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1 Introduction

An interval order - on a set X is in some sense the simplest kind of binary
relation with nontransitive indifference since, under certain conditions, it can
be represented by a pair (u, v) of real-valued functions on X (this means that,
for all x, y ∈ X, x - y if and only if u(x) ≤ v(y)). If in addition X is endowed
with a topology τ , then one may look for a pair (u, v) of continuous real-valued
functions representing an interval order - on (X, τ) (see e.g. Bosi, Candeal
and Induráin [2] and Bosi, Candeal, Campión and Induráin [3]).

With a view to possible general conditions guaranteeing the existence of
such a continuous representation, Bosi [1] introduced the concept of a weakly

continuous interval order. In this paper, we characterize weak continuity of an
interval order by using the concept of a scale in a topological space.
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2 Notation and preliminaries

We first recall that an interval order - on an arbitrary nonempty set X is
a binary relation on X which is reflexive and in addition verifies the following
condition for all x, y, z, w ∈ X:

(x - z) and (y - w) ⇒ (x - w) or (y - z).

The irreflexive part of an interval order - will be denoted by ≺ (i.e., for
all x, y ∈ X, x ≺ y if and only if (x - y) and not(y - x)).

Fishburn [6] showed that if - is an interval order on a set X, then each of
the following two binary relations -∗ and -∗∗ on X is a total preorder (i.e., a
total and transitive binary relation):

x -∗ y ⇔ (z - x ⇒ z - y) for all z ∈ X,

x -∗∗ y ⇔ (y - z ⇒ x - z) for all z ∈ X.

The irreflexive parts of -∗ and -∗∗ will be denoted by ≺∗ and ≺∗∗.
If - is an interval order on a set X, then denote by L≺(x) (U≺(x)) the

strict lower (upper) section of any element x ∈ X (i.e., for every x ∈ X,
L≺(x) = {y ∈ X : y ≺ x} and U≺(x) = {y ∈ X : x ≺ y}).

A pair (u, v) of real-valued functions on X is said to represent an interval
order - on X if, for all x, y ∈ X,

x - y ⇔ u(x) ≤ v(y).

We say that a pair (u, v) of real-valued functions on X almost represents

an interval order - on X if, for all x, y ∈ X,

(x - y ⇒ u(x) ≤ v(y)) and (x ≺ y ⇒ v(x) ≤ u(y)).

The following proposition holds which illustrates the importance of the
concept of a pair of continuous real-valued functions almost representing an
interval order in connection with the problem concerning the existence of a
representation by means of a pair of continuous real-valued functions.

Proposition 2.1 An interval order - on a topological space (X, τ) is rep-
resentable by means of a pair (u, v) of continuous real-valued functions with

values in [0, 1] if and only if there exists a countable family {(un, vv)}n∈N\{0} of
pairs of continuous real-valued functions on (X, τ) with values in [0, 1] almost

representing - such that for every x, y ∈ X with x ≺ y there exists n ∈ N\{0}
with vn(x) < un(y).
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Proof. The “only if” part is clear. Hence, assume that there exists a countable
family {(un, vn)}n∈N\{0} of pairs of continuous real-valued functions on (X, τ)
with values in [0, 1] almost representing - such that for every x, y ∈ X with
x ≺ y there exists n ∈ N \ {0} with vn(x) < un(y). Define functions u and v

on X as follows:

u(x) =
∞∑

n=1

2−nun(x), v(x) =
∞∑

n=1

2−nvn(x) (x ∈ X)

in order to immediately verify that (u, v) is a continuous representation of the
interval order - on the topological space (X, τ). ✷

An interval order - on a topological space (X, τ) is said to be continuous

if L≺(x) and U≺(x)) are both open subsets of X for every x ∈ X. Further,
we say that it is strongly continuous if it is continuous and in addition the
associated total preorders -∗ and -∗∗ are both continuous.

We now recall the definition of a weakly continuous interval order presented
by Bosi [1].

Definition 2.2 (weakly continuous interval order) We say that an
interval order - on a topological space (X, τ) is weakly continuous if for every
x, y ∈ X such that x ≺ y there exists a pair (uxy, vxy) of continuous real-valued
functions on (X, τ) satisfying the following conditions:

(i) (uxy, vxy) almost represents -;
(ii) vxy(x) < uxy(y).

The concept of weak continuity described in Definition 2.2 is reminiscent
of the concept of weak continuity of a preorder on a topological space (see e.g.
Bosi and Herden [5]). Every interval order that is representable by means of a
pair of continuous functions (u, v) and at same time is such that the associated
total preorders -∗ and -∗∗ are not continuous provides an example of a weakly
continuous interval order which is continuous but not strongly continuous. For
example, this is the case of the interval order - on X = [3, 5] ∪ [9, 25] defined
by x - y ⇔ x ≤ y2 (see Bosi, Candeal and Induráin [2, Example 3.2]) when
X is endowed with the induced Euclidean topology on the real line.

3 Weak continuity of interval orders

In the sequel, we shall refer to the well known notion of a scale in a topo-
logical space (see e.g. Gillman and Jerison [7]).

Definition 3.1 If (X, τ) is a topological space and S is a dense subset of
[0, 1] such that 1 ∈ S, then a family {Gr}r∈S of open subsets of X is said to be
a scale in (X, τ) if the following conditions hold:
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(i) G1 = X;

(ii) Gr1
⊆ Gr2

for every r1, r2 ∈ S such that r1 < r2.

We are now ready to characterize the weak continuity of an interval order
on a topological space.

Proposition 3.2 Let - be an interval order on a topological space (X, τ).
Then the following conditions are equivalent:

(i) - is weakly continuous;

(ii) For every pair (x, y) ∈ X × X such that x ≺ y there exist two scales

{G
∗(xy)
r }r∈S and {G

∗∗(xy)
r }r∈S in (X, τ) such that the family

{(G
∗(xy)
r , G

∗∗(xy)
r )}r∈S satisfies the following conditions:

(a) z - w and w ∈ G
∗(xy)
r imply z ∈ G

∗∗(xy)
r for every z, w ∈ X and

r ∈ S;

(b) z ≺ w and w ∈ G
∗∗(xy)
r imply z ∈ G

∗(xy)
r for every z, w ∈ X and

r ∈ S;

(c) x ∈ G
∗(xy)
r and y ̸∈ G

∗∗(xy)
r for every r ∈ S \ {1}.

Proof. Consider a pair (x, y) ∈ X ×X such that x ≺ y.
(i) ⇒ (ii). Since - is weakly continuous, there exists a pair (uxy, vxy) of con-
tinuous real-valued functions on (X, τ) such that (uxy, vxy) almost represents
- and in addition vxy(x) < uxy(y). Without loss of generality, we can assume
that both uxy and vxy take values in [0, 1] and that vxy(x) = 0, uxy(y) = 1.

Define S = Q∩]0, 1], G
∗(xy)
r = v−1

xy
([0, r[), G

∗∗(xy)
r = u−1

xy
([0, r[) for every r ∈ S,

and G
∗(xy)
1 = G

∗∗(xy)
1 = X in order to immediately verify that {G

∗(xy)
r }r∈S and

{G
∗∗(xy)
r }r∈S are two scales in (X, τ) such that the family {(G

∗(xy)
r , G

∗∗(xy)
r )}r∈S

satisfies the above conditions (a), (b) and (c).

(ii) ⇒ (i). From the assumptions, there exist two scales {G
∗(xy)
r }r∈S and

{G
∗∗(xy)
r }r∈S such that the family {(G

∗(xy)
r , G

∗∗(xy)
r )}r∈S satisfies the above con-

ditions (a), (b) and (c). Define two functions uxy, vxy : X → [0, 1] as follows:

uxy(z) = inf{r ∈ Q∩]0, 1] : z ∈ G∗∗(xy)
r

} (x ∈ X),

vxy(z) = inf{r ∈ Q∩]0, 1] : z ∈ G∗(xy)
r

} (x ∈ X).

We have that uxy and vxy are both continuous functions on (X, τ) with values
in [0, 1] (see e.g. the proof of the lemma on pages 43-44 in Gillman and Jerison
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[7]). We claim that the pair (uxy, vxy) almost represents the interval order -
and satisfies the condition vxy(x) < uxy(y).
From condition (c), we have that vxy(x) = 0 and uxy(y) = 1. It remains to
show that the pair (uxy, vxy) almost represents the interval order -. First con-
sider any two elements z, w ∈ X such that z ≺ w. Then, by condition (b),
we have that vxy(z) ≤ uxy(w). Finally, observe that if z, w ∈ X are any two
elements such that z - w, then we have that uxy(z) ≤ vxy(w) by condition
(a). This consideration completes the proof. �
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