,
compact, convex subset of payo¤ vectors in the core, it is possible to construct utility
functions so that this subset coincides with the set of competitive payo¤s. Thus, in
the Shapley and Shubik approach, equivalence of the core and the set of price-taking
competitive outcomes for the direct market is only an artifact of the method used there
of constructing utility functions from the data of a game and is quite distinct from
the equivalence of the core and the set of competitive payo¤ vectors as it is usually
understood (that is, in the sense of Debreu and Scarf 1963 and Aumann 1964). See
also Kalai and Zemel (1982a,b) which characterize the core in multi-commodity �ow
games.

6 Cores and approximate cores

The concept of the core clearly was important in the work of Shapley and Shubik
(1966,1969,1975) and is also important for the equivalence of games with many players
and market games. Thus, we discuss the related results of nonemptiness of approxi-
mate cores and convergence of approximate cores to the core of the �limit� - the game
where all players have utility functions derived from a pregame and large numbers
of players. First, some terminology is required. A vector p is a subgradient at x of
the concave function U if U(y) � U(x) � p � (y � x) for all y. One might think of a
subgradient as a bounding hyperplane. To avoid any confusion it might be helpful
to note that, as Mas-Colell (1985) remarks: �Strictly speaking, one should use the
term subgradient for convex functions and supergradient for concave. But this is
cumbersome�, (Mas-Colell 1985, p.29-30.).
For ease of notation, equal-treatment payo¤ vectors for a game [n; (T;	)] will

typically be represented as vectors in RT . An equal-treatment payo¤ vector, or simply
a payo¤ vector when the meaning is clear, is a point x in RT . The tth component
of x, xt, is interpreted as the payo¤ to each player of type t. The feasibility of an
equal-treatment payo¤ vector x 2 RT for the game [n; (T;	)] can be expressed as:

	�(n) � x � n:

Let [n; (T;	)] be a game determined by a pregame (T;	), let " be a non-negative
real number, and let x 2 RT be a (equal-treatment) payo¤ vector. Then x is in the
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equal-treatment "-core of [n; (T;	)] or simply �in the "-core� when the meaning is
clear, if x is feasible for [n; (T;	)] and

	(s) � x � s+ "ksk for all subpro�les s of n:

Thus, the equal-treatment "-core is the set

C(n; ")
def
= fx 2 RT+ : 	

�(n) � x � n and

	(s) � x � s+ "ksk for all subpro�les s of ng:
(18)

It is well known that the "-core of a game with transferable utility is nonempty if and
only if the equal-treatment "-core is nonempty.
Continuing with the notation above, for any s 2 RT+, let �(s) denote the set of

subgradients to the function U at the point s;

�(s)
def
= f� 2 RT : � � s = U(s) and � � s0 � U(s0) for all s0 2 RT+g: (19)

The elements in �(s) can be interpreted as equal-treatment core payo¤s to a limiting
game with the mass of players of type t given by st. The core payo¤ to a player
is simply the value of the one unit of a commodity (himself and all his attributes,
including endowments of resources) that he owns in the direct market generated by a
game. Thus �(�) is called the limiting core correspondence for the pregame (T;	): Of
course �(�) is also the limiting core correspondence for the pregame (T; U).
Let b�(n)� RT denote equal-treatment core of the market game [n; (T; u)] :

b�(n) def= f� 2 RT : � � n = u(n) and � � s � u(s) for all s 2 ZT+, s � ng: (20)

Given any player pro�le n and derived games [n; (T;	)] and [n; (T; U)] it is in-
teresting to observe the distinction between the equal-treatment core of the game
[n; (T; U)], denoted by b�(n); de�ned by (20), and the set �(n) (that is, �(x) with
x = n). The de�nitions of �(n) and b�(n) are the same except that the quali�cation
�s � n� in the de�nition of b�(n) does not appear in the de�nition of �(n). Since
�(n) is the limiting core correspondence, it takes into account arbitrarily large coali-
tions. For this reason, for any x 2 �(n) and bx 2 b�(n) it holds that x � n � bx � n. A
simple example may be informative.

Example 5. Let (T;	) be a pregame where T = 1 and 	(n) = n� 1
n
for each n 2 Z+.

and let [n; (T;	)] be a derived game. Then �(n) = f1g while b�(n) = f(1� 1
n2
)g.

The following Theorem extends a result due to Shapley and Shubik (1975) stated
for games derived from pregames.

Theorem 7 (Shapley and Shubik, 1975): Let [n; (T;	)] be a game derived from a
pregame and let [n; u; (T;	)] be the direct market generated by [n; (T;	)]. Then the

21



equal-treatment core b�(n) of the game [n; (T; u)] is nonempty and coincides with the
set of competitive price vectors for the direct market [n; u; (T;	)].

Remark 7: Let (T;	) be a pregame satisfying PCB. In the development of the
theory of large games as models of competitive economies, the following function on
the space of pro�les plays an important role:

lim
r!1

	�(rf)

r
;

see, for example, Wooders (1977) and Shubik and Wooders (1982). For the purposes
of comparison, we introduce another de�nition of a limiting utility function. For each
vector x in RT+ with rational components let r(x) be the smallest integer such that
r(x)x is a vector of integers. Therefore, for each rational vector x; we can de�ne

Û(x)
def
= lim

�!1

	�(�r(x)x)

�r(x)
:

Since 	� is superadditive and satis�es per capita boundedness, the above limit exists
and Û(�) is well-de�ned. Also, Û(x) has a continuous extension to any closed subset
strictly in the interior of RT+: The function Û(x); however, may be discontinuous at
the boundaries of RT+. For example, suppose that T = 2 and

	�(k; n) =

8
<
:

k + n when k > 0

0 otherwise

The function 	� obviously satis�es PCB but does not satisfy SGE. To see the con-
tinuity problem, consider the sequences fx�g and fy�g of vectors in R2+ where x

� =

( 1
�
; ��1
�
) and y� = (0; �). Then lim�!1 x

� = lim�!1 y
� = (0; 1) but lim�!1 Û(x

�) =

1 while lim�!1 Û(y
�) = 0. SGE is precisely the condition required to avoid this sort

of discontinuity, ensuring that the function U is continuous on the boundaries of RT+.

Before turning to the next section, let us provide some additional interpretation
for b�(n). Suppose a game [n; (T;	)] is one generated by an economy, as in Shapley
and Shubik (1966) or Owen (1975), for example. Players of di¤erent types may have
di¤erent endowments of private goods. An element � in b�(n) is an equal-treatment
payo¤ vector in the core of the balanced cover game generated by [n; (T;	)] and can
be interpreted as listing prices for player types where �t is the price of a player of
type t; this price is a price for the player himself, including his endowment of private
goods.
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7 Nonemptiness and convergence of approximate

cores of large games.

The next Proposition is an immediate consequence of the convergence of games to
markets shown in Wooders (1992b,1994) and can also be obtained as a consequence
of Theorem 5 above.

Proposition 2: Nonemptiness of approximate cores. Let (T;	) be a pregame satis-
fying SGE. Let " be a positive real number. Then there is an integer �1(") such that
any game [n; (T;	)] with knk � �1(") has a nonempty "-core.

[Note that no assumption of superadditivity is required but only because our de�nition
of feasibility is equivalent to feasibility for superadditive covers.]
The following result was stated in Wooders (1992b). For more recent results see

Wooders (2008a).

Theorem 8 (Wooders 1992b): Uniform closeness of (equal-treatment) approximate
cores to the core of the limit game. Let (T;	) be a pregame satisfying SGE and let
�(�) be as de�ned above. Let � > 0 and � > 0 be positive real numbers. Then there is
a real number "� with 0 < "� and an integer �0(�; �; "

�) with the following property:
for each positive " 2 (0; "�] and each game [f ; (T;	)] with kfk > �0(�; �; "

�) and
ft
kfk
� � for each t = 1; � � �, T , if C(f ; ") is nonempty then both

dist [C(f ; ");�(f)] < � and
dist [C(f ; "); b�(f)] < �,

where �dist� is the Hausdor¤ distance with respect to the sum norm on RT .

Note that this result applies to games derived from diverse economies, including
economies with indivisibilities, nonmonotonicities, local public goods, clubs, and so
on.
Theorem 8 motivates the question of whether approximate cores of games derived

from pregames satisfying small group e¤ectiveness treat players most of the same
type nearly equally. The following result, from Wooders (1977,1992b, 2007) answers
this question.

Theorem 9. Let (T;	) be a pregame satisfying SGE. Then given any real numbers

 > 0 and � > 0 there is a positive real number "� and an integer � such that for
each " 2 [0;"�] and for every pro�le n 2 ZT+ with knk1 > �, if x 2 R

N is in the "-core
of the game [n;	] with player set

N = f(t; q) : t = 1; :::; T and, for each t; q = 1; :::; ntg
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then, for each t 2 f1; :::; Tg with nt
knk1

� �
2
it holds that

jf(t; q) : jxtq � ztj > 
gj < �nt g;

where, for each t = 1; :::; T ,

zt =
1

nt

ntX

q=1

xtq;

the average payo¤ received by players of type t.

8 Shapley values of games with many players

Let (N; �) be a game. The Shapley value of a superadditive game is the payo¤ vector
whose ith component is given by

SH(v; i) =
1

jN j

jN j�1P
J=0

1�
jN j � 1
J

� P
S�Nnfig
jSj=J

[v(S [ fig)� v(S)] :

To state the next Theorem, we require one additional de�nition. Let (T;	) be
a pregame. The pregame satis�es boundedness of marginal contributions (BMC) if
there is a constant M such that

j	(s+ 1t)�	(s)j �M

for all vectors 1t = (0; :::; 0; 1tth place; 0; :::0) for each t = 1; :::; T:Informally, this condi-
tion bounds marginal contributions while SGE bounds average contributions. That
BMC implies SGE is shown in Wooders (1992b). The following result restricts the
main Theorem of Wooders and Zame (1987) to the case of a �nite number of types
of players.

Theorem 10 (Wooders and Zame 1987). Let (T;	) be a superadditive pregame
satisfying boundedness of marginal contributions. For each " > 0 there is a number
�(") > 0 and an integer �(") with the following property:

If [n; (T;	)] is a game derived from the pregame, for which nt > �(") for each t,
then the Shapley value of the game is in the (weak) "-core.

Similar results hold within the context of private goods exchange economies (cf.,
Shapley (1964), Shapley and Shubik (1969), Champsaur (1975), Mas-Colell (1977),
Cheng (1981) and others. Some of these results are for economies without money
but all treat private goods exchange economies with divisible goods and concave,
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monotone utility functions. Moreover, they all treat either replicated sequences of
economies or convergent sequences of economies. That games satisfying SGE are
asymptotically equivalent to balanced market games clari�es the contribution of the
above result. In the context of the prior results developed in this paper, the major
shortcoming of the Theorem is that it requires BMC. This author conjectures that
the above result, or a close analogue, could be obtained with the milder condition of
SGE, but this has not been demonstrated.

9 Economies with clubs

By a club economy we mean an economy where participants in the economy form
groups � called clubs� for the purposes of collective consumption and/or production
collectively with the group members. The groups may possibly overlap. A club
structure of the participants in the economy is a covering of the set of players by
clubs. Providing utility functions are quasi-linear, such an economy generates a game
of the sort discussed in this essay. The worth of a group of players is the maximum
total worth that the group can achieve by forming clubs. The most general model of
clubs in the literature at this point is Allouch and Wooders (2008). Yet, if one were
to assume that utility functions were all quasi-linear and the set of possible types of
participants were �nite. the results of this paper would apply.
In the simplest case, the utility of an individual depends on the club pro�le (the

numbers of participants of each type) in his club. The total worth of a group of
players is the maximum that it can achieve by splitting into clubs. The results
presented in this section immediately apply. When there are many participants,
club economies can be represented as markets and the competitive payo¤ vectors for
the market are approximated by equal-treatment payo¤ vectors in approximate cores.
Approximate cores converge to equal treatment and competitive equilibrium payo¤s.
A more general model making these points is treated in Shubik and Wooders (1982).
For recent reviews of the literature, see Conley and Smith (2005) and Kovalenkov
and Wooders (2005).3

Coalition production economies may also be viewed as club economies. We refer
the reader to Böhm (1974), Sondermann (1974), Shubik and Wooders (1983), and for
a more recent treatment and further references, Sun, Trockel and Zang (2008).
Let us conclude this section with some historical notes. Club economies came to

the attention of the economics profession with the publication of Buchanan (1965).
The author pointed out that people care about the numbers of other people with
whom they share facilities such as swimming pool clubs. Thus, there may be conges-
tion, leading people to form multiple clubs. Interestingly, much of the recent literature

3Other approaches to economies with clubs/local public goods include Casella and Feinstein
(2002), Demange (1994), and Haimanko, O., M. Le Breton and S. Weber (2004). Recent research
has treated clubs as networks.

25



on club economies with many participants and their competitive properties has roots
in an older paper, Tiebout (1956). Tiebout conjectured that if public goods are �lo-
cal� � that is, subject to exclusion and possibly congestion � then large economies
are �market-like�. A �rst paper treating club economies with many participants was
Pauly (1970), who showed that, when all players have the same preferred club size,
then the core of economy is nonempty if and only if all participants in the economy
can be partitioned into groups of the preferred size. Wooders (1978) modelled a club
economy as one with local public goods and demonstrated that, when individuals
within a club (jurisdiction) are required to pay the same share of the costs of public
good provision, then outcomes in the core permit heterogeneous clubs if and only if
all types of participants in the same club have the same demands for local public
goods and for congestion. Since these early results, the literature on clubs has grown
substantially.

10 With a continuum of players

Since Aumann (1964), much work has been done on economies with a continuum of
players. It is natural to question whether the asymptotic equivalence of markets and
games reported in this article holds in a continuum setting. Some such results have
been obtained.
First, let N = [01] be the 0; 1 interval with Lesbegue measure and suppose there

is a partition of N into a �nite set of subsets N1,...,NT where, in interpretation, a
point in Nt represents a player of type t. Let 	 be given. Observe that 	 determines
a payo¤ for any �nite group of players, depending on the numbers of players of each
type. If we can aggregate partitions of the total player set into �nite coalitions then
we have de�ned a game with a continuum of players and �nite coalitions.
For a partition of the continuum into �nite groups to �make sense� economically, it

must preserve the relative scarcities given by the measure. This was done in Kaneko
and Wooders (1986). To illustrate their idea of measurement consistent partitions
of the continuum into �nite groups, think of a census form that requires each three-
person household to label the players in the household, #1, #2, or #3. When checking
the consistency of its �gures, the census taker would expect the numbers of people
labelled #1 in three-person households to equal the numbers labelled #2 and #3.
For consistency, the census taker may also check that the number of �rst persons in
three-person households in a particular state is equal to the number of second persons
and third persons in three person households in that state. It is simple arithmetic.
This consistency should also hold for k-person households for any k. Measurement
consistency is the same idea with the work �number� replaced by �proportion� or
"measure".
One can immediately apply results reported above to the special case of TU

games of Kaneko-Wooders (1986) and conclude that games satisfying small group
e¤ectiveness and with a continuum of players have nonempty cores and that the
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payo¤ function for the game is one-homogenous. (We note that there have been
a number of papers investigating cores of games with a continuum of players that
have came to the conclusion that non-emptiness of exact cores does not hold, even
with balancedness assumptions, cf., Weber 1979,1981). The results of Wooders, 1994,
show that the continuum economy must be representable by one where all players
have the same concave, continuous one-homogeneous utility functions. Market games
with a continuum of players and a �nite set of types are also investigated in Azriel
and Lehrer 2007, who con�rm these conclusions.)

11 Other related concepts and results.

In an unpublished 1972 paper due to Edward Zajac, which has motivated a large
amount of literature on �subsidy-free pricing�, cost sharing, and related concepts, the
author writes:

�A fundamental idea of equity in pricing is that �no consumer group should pay
higher prices than it would pay by itself.�...If a particular group is paying a
higher price than it would pay if it were severed from the total consumer pop-
ulation, the group feels that it is subsidizing the total population and demands
a price reduction.�

The �dual� of the cost allocation problem is the problem of surplus sharing and
subsidy-free pricing.4 Tauman (1987) provides a excellent survey. Some recent works
treating cost allocation and subsidy free-pricing include Moulin (1988,1992). See also
the recent notion of �Walras� core� in Qin, Shapley and Shimomura (2001).
Another related area of research has been into whether games with many players

satisfy some notion of the Law of Demand of consumer theory (or the Law of Supply
of producer theory). Since games with many players resemble market games, which
have the property that an increase in the endowment of a commodity leads to a
decrease in its price, such a result should be expected. Indeed, for games with many
players, a Law of Scarcity holds � if the numbers of players of a particular type is
increased, then core payo¤s to players of that type do not increase and may decrease.
(This result was observed by Scotchmer and Wooders 1988). See Kovalenkov and
Wooders (2005,2006) for the most recent version of such results and a discussion of
the literature. Laws of scarcity in economies with clubs are examined in Cartwright,
Conley and Wooders (2006).

12 Some remarks on markets and more general
4See, for example Moulin (1988,1992) for excellent discussions of these two problems.
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classes of economies

Forms of the equivalence of outcomes of economies where individuals have concave
utility functions but not necessarily linear in money. These include Billera (1974),
Billera and Bixby (1974) and Mas-Colell (1975). A natural question is whether the re-
sults reported in this paper can extend to nontransferable utility games and economies
where individuals have utility functions that are not necessarily liner in money. So far
the results obtained are not entirely satisfactory. Nonemptiness of approximate cores
of games with many players, however, holds in substantial generality; see Kovalenkov
and Wooders (2003) and Wooders (2008).

13 Conclusions and Future Directions

The results of Shapley and Shubik (1969), showing equivalence of structures, rather
than equivalence of outcomes of solution concepts in a �xed structure (as in Aumann
1964, for example) are remarkable. So far, this line of research has been relatively
little explored. The results for games with many players have also not been fully
explored, except for in the context of games, such as those derived from economies
with clubs, and with utility functions that are linear in money.
Per capita boundedness seems to be about the mildest condition that one can

impose on an economic structure and still have scarcity of per capita resources in
economies with many participants. In economies with quasi-linear utilities (and here,
I mean economies in a general sense, as in the glossary) satisfying per capita bound-
edness and where there are many substitutes for each type of participant, then as the
number of participants grows, these economies resemble or (as if they) are market
economies where individuals have continuous, and monotonic increasing utility func-
tions. Large groups cannot in�uence outcomes away from outcomes in the core (and
outcomes of free competition) since large groups are not signi�cantly more e¤ective
than many small groups (from the equivalence, when each player has many close
substitutes, between per capita boundedness and small group e¤ectiveness).
But if there are not many substitutes for each participant, then, as we have seen,

per capita boundedness allows small groups of participants to have large e¤ects and
free competition need not prevail (cores may be empty and price-taking equilibrium
may not exist). The condition required to ensure free competition in economies
with many participants, without assumptions of �thickness,� is precisely small group
e¤ectiveness.
But the most complete results relating markets and games, outlined in this paper,

deal with economies in which all participants have utility functions that are linear in
money and in games with side payments, where the worth of a group can be divided
in any way among the members of the group without any loss of total utility or
worth. Nonemptiness of approximate cores of large games without side payments has
been demonstrated; see Wooders (1983, 2008) and Kovalenkov and Wooders (2003).
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Moreover, it has been shown that when side payments are �limited� then approximate
cores of games without side payments treat similar players similarly; see Kovalenkov
and Wooders (2001).
Results for speci�c economic structures, relating cores to price taking equilibrium

treat can treat situations that are, in some respects, more general. A substantial body
of literature shows that certain classes of club economies have nonempty cores and
also investigates price-taking equilibrium in these situations. Fundamental results
are provided by Gale and Shapley (1962), Shapley and Shubik (1972), and Crawford
and Kelso (1982) and many more recent papers. We refer the reader to Roth and
Sotomayor (1990) and to the entry �Two sided matching,� by Ömer and Sotomayor
in this encyclopaedia. A special feature of the models of these papers is that there
are two sorts of players or two sides to the market; examples are (1) men and women,
(2) workers and �rms, (3) interns and hospitals and so on.
Going beyond two-sided markets to clubs in general, however, one observes that

the positive results on nonemptiness of cores and existence of price-taking equilibria
only holds under restrictive conditions. A number of recent contributions however,
provide speci�c economic models for which, when there are many participants in the
economy, as in exchange economies it holds that price-taking equilibrium exists, cores
are non-empty, and the set of outcomes of price-taking equilibrium are equivalent to
the core. (see, for example, Wooders 1985,1997, Ellickson et al, 2001, Allouch and
Wooders 2008 and Allouch, Conley and Wooders 2008). Finally, we note that there
is some recent work on clubs and networks; see Page and Wooders (2007,2007).
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