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Abstract

We provide Monte Carlo evidence on the �nite sample behavior of the con-
ditional empirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn
(2004) and the conditional Euclidean empirical likelihood (CEEL) estimator of
Antoine, Bonnal, and Renault (2007) in the context of a heteroskedastic linear
model with an endogenous regressor. We compare these estimators with three
heteroskedasticity-consistent instrument-based estimators in terms of various per-
formance measures. Our results suggest that the CEL and CEEL with �xed band-
widths may su¤er from the no-moment problem, similarly to the unconditional
generalized empirical likelihood estimators studied by Guggenberger (2008). We
also study the CEL and CEEL estimators with automatic bandwidths selected
through cross-validation. We do not �nd evidence that these su¤er from the no-
moment problem. When the instruments are weak, we �nd CEL and CEEL to
have �nite sample properties �in terms of mean squared error and coverage proba-
bility of con�dence intervals� poorer than the heteroskedasticity-consistent Fuller
(HFUL) estimator. In the strong instruments case the CEL and CEEL estimators
with automatic bandwidths tend to outperform HFUL in terms of mean squared
error, while the reverse holds in terms of the coverage probability, although the
di¤erences in numerical performance are rather small.
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1 Introduction

Motivated by the practical importance of models de�ned by conditional moment restric-

tions, a number of recent important contributions have proposed empirical likelihood-

based techniques for estimation and inference of this class of models. Kitamura, Tripathi,

and Ahn (2004, KTA henceforth) develop a conditional empirical likelihood estimator of

these models. Antoine, Bonnal, and Renault (2007, ABR henceforth) introduce an esti-

mator based on a related idea that instead of the empirical likelihood uses the Euclidean

likelihood. A common way of dealing with conditional moment restrictions is to reduce

them to unconditional ones by means of instruments. However, this does not come

without a cost, as it is generally di¢cult to �nd good instruments. The two estimators

mentioned above are appealing from an asymptotic theoretical point of view as they are

able to achieve semiparametric �rst-order asymptotic e¢ciency without computing the

optimal instruments.

Smith (2007) generalizes the conditional empirical likelihood (CEL) of KTA and the

conditional euclidean empirical likelihood (CEEL) of ABR to the class of local Cressie-

Read discrepancies, where the term local refers to the explicit use of kernel weights. He

shows that the estimators of the local Cressie-Read class are �rst order asymptotically

equivalent to the CEL and CEEL (CE(E)L for short) estimators.

A few other recent contributions stress the potential of the conditional general-

ized empirical likelihood (GEL) framework from an asymptotic theory point of view.

Gospodinov and Otsu (2009) show that in an AR(1) model with iid errors the local

GMM estimator, which is essentially the same as CEEL, has a higher order asymptotic

bias smaller than the OLS estimator. Tripathi and Kitamura (2003) show that a test

statistic for conditional moment restrictions based on the CEL objective function is

asymptotically optimal in terms of a certain average power criterion.

A conclusion of these papers is that empirical likelihood-based estimators are rather

appealing for conditional moment restriction models from an asymptotic theory point

of view. However, although some of these papers present �nite sample studies of these

estimators, none of them provides information on their �nite sample performance in
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the important class of models with endogenous regressors. Another problem that is

important in practice is that, although the CE(E)L are instrument-free methods, they

depend on additional unknown parameters, that is, bandwidths. The asymptotic the-

ory of these estimators speci�es the rate at which the bandwidths should change with

the sample size in order to obtain asymptotic e¢ciency, but this does not provide a

clear indication on how to choose the bandwidths in practice. For some models (e.g.,

the linear heteroskedastic model in KTA, or the AR(1) model with ARCH errors in

Gospodinov and Otsu, 2009) di¤erent bandwidth values lead to similar estimates. For

models with endogenous regressors, however, it is not known to what extent the �nite

sample performance of these estimators is a¤ected, if one uses di¤erent bandwidths, or

if one uses some bandwidth selection procedure.

There are at least two reasons to expect CE(E)L to perform poorly in models with

endogenous regressors, especially when the instruments are weak. First, these estima-

tors are the result of a saddle point optimization problem, which may have extensive �at

parts near the optimum. This may cause the distributions of these estimators to have

no moments. Second, for a linear model with an endogenous regressor, Guggenberger

(2008) �nds that the unconditional GEL estimators su¤er from the no-moment prob-

lem. These estimators are also obtained as the outcome of a saddle point optimization

problem, compared to which the dimensionality of the optimization problem increases

considerably in the conditional moment case.

Due to these considerations we �nd it important to investigate how the CE(E)L

estimators perform in �nite samples. In order to do so, we conduct a Monte Carlo

experiment, in which we estimate a one-parameter linear model with an endogenous

regressor and heteroskedasticity using several estimators: CEL (KTA), CEEL (ABR),

GMM, HLIM, HFUL (the latter two from Hausman et al., 2010). For the CE(E)L esti-

mators we use a grid search on a very �ne grid in a rather large interval around the true

value in order to circumvent possible convergence problems of standard algorithms like

simplex search or Newton-Raphson. Since the CE(E)L estimators depend on unknown

bandwidths, we compute these estimators for a small grid of �xed bandwidth values,

and then out of these we select the best bandwidth according to a cross-validation cri-
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terion proposed by Newey (1993). We then evaluate the performance of the estimators

according to a range of criteria.

Due to their similarity to unconditional GEL estimators, the CE(E)L estimators

may also su¤er from the no-moment problem. Therefore, interpretation of quadratic

loss measures such as standard deviation and mean square error computed from Monte

Carlo samples should be dealt with care. In order to avoid potential problems of in-

terpretation, in addition to the standard measures of performance, we also look at

performance measures like the median absolute error, the nine-decile range, and the tail

probability, which do not depend on moments. Fiebig (1985) provides examples on how

some estimators with no moments may be preferred to others that have moments. He

suggests as a general evaluation criterion in this case the concentration of the estimator

around the true parameter. In this respect, his probability of concentration criterion

(Fiebig, 1985, equation (2)) is virtually the same as the tail probability statistic used in

this paper and also in Guggenberger (2008).

Our results suggest that CEL and CEEL perform rather similarly. Both estimators

computed with �xed bandwidths su¤er from the no-moment problem. We draw this

conclusion from the fact that both estimators perform similarly to the HLIM estimator,

which is known to have the no-moment problem (Hausman et al., 2010). We do not �nd

evidence that the CE(E)L estimators with bandwidths computed by cross-validation

have the no-moment problem. In addition, these estimators outperform their �xed

bandwidth counterparts, especially in the weak instruments case. In this case, these

estimators are outperformed by the HFUL estimator (Hausman et al., 2010), but in the

strong instruments case they have competitive �nite sample properties with respect to

the other estimators.

The remainder of the paper is organized as follows: Section 2 describes the Monte

Carlo setup and the estimators, while in Section 3 we discuss the implementation and

the results. Section 4 collects some �nal remarks and, �nally, the Appendix contains

the tables and some technical details on estimation and cross validation.
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2 Monte Carlo experiment

In this section we describe the data generating process (DGP) in our Monte Carlo

experiment and present the estimators that we study. For our DGP we consider a linear

model with heteroskedastic errors that is similar to the one considered by Hausman et

al. (2010). Speci�cally,

yi = �0xi + "i; i = 1; :::; n;

where xi is expected to be endogenous and the exogenous variable zi is observed. The

parameter �0 is identi�ed by the conditional moment restriction

E (g (yi; xi; �) jzi ) = 0; (1)

where g (yi; xi; �) = yi � �xi. Regarding the primitives of our DGP we assume that

xi = �zi + ui

where zi � N (0; 1), ui � N (0; 1), and

"i = �ui +

s
1� �2
�2 + :864

(�v1i + :86v2i)

with v1i � N (0; z2i ), v2i � N (0; :862). The parameter � is computed from the theoretical
R2 for the regression of "2i on z

2
i , that is,

R2 =
V ar (E ("2i jz2i ))

V ar (E ("2i jz2i )) + E (V ar ("2i jz2i ))

for given values of R2. This latter quantity measures the degree of heteroskedasticity,

while � determines the degree of endogeneity because corr (xi; "i) = �=
p
(1 + �2). For

�; R2 and � we consider the following two parameter combinations:

�
�;R2; �

�
= (0:75; 0:1; 1:863521) ;

�
�;R2; �

�
= (0:30; 0:2; 1:38072) :

The �rst parameter combination implies a rather large degree of endogeneity and a

low degree of heteroskedasticity; the second parameter combination implies a moderate
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degree of endogeneity accompanied by slightly more heteroskedasticity.1 We vary the

strength of instruments zi by taking � = 0:4 and � = 0:04; the latter value provides

instruments with strength comparable to that in Guggenberger (2008), where in the

case of one instrument the lowest correlation between the endogenous regressors and

instruments is 0:032. In order to see the e¤ect of the sample size on the performance of

the estimators, we take n = 100 and n = 200. Whenever we use estimators that require

instruments, we consider the following two sets of 10 and 30 instruments:

�zi =
�
1; zi; z

2
i ; z

3
i ; z

4
i ; ziD1i; :::; ziD5i

�0
(2)

�zi =
�
1; zi; z

2
i ; z

3
i ; z

4
i ; ziD1i; :::; ziD25i

�0
;

where the variable Dki is a dummy variable that takes value 1 with probability 0:5.

Similar dummies are used by Hausman et al. (2010).

In the next sections we describe the estimators that we consider.

2.1 Conditional empirical likelihood estimators

In this section we describe the CEL and CEEL estimators. These estimators are the

result of a constrained optimization of certain nonparametric objective functions, where

one of the constraints is the sample analog of the conditional moment restriction. The

nonparametric objective functions are a nonparametric version of the log-likelihood func-

tion for CEL, and a local quadratic Cressie-Read discrepancy criterion for CEEL, re-

spectively (see KTA and ABR for further details, as well as Smith (2007) for a uni�ed

treatment based on Cressie-Read discrepancy). In practice both estimators can be ob-

tained from unconstrained optimizations of the so-called dual objective functions, which

are derived from the �rst order conditions of the constrained optimization. These dual

problems have the feature that they are saddle point optimization problems.

In particular, the CEL estimator of �0 is

b�CEL = argmin
�

max

i;i=1;:::;n

nX

j=1

nX

i=1

wij log (1 + 
ig (yj; xj; �)) ; (3)

1It would be desirable to study the case of high degree of heteroskedasticity as well. However, this
does not seem to be possible within the current DGP because the restriction that "i has unconditional
variance equal to 1 restricts � and R2 so that R2 cannot take values much higher than 0:2.
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where wij, i; j = 1; :::; n are de�ned as

wij =
K
�
zi�zj
bn

�

Pn

j=1K
�
zi�zj
bn

� ; (4)

that is, the weights of the Nadaraya-Watson nonparametric regression estimator, K is

a density function on R, symmetric around 0, playing the role of a kernel function, and


i; i = 1; :::; n are the Lagrange multipliers in the constrained maximization of the orig-

inal objective function. Determining the CEL estimator from the dual (3) involves the

�rst step maximization with respect to these Lagrange multipliers. A computationally

e¢cient method for determining the Lagrange multipliers is discussed in the Appendix

in Section B.1.

The CEEL estimator is

b�CEEL = argmin
�

nX

i=1

 
bg (�)2Pn

j=1wijg (yj; xj; �) (g (yj; xj; �)� bg (�))

!
; (5)

where bgi (�) =
Pn

j=1wijg (yj; xj; �) with weights given in (4). Di¤erently from the CEL

estimator, the CEEL estimator does not require optimization with respect to the La-

grange multipliers. This is because the quadratic Cressie-Read discrepancy criterion

implies �rst-order conditions of the constrained optimization that allow for explicit ex-

pressions of the Lagrange multipliers. Therefore, although not directly visible in the

CEEL-objective function (5), CEEL estimation is also a saddle point problem. We also

note that the CEEL estimator is numerically identical to a conditional generalization of

the continuously updated GMM estimator of Hansen et al. (1996) (see ABR for further

details).

The limiting distribution of the CE(E)L estimators is the same. That is, for k =

CEL;CEEL
p
n
�
b�k � �0

�
!d N (0; V ) ;

where

V =
�
E
�
D (z)2
 (z)�1

���1

is the semiparametric lower bound withD (z) = E
h
@g(y;x;�)

@�
jz
i
; 
 (z) = E

�
g (y; x; �)2 jz

�
.
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The asymptotic variance of b�k, k = CEL;CEEL, can be estimated as

bVk =
 

nX

i=1

bD (zi)2
�
b

�
b�k; zi

���1
!�1

;

where b
 (zi) ; b

�
b�k; zi

�
are nonparametric regression estimators of D (zi) ; 


�
b�k; zi

�
.

Speci�cally, the Nadaraya-Watson nonparametric kernel regression estimators for our

DGP are

bD (zi) = �
nX

j=1

wijxj;

and

b

�
b�CE(E)L; zi

�
=

nX

j=1

wijg
�
yj; xj; b�CE(E)L

�2
:

2.2 Instrumental variable estimation

Suppose that we have an L � 1 vector of instrumental variables �zi as described in (2).
Then the conditional moment (1) implies the unconditional moment restrictions

E (�zi (yi � xi�)) = 0;

which leads to estimation by means of GMM. GMM estimation generally requires a two

step procedure. The �rst step estimator is given by the minimum of

QGMM (�) = (y � x�)0 ZWZ 0 (y � x�)

for y and x being n � 1 vectors of observations and Z is a n � L matrix, such that its
ith row is �z0i. The resulting �rst step estimator is de�ned as

b�1 = (x0ZWZ 0x)�1 x0ZWZ 0y

for a certain positive de�nite matrixW . In our simulationsW is chosen to be the identity

matrix. In order to achieve e¢ciency and robustness with respect to heteroskedasticity,

in the second step we use an Eicker-White matrix (White, 1980):

b�GMM =
�
x0Zb
�1Z 0x

��1
x0Zb
�1Z 0y
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where b
 =Pn

i=1

�
yi � xib�1

�2
�zi�z

0
i. The GMM estimator is normally distributed

p
n
�
b�GMM � �

�
!d N (0; VGMM)

and VGMM = (E (x0Z) 
�1E (Z 0x))
�1
, for 
 = E

�
Z 0 (y � x�0) (y � x�0)0 Z

�
, which we

estimate by bVGMM =
�
x0Zb
�1Z 0x

��1
.

In a recent paper Hausman et al. (2010) describe a simple one-step estimator that is

robust to the presence of heteroskedasticity and many instruments. Such an estimator is

similar to LIML and it is based on jackknife techniques. Let us �rst de�ne the projection

matrix PZ = Z (Z
0Z)�1 Z 0 and the diagonal matrix DPZ , whose diagonal elements are

the diagonal entries of PZ . Then, the so called HLIM estimator is computed as the

minimum of

QHLIM (�) =

�
1
��

�0
A
�
1
��

�
�
1
��

�0
B
�
1
��

�

with

A = (y; x)0 (PZ �DPZ ) (y; x) ; B = (y; x)0 (y; x)

and is equal to

b�HLIM = (x0 (PZ �DPZ ) x� �HLIMx0x)
�1
(x0 (PZ �DPZ ) y � �HLIMx0y) (6)

where �HLIM is the minimum eigenvalue of the matrix B�1A. This estimator shares

some features with LIML, most notably it may not have moments (Hausman et al. p.

8) in the weak instruments case. These authors propose a correction in the spirit of

Fuller (1977), where the eigenvalue �HLIM is replaced by

�HFUL =
�HLIM � 1��HLIM

n
C

1� 1��HLIM
n

C
:

The parameter C is chosen by the econometrician and following the suggestion of Haus-

man et al. (2010) we set C = 1. The so called HFUL estimator is then de�ned as

b�HFUL = (x0 (PZ �DPZ ) x� �HFULx0x)
�1
(x0 (PZ �DPZ ) y � �HFULx0y) : (7)

For k = HLIM;HFUL we have the following convergence in distribution:

b�k � �0q
bVk

!d N (0; 1) ;
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where

bVk = cM�1 bScM�1; cM = x0 (PZ �DPZ ) x� �kx0x

and

bS =
nX

i=1

�
_x2i � 2piibxi _xi

�
b"2i +

LX

t=1

LX

s=1

 
nX

i=1

eZit eZisb"i
! 

nX

j=1

ZjtZjsb"j
!
;

for, eZ = Z (Z 0Z)�1, b" = y � xb�k, bx = x � b"x0b"
b"0b"
, _x = PZbx; furthermore, pii is the ith

diagonal element of PZ . The limit of bVk is provided in Hausman et al. (2010).

3 Implementation and results

We implement the CE(E)L estimators by using the Epanechnikov kernel:

K (u) =
3

4

�
1� u2

�
� 1 (juj � 1) ;

where 1 (�) is the indicator function. For the two sample sizes n = 100 and 200 we use
the bandwidths bn in the sets

b100 2 f0:5; 0:7; 0:9; 1:1; 1:3; 1:5; 1:7; 1:9g

and

b200 2 f0:3; 0:5; 0:7; 0:9; 1:1; 1:3; 1:5; 1:7g :

As mentioned in the previous section, the CE(E)L estimators are the solution of a

saddle point problem. Therefore, in certain situations that typically occur when the

instruments are weak, the corresponding objective function may be very �at in the

neighborhood of the optimum, causing the failure of standard optimization routines. In

order to avoid this, we solve the optimization problem by means of a grid search. The

grid we consider is between �25 and 25 and has step length 0:01.2 In order to provide
a fair comparison of performance, we also restrict the other estimates to the interval

[�25; 25]. We note that Guggenberger (2008) uses the same grid search approach in his
study of unconditional GEL.

2This approach is not attractive from a computational point of view, in particular when the dimen-
sion of the parameter of interest is larger than one. However, it is ideal for our simulation environment
where we have to tackle situations where the instruments provided by our DGP are particularly weak.
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In order to provide some insight on the di¢culty of solving a saddle-point optimiza-

tion problem, we make a few remarks on the behavior of the CE(E)L estimators for

di¤erent bandwidths. First, in cases when the objective functions in (3) and (5) do not

have �at parts around the optimum for any given bandwidth, the objective functions

are similar, and, as a consequence, the estimates corresponding to di¤erent bandwidths

will also be similar (the cases studied by KTA in their Monte Carlo experiments appear

to be of this type). Second, whenever, for some bandwidths the objective function is

�at near the optimum, the estimates corresponding to di¤erent bandwidths may be very

di¤erent. We illustrate this phenomenon by plotting the objective function in these two

cases.

In Figure 1 we present the CEEL objective function for n = 100 in a case with low

endogeneity (� = 0:3) and strong instruments (� = 0:4) for four di¤erent bandwidth

values. We can see that the objective function is well-behaved in the sense that we can

clearly distinguish a global minimum in the case of each bandwidth. The global minima

in the four cases occur at values close to 0, which is the true parameter value.
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Figure 1: CEEL objective function in the case of strong instruments and low endoge-
nenity (R2 = 0:2; � = 0:3 and � = 0:4)

On the contrary, in the presence of weak instruments and high endogeneity, the

objective function may be characterized by multiple local optima and extensive �at

parts in the vicinity of the minimum. This situation is well depicted in Figure 2, where

we plot the CEEL objective function again for n = 100 and four di¤erent bandwidth

values in a case with high endogeneity (� = 0:75) and weak instruments (� = 0:04). In

this �gure we can see that for bandwidths bn = 0:5 and 0:7 there are two minima for

which the value of the objective function is quite similar. For bandwidth values bn = 1:7

and 1:9 the objective function degenerates so that the minimum falls in a region where

the objective function is very �at. This �gure illustrates the pathological features of the

optimization problem in the case of weak instruments, and provides an argument for
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Figure 2: CEEL objective function in the case of weak instruments and high endoge-
nenity (R2 = 0:1; � = 0:75, and � = 0:04)

using grid search instead of standard optimization routines such as Newton-Raphson or

simplex search.

In order to compare the performance of the estimators, we conduct a Monte Carlo

experiment based on 1000 simulation repetitions in each case. Tables 1-8 contain the

results; each table corresponds to a di¤erent DGP. The leftmost columns list all the

estimators and the bandwidth values for the CE(E)L. In the other columns we report

the results for various performance measures, such as mean and median bias (referred to

as Mean and Median in the tables), median absolute error (MAE), standard deviation

(StD) and root mean square error (RMSE). In addition to these standard measures we

consider the nine-decile range (9-DR), the tail probability (TailPr) and the coverage
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probability of a 95% con�dence interval (CovPr).3 The former provides us with infor-

mation on how spread out is the distribution of the estimator between the 5th and 95th

percentile. The tail probability is computed as the relative frequency of the estimates

for which
���b�
��� > 22:5 (we follow Guggenberger (2008) in choosing this number), and

it conveys information on the fatness of the tails of the distribution of the estimators.

The coverage probability of the symmetric 95% con�dence interval is estimated by the

relative frequency of the event
����b� � �0

��� � 1:96 � b�
�
for a certain estimator b� of the true

value �0, where b� is an estimator of the standard error of b�, which may di¤er across the
various estimators we consider.

The focus of the Monte Carlo experiment is on the performance of the CE(E)L

estimators in comparison with the instrument-based methods presented above. The

latter may perform di¤erently if few or many instruments are included, speci�cally, in

theory many instruments lead to asymptotic e¢ciency gains, but in practice they may

lead to biased estimates. Therefore, for the three instrumental variable-based estimators

we use two instrument sets of L = 10 and 30 instruments. Another objective in analyzing

the results is to compare CEL to CEEL. CEEL has a computational advantage compared

to CEL due to the fact that the Lagrange multipliers can be expressed explicitly and

need not be estimated via numerical optimization as for CEL (see equations (3) and

(5)).

Before discussing the details with respect to the performance measures, we provide

some general remarks. In none of the tables can we �nd an estimator that dominates all

the others in the sense that it performs better with respect to all measures. The HLIM

estimator is often similar to CE(E)L estimators with some �xed bandwidth, especially in

the weak instruments case (Tables 1-2 and 5-6). The GMM estimator tends to perform

well in terms of precision (MAE, StD), but performs poorly in terms of bias (Mean,

Median) and coverage probability. HFUL has a rather sound performance compared to

the other estimators in all the cases.

The two conditional empirical likelihood estimators, CEL and CEEL, have a rather

3Since Guggenberger (2008) uses similar simulation setup and performance measures for studying the
�nite sample properties of unconditional GEL estimators, we can directly compare the tail probabilities
for our estimators to his estimators.
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similar performance. Their performance is much better with automatic bandwidths than

with �xed bandwidths in most of the cases. This is remarkable, because it contrasts the

�ndings for a linear heteroskedastic model with an exogenous regressor, where CEL is

only slightly better with automatic bandwidths than with �xed bandwidths (see KTA).

This contrast is rather sharp in the weak instruments case. In what follows we make

some distinctive comments on these and the strong instruments case, and then we discuss

the properties of the estimators for each performance measure.

Weak instruments case (Tables 1-2 and 5-6). The CE(E)L estimators with �xed

bandwidths have large tail probabilities, similarly to the HLIM estimator, which is

known to su¤er from the no-moment problem (Hausman et al., 2010). Therefore, the

CE(E)L estimators with �xed bandwidths also have the no-moment problem in the weak

instruments case. Besides the tail probabilities, these estimators perform rather poorly

also with respect to the 9-DR.

The CE(E)L estimators with automatic bandwidths perform much better than their

counterparts with �xed bandwidths. Their most remarkable feature is that they all have

tail probabilities equal to 0, which suggests that these estimators do not su¤er from the

no-moment problem. In addition, their performance with respect to the two measures of

dispersion MAE and 9-DR improves dramatically, although the latter values still remain

high relative to those of GMM and HFUL. The same observation holds for the StD and

RMSE. If we restrict the comparison to the criteria RMSE and CovPr, then HFUL (for

both set of instruments) dominates CE(E)L in three out of the four tables, while in

the fourth (Table 1) HFUL has just a slightly poorer CovPr. It is di¢cult to rank the

CE(E)L and GMM even if we restrict the comparison to the criteria RMSE and CovPr,

because in most cases GMM has lower RMSE but poorer CovPr.

Strong instruments case (Tables 3-4 and 7-8). The CE(E)L estimators with

�xed bandwidths have small TailPr, possibly except for some low bandwidth values.

Consequently, for most of the bandwidths the second moments of these estimators are

�nite. For the lowest bandwidth values (b100 = 0:5; b200 = 0:3) CEL tends to perform

poorly compared to HLIM in terms of the 9-DR and TailPr, so in these cases these

estimators su¤er from the no-moment problem. For n = 100 (Tables 3-4) CE(E)L
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are rather competitive regarding the MAE, but poor regarding the RMSE, for several

�xed bandwidth values. For n = 200 (Tables 7-8) CEEL works well for several �xed

bandwidth values, while CEL is only slightly poorer with respect to the RMSE and

CovPr.

The CE(E)L estimators with automatic bandwidths perform better than their coun-

terparts with �xed bandwidths for n = 100 and rather similarly for n = 200. These

estimators are rather competitive compared to the other estimators as well. A clear

ranking is di¢cult to establish even if we restrict the comparison to RMSE and CovPr,

but we can claim that CEEL has rather good CovPr and low RMSE in all four cases.

Compared to HFUL, CEEL has similar CovPr and lower RMSE in almost all the cases.

Mean bias. In the weak instruments case the CE(E)L have di¤erent bias values

for di¤erent bandwidths. The CE(E)L with automatic bandwidths have a performance

comparable to the other estimators. The bias increases slightly for the GMM and HFUL

estimators as the number of instruments L increases from 10 to 30, while for the HLIM

the change is ambiguous. In the strong instruments case, the CE(E)L are only biased for

some very low �xed bandwidth values, while the CE(E)L with automatic bandwidths

are virtually unbiased. The bias of GMM and HFUL tends to increase with the degree of

endogeneity, decrease with the strength of instruments, and decrease with the number of

observations n. The bias of GMM increases substantially as the number of instruments

L increases; the bias of HLIM is small in most cases.

Median bias. In the weak instruments case the CE(E)L estimators have similar

median bias values for di¤erent bandwidths, for both �xed and automatic bandwidths.

These bias values are rather similar to the median biases of the other estimators. The

median bias increases slightly for the GMM, HLIM and HFUL estimators as L increases

from 10 to 30. In the strong instruments case the CE(E)L estimators tend to be median-

unbiased for any choice of bandwidth. HFUL and especially HLIM have small median

bias values in most of the cases, while GMM has considerable median bias. This bias

increases with L, with the degree of endogeneity, and decreases with n.

MAE. TheMAE is a measure of dispersion that is robust to the no-moment problem.

It decreases with the strength of instruments and with n, while the e¤ect of the degree
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of endogeneity is ambiguous.4 For HLIM and HFUL, MAE increases with L, while

for GMM the e¤ect of L is ambiguous. Except for very low bandwidths like bn =

0:3; 0:5; 0:7, the CE(E)L estimators with di¤erent �xed bandwidths have rather similar

MAE values. In the weak instruments case these values are also similar to the MAE

of HLIM and larger than the MAE of GMM and HFUL. In this case the CE(E)L

estimators with automatic bandwidths have very competitive MAE, and they are only

outperformed by GMM in the low endogeneity cases. In the weak instruments case with

high endogeneity (Tables 2 and 6) CEL with bandwidths bn 2 f1:1; 1:3; 1:5; 1:7; 1:9g
dominates the other estimators. In most of the strong instruments cases the CE(E)L

with automatic bandwidths have the lowest MAE, and they dominate HLIM and HFUL

in all these cases.

9-DR. The 9-DR is a measure of dispersion that can be estimated consistently for

estimators that su¤er from the no-moment problem. In general the performance of all

the estimators with respect to the 9-DR improves with the strength of instruments, but

their relative performance is speci�c to this feature. In all the weak instruments case

GMM has the lowest 9-DR followed by HFUL, which is followed by the CE(E)L with

automatic bandwidths. The CE(E)L with �xed bandwidths have rather large 9-DR

values, which tend to decrease with the bandwidth. HLIM has 9-DR values similar to

those of the CE(E)L corresponding to the highest bandwidths. Compared to these, the

9-DR values of the CE(E)L with automatic bandwidths are lower by a factor ranging

roughly between 2 and 3. In the strong instruments case GMM still has the lowest 9-DR

in all the cases, but here this is followed by the CE(E)L with automatic bandwidths,

which tends to outperform HFUL in most of the cases. The CE(E)L with some larger

�xed bandwidths outperform HFUL in most of the cases, while for some lower �xed

bandwidths they have 9-DR values similar to HLIM.

In general for all the estimators the 9-DR increases with the degree of heteroskedas-

ticity. For GMM the 9-DR decreases with L, but the reverse holds for HLIM and HFUL.

In the weak instruments case the 9-DR of GMM, HLIM, HFUL tend to increase with n,

4The ambiguity may come from the feature of the DGP that a change in the degree of endogeneity
is accompanied by a change in the degree of heteroskedasticity.
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while for the CE(E)L with automatic bandwidths it tends to decrease; for the CE(E)L

with �xed bandwidths it changes ambiguously. In the strong instruments case the 9-DR

decreases with n for all the estimators.

StD.We can repeat here the qualitative remarks made in the �rst paragraph of the

discussion on the 9-DR. Therefore, we only mention the di¤erences and make some fur-

ther quantitative remarks. The StD still increases with the degree of heteroskedasticity

in most cases, except for CE(E)L in the strong instruments case. In this case the StD

of CE(E)L changes in an ambiguous way, which is most probably due to the presence

of some non-zero tail probabilities. For GMM the StD still decreases with L, but the

reverse only holds for HFUL, while for HLIM it does so only in the strong instruments

case. In the weak instruments case the StD of HLIM changes very little and ambigu-

ously with L. Further, in this case the StD of GMM and HFUL tend to increase with

n, while for the CE(E)L with automatic bandwidths and HLIM it tends to decrease;

for the CE(E)L with �xed bandwidths it changes little and ambiguously. In the strong

instruments case the StD decreases with n for all the estimators.

In the weak instruments case (Tables 1-2 and 5-6) the StD values of CE(E)L are

improved by a factor ranging roughly between 2:5 and 3:5 with automatic bandwidths.

It is interesting to note that in this case, the numerical StD values of the CE(E)L for

�xed (large) bandwidths and HLIM are rather similar to the StD of the unconditional

GEL and LIML estimators in Guggenberger�s (2008) weak instruments case (Tables 1(a)

and 1(b)).

RMSE. The RMSE values, although in some cases numerically di¤erent, qualita-

tively behave like the StD values. Therefore, the discussion on the performance of the

estimators regarding the StD is also valid here.

CovPr. In an overall sense, the estimator with the best CovPr tends to be HLIM,

which outperforms HFUL most of the times. The latter estimator outperforms the

CE(E)L with automatic bandwidths. In almost all cases GMM performs rather poorly,

especially in the high endogeneity case (Tables 2,4,6,8), where its CovPr is below 0:5

in several cases. The poorest CovPr of the CE(E)L with automatic bandwidths is 0:55

(Table 6), where the CovPr of HLIM is 0:78. The CovPr of the CE(E)L with �xed
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bandwidths increases with the bandwidth values.

The CovPr improves with the strength of instruments and it gets poorer with higher

endogeneity. In the strong instruments case it improves with n, while in the weak

instruments case the e¤ect of n is not clear. The CovPr for HLIM and HFUL increases

in L, while for GMM it decreases in L; the latter is remarkably poor for L = 30.

TailPr. The TailPr of the CE(E)L with automatic bandwidths, GMM and HFUL

are 0 in all the cases. The CE(E)L with �xed bandwidths and HLIM have strictly

positive TailPr in several cases. In the weak instruments case these are typically rather

large for the former estimator, ranging from 0:016 to 0:068, while they are slightly lower,

ranging from 0:015 to 0:028 for the latter estimator.5 In the strong instruments case,

these estimators have their TailPr equal to 0 or below 0:01 in most of the cases. Some

exceptions to these can be found for CEL for bandwidths b100 = 0:5; 0:7, b200 = 0:3,

where the TailPr values range from 0:13 to 0:31, and for HLIM for n = 100, L = 30,

where the TailPr values range from 0:11 to 0:13.

We use the TailPr together with the fact that HLIM su¤ers from the no-moment

problem (Hausman et al., 2010, p.8) as a practical indicator of the existence of moments.

Our conclusions earlier in this section regarding the no-moment problem for the CE(E)L

with �xed bandwidths are based on this indicator. For further comparison purposes we

note that the unconditional GEL and LIML in the weak instruments case discussed by

Guggenberger (2008, Tables 1(a)-(b), 3(a)-(b)) have tail probabilities ranging from 0:1

to 0:3. These values are rather close to those found in our weak instruments case for

HLIM and slightly lower than those found for the CE(E)L with �xed bandwidths.

4 Conclusions

In this paper we �nd evidence that the CE(E)L estimators with certain �xed bandwidths

have standard deviations and tail probabilities similar to the HLIM estimator, which

is known to have the no-moment problem. This suggests that the CE(E)L with �xed

bandwidths also su¤er from the no-moment problem. We also study these estimators

5For comparison, we mention that the corresponding tail probability of the standard Cauchy distri-
bution, whose �rst absolute moment does not exist, is about 0:028.

19



with automatic bandwidths obtained through the cross-validation method proposed by

Newey (1993). Our results suggest that the CE(E)L estimators with automatic band-

widths do not have the no-moment problem. This is remarkable for two reasons. First,

the closely related unconditional GEL estimators also su¤er from the no-moment prob-

lem (Guggenberger, 2008). Second, in linear heteroskedastic models without endogenous

regressors the CE(E)L with �xed and automatic bandwidths have similar �nite sample

properties (KTA and Gospodinov and Otsu, 2009).

In linear models with endogenous regressors and weak instruments we �nd CE(E)L

to have �nite sample properties poorer than the HFUL estimator. This holds regard-

less of whether the bandwidth is �xed or automatic, although the latter considerably

improves the performance of CE(E)L under the various performance measures. The

relative performances change signi�cantly in the strong instruments case. Automatic

bandwidths for CE(E)L still improve over �xed bandwidths in most cases, but the im-

provement is not as large as in the weak instruments case. Further, the CE(E)L with

automatic bandwidths tend to outperform HFUL in terms of RMSE, while the reverse

holds in terms of the coverage probability, although the di¤erences in performance are

numerically rather small.

Based on these considerations, we recommend the use of HFUL. This advice also

takes into account the computational burden that CEEL, and in particular CEL, entail,

which increases further when the automatic bandwidth is calculated. Still, in cases when

the RMSE is the relevant loss function, and the instruments are known to be strong, one

may prefer CE(E)L. In this situation, since CEL and CEEL deliver similar results, we

recommend the computationally simpler CEEL. Since even in the strong instruments

case it may happen for some �xed bandwidths that the CEEL estimator has a large tail

probability, we recommend estimation by using at least a few �xed bandwidths followed

by the selection of the best bandwidth.

The conclusions regarding the relative performance of the CE(E)L estimators may

be di¤erent in nonlinear models. In such models, since the HFUL estimator has been

developed for linear models, the performance of CE(E)L should be compared to other

estimators, which are suited to nonlinear models. Such estimators have recently been
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developed by Domínguez and Lobato (2004) and Lavergne and Patilea (2009) based

on unconditional moment restrictions that are equivalent to the conditional moment

restriction that identi�es the model. Future research will focus on the �nite samples

properties of CE(E)L compared to these estimators, as well as to the e¢cient GMM

estimator (Newey, 1993) for a nonlinear model.

A Appendix: Tables

A.1 n = 100

Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 � = 0:04; � = 0:3; R2 = 0:2
CEL
automatic 0.243 0.300 0.565 5.220 2.110 2.124 0.929 0.000
bn = 0:5 -0.205 0.280 1.500 22.370 7.259 7.262 0.624 0.052
bn = 0:7 0.320 0.335 1.445 20.950 6.990 6.997 0.721 0.043
bn = 0:9 0.374 0.325 1.150 18.650 6.579 6.590 0.838 0.044
bn = 1:1 0.207 0.310 0.985 16.350 6.249 6.252 0.881 0.039
bn = 1:3 0.297 0.320 0.930 15.060 5.795 5.802 0.933 0.027
bn = 1:5 0.245 0.290 0.890 13.780 5.866 5.872 0.950 0.031
bn = 1:7 -0.061 0.290 0.860 12.660 5.668 5.668 0.956 0.029
bn = 1:9 0.191 0.320 0.790 10.720 5.682 5.685 0.970 0.034
CEEL
automatic 0.215 0.280 0.580 4.790 1.988 1.999 0.921 0.000
bn = 0:5 0.298 0.295 1.420 20.308 6.841 6.848 0.517 0.040
bn = 0:7 0.452 0.325 1.380 18.335 6.692 6.704 0.723 0.043
bn = 0:9 0.337 0.300 1.200 17.196 6.412 6.418 0.890 0.039
bn = 1:1 0.245 0.290 1.000 14.853 6.373 6.374 0.958 0.042
bn = 1:3 -0.032 0.280 0.945 15.025 6.312 6.308 0.980 0.042
bn = 1:5 0.093 0.280 0.890 15.866 6.215 6.212 0.991 0.037
bn = 1:7 0.151 0.265 0.905 12.608 5.895 5.894 0.992 0.035
bn = 1:9 0.321 0.280 0.880 12.054 5.601 5.608 0.996 0.030
L = 10
GMM 0.281 0.287 0.347 1.434 0.462 0.540 0.877 0.000
HLIM 0.216 0.310 0.849 13.114 5.519 5.521 0.939 0.027
HFUL 0.283 0.305 0.529 2.426 0.720 0.773 0.916 0.000
L = 30
GMM 0.307 0.305 0.306 0.699 0.210 0.372 0.663 0.000
HLIM 0.422 0.341 0.983 12.103 5.537 5.549 0.981 0.028
HFUL 0.312 0.320 0.586 2.583 0.782 0.841 0.978 0.000

Table 1: weak instruments, low endogeneity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 � = 0:04; � = 0:75; R2 = 0:1
CEL
automatic 0.698 0.730 0.400 3.640 1.514 1.667 0.615 0.000
bn = 0:5 0.236 0.740 1.090 16.270 6.183 6.188 0.367 0.039
bn = 0:7 0.648 0.730 1.050 14.880 5.736 5.772 0.459 0.025
bn = 0:9 0.656 0.730 0.865 13.140 5.666 5.704 0.561 0.030
bn = 1:1 0.636 0.740 0.720 10.870 5.632 5.668 0.687 0.036
bn = 1:3 0.674 0.740 0.650 11.410 5.387 5.429 0.723 0.028
bn = 1:5 0.666 0.740 0.615 10.140 5.262 5.304 0.797 0.025
bn = 1:7 0.703 0.740 0.590 8.980 4.878 4.929 0.850 0.022
bn = 1:9 0.564 0.740 0.570 9.130 4.721 4.755 0.855 0.019
CEEL
automatic 0.656 0.700 0.440 3.650 1.318 1.472 0.656 0.000
bn = 0:5 0.528 0.710 1.200 14.490 5.683 5.705 0.357 0.029
bn = 0:7 0.626 0.740 1.235 13.808 5.965 5.994 0.481 0.037
bn = 0:9 0.736 0.700 1.050 12.498 5.762 5.806 0.577 0.033
bn = 1:1 0.514 0.695 0.980 10.802 5.490 5.511 0.651 0.031
bn = 1:3 0.460 0.680 0.950 10.330 5.489 5.506 0.712 0.034
bn = 1:5 0.408 0.680 0.940 9.837 4.861 4.861 0.761 0.023
bn = 1:7 0.558 0.695 0.930 8.847 4.393 4.426 0.807 0.016
bn = 1:9 0.709 0.700 0.930 8.105 4.713 4.763 0.832 0.022
L = 10
GMM 0.728 0.735 0.736 1.026 0.326 0.798 0.294 0.000
HLIM 0.506 0.730 0.924 9.782 4.702 4.727 0.718 0.020
HFUL 0.726 0.739 0.740 1.720 0.512 0.888 0.649 0.000
L = 30
GMM 0.752 0.751 0.751 0.481 0.144 0.766 0.010 0.000
HLIM 0.564 0.751 1.004 8.534 4.908 4.938 0.822 0.025
HFUL 0.753 0.746 0.746 1.783 0.542 0.927 0.794 0.000

Table 2: weak instruments, high endogeneity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 � = 0:4; � = 0:3; R2 = 0:2
CEL
automatic 0.001 0.040 0.235 1.360 0.461 0.461 0.953 0.000
bn = 0:5 -0.445 -0.010 0.405 5.160 3.587 3.614 0.711 0.014
bn = 0:7 -0.295 0.010 0.340 3.880 3.222 3.236 0.772 0.013
bn = 0:9 -0.147 0.010 0.260 1.910 1.577 1.583 0.868 0.003
bn = 1:1 -0.070 0.000 0.250 1.540 0.743 0.746 0.839 0.000
bn = 1:3 -0.059 0.000 0.240 1.510 0.588 0.591 0.895 0.000
bn = 1:5 -0.064 0.000 0.250 1.560 0.655 0.658 0.880 0.000
bn = 1:7 -0.070 0.000 0.255 1.570 0.794 0.797 0.913 0.000
bn = 1:9 -0.147 0.000 0.270 1.780 1.482 1.489 0.954 0.002
CEEL
automatic 0.018 0.030 0.240 1.340 0.451 0.451 0.956 0.000
bn = 0:5 -0.035 -0.020 0.330 3.093 2.688 2.686 0.665 0.008
bn = 0:7 -0.069 -0.010 0.300 2.422 2.176 2.176 0.757 0.005
bn = 0:9 -0.030 -0.020 0.250 1.671 1.201 1.201 0.872 0.000
bn = 1:1 -0.093 -0.010 0.230 1.541 1.646 1.647 0.922 0.004
bn = 1:3 -0.052 -0.015 0.240 1.511 0.573 0.575 0.947 0.000
bn = 1:5 -0.045 -0.010 0.245 1.511 0.581 0.582 0.958 0.000
bn = 1:7 -0.049 -0.010 0.250 1.563 0.690 0.692 0.975 0.000
bn = 1:9 -0.044 -0.010 0.265 1.630 1.303 1.304 0.985 0.001
L = 10
GMM 0.105 0.120 0.204 0.977 0.293 0.311 0.905 0.000
HLIM -0.012 0.023 0.315 2.396 2.242 2.241 0.938 0.005
HFUL 0.039 0.052 0.274 1.631 0.494 0.495 0.932 0.000
L = 30
GMM 0.218 0.223 0.232 0.607 0.186 0.286 0.743 0.000
HLIM 0.014 0.061 0.479 5.169 3.685 3.684 0.976 0.013
HFUL 0.109 0.094 0.368 2.023 0.591 0.601 0.966 0.000

Table 3: strong instruments, low endogeneity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 100 � = 0:4; � = 0:75; R2 = 0:1
CEL
automatic 0.018 0.080 0.210 1.300 0.472 0.472 0.877 0.000
bn = 0:5 -0.605 -0.020 0.350 4.040 4.026 4.071 0.732 0.020
bn = 0:7 -0.485 -0.010 0.320 3.200 3.484 3.518 0.798 0.015
bn = 0:9 -0.218 -0.010 0.240 1.680 1.978 1.990 0.852 0.003
bn = 1:1 -0.172 -0.010 0.240 1.460 1.267 1.279 0.853 0.002
bn = 1:3 -0.143 -0.010 0.240 1.440 1.491 1.498 0.916 0.003
bn = 1:5 -0.140 -0.010 0.230 1.440 1.497 1.503 0.905 0.003
bn = 1:7 -0.088 -0.010 0.240 1.470 1.857 1.859 0.948 0.005
bn = 1:9 -0.037 0.000 0.250 1.530 1.502 1.503 0.959 0.002
CEEL
automatic 0.025 0.060 0.220 1.170 0.450 0.451 0.891 0.000
bn = 0:5 -0.333 -0.040 0.280 2.553 2.347 2.369 0.708 0.004
bn = 0:7 -0.209 -0.040 0.270 2.112 2.039 2.049 0.785 0.004
bn = 0:9 -0.109 -0.010 0.235 1.560 1.018 1.023 0.871 0.000
bn = 1:1 -0.073 -0.010 0.230 1.391 0.793 0.796 0.906 0.000
bn = 1:3 -0.085 -0.010 0.230 1.381 0.585 0.591 0.917 0.000
bn = 1:5 -0.055 -0.010 0.230 1.321 0.965 0.966 0.935 0.001
bn = 1:7 -0.080 -0.020 0.240 1.361 0.682 0.686 0.936 0.000
bn = 1:9 -0.035 -0.010 0.250 1.431 1.239 1.239 0.943 0.001
L = 10
GMM 0.295 0.311 0.320 0.779 0.244 0.383 0.633 0.000
HLIM -0.108 0.026 0.273 1.910 1.910 1.482 0.912 0.001
HFUL 0.067 0.093 0.230 1.136 0.372 0.378 0.892 0.000
L = 30
GMM 0.532 0.533 0.533 0.470 0.144 0.551 0.073 0.000
HLIM -0.109 0.068 0.387 4.222 3.436 3.436 0.921 0.011
HFUL 0.202 0.181 0.267 1.449 0.441 0.485 0.907 0.000

Table 4: strong instruments, high endogeneity
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A.2 n = 200

Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 200 � = 0:04; � = 0:3; R2 = 0:2
CEL
automatic 0.287 0.275 0.505 4.080 1.588 1.614 0.869 0.000
bn = 0:3 -0.624 0.185 1.685 34.590 8.179 8.203 0.403 0.068
bn = 0:5 0.307 0.260 1.230 17.490 6.605 6.612 0.624 0.042
bn = 0:7 0.441 0.300 1.030 14.920 5.878 5.894 0.764 0.033
bn = 0:9 0.517 0.300 0.970 14.490 5.941 5.963 0.840 0.033
bn = 1:1 0.407 0.320 0.910 12.800 5.914 5.928 0.902 0.032
bn = 1:3 0.118 0.300 0.900 11.940 5.393 5.395 0.902 0.028
bn = 1:5 0.493 0.310 0.875 10.540 4.978 5.002 0.944 0.022
bn = 1:7 0.457 0.310 0.870 11.230 5.053 5.073 0.957 0.026
CEEL
automatic 0.362 0.300 0.540 4.710 1.820 1.855 0.851 0.000
bn = 0:3 0.353 0.325 1.400 18.294 6.511 6.517 0.283 0.034
bn = 0:5 0.381 0.290 1.160 17.738 6.509 6.517 0.663 0.037
bn = 0:7 0.297 0.250 1.085 16.777 6.322 6.326 0.850 0.036
bn = 0:9 -0.050 0.290 1.040 12.965 5.460 5.457 0.941 0.024
bn = 1:1 -0.009 0.300 1.035 13.601 5.489 5.487 0.961 0.026
bn = 1:3 0.153 0.290 1.020 13.518 5.584 5.583 0.980 0.027
bn = 1:5 0.245 0.295 1.020 12.366 5.751 5.753 0.986 0.032
bn = 1:7 0.092 0.275 0.960 12.436 5.615 5.613 0.991 0.032
L = 10
GMM 0.276 0.271 0.349 1.460 0.479 0.553 0.903 0.000
HLIM 0.542 0.285 0.836 13.919 5.466 5.490 0.944 0.025
HFUL 0.299 0.281 0.553 2.955 0.864 0.914 0.925 0.000
L = 30
GMM 0.306 0.306 0.311 0.756 0.233 0.384 0.726 0.000
HLIM 0.411 0.383 0.988 12.625 5.331 5.344 0.966 0.025
HFUL 0.352 0.371 0.664 2.992 0.907 0.972 0.957 0.000

Table 5: weak instruments, low endogeneity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 200 � = 0:04; � = 0:75; R2 = 0:1
CEL
automatic 0.739 0.700 0.370 2.920 1.208 1.416 0.545 0.000
bn = 0:3 0.072 0.620 1.230 21.310 6.979 6.979 0.302 0.050
bn = 0:5 0.640 0.690 0.870 14.260 6.059 6.093 0.434 0.042
bn = 0:7 0.650 0.695 0.745 10.990 5.230 5.271 0.510 0.026
bn = 0:9 0.642 0.680 0.705 11.560 5.290 5.329 0.637 0.026
bn = 1:1 0.633 0.690 0.675 10.070 5.243 5.282 0.725 0.026
bn = 1:3 0.589 0.675 0.635 8.800 4.724 4.760 0.731 0.020
bn = 1:5 0.641 0.680 0.620 8.560 4.571 4.615 0.791 0.022
bn = 1:7 0.685 0.680 0.610 7.910 4.403 4.456 0.801 0.019
CEEL
automatic 0.717 0.720 0.420 3.720 1.331 1.512 0.584 0.000
bn = 0:3 0.726 0.730 1.240 14.034 5.555 5.600 0.256 0.023
bn = 0:5 0.781 0.690 1.075 13.467 5.622 5.674 0.425 0.028
bn = 0:7 0.377 0.645 1.060 12.371 5.343 5.353 0.542 0.023
bn = 0:9 0.361 0.660 1.050 10.564 4.659 4.671 0.621 0.017
bn = 1:1 0.507 0.685 1.030 11.054 4.769 4.794 0.681 0.019
bn = 1:3 0.599 0.690 1.020 10.838 5.109 5.142 0.736 0.024
bn = 1:5 0.547 0.680 1.020 10.252 4.769 4.797 0.782 0.020
bn = 1:7 0.512 0.685 1.010 8.905 4.608 4.634 0.819 0.019
L = 10
GMM 0.720 0.722 0.722 1.033 0.339 0.796 0.345 0.000
HLIM 0.758 0.707 0.892 9.010 4.581 4.651 0.694 0.017
HFUL 0.731 0.715 0.722 2.115 0.621 0.959 0.649 0.000
L = 30
GMM 0.749 0.752 0.752 0.537 0.163 0.767 0.021 0.000
HLIM 0.613 0.770 1.025 9.232 4.492 4.531 0.779 0.015
HFUL 0.776 0.769 0.775 2.133 0.643 1.007 0.747 0.000

Table 6: weak instruments, high endogeneity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 200 � = 0:4; � = 0:3; R2 = 0:2
CEL
automatic 0.010 0.020 0.170 0.840 0.272 0.273 0.970 0.000
bn = 0:3 -0.695 -0.075 0.415 5.630 4.241 4.298 0.763 0.024
bn = 0:5 -0.072 -0.010 0.200 1.270 1.139 1.142 0.838 0.001
bn = 0:7 -0.017 0.000 0.180 0.920 0.300 0.301 0.831 0.000
bn = 0:9 -0.013 0.000 0.170 0.870 0.288 0.288 0.857 0.000
bn = 1:1 -0.009 0.000 0.180 0.860 0.289 0.289 0.892 0.000
bn = 1:3 -0.008 0.000 0.180 0.870 0.289 0.290 0.887 0.000
bn = 1:5 -0.007 0.000 0.180 0.900 0.294 0.294 0.904 0.000
bn = 1:7 -0.005 0.000 0.180 0.910 0.306 0.306 0.914 0.000
CEEL
automatic -0.001 0.010 0.170 0.920 0.274 0.274 0.964 0.000
bn = 0:3 0.005 -0.020 0.240 1.703 1.859 1.858 0.634 0.003
bn = 0:5 -0.036 -0.010 0.180 0.971 0.319 0.321 0.850 0.000
bn = 0:7 -0.031 -0.010 0.180 0.890 0.286 0.287 0.902 0.000
bn = 0:9 -0.024 -0.010 0.175 0.891 0.278 0.279 0.920 0.000
bn = 1:1 -0.021 -0.010 0.180 0.900 0.277 0.278 0.940 0.000
bn = 1:3 -0.019 0.000 0.180 0.911 0.280 0.280 0.954 0.000
bn = 1:5 -0.018 0.000 0.180 0.950 0.286 0.287 0.962 0.000
bn = 1:7 -0.018 0.000 0.190 0.951 0.299 0.299 0.970 0.000
L = 10
GMM 0.061 0.066 0.161 0.741 0.224 0.232 0.936 0.000
HLIM -0.007 0.007 0.202 1.239 1.490 1.490 0.946 0.003
HFUL -0.005 0.018 0.194 1.125 0.351 0.350 0.941 0.000
L = 30
GMM 0.160 0.165 0.178 0.573 0.173 0.235 0.837 0.000
HLIM -0.051 0.019 0.265 1.801 2.357 2.356 0.955 0.007
HFUL 0.026 0.036 0.243 1.463 0.457 0.457 0.954 0.000

Table 7: strong instruments, low endogeneity
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Mean Median MAE 9-DR StD RMSE CovPr TailPr
n = 200 � = 0:4; � = 0:75; R2 = 0:1
CEL
automatic 0.041 0.050 0.160 0.840 0.284 0.287 0.893 0.000
bn = 0:3 -0.821 -0.040 0.345 5.150 4.724 4.794 0.769 0.031
bn = 0:5 -0.067 -0.010 0.190 1.170 1.060 1.062 0.853 0.001
bn = 0:7 -0.045 -0.010 0.160 0.820 0.270 0.274 0.853 0.000
bn = 0:9 -0.039 -0.010 0.160 0.790 0.263 0.266 0.885 0.000
bn = 1:1 -0.036 -0.010 0.160 0.780 0.259 0.262 0.904 0.000
bn = 1:3 -0.033 -0.010 0.160 0.770 0.259 0.261 0.906 0.000
bn = 1:5 -0.031 -0.010 0.160 0.770 0.261 0.263 0.911 0.000
bn = 1:7 -0.030 0.000 0.160 0.790 0.265 0.267 0.966 0.000
CEEL
automatic 0.006 0.020 0.150 0.810 0.252 0.252 0.930 0.000
bn = 0:3 -0.061 -0.020 0.195 1.431 1.846 1.846 0.687 0.004
bn = 0:5 -0.067 -0.020 0.160 0.880 0.342 0.349 0.886 0.000
bn = 0:7 -0.050 -0.010 0.150 0.820 0.265 0.270 0.919 0.000
bn = 0:9 -0.044 -0.010 0.150 0.810 0.248 0.252 0.938 0.000
bn = 1:1 -0.041 -0.010 0.150 0.791 0.248 0.251 0.942 0.000
bn = 1:3 -0.040 -0.010 0.150 0.810 0.250 0.253 0.946 0.000
bn = 1:5 -0.039 -0.010 0.150 0.810 0.254 0.257 0.958 0.000
bn = 1:7 -0.039 -0.010 0.160 0.821 0.260 0.263 0.964 0.000
L = 10
GMM 0.168 0.184 0.203 0.622 0.191 0.254 0.780 0.000
HLIM -0.050 0.011 0.183 0.975 0.341 0.344 0.934 0.000
HFUL -0.002 0.039 0.178 0.854 0.273 0.273 0.925 0.000
L = 30
GMM 0.390 0.394 0.394 0.439 0.132 0.412 0.200 0.000
HLIM -0.080 -0.016 0.217 1.359 1.043 1.046 0.946 0.001
HFUL -0.008 0.028 0.203 1.005 0.337 0.337 0.936 0.000

Table 8: strong instruments, high endogeneity

B Appendix: Notes on computation

B.1 Lagrange multipliers for CEL

The Lagrange multiplier � (zi; �) is the solution, for any i = 1; :::; n, of the maximization

problem

� (zi; �) = argmax



nX

j=1

wij log (1 + 
g (yj; xj; �)) :

For simplicity of notation drop the subscript i from wij and let gj = g (yj; xj; �). Then,

the Lagrange multiplier corresponding to this generic case is found by maximizing

f (
) =
nX

j=1

wj log (1 + gj
) :

This is a function strictly concave in 
 unless gj = 0 for all j.

In order to search for 
 values for which 1 + gj
 > 0 for all j, we compute c =
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max
n
�1
gj
jgj > 0; wj > 0

o
< 0 and d = min

n
�1
gj
jgj < 0; wj > 0

o
> 0;6 then for c < 
 < d

it holds that 1 + gj
 > 0 for all j. We use the Newton-Raphson algorithm to �nd the

Lagrange multiplier. In order to ensure that the algorithm does not take 
 values outside

the interval (c; d), we maximize in fact the function

F (t) =

nX

j=1

wj log

�
1 + gj

c+ det

1 + et

�
; t 2 R;

suppose we obtain t� = argmaxt F (t). Then, the Lagrange multiplier is determined as

� =
c+ det

�

1 + et�
2 (c; d) :

This method for computing the Lagrange multipliers � (zi; �) has worked very well for

our DGP�s.

B.2 Cross-validation

The cross-validation criterion proposed by Newey (1993, p.433) adapted to our model is

dCV (bn) =
nX

i=1

bR2 (zi) 
 (zi) ;

where

bR (zi) =
n
bD (zi)�D (zi) +B (zi)

h
b
 (zi)� 
 (zi)

io
;

B (z) = D (z) 
 (z)�1 and bD (z), b
 (z) are nonparametric kernel regression estimators
of D (z), 
 (z), respectively, where

D (z) = E

�
@g (y; x; �0)

@�
jz
�
; 
 (z) = E

�
g2 (y; x; �0) jz

�
:7 (7)

The expression bR (zi) cannot be computed; Newey proposes to estimate it by

R (zi) =

2
4
@g
�
yi; xi; b�

�

@�
� bD�i + bB�i

�
bg2i � b
�i

�
3
5 ;

6Note that, since we use the Epanechnikov kernel, not all weights wj are necessarily strictly positive.
7For our DGP these expressions are

D (z) = E [�xjz] = ��z;


 (z) = E

2
4
 
�u+

s
1� �2
�2 + :864

(�v1 + :86v2)

!2
jz

3
5 = �2 +

�
1� �2

� �2z2 + :864
�2 + :864

:
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where bD�i and b
�i are leave-one-out estimators of D (zi) and 
 (zi). Speci�cally,

bD�i = �
nX

j=1; j 6=i

xjw�ij;

b
�i =

nX

j=1; j 6=i

bg2jw�ij;

bB�i = bD�i
b
�1�i ;

where

w�ij =
K
�
zi�zj
bn

�

Pn

j=1; j 6=iK
�
zi�zj
bn

� ;

bgi = g
�
yi; xi; b�

�
:

The basic idea underlying this estimation is to replace the conditional expectations by

their leave-one-out estimators and the estimators of the conditional expectations by

the dependent variables in the associated nonparametric regression. In our model the

criterion simpli�es to

R (zi) =

"
bD�i

 
bg2i
b
�i

� 1
!
� xi � bD�i

#
:

The cross-validation criterion we use is

CV (bn) =

nX

i=1

R
2
(zi) b
�i:

For all values of bandwidths bn from a grid (e.g., 0:5, 0:7, 0:9, 1:1, 1:3, 1:5, 1:7, 1:9)

we obtain an estimator b� � b� (bn). Then we compute the values CV (bn) for each bn
and choose the estimator and the bandwidth that minimize CV (bn). We refer to the

estimator that we obtain this way as the cross-validated estimator, and to the bandwidth

that we obtain as the automatic bandwidth.
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