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Abstract. 
 
 
 
This paper combines two major strands of literature: structural breaks and Taylor 
rules. At first, I propose a nonstandard t-test statistic for detecting multiple level and 
trend breaks of I(0) series by supplying theoretical and limit-distribution critical 
values obtained from Montecarlo experimentation. Thereafter, I introduce a forward-
looking Taylor rule expressed as a dynamic model which allows for multiple breaks 
and reaction-function coefficients of the leads of inflation, of the output gap and of an  
equity market index. Sequential GMM estimation of the model, applied to the 
Effective Federal Funds Rate for the period 1984:01-2001:06, produces three main 
interesting results: the existence of significant structural breaks, the substantial role 
played by inflation in the FOMC decisions and a marked equity targeting policy 
approach. Such results reveal departures from rationality, determined by structured 
and unstructured uncertainty, which the Fed systematically attempts at reducing by 
administering inflation scares and misinformation about the actual Phillips curve, in 
order to keep the output and equity markets under control. 
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1. Introduction. 

 
 The literature on Taylor Rules [Taylor, 1993, 1998, 1999, 2001] is by now one 
of the vastest in the field of Monetary Policy and keeps on gaining momentum in 
both theoretical and applied analysis. Recently, it has undergone substantial  
revamping to correct for cointegration and omitted-variable bias, and to include 
rationality and uncertainty, and also the likelihood of structural breaks. 

The literature on the latter topic, in the meantime, has pursued significant 
progress since Perron’s seminal article [1989] that has modified the traditional 
approach toward Unit Root (UR) testing [Dickey and Fuller, 1979]. By departing 
from different null hypotheses that include UR with or without drift, trending series 
with I(0) or I(1) errors and with or without additive outliers, the alternative 
hypotheses formulated have accordingly included different combinations that range 
from one single level and/or trend break to multiple structural breaks of unknown 
date [Banerjee, Lumsdaine and Stock, 1992; Zivot and Andrews, 1992; Perron and 
Vogelsang, 1992, 1997; Andrews, 1993; Lumsdaine and Papell, 1997; Bai, 1997, 
1999; Vogelsang and Perron, 1998; Bai and Perron, 1998, 2003a, 2003b; Perron and 
Qu, 2004; Perron, 2005; Deng and Perron, 2005; Kejriwal, 2006; Kejriwal and 
Perron, 2006]. 

The present paper, by drawing from this vast experience, and especially from a 
seminal contribution in the field [Perron and Zhu, 2005], attempts at fitting the Taylor 
Rule model into the multiple-breaks issue and proposes a novel t-statistic testing 
procedure for multiple level and trend breaks occurring at unknown dates 
[Vogelsang, 1997, 1999]. This procedure is easy and fast at identifying break dates, 
as it exploits the algebraic difference between the critical t statistic obtained under the 
null hypothesis of I(0) series with stationary noise and the alternative provided by a 
I(0) model with a constant, a trend term, the structural breaks and other stationary 
noise components. 

The plan of the paper is the following. Section 2 briefly introduces the scope 
and goals of the Fed and a chronology of the major events occurred in the recent 
history of the U.S. monetary policy. Section 3 analyzes the recent literature on  
Taylor Rules, and aims at reaffirming the absolute relevance of dynamic versions 
thereof in the presence of cointegration, omitted variables and structural breaks. 
Section 4 analyzes the null and alternative hypotheses adopted, computes the critical  
values of the t statistics of the two breaks and produces their finite-sample 
Montecarlo simulations. Section 5 provides the motivations for constructing a 
dynamic Forward-Looking Taylor Rule that is GMM estimable and embodies 
rationality, error correction and structural breaks. Section 6 exhibits the main time-
series characteristics of the database used and produces some GMM pretesting 
addressed at the selection of optimal leads, lags and instruments. Along with the 
deterministic components, the following relevant stationary regressors are included: 
inflation, output gap and an equity index. Finally, Section 7 provides the results by 
treating as time series, for the trimmed sample of monthly observations 1984:01-
2001:06, the estimated t statistics of both breaks and the sums of the reaction-
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function coefficients of the regressors. Some of their key properties are utilized to 
evaluate the Fed’s departures from rationality and systematic attempts made to reduce  
structured uncertainty. Section 8 concludes, while the Appendix supplies the 
necessary off-text details of Sections 4. 
 

 

2. The Major Events of the U.S. Monetary Policy. 

 
 “The Board of Governors of the Federal Reserve System and the Federal Open 
Market Committee shall maintain long run growth of the monetary and credit 
aggregates commensurate with the economy's long-run potential to increase 
production, so as to  promote effectively  the goals  of maximum employment, stable 
prices, and moderate long-term interest rates”. 
 So recites the Act of Nov. 16, 1977, added to the Federal Reserve Act of Dec. 
23, 1913 at Jekyll Island and amended by the Acts of Oct. 27, 1978, of Aug. 23, 1988 
and of Dec. 27, 2000. Within this broad-scoped set of goals, the Board of Governors 
of the Federal Reserve System (the ‘Fed’) and the Federal Open Market Committee 
(the FOMC) have been since then officially committed to pursue primarily the goal of  
stabilizing inflation and real output (henceforth denoted as ‘output’). Stabilization of 
other key macroeconomic variables, such as employment, exchange rates, financial 
assets, are let to receive secondary attention as a natural consequence of the evolution 
of former, or within the context of short-run interventions, or by assigning them to 
other authorities, chiefly those mandated to pursue fiscal policy [Taylor, 1998]. 
 By abiding to such formal and practical guidelines, thereby adhering to some  
rule of thumb, the Fed since its foundation has officially elected inflation and output 
as its two major monetary policy targets [Orphanides, 2003], while making 
discretionary use of policy price instruments, the discount rate and the official (or 
‘intended’) Federal Funds Rate (OFFR), and of quantity instruments, the Open 
Market Operations and the commercial banks’ reserve requirements1.  
 The Great Depression episode is the first example of how a price-instrument 
rule of thumb was applied. The Fed preemptively decided to adopt an 
"antispeculative" policy tightening since the years 1928-29, by hiking the interest 
rates to prevent the rise of stock prices and the associated increases in bank loans to 
brokers. By trying to distinguish between "productive" and "speculative" uses of 
credit [Bernanke, 2002] and by attempting to avoid inflation and/or widespread 
economic disruption [Friedman and Schwartz, 1963], the Fed – ironically if not 
tragically – acted as the Sorcerer’s Apprentice in Wolfgang Goethe's ballad (1797), 
later popularized in a Walt Disney cartoon (1940).  

                                                 
1 Of these, the Board of Governors defines the Federal Funds Rate as the interest rate at which depository institutions 
lend federal funds to other depository institutions overnight, while the Open Market Operations are the purchases and 
sales of U.S. Treasury and federal agency securities. The discount rate traditionally receives less weight as an indicator 
of prime lending, and is defined as the interest rate charged to depository institutions to borrow funds directly from the 
Federal Reserve. 



 5

The Fed faced some degree of unstructured uncertainty as to the likely effects 
of its moves over the economy, since it was puzzled at the countercyclical behaviour 
of price inflation with respect to output growth and misinterpreted, by means of 
structured uncertainty, the technology-driven stock market boom and growing 
productivity of the early 20’s. Hence, the spate of tightening of credit conditions that 
lasted until the end of 1930 acted as the infamous broomsticks. However, the 
apprentice was benevolently pardoned, not fired.  
 The obvious question, at this juncture, is the following: has the Fed learned 
how to interpret the major economic events and how to use the appropriate 
instruments? Wither rationality? How high was the degree of uncertainty? Was 
uncertainty structured or unstructured or both? By switching rapidly to the quantity 
policy instrument in conjunction with World War II, the Fed hoped to avoid the 
mistakes stemming from the previous inaccurate use of the interest rates. However,  
the Dollar glut and the outbreak of inflation in the late Sixties, the fall of the fixed 
exchange-rate regime, the rekindled countercyclical behaviour of price inflation with 
respect to output and productivity during the slumpflation of the years 1968-83 and 
the boom of the years 1994-2000 have represented serious problems as to the 
achievement of financial stability, notwithstanding some valuable albeit dogged 
defence [Greenspan, 2004; Goodfriend and King, 2005].  

Given such premises, and in spite of the reswitch to an interest-rate policy rule 
performed by Volcker in early 1982, there’s no wonder why the stock market crashes 
of late 1987 (the ‘Black Monday’) and of late 2000 are nothing but a replica of that of 
1929, especially in the Fed’s perception that credit would be used by the public to 
finance speculative and not productive activities [Cecchetti, 2003] and in its inability 
at measuring, and thus predicting, the stock-market bubbles [Gruen et al., 2005]2. 

However the Fed, apparently, has apparently not yet learned that sitting in the 
sidelines is no good for its own reputation as a rational utilizer of information and for 
the stability of the economy, and especially of the financial system. In fact, according 
to some authors, the Fed still needs lessons to improve its recognition of the key 
target variables and of their future course in order to comply with the Keynesian 
policy prescription that ex ante is preferable to ex post action over the target variables 
[Rudebusch, 1998; Orphanides, 1998, 2000; Orphanides et al., 2000; Orphanides and 
Williams, 2005b; Swanson, 2004].  

In practice, the Fed may have not fully learned the lesson that central bankers 
should respond to asset prices only when there is enough information of the stock 
market and of the message it customarily delivers [Bernanke and Gertler, 1999, 
2001], not to speak about achieving ‘best estimates’ of the inflation and output gaps, 
on which more in Sect. 3. This evidence seems to point to frequent ‘departures from 

                                                 
2 These authors make a case about two alternative intervention plans of a central bank in the face of an emerging asset-
price bubble, denoted as : i) skeptic, ii)activist. The dividing line is represented by the information set about the bubble 
stochastic process available to the policy makers. If structured uncertainty is high, policy should be attenuated and only 
inflation targeting should be pursued, otherwise stock puncturing may be desirable if there is sufficient knowledge 
about the relationship between money and the asset market. There follows, along this line of interpretation, that the 
Japanese stock market crash of 1989 is an example of activism (i.e. aggressiveness) with full structured uncertainty.  
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rationality’ [Rudebusch, 1999, 2002a], suggesting that some of Goethe’s magical 
broomsticks may be still hovering atop the Fed’s headquarters in Washington D.C. 

Since Volcker’s main policy instrument change addressed at ensuring financial 
stability, the interest rate has become the centerpiece of theoretical and applied 
research as to the behaviour of the Fed and of central banks in general. Hence, a 
specific ‘rule of thumb’ has been formalized in terms of what is widely known 
nowadays as the ‘Taylor Rule’ [Taylor, 1993, 1998, 1999, 2001]. 
 The period of interest in the present paper covers the years 1982-2006 by 
monthly observations, and spans the later Volcker, the entire Greenspan and the first 
full year of Bernanke’s chairmanships. Although Volcker was appointed in late 1979, 
the month 1982:04 corresponds to the date when officially the Fed determined to 
switch to an 'interest rate rule'. Significant enough evidence stands in favor of this 
date selection [Fair, 2001a, 2001b], considered as a milestone in any analysis 
regarding modern U.S. monetary policy making. 

This period is fraught with relevant episodes in the economic and financial 
arenas, and is characterized by a gradual shift from ‘indirect targeting’ through Open 
Market Operations toward direct target announcement of the OFFR since 1995, 
accompanied by an official assessment issued by the FOMC, initiated in the year 
2000, of the macroeconomic risks associated to its decisions. In sum, this period of 
‘interest rate policy rule’ testifies of a progressive control over the OFFR and, lately, 
of some kind of transparency as well. 

“The tightening of monetary policy by the Federal Reserve in 1979, then led by 
Paul Volcker, ultimately (by mid 1986) broke the back of price acceleration in the 
United States, ushering in a two-decade long decline in inflation that eventually 
brought us to the current state of price stability” [Greenspan, 2004]. Hence, the 
Eighties begin with Volcker's targeting of money and non-borrowed reserves, 
immediately following his appointment, and by a particularly aggressive tightening in 
monetary policy addressed at stemming a double-digit inflation. However, poor 
confidence in monetary policy by the public culminates in a near threefold increase of 
the price of gold by the late 1981, which prompts the chairman to switch to the above 
mentioned  interest rate rule.  
 After the Plaza Accord on the Dollar devaluation (1985) and a slack in price 
inflation, the late Eighties feature the appointment of Greenspan in August 1987, 
soon greeted by a new inflationary spate and by the stock market crash in October 
1987. The Chairman by consequence attempts at pursuing an expansionary monetary 
policy by a massive injection of liquidity and by keeping under control the interest 
rates to avoid a recession. In fact, the industrial production remains essentially stable. 
A few months later, however, the OFFR is raised several times and peaks to close 
10% in the early Spring 1989. The immediate consequence is a four-year recession 
which lasts until late 1992 in spite of progressive easing whereby, by September 
1992, the EFFR reaches by that period a historical minimum: somewhat less than 3%. 
The length of the downturn is essentially attributed to “constriction of credit in 
response to major losses at banks…, coupled with a crisis in the savings and loan 
industry that had its origins in a serious maturity mismatch as interest rates rose” 
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[Greenspan, 2004]. In other words, the recession is caused by unprecedented lows 
(even negative) in the real interest rates, which causes large imbalances between 
savings and investments.  
 The subsequent tightening which starts by mid 1993, passing through the 
Mexican peso crisis (1994), the Russian ruble crisis (1998) and the Asian crisis 
(1997-1999), is initiated with robust hikes in basis points (bps) on accounts of an 
inflation scare [Orphanides and Williams, 2005a] probably induced by the upturn of 
industrial production, and sets the real interest values back to substantial positives. 
This is attained via an increase of 300 bps of the OFFR that lasts until June 1995. 
Public confidence on this move that heralds a distinguished, yet unjustified, anti-
inflation stance3, fosters even more significant economic growth, which trespasses 
the 8% yearly figure in December 1994, 9% in March 1997 and 10%  in January 
1998, and definitely marks the beginning of an economic expansion which will 
culminate in the ‘dotcom’ equity bubble (1999-2000).  

Greenspan’s ensuing engagement in a strenuous fight against 'irrational 
exuberance' may be considered, from an outsider’s viewpoint, as nothing more than a 
crusade against the same puzzle that had baffled his predecessors in the late 
Twenties, namely, the mix of soaring asset prices, declining price inflation and 
sustained economic growth and productivity, typical aspects of the ‘perverse’ Phillips 
curve, [Tetlow and von zur Muehlen, 2001]4.  

At that time, however, few critics would have cast any doubt on the Fed’s 
ability to muster its own econometric toolkit. By consequence, it is much more likely 
that the general public had been baffled. In fact, by waiving again the standard of an 
inflation scare, whereas inflation was at unprecedented historical lows – a mean value 
of 1.87% during the period 1998:01-1999:12 – the Chairman enacted a spate of 
OFFR hikes for a total of 175 bps between June 1999 and May 2000 officially to 
“mitigate the (stock-market) fallout when it occurs and, hopefully, ease the transition 
to the next expansion” [Greenspan, 2004], but in practice to prick the bubble which 
would burst few months later5.  

The new millennium testifies of a rapid reduction of the OFFR, commenced in 
January 2001 and ended in June 2004, in the meantime accompanied by the ‘911’ 
episode (2001), by the Iraq war (2003) and by a new recession, initiated in November 
2001 by NBER standards. Spurred by the subsequent economic recovery and by 
growing inflationary pressures, the Fed tights again by means of a sequel of rate hikes 
that has to date reached a level of 5%  with  Bernanke in office. 

 

                                                 
3 The data on price inflation (CPI index, all goods) do not support any evidence of overheating, as the mean for the 
period 1992:01-1996:12 is a bare 2.87% per annum and that for the longer stretch 1992:01-1999:12 is even lower: 
2.55%. 
4 Greenspan’s approach to the Phillips curve has been apparently characterized by a tradeoff between actual policy 
practice and official declarations. As to the latter, in fact, the chairman has been poised to affirm several times that the 
Fed’s goal is to attain sustainable economic growth with zero inflation, thereby adhering to some unconventional (i.e. 
non-Keynesian) view of the curve in face of the ‘new economy’ [Ball and Tchaidze, 2002; Rasche and Thornton, 2006]. 
5 Cecchetti [2003] interestingly points to the Fed’s growing concern about the stock market rise since the mid Nineties, 
by revealing from the minutes and transcripts of the FOMC meetings the number of occurrences of all words related to 
equities. The keywords search yields a maximum of such occurrences precisely during the years 1998-2000. 
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3. The Fed’s Monetary Policy and Taylor Rules. 

 
The rule of thumb, which has been followed by the Fed since its foundation 

and in line with the subsequent amendments, is eventually revamped and formalized 
into what is by now universally known as the ‘Taylor rule’ (TR), so named after his 
concoctor [Taylor, 1993, 1998, 1999, 2001]. This rule, by remarking the central tenet 
of stabilizing inflation and output, introduces the benchmark values around which 
they can be made to deviate within a safe confidence band. The benchmarks are 
provided by their respective long-run values fixed, but possibly uncommitted, by the 
Fed [Friedman and Schwartz, 1963].  

The TR is therefore simply a standalone linear reaction function of the central 
bank’s interest rate with respect to inflation and output deviations ('output gap'), 
which may be used for policy purposes. The author recommends a ‘leaning-against-
the-wind’ policy  with the EFFR adjusting positively by a coefficient higher than one 
to inflation deviations and by a coefficient close to one to output deviations [Taylor, 
1999]. He thus advocates monetary policy to be ‘activist’ by reacting aggressively to 
both inflation and output deviations – once  these are made observable and reliable to 
the Central Bank and thus structured uncertainty is absent – just the opposite of what 
suggested by the Monetarists and by the Lucas critique [Orphanides, 2000].  

The TR is utilized by the Fed as a reasonable rule to be followed in order to 
ensure macroeconomic stability. It is also utilized by econometricians as an 
interpretive gadget to guess on the Fed’s decisions about future interest rates,  given 
the usually thick veil of secrecy that has surrounded most if not all of its FOMC 
sessions since the times of Jekyll Island.  

In both cases, estimation of the TR is no easy task since it involves selection of 
the appropriate key variables and computation of their deviations. When expectations 
about their future course are included, matters may become more complicated and 
both kinds of uncertainty ensue. The problem may in fact be very serious for central 
bankers, faced with incomplete knowledge about the evolution of real and financial 
markets determined by incorrect model specification [Hansen and Sargent, 2003, 
2004, 2007].  

By consequence, central bankers would be obliged to modify policy targeting 
or to attempt at fooling the public by means of inflation scares or false news on 
macroeconomic stability. This behavior corresponds to reducing unstructured 
uncertainty in their model used for policy making [Brock and Durlauf, 2004]. 

This is the reason why the TR since its inception has undergone a growing 
degree of model sophistication, usually associated to the null hypothesis of rationality 
and perfect database information on the past, present and future economic conditions 
in the hands of the Board of the Governors. The literature on the TR is by now huge 
and with many variants, which posit contemporaneous, backward-looking (BLTR) or 
forward-looking (FLTR) regressors, and oftentimes nest the rule within the 
framework of theoretical or empirical macroeconomic models, which may also 
include functions of private sector's behavior, in order to test for stability properties 
in the presence of learning.  
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Taylor’s standard contemporaneous model (STR), and the more sophisticated 
BLTR, are subject to the Lucas critique of parameter instability and subsequent 
structured uncertainty, as well as to data reliability, that may strongly impinge upon 
the Fed’s ability to gather information and fix optimal policy guidelines [Rudebusch, 
2005]. Some authors maintain that the monetary policy consequences may as well be 
proportionate to the distorted estimates of inflation and of the output gap [Bullard and 
Mitra, 2001; Orphanides and Williams, 2005b;  Orphanides, 1998, 2000, 2001, 
Orphanides and van Norden, 1999; Orphanides et al., 2000; Smets, 1998; Österholm, 
2005a].  

By consequence, to better embed the assumed rational-expectations component 
in the Fed’s information set utilized in policy decisions, real-time data usage by 
empirical researchers is highly recommended, as this may be the same method used 
by the Board of Governors. These data are generally drawn from the Green Book 
forecasts, from the minutes of the FOMC sessions and from other sources  [Gavin 
and Mandal, 2001; Orphanides, 2001b; Österholm, 2005a] and are found in several 
cases to outsmart all other private prediction methods because reportedly unbiased 
and efficient [Romer and Romer, 2000]6.  

Other authors, instead, maintain that real-time data suffer from error-in-
variables bias and cannot be reputed as ‘best estimates’. Therefore, parameter 
inconsistency and non certainty equivalence arises [Orphanides, 1998]. In particular, 
it is shown that if only few reliable regressors in the TR can be used because deriving 
from ‘best estimates’ – the other regressors being discarded – the policy rule will be 
based on a constrained and not on a global optimum [Smets, 1998; Orphanides, 1998; 
Swanson, 2004].  

In addition, the BLTR, by including the lagged endogenous variable to ensure 
'smoothing' of the monetary policy rule  i.e. a gradual adjustment of the interest rate 
toward its target rate [Clarida et al., 1998, 1999, 2000; Sack, 1998; Sack and 
Wieland, 1999; Bernanke, 2004], suffers from serious criticism. In fact, some authors 
maintain that such inclusion is a computational artifact to avoid serial correlation in 
the disturbance term, rather than an attempt at proving the existence of an inertial 
interest rate policy [Rudebusch, 2002a, 2002b; Siklos and Wohar, 2004; Bunzel and 
Enders, 2005; Welz and Österholm, 2005].  

Augmentation of the BLTR to avoid serial correlation and the omitted-variable 
bias has thus prompted several authors to include additional regressors, like consumer 
sentiment, exchange rates, housing prices and – in many cases – the equity market 
[Bernanke and Gertler, 1999; Bullard and Schaling, 2002; Cecchetti et al., 2002; 
Rigobon and Sack, 2001; Fuhrer and Tootell, 2004; Bunzel and Enders, 2005] due to 
its strict links to monetary policy in the context of the transmission mechanism 
[Cecchetti, 2003; Bernanke and Kuttner, 2005]. 
 Additional criticism on the STR and BLTR models regards two relatively 
novel issues: cointegration and structural breaks. Some authors argue in fact that the 

                                                 
6 The most used sources (e.g. see Gavin and Mandal, 2001) are the Humphrey Hawkins Forecast periodically released 
by the Board of Governors of the Federal Reserve System, the Real Potential Gross Domestic Output estimates released 
by the Congressional Budget Office and the Blue Chip Consensus Forecast. 
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TR representation in levels may be spurious, since the endogenous variable is likely 
to incorporate one or more cointegrating relationships [Österholm, 2005b; Siklos and 
Wohar, 2004], producing asymptotic invalidity of standard inferences [Phillips, 
1986]. By consequence, UR and cointegration pretesting of the variables involved is 
a must in empirical research, since interest and inflation rates are often found to be 
I(1) [Siklos and Wohar, 2004; Österholm, 2005a], so that absence of an error-
correction (EC) term in a first-differenced TR is at least surprising [Söderlind et al., 
2005].  

In addition, the possibility of breaks in policy regime significantly questions 
the very nature of a rule, even more so if performed by a rational central bank. In 
fact, frequent and/or substantial policy regimes in terms of multiple structural breaks 
are found to exist [Judd and Rudebusch, 1998; Fair, 2001b; Bunzel and Enders, 2005] 
and may be the rule rather than the exception in long-span time series [Noriega and 
Soria, 2002]. 

Given these limitations, the FLTR has gained significant momentum in these 
last years, both in theoretical and empirical research [Batini and Haldane, 1999; 
Bullard and Mitra, 2001; Carlstrom and Fuerst, 2000; Christiano and Gust, 2000; 
Clarida et al., 1998, 1999, 2000; Lansing and Trehan, 2003; Levin et al., 1999; Linde, 
2002; Orphanides, 2003; Rotemberg and Woodford, 1999; Rudebusch and Svensson, 
1999; Woodford, 2001; Svensson, 2003].  
 The FLTR embodies rational expectations from the Fed’s standpoint within the 
context of dynamic optimization, and is therefore considered to be the most 
appropriate representation of the central bank's behavior as it assumes rational private 
agents when the rule is nested into a game-theoretic model (but see Woodford, 
[2000]). In addition, as is well known, it belongs to the class of forward-filter 
estimators, whose chief property, from the technical viewpoint, is to orthogonalize 
residuals with respect to instruments, ensuring strong exogeneity [Hayashi and Sims, 
1983]. 

The FLTR, however, is not problem-free unless duly modified in the light of 
the problems afflicting the other two rules. It has been in fact demonstrated that a 
FLTR nested into a macroeconomic model with rational expectations and certainty 
equivalence may cause instability of the system with indeterminate solutions [Bullard 
and Mitra, 2001; Carlstrom and Fuerst, 2000]. This occurrence is correctable only if 
monetary policy were aggressively activist, namely, if the EFFR were made to rise 
more than proportionately with respect to expected inflation [Bernanke and 
Woodford, 1997; Taylor, 1999; Clarida et al., 2000; Woodford, 2001; Svensson and 
Woodford, 2002]. The same kind of aggressiveness is suggested by other authors also 
if certainty equivalence does not hold and unstructured uncertainty is high [Tetlow 
and von zur Muehlen, 2001; Swanson, 2004]. In such case, since real-time data do 
not correspond to their ‘best estimates’, especially when prediction stretches long 
ahead in the future, sizable departures from rationality and/or irrational noise may 
emerge [Rudebusch, 1999].  

In any case, the FLTR is regarded nowadays in applied research as the most 
powerful approximation of Taylor rule modeling. Its use of the GMM algorithm is 
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specifically fit to deal with rational expectations due to the optimizing use of first-
order conditions and the simultaneous treatment of endogeneity, autocorrelation and 
heteroskedasticity [Hansen and Singleton, 1982; Newey and West, 1987; Hansen and 
West, 2002]. In addition, the GMM effectively disposes of the errors-in-variable 
problem that plagues expectation models with unreliable data [Orphanides, 1998, 
1999; Orphanides et al., 2000], ensures orthogonality and, for a sufficiently long time 
span of the series, is consistent because characterized by large-sample robustness 
[Hansen, 1982; Newey and West, 1987; Hansen and West, 2002].  
 It is for these reasons that the FLTR model, coupled with the GMM, will be 
adopted in the present paper to estimate the Fed’s interest rate policy during the last 
quarter century or so. Major modifications to solve the problems outlined above are 
introduced, such as first differencing [Orphanides and Williams, 2005b; Söderlind et 
al., 2005], the appropriate choice of leads, the introduction of the EC mechanism 
[Söderlind et al., 2005] and of a stock market index, and finally the introduction of 
multiple structural breaks together with a novel technique designed for their 
detection. 
 

 

4. Testing for Structural Breaks. Null and Alternative Hypotheses. 

 
The departing point to test for the existence of structural breaks in a time series 

function is the null hypothesis given by the I(0) series 
 
   1)                               1t t t ty y y e−Δ ≡ − = ;  1 0y =  

 
where ty  spans the period t = 1...T, and (0,1)te N∼  corresponds to a standard Data 

Generating Process (DGP) with random draws from a normal distribution whose  
underlying true process is a driftless random walk. 

Let the field of fractional real numbers 0 0( ,1 )λ λΛ = − , where 00 1λ< <  is a 

preselect trimming factor, normally required to avoid endpoints spurious estimation 
in the presence of unknown-date breaks [Andrews, 1993; Andrews and Ploberger, 
1994]. Let then the true break fraction be λ∈Λ  such that 0 00 (1 )λ λ λ< < < − . For 

given T, define 0 0(1 )T T Tλ λ λ≤ ≤ −  the field of integers wherein the true break date 

occurs. Any of the two structural breaks may be formulated as { }0 0,(1 )
t

TB T Tλ λ∈ −  

[Banerjee, Lumsdaine and Stock, 1992; Carriòn-i-Silvestre  and Sansò Rossellò, 
2005]. 

Given the null hypothesis of driftless stationarity posited in eq. 1, the proposed 
alternative in the present paper is provided by a stationary series with a constant, a 
trend and their respective breaks, plus a noise component. Specifically, the alternative 
is represented by an augmented AO model, which is usually estimated by Ordinary 
Least Squares (OLS). For the trimmed time interval 0 0 0, 1,...,(1 )t T T Tλ λ λ= + − , tyΔ  

is the endogenous variable such that 
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2)                    1 2 1 2( ) ( ) ( ) ( )t t t ty DU t DTλ μ μ λ τ τ λ ε λΔ = + + + +  

 
where the ( )λ  notation attached to the left- and right-hand side variables indicates 

sequential estimation of the equation for all values of λ∈Λ , and the disturbance 
2. . .(0, )t I I D εε σ=  is I(0) with '( ) 0; ,t sE t sε ε = ∀ , s t≠  for the same time interval 

[Perron and Yabu, 2004; Perron and Zhu, 2005]. The two differently defined 
unknown-date break dummies tDU  and tDT  are:  

A) 1( )t tDU t TB= >  a change in the intercept  of tyΔ , 1 0( )μ μ− , namely a break in the 

mean level of tyΔ ;  

B) ( )1( )t t tDT t TB t TB= − >  a change in the trend slope 1 0( )τ τ− , namely a change in 

the inclination of tyΔ  around the deterministic time trend; 

where coefficients 0μ  and 0τ  are the respective pre-change values. 

In principle, since tyΔ  is I(0), its mean is expected to be zero, and changes  in 

mean can only be a temporary phenomenon. Therefore, case A corresponds to 
unknown-date structural breaks in terms of temporary change(s) in the level of the 
endogenous variable (the "crash" model). Similarly, case B corresponds to temporary 
shifts in the trend slope (the "changing growth" model) [Perron 1997; Banerjee et al., 
1992; Vogelsang and Perron, 1989; Zivot and Andrews, 1992]. Eq. 2, by using both 
cases together, is defined by Perron and Zhu [2004] as a “local disjoint broken trend” 
model with I(0) errors (their “Model IIb”).  
 Eq. 2 is estimated sequentially for all λ∈Λ , that is, for all possible true break 
dates occurring in the Tλ  time interval thereby producing, for some compact 
coefficient space B of real numbers, a time series of length 01 (1 )Tλ+ −  of the 

coefficient vector [ ]1 2 1 2
ˆ( ) , , ,β λ μ μ τ τ= , such that ˆ( )β λ ∈B . Also the t statistics of 

ˆ( )β λ  for the above trimmed interval may be obtained and defined as ˆ ( )
t

tμ λ  and 

ˆ ( )
t

tτ λ , respectively. They are nonstandard-distributed since the respective breaks are 

associated to unknown dates and thus appear as a nuisance in eq. 2 [Andrews, 1993; 
Andrews and Ploberger, 1994; Vogelsang, 1999].  
 These t statistics can be exploited to separately detect time breaks of type A 
and/or of type B, just as with the nonstandard F, Wald, Lagrange and Likelihood 
Ratio tests for single breaks [Andrews, 1993; Andrews and Ploberger, 1994; 
Andrews, Lee and Ploberger, 1996; Vogelsang, 1997, 1999; Hansen, 1997, 2000] and  
for multiple breaks [Bai, 1999; Bai and Perron, 1998, 2003a, 2003b].  

However, different from these methods that identify the break(s) when a 
supremum (or exponential or weighted average) value is achieved and tested for, all 
that is required here is to sequentially find as many t statistics that exceed the 
appropriately tabulated critical value for a given magnitude of λ . In fact, after 
finding the critical values for different magnitudes of λ  by Montecarlo simulation, 
respectively denoted as ( , )Tt Lλ  and ( , )Tt Tλ , any occurrence for a given confidence 

level (e.g. 95%) whereby ˆ ( ) ( , )
t T

t t Lμ λ λ>  and ˆ ( ) ( , )
t T

t t Tτ λ λ>  indicates the 
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existence of a level and a trend break, respectively, just as with standard t-statistic 
testing7. By consequence, rather than identifying a single (local or global) break, the 
procedure permits detecting their slow overtime evolution, thus providing in general  
break periods which may be characterized by a more permanent nature than single-
dated breaks applied to I(0) series, as discussed above.  
 In the present paper, for reasons already expressed in the previous Section, eq. 
2 must be estimated by GMM. This estimation method is equivalent to OLS in the 
absence of heteroskedasticity autocorrelation of the error term and of regressor 
endogeneity. As constructed, eq. 2 meets these requirements so that OLS and GMM 
estimation at this juncture are equivalent.  

By this reasoning, it is sufficient to supply some additional notation. Let the 
1K ×  vector ( )4K =  of the determinants of tyΔ  in eq. 2 be [ ]1, , ,

t t t
X t DU DT= and 

let the estimated parameter vector be   
 

3)   
0 0

0 0

(1 ) (1 )

ˆ( ) '
T T

t t t t

t T t

y X X X
λ λ

λ λ

β λ
− −

= =

= Δ∑ ∑   

 

with variance 2
εσ

0

0

1
(1 )

'
T

t t

t

X X
λ

λ

−
−

=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ . After letting the estimated and the ‘true’ parameter 

vector respectively be specified as [ ]1 1 2 2
ˆ ˆ ˆ ˆ ˆ( ) , , ,β λ μ τ μ τ=   and * * * * *

1 1 2 2, , ,β μ τ μ τ⎡ ⎤= ⎣ ⎦ , the 

scaling matrix of the rates of convergence of ˆ( )β λ  with respect to *β  is given by 
1/ 2 3/ 2 1/ 2 3/ 2, , ,

t
diag T T T T⎡ ⎤ϒ = ⎣ ⎦ .  

 Then, by generating tyΔ  according to eq. 1 we have, for 0 1λ< <  

 

  4)   [ ] 1*ˆ( ) ( ) ( )
L

T T T
β λ β λ λ−⎡ ⎤ϒ − → Θ Ψ⎣ ⎦ , 

 
 
whereby, for ( )W r  a standard Brownian motion in the plane [0,1]r∈ , the following 

limit expressions ensue:  
 

  5)  
1 1

0 0

( ) (1), (1) ( ) ,(1 ) (1),(1 ) (1) ( )T W W W r dr W W W r drλ σ λ λ
⎡ ⎤⎛ ⎞

Ψ = − − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫  

 
and 
 

                                                 
7 The empirical distribution of the two simulated t statistics is a standard Normal with positive and negative occurrences 
entering with equal probability weights. Their variances and variance components are shown in Table 3.  
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  6)    

2

2 3

2

3

(1 )
1 1/ 2 1

2

(1 ) (2 3 )
1/3

2 6( )
(1 )

1
2

(1 )

3

T

λλ

λ λ λ

λ
λλ

λ

⎡ ⎤−
−⎢ ⎥

⎢ ⎥
− − +⎢ ⎥

⎢ ⎥
Θ = ⎢ ⎥

−⎢ ⎥−⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 . 

 
 From eq. 4 the limit distribution of the coefficient vector is the same as that 
reported by Perron and Zhu for Model IIb [2005, p.81] (see the Appendix), while its 
asymptotic t statistics are computed as follows: 
 

  7)      ( )1/ 21( ) ( ) ( ) ( )
T T T T

t λ λ λ λ−= Θ Ψ Ω   

 

where ( ) 12( ) I ( )
T T
λ σ λ −Ω = Θ and I is the 4x4 identity matrix. The t statistics of the 

level break ( , )Tt Lλ , and of the trend break ( , )Tt Tλ , are thus 

 

  8.1)    

[ ]

1

0
1/ 2

(1) ( )

( , ) 3
(1 )

T

W W r dr

t L

λ
λ

λ λ

−
=

−

∫
 

 

 

  8.2)     

1

1/ 2 0
1/ 22

(3 1) (1) 2(2 1) ( )

( , ) 3
(1 )(3 3 1)

T

W W r dr

t T

λ λ λ
λ

λ λ λ λ

− − −
=

⎡ ⎤− − +⎣ ⎦

∫
       

  
 Table 1 shows the values taken by eqs. 8.1 and 8.2 for select λ 8. While the 
coefficients attached to (1)W  markedly rise when passing from low to higher 

magnitudes of λ  in both equations, those of 
1

0

( )W r dr∫  decrease and then increase in 

absolute terms in the first equation and markedly fall by outweighing the effect of 
W(1) in the second.  

                                                 
8 The values of eqs. 8.1 and 8.2 for the DGP of 

t
yΔ  originated by the null of a trending equation with drift given by the 

equation 
t t

y d t eδ= + +  with noise (0,1)
t

e N∼  are very similar, by construction, to those reported in Table 1, 

independent of the magnitudes of  the drift and trend components.  
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 The critical values of the t statistics are obtained by Montecarlo simulation9. 
For select magnitudes of λ  running from 0.10 to 0.90, and for different sample sizes 
(T = 100, 200, 300, 500), the finite-sample critical values of eqs. 8.1 and 8.2 are 
reported in Table 2. These are obtained after performing N = 10,000 draws (N = 
5,000 for T=500) of the T-sized vector of artificial discrete realizations of tyΔ  of eq. 

1. Each of these realizations is in turn given by the cumulative sum of 1,000 values of   

( )* 0,1 1,000
t

y NIDΔ ∼  with *
1 0y = . Thereafter, the Brownian functionals of eq. 5 

are approximated by such sums, which are independently and identically distributed, 
and eqs. 8.1 and 8.2 subsequently computed. Finally, the critical absolute values are 
obtained by finding the extremes falling in the 99%, 95% and 90% quantiles together 
with their 10% upper and lower confidence bands.  
 The reader will notice from Table 2 that the critical values are independent of 
the finite-sample size T and that they achieve minimal absolutes at λ =0.50, 
exhibiting larger values at both ends of  the selected λ . Finally, except for λ =0.50, 

( , )Tt Lλ   is smaller than ( , )Tt Tλ  by a factor that reaches 1.2 at both ends.  

In addition, the N-draws artificially computed t statistics for given values of λ , 
considering positives and negatives, are normally distributed with zero mean and 
variance given by the squares of eqs. 8.1 and 8.2 with the numerators (excluding the 
integers) replaced by their respective standard error obtained by simulation 
estimation. These numerators are respectively denoted as ( , ) _Tt L numλ and 

( , ) _Tt T numλ , and are zero-mean Gaussian processes.  

Incidentally, the T-length N-draws series W(1) and 
1

0

( )W r dr∫  pertaining to both 

numerators of eqs. 8.1 and 8.2, are both zero-mean I(0) Gaussian processes. 
However, independent of both λ  and T, the former exhibits unit variance and the 
latter a variance close to 1/3, being respectively distributed as a standard normal and 
as a doubly truncated normal distribution (with extremes close to 5% to 95%). These 
are the only constant variances, since all the others are strictly dependent on the 
magnitude of λ . 

The results on the numerators and other statistics are reported in Table 3, where 
for ease of space only the T=200 sample case is considered. The variances of the 
estimated numerators of eqs. 8.1 and 8.2 achieve a minimal value at λ =0.50, being 
more than twofold for the first and more than tenfold for the second at both ends. 

(1)Wλ  most obviously grows since it equals 2λ , and the same occurs to 

(3 1) (1)Wλ λ −  since it equals ( )2
(3 1)λ λ − . The variance of the second component of 

the numerator of eq. 8.2 achieves a minimum of zero at λ =0.50 and rises at both 
ends. Similarly for the variances of the simulated t statistics (shown in the last two 
columns of Table 3), which attain a minimal value in correspondence of λ =0.50, 
                                                 
9 By construction, the squares of the two t statistics, for given λ , correspond to their respective limit Wald-test 
statistics. As for the first of the two, see for instance Bai and Perron [2003a] and Perron [2005]. For both see Vogelsang 
[1999] although the simulation method adopted therein differs from that of the present paper. 
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where they share an almost equal value, and then increase by eight and ten times at 
both ends, respectively. Finally, the estimated variance of the first statistic is on 
average 40% smaller than the second, reflecting the similar albeit smaller gap in their 
critical values, as reported in Table 2. 
 Table 4 reports for T=200 (N = 10,000)  the values of the one-tailed size and 
power – evaluated at the 5% percent significance level – for testing the null 
hypotheses that the t statistics of eqs. 8.1 and 8.2 are equal to zero and to the standard 
t-distribution value of 1.9610. Size is always close to zero and λ -independent for the 
zero case alternative and well off the nominal value of 5% for the other alternative, 
especially for values of λ  close to 0.50.  

In other words, the probability of rejecting the first (second) null when it is true 
(Type I error) is very low (notably high, even more so for the statistic ( , )Tt Lλ  ). 

Instead, as shown by the power, the probability of rejecting both nulls (Type II error) 
when they are false is very high and is λ -independent. In essence, both of the t 
statistics of eqs. 8.1 and 8.2 are high-powered against both alternatives but share 
definitely high a size against the alternative of the t statistics being equal to 1.9611. 
 

 

Sect. 5.  GMM formulation of a Dynamic Forward-Looking Taylor Rule.  

 
Let the endogenous variable be the EFFR, denoted as tr . Let also the regressors 

be the general price index, output, and a stock market index, respectively denoted as 

tp , ty  and ts , all in log levels. Finally, let the central bank operate by using 

information  j steps ahead (j=1,…,J), for J<T. By virtue of this characteristic, the 
vector of regressors may be augmented by means of future values of  tr

12, in order to 

ensure additional information. By consequence, the full vector of regressors may be 

written as ( ),  ,  ,  
t j t j t j t j t j

Y y p s r+ + + + +=  and, to ensure stationarity, both the endogenous 

and exogenous variables may be expressed in first differences, respectively denoted 
as trΔ  and 

t j
Y +Δ , so that the following generic function ensues 

 

9)    ( )
1

noise
J

t t j

j

r f Y +
=

⎡ ⎤
Δ = Δ +⎢ ⎥

⎣ ⎦
∑ . 

 
The FLTR model thus becomes an extention of eqs. 2 and 9 and may be written 

                                                 
10 T=200 was chosen more or less randomly, simply because the sample of the actual data being used in the empirical 
part is close to that figure. Size and power results for other magnitudes of T are significantly no different. 
11 Size tests of the alternatives that both t-statistics be equal to 3.0 and 4.0 are unreported for ease of space but exhibit 
probabilities higher than those of Table 4, and in the range of  0.30-0.50. This evidence confirms the zero-mean value 
taken by both statistics. 
12 While the OFFR is definitely a control variable, the EFFR is an observable. Yet the latter, which historically differs 
from the former by a zero-mean IID disturbance, may be interpreted as the market interest-rate reaction to FOMC 
decisions and thus comfortably included as a regressor, especially and most interestingly if expressed in expectation 
terms. 
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out, for the time interval 0 0[ ,(1 ) ]t T Tλ λ∈ − , λ∀ ∈Λ ,  in the following way: 

 

10)   1 2 1 2 1
1

( ) ( ) ( ) ( ) ( ) ( )
J

t t t j t j t t

j

r DU t DT Y eλ μ μ λ τ τ λ λ φη λ λ+ −
=

Δ = + + + + Ξ Δ + +∑  

 
where 1tη −  is the EC term, with ( ) 0E φ <  if the null of cointegration holds true13, and 

the structural breaks together with the error term belong to the set ( ).f  of eq. 9. 

Finally, 2( ) . . .(0, )
t e

e I I Dλ σ= . 

Eq. 10, along the lines established in Sect. 4, enables constructing a time series 

of length 01 (1 )Tλ+ −  of the coefficient vector 1 2 1 2
1

ˆ( ) , , , , ,
J

j

j

β λ μ μ τ τ φ
=

⎡ ⎤
= Ξ⎢ ⎥
⎣ ⎦

∑ and of 

the two t statistics ˆ ( )
t

tμ λ  and ˆ ( )
t

tτ λ 14. In particular, also the time series of the 

coefficient sums, up to lead J of 
j

Ξ for each regressor included in the vector 
t j

Y +Δ , 

can be obtained.  

To obtain the GMM parameter vector ˆ ( )GMMβ λ  in the given setting, some 

additional notation must be introduced. For the usual trimmed interval 

0 0 0, 1,...,(1 )t T T Tλ λ λ= + − , let now the vector of regressors included in eq. 10 be  

11, , , , ,
t t t t j t

X t DU DT Y η+ −⎡ ⎤= Δ⎣ ⎦  with size 1K × . Finally, for 1,...,h H=  lags where 

4J H T+ ≤ < , let there be a vector of size 1L×  ( )L K≥  denoted as [ ]1,
t t h

Z Y −= Δ , 

which includes a constant and the selected stationary instruments, here expressed as 
the lags of the regressors.  

By dropping for an instant the ( )λ  notation, the L-sized vector of sample 

moments evaluated at β̂  for the above-given time interval is  
 

0

0

(1 )

ˆ ˆ( )
T

t t t

t T

g Z e
λ

λ

β
−

=

= ∑  

 
where t̂e  are the first-stage residuals of a (possibly) consistent Instrumental-Variable 

estimation of eq.10. The sample means of the above are 
 

1
0

ˆ ˆ( ) (1 ) ( )tg T gβ λ β−⎡ ⎤= −⎣ ⎦ , 

 

                                                 
13 The EC coefficient provides an estimate of the magnitude and sign of the speed of mean reversion of the endogenous 
variable. In fact, if the EC term is stationary, then the first differences of the cointegrated variables are all stationary and 
mean reverting. This is a typical aspect of efficient markets, e.g. exchange-rate and asset markets [Engle and Patton, 
2000]. Inclusion of the EC coefficient, at least intuitively, also disposes of the drawback represented by smoothing. 
14 This feature allows eq. 10 to belong to the class of partial structural change models as envisaged, for instance, by Bai 
and Perron [1998, 2003]. 
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with the orthogonality property that ˆ( ) 0
t

E g β⎡ ⎤ ≡⎣ ⎦ .  

Let also the ensuing L L×  weight matrix be 
 

[ ]
0

0

(1 )

1
0

ˆ ˆ ˆ( ) (1 ) ( ) ( )'
T

t t

t T

W T g g
λ

λ

β λ β β
−

−

=

= − ∑
 

then:  

( )1ˆ ˆ ˆ ˆarg min ( ) ( ) ( )
GMM

g W g
β

β β β β−

∈Β
=  

  
 Computation of the partial first derivatives of the sample moments, defined as 

ˆ( ) /tg β β∂ ∂ , yields the L K×  Jacobian matrix  

 

[ ]
0

0

(1 )

1
0(1 ) '

T

t t t

t T

G T z x
λ

λ

λ
−

−

=

= − ∑  

where ,  t tz x  respectively are the L.th and the K.th element, for any given t, of vectors 

tZ  and 
tX . Finally, the efficient GMM estimator, by letting 

0

0

(1 )

'
T

t t

t T

Z y z y
λ

λ

−

=

= Δ∑  and 

after reintroducing the sequential ( )λ  notation, is 

 

     ( ) 1
1 1ˆ ˆ ˆ( ) '( ) ( ) ( ) '( ) ( ) ' ( )

GMM t t t
G W G G W Z yβ λ λ β λ λ β λ

−
− −=   

 
whose asymptotic variance is given by the ‘sandwich matrix’  
 

0 0

1
1

(1 ) (1 )
ˆ'( ) ( ) ( )T TG W Gλ λλ β λ

−−
− −

⎡ ⎤
⎣ ⎦  

 
 If tZ  is stationary, the mean value of ( )tG λ  is zero and the following  holds: 

p
1ˆ( )  QW β − → , where Q is a positive definite matrix whose maximum eigenvalue 

max( )E Q  is such that max( ) 0
T
Lim  E Q  
→∞

=  for a sufficiently large number of 

instruments15.  
 The dynamic format taken by the FLTR in eq. 10 estimated by GMM is 
preferable to its traditional ‘level rule’ counterpart [Orphanides and Williams, 2005], 
used, e.g. by Taylor [1999] and Clarida et al. [1998, 2000], for the following reasons: 
i) the model perfectly suits the I(0) model of eq. 2,  so that the estimated relevant t 
statistics are easily comparable to their simulated critical values of Table 2; 
                                                 
15 By means of some applied experimenting conducted with 10,000 Montecarlo draws and T running from 100 to 400, 

after fixing the number of instruments L=5,25,50, the convergence rates of max( )E Q are found to be 1/ 5 1/ 4 1/ 2, ,T T T
− − − , 

respectively. This finding implies that max
,

Lim ( ) 0
L T

E Q
→∞ →∞

= and that, for / 1L T → , the convergence rate of max( )E Q  is 

1/ 2
T

− . 
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ii) the reaction-function coefficients are scale-free relative to the equation in levels, as 
the regressors in origin are differently indexed and may produce spurious coefficient 
results; 
iii) the model automatically disposes, by including 1tη − , of t-statistic spuriousness 

deriving from cointegrated variables (e.g. Österholm, 2005b); 
iv) GMM estimation automatically corrects for autocorrelation and heteroskedasticity 
of the error term by using the Heteroskedasticity and Autocorrelation Consistent 
(HAC) method [Newey and West, 1987; Andrews, 1991]; 
v) By accordingly selecting the optimal instrument vector, GMM disposes of 
parameter inconsistency deriving from error-in-variables estimation. 
 While the first two aspects are self explanatory, the third point implies the well 
known fact that nonstationary series, unless cointegrated [Choi, 1994; Choi et al., 
2004], produce spurious coefficient t statistics, error autocorrelation and a bloated 2

R  
[Granger and Newbold, 1974; Phillips, 1986]. Spuriousness is also found between 
series generated as independent stationary series with or without linear trends and 
with seasonality or structural breaks [Granger et al., 2001; Hassler, 2003; Kim et al., 
2004; Noriega and Ventosa-Santaulària, 2005, 2006]. These occurrences are found 
within the context of Ordinary Least Squares (OLS) regressions where the t statistics 
– in particular those of the deterministic components – diverge as the number of 
observations gets large16.  

In the context of IV regressions with a stationary endogenous variable, 
however, spuriousness of the coefficient t statistics arises when many instruments 
and/or a large kernel bandwidth are used. This is the reason why the appropriate 
bandwidth and number of instruments must be chosen [Koenker and Machado, 1999;  
Hansen and West, 2002; Kiefer and Vogelsang, 2002] 17. 
 
 
6. The data base used and some pretesting of the GMM equation. 

 
 The key variables used in this paper are four: the EFFR, the rate of inflation of 
the overall consumer-price index, the total industrial index of capacity utilization and 
the Standard&Poor 500 equity index. The data sources are described below and the 
full sample used is the period of monthly observations spanning the period 1982:04-
2006:12, for a total of 297 observations. 

                                                 
16 By means of the same applied experimenting, it is shown that in a standard OLS (T=200) model with a I(0)  
endogenous variable and 1T K≥ ≥ regressors, the t statistics of the coefficients of the deterministic components, by 

departing from values below unity at K=1, diverge toward a value of 2.00 at a rate of 1/ 6
K . With an I(1) endogenous 

variable, the same t statistics depart at K=1 from values over 8.0 and 15.0 for the constant and the trend,  respectively, 
and remain virtually unchanged with increasing K. Finally, the t statistics of the coefficient sum of the regressors, with 
the endogenous variable either  I(0) or I(1), diverge at the same rate as that of the deterministic components of the first 
model. 
17 In a setting characterized by an I(0) endogenous variable, selection of the appropriate HAC bandwidth (HB) and   
number of instruments (L) is crucial, since large values of both give rise to spurious t statistics of the regressor 
coefficients and of their higher-fractile values. In fact, by means of the same kind of applied experimenting as that of 
fns. 15 and 16, it is found that for T=200, three regressors (constant, trend and a  stationary variable) and select HB = 

0,1,5,30, the t statistics grow respectively at rates 1 5 1 4 1 3,  ,  L L L  and 1 2
L and in general 1 2

L  for HB, L T→ . 
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 Figures 1, 2 and 3 respectively illustrate the levels, the yearly and the monthly 
percent changes of the key variables, while their basic descriptive statistics are 
reported in Table 5. When measured in levels, the EFFR is shown to exhibit the 
highest volatility after the equity index, while capacity utilization is by far the most 
stable variable. However, when measured in terms of yearly percent changes, not to 
speak of monthly percent changes, the EFFR is by far the most volatile, a robust 
indicator of the Fed’s frenzy addressed at controlling the economy by means of the 
OFFR18. Worth of notice, finally, is the volatility of the capacity utilization index, 
second in rank within the same percent changes considered. 
 Table 6 exhibits the ADF test statistic for UR of the key variables taken 
separately, the Gregory-Hansen (GH) test statistics for the null hypothesis of no 
cointegration of the EFFR with the other key variables under different regime shifts 
[Gregory and Hansen, 1996a; 1996b], and the Bai-Perron minimum Bayesian 
Information Criterion (BIC) detection method of multiple breaks for I(0) series [Bai 
and Perron, 2003]. The period covered, in consideration of the lag procedure adopted, 
is 1984:01-2006:12 and, obviously, the break dates reported are included within this 
time span. 

The reader is warned of the low power exhibited by standard ADF testing in 
the presence of a level or trend shift, which forms the basic contention advanced by 
Perron [1989], and by GH testing in the presence of multiple breaks [Kejriwal, 2006]. 
This happens because the cointegrating relationship may exhibit several breaks 
overtime, a fact downplayed also by more recent research on the topic [Arai and 
Kurozumi, 2005]. Hence, the ADF and GH statistics reported in Table 6 are simply 
illustrative. As to the latter, for instance, cointegration is found for both levels and 
yearly first differences, and the break dates reported of 1991:09 and 1993:08 for the 
endogenous variable are of difficult interpretation from the historical and statistical 
viewpoints. Similar conclusions appear to be valid also for the break dates obtained 
with the BH testing procedure. 
 All that is necessary, however, is simply a confirmation of the need to first-
difference the data to obtain I(0) series in order to avoid mixtures of I(0) and I(1) 
series, which customarily provide distorted coefficients [Banerjee et al., 1993]. Also, 
confirmation is needed about the existence of cointegration with at least one break 
and of possibly two breaks at least, even without cointegration. First differencing is 
thus essential from the purely statistical viewpoint as well as from the economic 
viewpoint. It is in fact proven that this procedure avoids the Fed’s  misperceptions of 
the long-run natural rates of the policy variables emerging from use of ‘level rules’, 
and that it produces a rule that is robust to both kinds of uncertainty [Orphanides and 
Williams, 2005]. 
 Given the previous information about the time-series properties of the key 
variables used, the original series are transformed to enable as much as possible 
achieving I(0) series. The endogenous variable trΔ , and its expectation counterpart, 

                                                 
18 The tally of changes of the OFFR performed by the FOMC during the period 1990:01-2006:06 is 68 while, for the 
period 1983:01-1990:12 of indirect targeting the tally is 44. In total, 112 changes along a stretch of nearly a quarter 
century, that is, a mean of 5 yearly changes out of  an average of  8 yearly FOMC meetings. 



 21

are expressed as log( )1 100
t

r+ – log( )11 100
t

r −+  on a monthly basis, while the 

exogenous variables are all log differences on a monthly basis of their original levels. 
To eliminate any remaining persistence in the series, which causes error 
autocorrelation and heteroskedasticity [Bai and Perron, 2000], the appropriate HAC 
correction is required. 
 The candidate maximum number of the monthly leads (J) of the regressors 

t j
Y +Δ  and of the monthly lags (H) of the instruments set t hY −Δ  is selected on the basis 

of the reputed informational horizon utilized by the Fed [Batini and Nelson, 2000]. 
The following maximum leads/lags (J/H) combinations appear to be the most likely: 
6/24, 6/36, 6/48; 12/24, 12/36, 12/48; 18/24, 18/36, 18/48. Such choice is dictated by 
the principle that, while preserving the general criterion of GMM overidentifying 
restrictions, the candidate combinations appear reasonable in the face of alternatives 
that may reduce or exaggerate the Fed’s actual future and past information database.  
 Table 7 reports the mean values of a battery of statistical indicators that can be 
used for optimal J/H selection within the given set of candidates. These indicators are 
obtained via different trial runs of eq. 10 for the select J/H combinations for all 
values of 0 0(1 )λ λ λ≤ ≤ −  with bandwidth equal to 119 and a trimming factor 

0 .15λ = . 

The indicator list of Table 7 is the following: 
1) the standard t statistic of parameter ϕ  of the EC term 1tη − , to evaluate the null 

hypothesis of no cointegration between the key variables expressed in levels; 
2) the joint and separate F tests of the null hypothesis of both breaks being equal to 
zero; 
3) the p-value of Hansen’s J significance test for overidentifying restrictions; 
4) the value of the BIC to assess for the correctness of the leads selected; 

5) the minimum eigenvalue of the inverse weight matrix 1ˆ( )W β −  to assess – in the 

manner suggested by Stock et al. [2002] – its magnitude and to test for the sample 
moments mean magnitude; 

6) the minimum eigenvalue of the matrix 1ˆ'( ) ( ) ( )t tG W G Lλ β λ−⎡ ⎤
⎣ ⎦ , which is the cross 

product of the moments and their partial first derivatives, to similarly assess its 
magnitude and to test for the weakness of the instrument set; 
7) the sum of the squared correlation coefficients between the regressor and the 
instrument set to further test for such weakness; 

8) the minimum eigenvalue of the sandwich matrix 
0 0

1
1

(1 ) (1 )
ˆ'( ) ( ) ( )T TG W Gλ λλ β λ

−−
− −

⎡ ⎤
⎣ ⎦ , 

to assess its magnitude and to test for the variance of the estimated parameter vector. 
Simple eyeballing of Table 7 reveals that the optimal J/H choice is 6/48, 

namely 6 leads and 48 lags, found to be the best representation of the informational 
horizon used by the Fed under the assumption of rationality. Technically, the selected 

                                                 
19 The HAC bandwidth selected represents a compromise between a value of zero, which could not correct for 
heteroskeasticity, and larger values which produces spuriousness of the t statistics of the regressor coefficients, as 
shown in fn. 17. 
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combination outsmarts the other combinations by exhibiting very large t and F 
statistics that reject the respective nulls and the largest p-value of Hansen’s J 
significance test for overidentifying restrictions, as well as the largest absolute value 
of the BIC statistic.  

In addition, even more interesting in terms of selection criterion, are the results 
regarding the other tests. The 6/48 combination exhibits in fact by far the largest 
minimum eigenvalue of indicator 6, which significantly rejects the null hypothesis of 
weak instruments according to the appropriately tabulated critical values [Stock and 
Yogo, 2005] and the largest value of indicator 7, which also points to a comparatively 
stronger instruments. Finally, within the J/H combinations that bear a lag of 48,  the 
6/48 combination stands out also by exhibiting the smallest mean moments (indicator 
5) and the smallest variance (indicator 8). 

 
 

7.  Empirical Results of the Selected GMM Model. 

 
 The empirical results of eq. 10, estimated for the trimmed period 1984:01-
2001:06 ( 0 0.15λ = ) and with the selected combination J/H = 6/48, are exhibited in 

Figure 4 and in Table 8. Panels a and b show the time series, of  length 01 (1 )Tλ+ − , 

of the estimated t statistics vis-à-vis the monthly changes of the EFFR, graphed as the 
discontinuous line. The other two panels show the time series of the coefficient sums 
of inflation, capacity utilization and the S&P 500 Index, as well as the corresponding 
Principal-Component Analysis (PCA) shares.  

The coefficient sums represent the ‘policy bias’ of the components, namely, 
their respective impact upon changes of the EFFR, while the PCA shares represent 
the relative weights assigned to each component. Both are viewed as indicators of 
policy targeting by the Fed. 

The following three subsections are devoted to the treatment in sequence of 
these results, together with some interesting additions concerning inflation scares, 
mismeasurements of the short-run Phillips curve and the “antispeculative” policy 
approach followed by the Fed. 
 
7.1. The structural breaks. 

 
The level and trend break time series, ˆ ( )

t
tμ λ  and ˆ ( )

t
tτ λ  respectively, share a 

cyclical if not jagged pattern with several troughs and peaks, evidenced by the shaded 
areas which represent the break periods where they exceed their respective absolute 
critical values shown in Table 220. The same is applicable, although with lower 
frequency, to the coefficient sums.   
 Table 8, where the top four ranking local extremes of the structural breaks are 

                                                 
20 The pattern is mostly jagged, especially during some periods, as expected  by the transient nature of both breaks in 
the presence of I(0) series. Yet, their slow overtime evolution pointing to the existence of break periods, and not simple 
episodes, is unquestionable  (see Sect. 4). 
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reported, shows that, while ˆ ( )
t

tμ λ  exhibits four maxima and two minima, ˆ ( )
t

tτ λ  

exhibits three maxima and three minima, all found to be significant by the standards 
supplied in Table 2. While the first two top positive level breaks occur during the 
Volcker chairmanship as a result of his anti-inflation stance, the other two occur in 
occasion of Greenspan’s OFFR hikes in response to increases of the output gap that 
had peaked in 1992 and in occasion of the ‘dotcom bubble’. These findings are 
almost in line with those of Bunzel and Enders [2005] and the second definitely 
marks the end of Greenspan’s purportedly ‘unconventional’ approach to the Phillips 
curve [Ball and Tchaidze, 2002; Rasche and Thornton, 2006]. 

The most significant negative level break occurs in 2000:12, which ignites the 
long spate of reductions of the OFFR that would last until mid-2004. The other break 
dates 1984:09, and characterizes Volcker’s first short-lived interest rate easing of the 
Eighties. 

The first two top positive trend breaks occur in conjunction with their level 
counterparts occurred under Volcker, while the other trend breaks follow already 
established spates of rising or falling EFFR. Hence, trend breaks occur either 
synchronously or with lags with respect to level breaks and, apparently, do not affect 
but are affected by changes in the EFFR ( trΔ ). To prove this, a test for the null 

hypothesis of no strict exogeneity is conducted with 
trΔ  featuring as the endogenous 

variable in a distributed lead/lag (of length P) regression à la Sims [1972], with the 
two t statistics as arguments, as follows 
 

11)    t
ˆ ˆ( ) + ( ) +         

P P

t p t p p t p

p P p P

r a t tμ τθ λ ϑ λ ε− −
=− =−

Δ = + ∑ ∑  

 
where a is the constant term, and 

tε  is an IID disturbance. The parameters 
p

θ  and  
p

ϑ  

refer to the arguments for [ , ]p P P∈ − . After setting a broad range of P from 1 to 36, 

the BIC optimally selects a lead of 2, whereby the null is rejected for ˆ ( )
t

tμ λ  but not 

for ˆ ( )
t

tτ λ 21. In other words, the time series of the t statistic for level breaks is strictly 

exogenous with respect to monthly changes in the EFFR. 
 Given this finding, a 2χ -distributed Ljung-Box test of the null of no weak 
exogeneity is conducted between the two t statistics themselves, to assess whether 
either of the two determines the other’s past course. The lead/lag range is set to 
length P = 36, and an interesting result emerges: ˆ ( )

t
tτ λ  significantly lags ˆ ( )

t
tμ λ , that 

is, the null is significantly rejected for the t statistic of trend breaks, peaking between 
10 and 20 lags22. 

                                                 
21 The computed F(2,199) statistics for 2 leads respectively are 10.75 and 0.75 with significance levels equal to 0.00 and 
to 0.47. Use of the AIC, which selects a lead of 3, produces the computed F(3,195) statistics respectively of magnitude 
7.77 and .89, with significance levels very close to the above. 
22 The Ljung-Box statistic, distributed as 2 ( )Pχ  under the null of no exogeneity running from the t statistic of trend 

breaks to the other t statistic and viceversa,, with P=36 and significance levels in brackets is 672.75 (.00) and 23.69 



 24

 Both findings demonstrate that structural trend breaks affect past level breaks 
and that these, in turn, significantly anticipate with a short lead the FOMC decisions 
about the OFFR23. This implies the following important policy conclusion: the Fed 
decides the course of the EFFR by means of the future expected level breaks after 
having experienced substantial trend break effects, which represent the carryover 
effect of past mistakes in prediction and estimation of the macroeconomic variables24. 
It comes to no surprise, in this setting, the reason why – for the Greenspan’s period – 
the most significant trend breaks tend to offset contemporaneous level breaks, since 
the Fed is concerned to keep on track interest rates with respect to their long-run 
values. 
 
7.2. The coefficient sums. 

 
 Panel c of Figure 4 show the time series of the coefficient sums of inflation, 
capacity utilization25 and of the S&P 500 Index,  

The top four ranking demeaned extremes of the coefficient sums are exhibited 
in Table 9 and definitively produce interesting results as to the conduct of the Fed’s 
policy during the period under scrutiny. The largest positively-signed anti-inflation 
bias dates 1987:04 under Volcker’s last months of chairmanship, an indication that 
“the back of price acceleration in the United States” had not yet been broken and that 
the usher to “a two-decade long decline in inflation that eventually brought us to the 
current state of price stability” [Greenspan, 2004] had not yet been wide open. The 
second largest positively-signed anti-inflation bias dates 2000:09, while the other two 
pertain to the first half of the Nineties. As to negative biases of this kind, worth of 
notice is the second largest, which is dated 2001:3 and marks the end of the ‘dotcom’ 
bubble struggle. 

It is easy to compute at this point the amount of inflation scares [Orphanides 
and Williams, 2005a] and of the misinformation produced by the Fed on the actual 
behavior of the Phillips curve, both usually heralded to the general public via 
standard media like conferences, speeches, meetings, etc., all with the official imprint 
of the Board of Governors.  

The corresponding series are obtained as a byproduct of the coefficient sums, 
which are known to the policymaker together with the breaks deriving from 
unstructured uncertainty, but are supposedly unknown to the general public. In other 
words, both series are tools of informational superiority in the hands of the Fed that 
can be exploited to fool private agents by igniting fears of an overheating economy, 

                                                                                                                                                                  
(.94), respectively. Another more brute, yet equally revealing indicator is provided by the sum of the squares of the 
correlation coefficients over the P range. The sum respectively amounts to 161.14 and 10.35. 
23 In support of this finding, PCA conducted on eq. 11 over the shares of both breaks reveals a 60% to 40% weight in 
favor of the level break. 
24 Orphanides [1998] makes a case for this evidence by demonstrating, in particular, that prediction errors of the real-
time data of the output gap made in the late Seventies have become evident to the Fed only several years after. 
25 Surprising as it may seem, the sign of the capacity-utilization regressor is negative, contrary to that obtained in other 
empirical work and, obviously, to Taylor’s own policy prescriptions [Taylor ,1999]. Maybe this result is due to 
differencing, certainly it is consistent with viewing the TR as an IS reduced-form equation, a veritable Keynesian piece 
of theory indeed!.   
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namely, of inflationary pressures that may derive from too low interest rates and 
excess production.  

The inflation scare series consists of the squared differences between actual 
inflation and its coefficient sums, and is plotted in Figure 5, panel a. All local 
maxima are marked graphically as vertical lines. The two highest are centered under 
Volcker in 1987:03 and under Greenspan in 1997:11, but other sizable scares were 
administered by Greenspan during the years 1993 and 1999-2000, as already 
advanced in Sect. 2.  

The misinformation series requires knowledge of the timely evolution of the 
coefficients of the Phillips curve. These are obtained by sequential structural-break 
estimation of a standard OLS inflation-output gap regression26, and are exhibited in 
Figure 5, panel b. The shaded areas indicate existence of a ‘perverse’ Phillips curve, 
namely, a negative relationship tying its two arguments. The Fed’s misinformation of 
the Phillips curve consists of the series of the squared differences between the 
inflation coefficient sums and the Phillips curve coefficients, and is plotted in Figure 
5, panel c.  

Misinformation peaks in 1988:05 and indicates unjustified anti-inflationary 
bias manifested by the post-crash tightening imposed by Greenspan, in the presence 
of a weak economy, that would in fact tank only a few months later. In the following 
period, virtually until the late Nineties, the Phillips curve is ‘correct’ and so is the 
anti-inflation bias. Later, in coincidence with the last business cycle that straddles the 
millennium and which associates low inflation to high economic growth, the Fed’s 
misinformation sizably appears again in conjunction with the last two inflation 
scares.  
 As to the other coefficient sums, most of the demeaned values of the output 
gap (the ‘output-gap bias’) occur in association with sustained annual output growth 
rates. The largest positive-sign bias definitely belongs to the just mentioned struggle 
period and indicates, as is clear from the same sum regarding the S&P 500 Index, that 
production and stock prices were both targeted at the same time during that occasion. 
In other words, simultaneous excess (i.e. above mean) capacity utilization and stock 
prices had prompted interest rate tightening by the Fed which culminated in 2000:04 
with the 0.75 bps hike that brought the OFFR to 6.50.  

Only the second largest positive output-gap bias is associated with modest 
output growth, since it occurs in 1992:12, just at the end of a four-year recession and 
of interest rate easing commenced one year before. The other two (1996:11 and 
1987:07), while characterized by sustained output growth, occur during stalling  
interest rates. Finally, the two largest negatively signed biases (1984:12 and 1988:03) 
occur at the end of growth cycles and in conjunction with falling interest rates. 

The equity bias is provided by the demeaned coefficient sum of the S&P 500 
                                                 
26 A large variety of short-run Phillips curve specifications is adoptable. Quite reasonable – yet highly imperfect and 
naïve – appears to be the Distributed-Lags format, which endogeneizes inflation (excluding food and energy) with 
respect to preselect lags (P) of the output gap. Different specifications tried have led to similar results, and in any case 
to the same pattern, similar to that obtained by Atkeson and Ohanian [2001]. The select model includes P=8, where the 
lowest are the p-values of the standard null hypothesis. The associated mean ADF test statistic with no drift and trend is 
-3.48, indicating no significant residual autocorrelation. 
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Index. The most relevant positive occurs in 1984:12, toward the end of a pronounced 
stock-market crisis caused by double-digit EFFR values ignited by Volcker’s 
tightening strategy. This event – i.e. higher rates in face of rising stock prices – is 
replicated, albeit to a minor extent, by Greenspan in the aftermath of the 1987 Black 
Monday when the equity market had just began to redress (1988:11) and during the 
‘dotcom’ bubble struggle mentioned above (2000:04). 

The largest negative bias (1988:03) occurs soon after the Black Monday as the 
result of a policy move to avoid the kind of policy tightening already experienced 
after  the Wall Street crash in 1929. A replication of this sound, yet belated, approach 
occurs also after the ‘dotcom’ bubble burst (2000:12), and the reverse thereof 
(1994:07) in a period of flat stock prices and stalling rates. 

 
7.3. Principal Component Analysis. 

 
PCA reveals from Panel d of Figure 4 that the Fed has been primarily targeting 

the equity market all the way through the period considered, by assigning to stock 
prices a mean relative weight of over 30%  vis-à-vis means of 15% for inflation and 
for the EC component, and 13% for the output gap. Needless to say, the Fed has 
constantly kept an eye over the equity market by significantly sticking to the 
“antispeculative” policy approach, an old remembrance that dates back to late 
Twenties, on which more in Sect. 227. 

Specifically, the equity market relative weight peaks close to 40% in occasion 
of the ‘dotcom’ bubble [Bordo and Wheelock, 2007; Rigobon and Sack, 2003], much 
in line with Cecchetti’s finding [2003] of significant concern of the Fed over the 
stock market behavior since after 1992 – while actually of much older date –  as 
emerging from thorough reading and interpretation of the FOMC minutes and 
transcripts.  

The rationale for the “antispeculative” policy approach by the Fed would be 
justified, under the assumption of the Fed’s rationality, by the volatility which 
oftentimes characterizes asset prices, whereby a preemptive strike on expected stock 
bubbling is institutionally mandated to the policy maker. However, inspection of 
Table 5 demonstrates that the equity index, as compared to the other key variables 
included in eq. 10, is the most volatile only in  level terms while being outsmarted by 
monthly changes in both the EFFR and in the output gap.  

By consequence, the “antispeculative” policy approach bears no justifying  
foundations whenever higher frequency transformation of the variables is considered. 
The series may be constructed by similar means used to produce the inflation scares 
and the misinformation series, and is given by the squared differences of the equity 

                                                 
27 PCA is conducted by standard eigenvalue method on the entire vector of regressors of eq.10, including all  
deterministic components but the constant term. The cross-moment matrix uses correlation coefficients to avoid 
undesired parameter bloating due to differently measured variables. The shares reported do not tally 1.0, in 
consideration of the fact that the mean shares of trend and of forward rate changes are both close to 9%, and the other 
shares (including breaks) are on average 5%. Interestingly enough, the relatively high mean share of the EC implies the 
existence of a sizable effect of mean reversion on the endogenous variable, maybe more than what customarily expected 
and definitely more appropriate than interest rate smoothing techniques. 
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PCAs and monthly volatility. The series is exhibited in Figure 5, panel d, which 
shows two sizable maxima in 1987:10 and 1998:08, not far from those found for the 
inflation scare series. A test of the null of no weak exogeneity between these two 
time series is provided by the 2χ -distributed Ljung-Box test with the lead/lag range 
set to P = 36. There emerges that inflation scares significantly anticipate heavier 
relative weights placed on the equity market targeting, which inevitably produce 
stock market lows or even crashes28.   

 
 

8.  Conclusions. 

 
 In an effort to interpret the Fed’s reaction function parameters of the Taylor 
Rule, several steps have been treaded and tests performed to test for rationality, 
structural breaks and other features related to its empirical estimation. 
 At first, a nonstandard t-test statistic is introduced to detect multiple level and 
trend breaks of stationary series, by supplying theoretical and limit-distribution 
critical values obtained from Montecarlo experimentation. Secondly, the Taylor Rule 
is expressed as an estimable GMM model of an augmented dynamic forward-looking 
representation. The model is then applied to the Effective Federal Funds Rate with 
trimming, multiple breaks and reaction-function coefficients of the leads of inflation, 
the output gap and changes in the equity market, and estimated on a monthly basis for 
the period 1983-2001.  

The aggressiveness of the Fed’s interest-rate policy, as measured by the sizable 
and frequent changes of the official Federal Funds Rate by the FOMC, should 
presuppose rationality and thus limited or absent structured uncertainty.  

Unfortunately this is not the case. In fact, there exist several sources of 
violation of rationality. The first is provided by the frequent structural breaks, 
especially those in level, found to prevail during the late Volcker, and the early and 
late Greenspan chairmanships. The second source consists of the systematic attempts 
at fooling the public by means of inflation scares and misinformation about the actual 
behavior of the Phillips curve. Other sources – unjustified on the basis of current 
volatility standards – are represented by the anti-inflation bias and by excess equity 
targeting.  
 All in all, the U.S. monetary policy for the period under scrutiny, dominated by 
Greenspan’s chairmanship, has been characterized by substantial aggressiveness 
addressed at keeping in check output growth and stock market prices, and by 
exploiting informational superiority over the general public. Not necessarily this 
behavior has produced benefits to both the Fed’s credibility and to the overall 
economy. Improvement in techniques addressed at reducing structured uncertainty in 
the sense proposed by Hansen and Sargent [2003, 2004, 2007] is required. 

                                                 
28  The Ljung-Box statistic, distributed as 2 ( )Pχ  under the null of no exogeneity running from inflation scares and the 

antispeculative policy approach and viceversa,, with P=36 and significance levels in brackets is 245.14 (.00) and 36.64 
(.44), respectively. 
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      Appendix. 
 
Limit Distributions of the t Statistics of a Break in Level and of a Break in 

Trend.  

 
 The elements of eq. 5, for 

tε  and σ  from *
t

yΔ  given in the text (Sect. 4), are 

obtained as  follows 
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Δ →∑ ∫  in eqs. 8.1 and 8.2.  

These two Brownian functionals, for the draws run and for all values of λ∈Λ , 
are I.I.D.(0,v), with v finite variance. Hence, for E(.) the expectation operator, if    
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which implies that, independent of λ , the two functionals tend to be zero-mean as T 

grows with different rates of convergence. In other words, the Central Limit Theorem 
applies independent of λ .  
 For the null model represented by eq. 1, suppose the alternative I(0) model 
with constant and trend and no breaks were given by  
 
A.1)   1 1t ty tμ τ εΔ = + + .  

 
so that, for 2. . .(0, )

t
I I Dε σ∼  the coefficients’ limit distributions are 

 
 1/ 2 * 2

1 1
ˆ( ) (0,4 )T Nμ μ σ− ∼  and 3/ 2 * 2

1 1
ˆ( ) (0,12 )T Nτ τ σ− ∼ ,  

  
while for the same null and for the alternative given by eq. 2, here replicated as 
follows: 
 
A.2)   1 2 1 2( ) ( ) ( ) ( )t t t ty DU t DTλ μ μ λ τ τ λ ε λΔ = + + + + ;  λ∀ ∈Λ  
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so that, for 2( ) . . .(0, )

t
I I Dε λ σ∼ , the coefficients’ limit distributions [Perron and Zhu, 

2004] are 
 

1/ 2 * 2
1 1

ˆ( ) (0,4 / )T Nμ μ σ λ− ∼ , 3/ 2 * 2 3
1 1
ˆ( ) (0,12 / )T Nτ τ σ λ− ∼ , 

( )1/ 2 * 2
2 2

ˆ( ) 0,4 / (1 )T Nμ μ σ λ λ− −∼  and 3/ 2 * 2
2 2

ˆ( ) (0,12 )T Nτ τ σ− Φ∼ ,  

 
where 2 3 3(3 3 1) /(1 )λ λ λ λΦ = − + − .  

 The variances of  the coefficients’ limit distributions of eq. A.1 are lower than  
their break counterparts of eq. A.2 (those of 2μ̂  and 2τ̂ ) and by consequence their 

standard t statistics must be lower than the nonstandard t statistics derived from A.2. 
In addition, by construction, the latter symmetrically fall then rise for increasing 
values of λ∈Λ  and achieve their minimum at 0.50λ = , with expected values of eq. 
8.1 slightly smaller than those of eq. 8.2. 
 The  t statistics of eq. A.1, respectively denoted as * ( )

T
t L  and * ( )

T
t T  are thus 
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For both statistics to be asymptotically equal to the standard value of 1.96, the 95% 

fractile-values of W(1) and 
1
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( )W r dr∫  must respectively equal 7.31 and 3.09. 

 Of interest it is worth noticing that the t statistics of the constant ( 1μ ) and of 
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which correspond to those of eqs. A.1.1 and A.1.2, respectively, if 1λ = . 
 With a similar reasoning, if the alternative I(0) model were made of only the 
two breaks, i.e.   
 
 A.3)   2 2( ) ( ) ( ) ( )t t t ty DU DTλ μ λ τ λ ε λΔ = + +  

 
the resulting t statistics, respectively denoted as **( , )Tt Lλ  and **( , )Tt Tλ  **( , )Tt Tλ , 

would be 
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which correspond to those of eqs. A.1.1 and A.1.2, respectivelìy, if 0λ = . 

If  the disturbance tε  in Eq. 2 is I(1) as in Perron and Zhu [2004], then eq. 6 is 
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whereby the t-statistics of the breaks, the counterparts of eqs. 8.1 and 8.2, are given 
by the following 
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which are, for same values of λ , distinctively larger than their I(0) counterparts, 
reflecting the spuriousness of the equation they are derived from.  
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     Data Sources. 

 
1. EFFR: "Effective Federal Funds Rate", Monthly Averages of Daily Figures, 
Percent. H.15 Release, Federal Reserve Board of Governors. 
2. Inflation Rate: "Consumer Price Index for All Urban Consumers, All Items", 
1982=100, Seasonally Adjusted Monthly Observations, U.S. Department of Labor, 

Bureau of Labor Statistics. 
3. Capacity Utilization: "Capacity Utilization Index, Total Industry, Code: B50001",, 
Seasonally Adjusted Monthly Observations, Statistical Release G.17, Federal 

Reserve Board of Governors. 
4. SP500: "Standard & Poor 500 Index, Monthly Averages of Daily Closes, 
Bloomberg. 
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Table 1. 

 

Values of eqs. 8.1 and 8.2 for select magnitudes of λ . 
 

λ  ( , )Tt Lλ  ( , )Tt Tλ  

λ =0.20 1.50W(1)-7.50

1

0

( )W r dr∫ -0.48W(1)+7.20

1

0

( )W r dr∫  

λ =0.30 1.97W(1)-6.55

1

0

( )W r dr∫ -0.19W(1)+4.95

1

0

( )W r dr∫  

λ =0.40 2.45W(1)-6.12

1

0

( )W r dr∫ 0.53W(1)+2.67

1

0

( )W r dr∫  

λ =0.50 3.00W(1)-6.00

1

0

( )W r dr∫ 1.73W(1) 
 

λ =0.60 3.67W(1)-6.12

1

0

( )W r dr∫ 3.20W(1)-2.67

1

0

( )W r dr∫  

λ =0.70 4.59W(1)-6.55

1

0

( )W r dr∫ 4.77W(1)-4.95

1

0

( )W r dr∫  

λ =0.80 6.00W(1)-7.50

1

0

( )W r dr∫ 6.71W(1)-7.20

1

0

( )W r dr∫  

( , )
T

t Lλ  is the t statistics of a break in level and ( , )
T

t Tλ  the t statistics of  a break 

in trend. 
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Table 2. 

Critical values (in boldface) and 10% confidence intervals of  the t statistic of a break in level ( , )
T

t Lλ  and of  the t statistic of a break in trend 

( , )
T

t Tλ . 10,000 Montecarlo draws of eq.1 for each select sample size T and break fractions 0.10 0.90λ≤ ≤ . 

 
  LENGTH:100  LENGTH:200 

  λ = 0.10 

( , )
T

t Lλ   12.754 12.094 11.435 8.899 8.240 7.581 7.103 6.444 5.785  12.176 11.528 10.88 8.878 8.230 7.582 7.158 6.510 5.862 

( , )
T

t Tλ   14.679 13.902 13.125 10.432 9.655 8.878 8.344 7.567 6.790  14.498 13.731 12.965 10.408 9.642 8.875 8.289 7.522 6.756 

  λ = 0.20 

( , )
T

t Lλ   7.952 7.535 7.118 5.770 5.353 4.937 4.606 4.189 3.773  7.635 7.228 6.822 5.520 5.114 4.707 4.428 4.021 3.615 

( , )
T

t Tλ   9.178 8.681 8.184 6.713 6.216 5.719 5.360 4.863 4.366  9.192 8.706 8.219 6.555 6.069 5.583 5.160 4.673 4.187 

  λ = 0.30 

( , )
T

t Lλ   5.688 5.376 5.065 4.291 3.980 3.669 3.386 3.075 2.763  5.791 5.488 5.184 4.231 3.927 3.624 3.346 3.042 2.738 

( , )
T

t Tλ   6.838 6.476 6.113 4.981 4.618 4.255 3.992 3.629 3.266  6.827 6.469 6.111 4.864 4.506 4.148 3.869 3.511 3.153 

   λ = 0.40 

( , )
T

t Lλ   4.800 4.54 4.280 3.601 3.340 3.080 2.827 2.567 2.307  4.554 4.306 4.058 3.370 3.123 2.875 2.713 2.465 2.217 

( , )
T

t Tλ   4.997 4.728 4.459 3.619 3.350 3.080 2.855 2.586 2.317  5.018 4.751 4.484 3.622 3.356 3.089 2.906 2.639 2.373 

  λ = 0.50 

( , )
T

t Lλ   4.283 4.045 3.807 3.149 2.911 2.673 2.549 2.312 2.074  4.389 4.157 3.926 3.175 2.943 2.712 2.509 2.278 2.047 

( , )
T

t Tλ   4.280 4.053 3.826 3.132 2.905 2.678 2.482 2.255 2.029  4.357 4.133 3.910 3.033 2.809 2.586 2.454 2.230 2.007 

  λ = 0.60 

( , )
T

t Lλ   4.769 4.513 4.258 3.432 3.176 2.92 2.764 2.509 2.253  4.544 4.298 4.052 3.364 3.119 2.873 2.637 2.391 2.145 

( , )
T

t Tλ   4.906 4.638 4.370 3.612 3.344 3.077 2.932 2.664 2.396  4.914 4.648 4.382 3.590 3.323 3.057 2.888 2.622 2.356 

  λ = 0.70 

( , )
T

t Lλ   5.696 5.394 5.092 4.089 3.787 3.484 3.288 2.986 2.684  5.621 5.319 5.017 4.093 3.791 3.489 3.282 2.980 2.678 

( , )
T

t Tλ   6.529 6.184 5.838 4.706 4.360 4.014 3.705 3.359 3.013  6.717 6.363 6.008 4.842 4.488 4.133 3.825 3.471 3.116 

  λ = 0.80 

( , )
T

t Lλ   8.028 7.610 7.192 5.664 5.245 4.827 4.551 4.133 3.715  7.619 7.214 6.81 5.601 5.196 4.791 4.461 4.057 3.652 

( , )
T

t Tλ   9.581 9.082 8.584 6.757 6.258 5.759 5.422 4.924 4.425  9.170 8.685 8.200 6.693 6.208 5.723 5.347 4.862 4.377 

  λ = 0.90 

                     

( , )
T

t Lλ   12.428 11.767 11.107 9.071 8.410 7.749 7.225 6.565 5.904  11.777 11.127 10.478 8.862 8.212 7.563 7.023 6.373 5.724 

( , )
T

t Tλ   14.577 13.798 13.019 10.653 9.874 9.095 8.545 7.766 6.988  13.971 13.204 12.437 10.425 9.658 8.891 8.266 7.500 6.733 

                     



 43

Table 2 contd. 
  LENGTH:300  LENGTH:500 

  λ = 0.10 

                     

  12.401 11.756 11.111 8.763 8.118 7.473 6.916 6.271 5.626  12.031 11.385 10.738 8.799 8.152 7.506 6.905 6.259 5.612 

  14.511 13.748 12.985 10.515 9.752 8.99 8.186 7.423 6.660  14.676 13.912 13.148 10.576 9.812 9.047 8.379 7.615 6.850 

  λ = 0.20 

( , )
T

t Lλ   7.718 7.308 6.899 5.707 5.298 4.888 4.506 4.097 3.687  7.697 7.286 6.874 5.673 5.262 4.851 4.392 3.981 3.569 

( , )
T

t Tλ   8.879 8.387 7.896 6.584 6.092 5.600 5.273 4.782 4.290  9.300 8.806 8.312 6.748 6.253 5.759 5.383 4.889 4.395 

  λ = 0.30 

                     

( , )
T

t Lλ   5.866 5.556 5.246 4.181 3.871 3.561 3.299 2.988 2.678  5.687 5.386 5.084 4.073 3.771 3.470 3.231 2.929 2.628 

( , )
T

t Tλ   6.827 6.465 6.104 5.004 4.642 4.280 3.911 3.549 3.188  6.757 6.403 6.049 4.908 4.554 4.200 3.854 3.499 3.145 

  λ = 0.40 

( , )
T

t Lλ   4.720 4.470 4.221 3.411 3.161 2.912 2.716 2.467 2.217  4.739 4.491 4.242 3.380 3.131 2.883 2.688 2.439 2.191 

( , )
T

t Tλ   5.037 4.771 4.505 3.672 3.406 3.141 2.891 2.626 2.36  5.101 4.833 4.566 3.670 3.402 3.135 2.919 2.651 2.384 

  λ = 0.50 

( , )
T

t Lλ   4.292 4.064 3.836 3.031 2.803 2.575 2.500 2.272 2.044  4.222 3.997 3.771 3.067 2.842 2.617 2.469 2.244 2.019 

( , )
T

t Tλ   4.455 4.227 3.998 3.098 2.870 2.642 2.474 2.246 2.018  4.136 3.912 3.689 3.039 2.816 2.592 2.443 2.220 1.996 

  λ = 0.60 

( , )
T

t Lλ   4.625 4.376 4.127 3.387 3.138 2.889 2.776 2.527 2.278  4.704 4.460 4.217 3.371 3.127 2.884 2.699 2.456 2.212 

( , )
T

t Tλ   5.048 4.785 4.523 3.619 3.356 3.093 2.860 2.597 2.334  5.085 4.822 4.559 3.616 3.353 3.091 2.839 2.577 2.314 

  λ = 0.70 

( , )
T

t Lλ   5.812 5.505 5.199 4.137 3.830 3.524 3.260 2.954 2.647  5.577 5.274 4.971 4.102 3.799 3.496 3.238 2.935 2.632 

( , )
T

t Tλ   6.884 6.524 6.163 4.854 4.494 4.133 3.880 3.519 3.159  6.420 6.066 5.712 4.867 4.512 4.158 3.787 3.433 3.078 

  λ = 0.80 

( , )
T

t Lλ   7.741 7.327 6.914 5.705 5.292 4.878 4.388 3.974 3.561  7.702 7.303 6.903 5.467 5.068 4.669 4.313 3.913 3.514 

( , )
T

t Tλ   9.107 8.612 8.117 6.724 6.229 5.734 5.243 4.748 4.253  9.197 8.719 8.24 6.574 6.095 5.617 5.165 4.687 4.208 

  λ = 0.90 

( , )
T

t Lλ   12.251 11.612 10.973 8.768 8.129 7.491 6.990 6.351 5.712  12.300 11.647 10.993 8.903 8.250 7.596 7.093 6.439 5.786 

( , )
T

t Tλ   14.368 13.612 12.856 10.475 9.719 8.964 8.291 7.535 6.779  14.679 13.906 13.134 10.548 9.776 9.003 8.367 7.594 6.822 
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Table 3.  

 

Variances of  the t statistic of a break in level ( , )
T

t Lλ  and of  the t statistic of a break in trend ( , )
T

t Tλ and of 

their components. 10,000 Montecarlo draws of eq.1 for sample size T=200 and break fractions 0.10 0.90λ≤ ≤ . 
 

λ  ( , ) _
T

t L numλ  ( , ) _
T

t T numλ  (1)Wλ  (3 1) (1)Wλ λ −  

1

0

2(2 1) ( )W r drλ − ∫  
( , )

T
t Lλ  ( , )

T
t Tλ  

        

0.10 0.25 0.76 0.01 0.00 0.86 24.85 34.76 

0.20 0.18 0.40 0.04 0.01 0.48 10.08 14.45 

0.30 0.13 0.19 0.09 0.00 0.21 5.32 7.29 

0.40 0.10 0.09 0.16 0.00 0.05 3.65 4.15 

0.50 0.09 0.06 0.25 0.01 0.00 3.23 3.15 

0.60 0.10 0.09 0.36 0.23 0.05 3.52 4.05 

0.70 0.13 0.19 0.49 0.60 0.21 5.33 7.21 

0.80 0.18 0.40 0.64 1.26 0.48 9.89 14.12 

0.90 0.25 0.76 0.81 2.35 0.86 24.94 34.79 

( , ) _
T

t L numλ and ( , ) _
T

t T numλ are the simulation estimated numerator of eq. 8.1 and 8.2, respectively. (1)W  and 
1

0

( )W r dr∫ are 

defined in the text (Sect. 4) and bear overall constant variances equal to unity and to roughly 1/3, respectively. (1)Wλ is the first term 

of the numerator of eq. 8.1, while the other two elements, (3 1) (1)Wλ λ −  and 
1

0

2(2 1) ( )W r drλ − ∫ , are the components of the numerator 

of eq. 8.2. 
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Table 4. 

 

Size and power of  the t statistic of a break in level ( , )
T

t Lλ  and of  the t statistic of a break in trend  ( , )
T

t Tλ to test for two null hypotheses.

10,000 Montecarlo draws of eq.1 for sample size T=200, nominal size=5% and break fractions 0.10 0.90λ≤ ≤ . 
 
 

 Size Power Size  Power Size Power Size Power Size Power Size  Power Size Power Size Power Size Power 

 Lambda=0.10 Lambda=0.20 Lambda=0.30 Lambda=0.40 Lambda=0.50 Lambda=0.60 Lambda=0.70 Lambda=0.80 Lambda=0.90 

                   

 Null hypothesis of ( , )
T

t Lλ  =0.0 and ( , )
T

t Tλ =0.0. 

                   

( , )
T

t Lλ  0.004 0.949 0.004 0.949 0.001 0.950 0.003 0.949 0.006 0.951 0.002 0.950 0.001 0.950 0.002 0.950 0.001 0.950 

( , )
T

t Tλ  0.003 0.951 0.004 0.951 0.005 0.949 0.005 0.948 0.005 0.950 0.005 0.949 0.003 0.951 0.002 0.950 0.001 0.950 

                   

 Null hypothesis of ( , )
T

t Lλ  =2.0 and ( , )
T

t Tλ =2.0 

                   

( , )
T

t Lλ  0.152 0.979 0.232 0.988 0.306 0.994 0.337 0.996 0.372 0.997 0.352 0.996 0.305 0.994 0.238 0.989 0.156 0.980 

( , )
T

t Tλ  0.138 0.977 0.203 0.986 0.265 0.991 0.335 0.996 0.372 0.997 0.334 0.996 0.269 0.991 0.203 0.985 0.132 0.976 
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Table 5*. 
 

Basic descriptive statistics of the key variables. Period 1982:04-2006:12. 
 

Key variable Mean S.E. Vol.  Maxdate Max. Mindate Min. 

Levels        

Effective FFR 5.44 2.48 45.55 1984:08 11.64 2003:12 0.98 

Consumer Price Index 149.66 29.86 19.96 2006:08 203.70 1983:05 99.20 

Capacity Utilization 80.70 2.81 3.48 1995:01 85.07 1983:05 73.48 

Standard & Poor 500 691.35 426.07 61.63 2000:08 1517.68 1984:05 150.55 

Yearly percent changes        

Effective FFR 0.05 0.44 930.88 2005:05 2.00 2001:12 -0.72 

Consumer Price Index 3.11 1.08 34.75 1990:10 6.38 2002:06 1.07 

Capacity Utilization 0.56 3.23 573.96 1984:02 11.57 2001:11 -8.41 

Standard & Poor 500 11.39 15.76 138.30 1983:06 52.94 2001:09 -27.54 

Monthly percent changes        

Effective FFR 0.00 0.05 NA 2004:07 0.22 2002:11 -0.23 

Consumer Price Index 0.25 0.22 85.72 2005:09 1.22 2005:11 -0.65 

Capacity Utilization 0.04 0.54 1292.99 1984:01 1.92 2005:09 -1.77 

Standard & Poor 500 0.85 4.22 495.63 1987:01 13.18 1987:10 -21.76 
* FFR is the Federal Funds Rate. Mean is the arithmetic mean, S.E. the standard error, Vol. the volatility index, i.e. the 
normalized standard error (S.E./Mean). Maxdate and Mindate respectively are the monthly dates of the maximum occurrence 
(Max.) and of the minimum occurrence (Min.). NA is an indefinite number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 47

 
 
 
 

Table 6. 
 

Augmented Dickey-Fuller (ADF)*, Gregory-Hansen test statistic for cointegration with break (GH)**, and 
Bai-Perron multiple breaks (BP) of the key variables in levels (1), in yearly differences (2), and in monthly 
differences (3). Period 1983:05-2006:12. In brackets the lags selected by the AIC method for ADF and BIC 
method for GH. 

Key variable (1) Key variable (2) Key variable (3) 

 ADF  ADF  ADF 

Effective FFR -1.12 (6) Effective FFR -3.06 (17) Effective FFR -9.96 (5) 

Consumer Price Index 9.46 (14) Consumer Price Index -1.08(15) Consumer Price Index -7.93 (14)

Capacity Utilization 0.39 (3) Capacity Utilization -3.13(15) Capacity Utilization -7.54 (11)

Standard & Poor 500 2.85 (0) Standard & Poor 500 -1.94 (12) Standard & Poor 500 -7.446(11)

      

GH -3.86  (2) GH -5.33 (0) GH -7.88 (4) 

COINTEGRATION YES COINTEGRATION YES COINTEGRATION NO 

Break date 1991:09 Break date  1993:08 - - 

      

BH  BH  BH  

Break date 1 1988:12 Break date 1 1990:02 Break date 1 1984:09 

Break date 2 1994:07 Break date 2 1993:06 Break date 2 1984:12 

      
* ADF test with no drift nor trend components. ** GH test with two regime changes. 
For ease of space, the expression “levels” refers to log levels for all key variables except for the Effective FFR. The same rationale 
applies to the term  “differences”. 

Critical values of ADF: 1%= -2.58 5%= -1.95. Critical values of GH: 1%= -6.89 5%= -6.32. 
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Table 7. 

 

Select regression statistical indicators for different leads/lags (J/H) combinations. Regression runs of eq.10 with 0.15 trimming. Period 1984:01-2001:06. 
 

Statistical  indicator J/H=18/48 J/H=18/36 J/H=18/24  J/H=12/48 J/H=12/36 J/H=12/24  J/H=6/48 J/H=6/36 J/H=6/24 

                      

 t statistic of EC term -4.334 -1.873 -0.682  -4.334 -2.792 -1.726  -8.512 -2.851 -2.626 

 Joint F test (2,226) of null breaks  14.124 5.023 1.478  14.124 12.620 3.199  63.076 17.552 18.453 

 F test (1,226) of null level break  10.225 3.500 0.973  10.225 6.657 1.672  34.395 9.996 4.760 

 F test (1,226) of null trend break  6.700 2.025 0.587  6.700 5.452 1.468  32.711 8.851 9.833 

 p-value of Hansen’s J statistic 0.965 0.780 0.882  0.965 0.935 0.825  1.000 0.988 0.846 

 BIC -11.028 -10.601 -9.736  -11.028 -11.205 -11.014  -11.728 -11.666 -11.355 

 Minimum eigenvalue of 1ˆ( )W β −   24.427 38.182 90.399  24.427 31.427 54.483  29.646 30.514 51.318 

 Minimum eigenvalue of 1ˆ'( ) ( ) ( )t tG W Gλ β λ−  1.984 0.348 0.044  1.984 1.303 0.236  25.171 5.077 1.505 

 Sum of correlated XZ 165.576 135.140 122.104  165.576 141.311 122.760  193.157 155.178 155.623 

 Minimum eigenvalue of 
0 0

1
1

(1 ) (1 )
ˆ'( ) ( ) ( )T TG W Gλ λλ β λ

−−
− −

⎡ ⎤⎢ ⎥⎣ ⎦  166.058 177.281 78.741  166.058 109.850 121.064  95.648 110.853 94.912 

 
 
 
 
 
 
 
 
 
 
 



Table 8 #. 
 

The four major maxima and minima of the t statistics of structural breaks by rank of magnitude. 
Regression run of eq.10 with 6 leads of the regressors and 48 lags of the instruments (J/H = 6/48) 
and 0.15 trimming. Period 1984:01-2001:06. 
 

Rank Variable Max. t statistic λ  Min. t statistic λ  

        

1. 
ˆ ( )

t
tμ λ  1985:01 15.87  ♦ 0.06 2000:12 -11.77 ♦ 0.93 

2. 
ˆ ( )

t
tμ λ  1987:04 11.04  ♦ 0.18 1984:09 -9.05 ♦ 0.04 

3. 
ˆ ( )

t
tμ λ  1993:04 10.41 ♦ 0.51 1989:06 -1.59 0.30 

4. 
ˆ ( )

t
tμ λ  1999:06 8.26 ♦ 0.85 1991:10 -1.34 0.43 

1. ˆ ( )
t

tτ λ  1985:01 19.80 ♦ 0.06 1999.06 -11.18 ♦ 0.85 

2. ˆ ( )
t

tτ λ  1987:04 9.23 ♦ 0.18 1995:09 -5.80 † 0.64 

3. ˆ ( )
t

tτ λ  2000:12 6.68 ♦ 0.93 1993:08 -3.38 † 0.53 

4. ˆ ( )
t

tτ λ  1991:02 1.07 0.39 1994.08 -0.69 0.03 

# ˆ ( )
t

tμ λ  and ˆ ( )
t

tτ λ  are the  time series of the breaks in level and in trend, respectively. Max. and Min. are the dates at 

which the extremes occur. λ  is the fraction of the period considered at which the break occurs.  † Significant at 95%,  
♦ Significant at 99%.. 

 
 

Table 9 ‡ 
 

The four major maxima and minima by rank of magnitude of the demeaned coefficient sums of 
inflation, output gap and changes of the Standard & Poor 500 Index. Regression run of eq.10 with 6 
leads of the regressors and 48 lags of the instruments (J/H = 6/48) and 0.15 trimming. Period 
1984:01-2001:06. 
 

Rank Variable Max Coeff.sum λ  Min Coeff.sum λ  

        
1. Inflation 1987:04 0.084 0.18 1984:02 -0.077 0.00 
2. Inflation  2000:09 0.025 0.92 2001:03 -0.021 0.94 
3. Inflation 1991:02 0.022 0.39 1994:05 -0.020 0.57 
4. Inflation 1995:09 0.020 0.64 1990:06 -0.006 0.35 
1. Output gap 2000:04 0.029 0.89 1984:12 -0.082 0.05 
2. Output gap 1992:12 0.015 0.49 1988:03 -0.008 0.23 
3. Output gap 1996:11 0.008 0.71 1991:10 -0.004 0.43 
4. Output gap 1987:07 0.008 0.19 1995:09 0.001 0.64 
1. S&P 500 1984:12 0.007 0.05 1988:03 -0.003 0.23 
2. S&P 500 2000:04 0.002 0.89 1994:07 -0.003 0.58 
3. S&P 500 1988:11 0.001 0.27 2000:12 -0.002 0.93 
4.  S&P 500 1992:01 -0.000 0.44 1997:10 -0.001 0.76 

‡ Coeff. sum is the coefficient sum, and S&P 500 stands for monthly changes of the Standard & Poor 500 Index. Max. 
and Min. are the dates and λ  is the fraction of the period considered at which the extremes occur.  
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FIGURE 1.

Levels of key variables.1982:04-2006:12
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FIGURE 2.

Yearly percent growth rates of key variables.1982:04-2006:12
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FIGURE 3.

Monthly changes of key variables.1982:04-2006:12
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FIGURE 4.

t statistic of breaks, monthly changes of the Federal Funds Rate, coefficient sums and shares. 1984:01-2001:06.
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Panel a) t statistic of break in level and monthly changes of the Federal Funds Rate.
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FIGURE 5.

Inflation scares, Phillips curve and antispeculative policy approach. 1984:01-2001:06.

Panel a) Inflation scares.
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