
Munich Personal RePEc Archive

On amending the Maskin’s theorem by

using complex numbers

Wu, Haoyang

5 April 2011

Online at https://mpra.ub.uni-muenchen.de/34270/

MPRA Paper No. 34270, posted 23 Oct 2011 19:28 UTC

On amending the Maskin’s theorem by using

complex numbers

Haoyang Wu ∗

Abstract

The Maskin’s theorem is a fundamental work in the theory of mechanism design.
A recent work [Wu, Quantum mechanism helps agents combat “bad” social choice
rules. Intl. J. of Quantum Information 9 (2011) 615-623] shows that when an ad-
ditional condition is satisfied, the Maskin’s theorem will not hold if agents use
quantum strategies. Inspired by the quantum mechanism, in this paper, we will
propose an algorithmic mechanism which uses complex numbers. We show by an
example that a Pareto-efficient social choice rule that is not monotonic may be Nash
implemented by using the algorithmic mechanism. This result is positive not only
to the agents, but also to the designer if the designer wishes to maximize the total
social surplus.

Key words: Algorithmic mechanism; Mechanism design; Nash implementation.

1 Introduction

Nash implementation is the cornerstone of the mechanism design theory. The
Maskin’s theorem provides an almost complete characterization of social choice
rules (SCRs) that are Nash implementable. When the number of agents are at
least three, the sufficient conditions for Nash implementation are monotonicity
and no-veto, and the necessary condition is monotonicity [1]. Note that an
SCR is specified by a designer. If the designer wants to maximize the total
social surplus, he would like to implement a Pareto-efficient SCR. However,
a Pareto-efficient SCR may not satisfy monotonicity (an example is given in
Table 1, Section 4). According to the Maskin’s theorem, it is impossible for
the designer to implement such non-monotonic SCR in Nash equilibrium.

∗ Wan-Dou-Miao Research Lab, Suite 1002, 790 WuYi Road, Shanghai, 200051,
China.

Email address: hywch@mail.xjtu.edu.cn, Tel: 86-18621753457 (Haoyang
Wu).

In 2011, Wu [2] generalized the theory of mechanism design to a quantum do-
main. He proposed that the Maskin’s theorem should be amended by virtue of
quantum strategies. For n agents, the time and space complexity of the quan-
tum mechanism are O(n). Therefore the quantum mechanism is theoretically
feasible. However, there exists an obstacle for the quantum mechanism to be
practical: It needs a quantum equipment to work, but so far the experimental
technologies for quantum information are not commercially available [3]. As a
result, the quantum mechanism may be viewed only as a “toy”. In this paper,
we will go beyond this obstacle and propose an algorithmic mechanism which
uses complex numbers. The algorithmic mechanism can work in the macro
world immediately.

The rest of the paper is organized as follows: Section 2 recalls preliminaries
of classical and quantum mechanisms published in Refs. [4,2] respectively;
Section 3 is the main part of this paper, where we will propose an algorithmic
mechanism; In Section 4, we show by an example that a Pareto-efficient social
choice rule that is not monotonic can be Nash implemented by using the
algorithmic mechanism when an additional condition is satisfied; Section 5
draws conclusions.

2 Preliminaries

2.1 The classical theory of mechanism design [4]

Let N = {1, · · · , n} be a finite set of agents with n ≥ 3, A = {a1, · · · , ak} be a
finite set of social outcomes. Let Ti be the finite set of agent i’s types, and the
private information possessed by agent i is denoted as ti ∈ Ti. We refer to a
profile of types t = (t1, · · · , tn) as a state. Let T =

∏
i∈N Ti be the set of states.

At state t ∈ T , each agent i ∈ N is assumed to have a complete and transitive
preference relation ºt

i over the set A. We denote by ºt= (ºt
1, · · · ,ºt

n) the
profile of preferences in state t, and denote by ≻t

i the strict preference part
of ºt

i. Fix a state t, we refer to the collection E =< N, A, (ºt
i)i∈N > as an

environment. Let ε be the class of possible environments. A social choice rule
(SCR) F is a mapping F : ε → 2A\{∅}. A mechanism Γ = ((Mi)i∈N , g)
describes a message or strategy set Mi for agent i, and an outcome function
g :

∏
i∈N Mi → A. Mi is unlimited except that if a mechanism is direct,

Mi = Ti.

An SCR F satisfies no-veto if, whenever a ºt
i b for all b ∈ A and for all

agents i but perhaps one j, then a ∈ F (E). An SCR F is monotonic if
for every pair of environments E and E ′, and for every a ∈ F (E), when-
ever a ºt

i b implies that a ºt′

i b, there holds a ∈ F (E ′). We assume that

2

there is complete information among the agents, i.e., the true state t is com-
mon knowledge among them. Given a mechanism Γ = ((Mi)i∈N , g) played in
state t, a Nash equilibrium of Γ in state t is a strategy profile m∗ such that:
∀i ∈ N, g(m∗(t)) ºt

i g(mi,m
∗
−i(t)),∀mi ∈ Mi. Let N (Γ, t) denote the set of

Nash equilibria of the game induced by Γ in state t, and g(N (Γ, t)) denote
the corresponding set of Nash equilibrium outcomes. An SCR F is Nash im-
plementable if there exists a mechanism Γ = ((Mi)i∈N , g) such that for every
t ∈ T , g(N (Γ, t)) = F (t).

Maskin [1] provided an almost complete characterization of SCRs that were
Nash implementable. The main results of Ref. [1] are two theorems: 1) (Neces-
sity) If an SCR is Nash implementable, then it is monotonic. 2) (Sufficiency)
Let n ≥ 3, if an SCR is monotonic and satisfies no-veto, then it is Nash im-
plementable. In order to facilitate the following investigation, we briefly recall
the Maskin’s mechanism published in Ref. [4] as follows:

Consider the following mechanism Γ = ((Mi)i∈N , g), where agent i’s message
set is Mi = A×T ×Z+, and Z+ is the set of non-negative integers. A typical
message sent by agent i is described as mi = (ai, ti, zi). The outcome function g
is defined in the following three rules: (1) If for every agent i ∈ N , mi = (a, t, 0)
and a ∈ F (t), then g(m) = a. (2) If (n − 1) agents i 6= j send mi = (a, t, 0)
and a ∈ F (t), but agent j sends mj = (aj, tj, zj) 6= (a, t, 0), then g(m) = a if
aj ≻t

j a, and g(m) = aj otherwise. (3) In all other cases, g(m) = a′, where a′

is the outcome chosen by the agent with the lowest index among those who
announce the highest integer.

2.2 Quantum mechanisms [2]

In 2011, Wu [2] combined the theory of mechanism design with quantum me-
chanics. He found that when an additional condition was satisfied, monotonic-
ity and no-veto were not sufficient conditions for Nash implementation in the
context of a quantum domain. Following Section 4 in Ref. [2], two-parameter
quantum strategies are drawn from the set:

ω̂(θ, φ) ≡



eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)


 , (1)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, Ĵ ≡ cos(γ/2)Î⊗n + i sin(γ/2)σ̂x
⊗n

(where γ ∈ [0, π/2] is an entanglement measure, σx is Pauli matrix), Î ≡
ω̂(0, 0), D̂n ≡ ω̂(π, π/n), Ĉn ≡ ω̂(0, π/n).

Following the complete information assumption by Serrano (Page 392, the
last paragraph, [4]), here we also assume there is complete information among

3

����������	�
	��
���������������	�����
����������	�����
�����������

�������������������������	������	
	��	�����
	�����
�����������������

�
	������������
��	��������������������

�ψ

��

��
��

�ψ

... ...

������

������

������

�

+
��

�
��
�	

��
�

��
��

���
��

��

�
�ω

�
�ω

�ω�

�������

...
 	
���	�

�!�"

�

�

�ψ #ψ

�������

������

agents. Put differently, there is no private information for any agent. Without
loss of generality, we assume that:

1) Each agent i has a quantum coin i (qubit) and a classical card i. The basis
vectors |C〉 = [1, 0]T , |D〉 = [0, 1]T of a quantum coin denote head up and tail
up respectively.
2) Each agent i independently performs a local unitary operation on his/her
own quantum coin. The set of agent i’s operation is Ω̂i = Ω̂. A strategic
operation chosen by agent i is denoted as ω̂i ∈ Ω̂i. If ω̂i = Î, then ω̂i(|C〉) =
|C〉, ω̂i(|D〉) = |D〉; If ω̂i = D̂n, then ω̂i(|C〉) = |D〉, ω̂i(|D〉) = |C〉. Î denotes
“Not flip”, D̂n denotes “Flip”.
3) The two sides of a card are denoted as Side 0 and Side 1. The message
written on the Side 0 (or Side 1) of card i is denoted as card(i, 0) (or card(i, 1)).
A typical card written by agent i is described as ci = (card(i, 0), card(i, 1)).
The set of ci is denoted as Ci.
4) There is a device that can measure the state of n quantum coins and send
messages to the designer.

A quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ) describes a strategy set Ŝi = Ω̂i×Ci

for each agent i and an outcome function Ĝ : ⊗i∈N Ω̂i ×
∏

i∈N Ci → A. We use
Ŝ−i to express ⊗j 6=iΩ̂j ×

∏
j 6=i Cj, and thus, a strategy profile is ŝ = (ŝi, ŝ−i),

where ŝi ∈ Ŝi and ŝ−i ∈ Ŝ−i. The strategic behavior of each agent i is to
strategically choose ω̂i, card(i, 0) and card(i, 1).

A Nash equilibrium of a quantum mechanism ΓQ played in state t is a strat-
egy profile ŝ∗ = (ŝ∗1, · · · , ŝ∗n) such that for any agent i ∈ N and ŝi ∈ Ŝi,
Ĝ(ŝ∗1, · · · , ŝ∗n) ºt

i Ĝ(ŝi, ŝ
∗
−i). The setup of ΓQ = ((Ŝi)i∈N , Ĝ) is depicted in Fig.

1. The working steps of ΓQ are given as follows (with some differences in Step
2 from Ref. [2]):

Step 1: The state of every quantum coin is set as |C〉. The initial state of the

4

n quantum coins is |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸
n

.

Step 2: Given a state t, if two following conditions are satisfied, go to Step 4:
1) There exists t̂ ∈ T , t̂ 6= t such that â ºt

i a (where â ∈ F (t̂), a ∈ F (t)) for
every i ∈ N , with strict relation for some agent;
2) If there exists t̂′ ∈ T , t̂′ 6= t̂ that satisfies the former condition, then â ºt

i â′

(where â ∈ F (t̂), â′ ∈ F (t̂′)) for every i ∈ N , with strict relation for some
agent.
Step 3: Each agent i sets ci = ((ai, ti, zi), (ai, ti, zi)) (where ai ∈ A, ti ∈ T ,
zi ∈ Z+), ω̂i = Î. Go to Step 7.
Step 4: Each agent i sets ci = ((â, t̂, 0), (ai, ti, zi)). Let n quantum coins be
entangled by Ĵ . |ψ1〉 = Ĵ |C · · ·CC〉.
Step 5: Each agent i independently performs a local unitary operation ω̂i on
his/her own quantum coin. |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]|ψ1〉.
Step 6: Let n quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+|ψ2〉.
Step 7: The device measures the state of n quantum coins and sends card(i, 0)
(or card(i, 1)) as a message mi to the designer if the state of quantum coin i
is |C〉 (or |D〉).
Step 8: The designer receives the overall message m = (m1, · · · ,mn) and let
the final outcome be g(m) using rules (1)-(3) of the Maskin’s mechanism Γ.

3 An algorithmic mechanism

As specified by Ladd et al [3], nowadays the experimental technology for
quantum information is still in its infancy. Thus, the quantum mechanism is
valuable only from the theoretical aspect. In addition, it is hard to introduce
the quantum notion into macro disciplines (such as economics, politics, soci-
ology). In order to overcome these shortcomings, in this section we will first
give mathematical representations of quantum states; then we will propose an
algorithmic mechanism which can work in the macro world immediately.

3.1 Matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For a
two-level system, there are two basis vectors: [1, 0]T and [0, 1]T . The matrix
representations of quantum states |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉 are given as follows.

5

|C〉 =



1

0


 , Î =



1 0

0 1


 , σ̂x =



0 1

1 0


 , |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸

n

=




1

0

· · ·
0




2n×1

(2)

Ĵ = cos(γ/2)Î⊗n + i sin(γ/2)σ̂⊗n
x (3)

=




cos(γ/2) i sin(γ/2)

· · · · · ·
cos(γ/2) i sin(γ/2)

i sin(γ/2) cos(γ/2)

· · · · · ·
i sin(γ/2) cos(γ/2)




2n×2n

(4)

Here, the symbol i denotes an imaginary number. In what follows, we will not
explicitly claim whether i is an imaginary number or an index. It is easy for
the reader to know its exact meaning from the context. For γ = π/2,

Ĵπ/2 =
1√
2




1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1




2n×2n

(5)

|ψ1〉 = Ĵ |ψ0〉 =




cos(γ/2)

0

· · ·
0

i sin(γ/2)




2n×1

(6)

6

Following formula (1), we define:

ω̂1 =



eiφ1 cos(θ1/2) i sin(θ1/2)

i sin(θ1/2) e−iφ1 cos(θ1/2)


 , · · · , ω̂n =



eiφn cos(θn/2) i sin(θn/2)

i sin(θn/2) e−iφn cos(θn/2)


 ,

(7)

The dimension of ω̂1 ⊗ · · · ⊗ ω̂n is 2n × 2n. Since only two values in |ψ1〉 are
non-zero, it is not necessary to calculate the whole 2n × 2n matrix to obtain
|ψ2〉. Indeed, we only need to calculate the leftmost and rightmost column of
ω̂1 ⊗ · · · ⊗ ω̂n to derive |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]|ψ1〉.

Ĵ+ =




cos(γ/2) −i sin(γ/2)

· · · · · ·
cos(γ/2) −i sin(γ/2)

−i sin(γ/2) cos(γ/2)

· · · · · ·
−i sin(γ/2) cos(γ/2)




2n×2n

(8)

|ψ3〉 = Ĵ+|ψ2〉. (9)

3.2 A simulating algorithm

Based on the matrix representations of quantum states, in the following we
will propose a simulating algorithm that simulates the quantum operations
and measurements specified in Steps 4-7 of the quantum mechanism. Since
the entanglement measurement γ is a control factor, γ can be simply set as
its maximum π/2. For n agents, the inputs and outputs of the simulating
algorithm are illustrated in Fig. 2. The Matlab program is given in Fig. 3.

Inputs:
1) θi, φi, i = 1, · · · , n: the parameters of agent i’s local operation ω̂i, θi ∈
[0, π], φi ∈ [0, π/2].
2) card(i, 0), card(i, 1), i = 1, · · · , n: the information written on the two sides
of agent i’s card, where card(i, 0) = (ai, ti, zi) ∈ A × T × Z+, card(i, 1) =
(a′

i, t
′
i, z

′
i) ∈ A × T × Z+.

Outputs:
mi, i = 1, · · · , n: mi ∈ A × T × Z+.

7

�������

�
�
�����

�
	

���

�

	

�
����
�

...

��

��

��

	�
�����

�
��...

���

���

�

��
��

��
��

�� φθ

����

����

� ��

�
��

�
��

φθ

����

����

� ��

�
��

�
��

φθ

�������

�������

�����������������
�����������
��������
���������������������

Procedures of the simulating algorithm:
Step 1: Reading two parameters θi and φi from each agent i ∈ N (See Fig.
3(a)).
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ ω̂2 ⊗ · · · ⊗ ω̂n

(See Fig. 3(b)).
Step 3: Computing the vector representation of |ψ2〉 = [ω̂1 ⊗· · ·⊗ ω̂n]Ĵπ/2|ψ0〉.
Step 4: Computing the vector representation of |ψ3〉 = Ĵ+

π/2
|ψ2〉.

Step 5: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).
Step 6: Randomly choosing a state from the set of all 2n possible states
{|C · · ·CC〉, · · · , |D · · ·DD〉} according to the probability distribution 〈ψ3|ψ3〉.
Step 7: For each agent i ∈ N , the algorithm sends card(i, 0) (or card(i, 1)) as
mi to the designer if the i-th basis vector of the chosen state is |C〉 (or |D〉)
(See Fig. 3(d)).

Remark 1: In Step 6, the possible states |C · · ·CC〉, · · · , |D · · ·DD〉 are sim-
ply mathematical notions, not physical entities.

Remark 2: Although the time and space complexity of the simulating algo-
rithm are exponential, i.e., O(2n), it works well when the number of agents
is not large. For example, the runtime of the simulating algorithm is about
0.5s for 15 agents, and about 12s for 20 agents (MATLAB 7.1, CPU: Intel (R)
2GHz, RAM: 3GB).

Remark 3: The problem of Nash implementation requires complete informa-
tion among all agents. In the last paragraph of Page 392, Ref. [4], Serrano
wrote: “We assume that there is complete information among the agents...
This assumption is especially justified when the implementation problem con-
cerns a small number of agents that hold good information about one another”.
Hence, the fact that the simulating algorithm is suitable for small-scale cases
(e.g., less than 20 agents) is acceptable for Nash implementation.

8

3.3 An algorithmic mechanism that uses complex numbers

In the quantum mechanism ΓQ = ((Ŝi)i∈N , Ĝ), the key parts are quantum
operations and measurements. In Section 3.2, these parts are replaced by a
simulating algorithm that uses complex numbers. Now we update the quantum
mechanism ΓQ = ((Ŝi)i∈N , Ĝ) to an algorithmic mechanism.

Definition 1: An algorithmic mechanism Γ̃ = ((S̃i)i∈N , G̃) describes a strat-
egy set S̃i = [0, π] × [0, π/2] × Ci for each agent i and an outcome function
G̃ : [0, π]n×[0, π/2]n×∏

i∈N Ci → A, where n ≥ 3, Ci is the set of agent i’s card
ci = (card(i, 0), card(i, 1)). A typical strategy chosen by agent i is denoted by
s̃i = (θi, φi, ci), where ci = (card(i, 0), card(i, 1)) = (ai, ti, zi, a

′
i, t

′
i, z

′
i). We use

S̃−i to express [0, π]n−1 × [0, π/2]n−1 × ∏
j 6=i Cj, and thus, a strategy profile is

s̃ = (s̃i, s̃−i), where s̃i = (θi, φi, ci) ∈ S̃i and s̃−i = (θ−i, φ−i, c−i) ∈ S̃−i.

Definition 2: Suppose each agent i submits s̃i = (θi, φi, ci), where ci =
(ai, ti, zi, a

′
i, t

′
i, z

′
i), the rules for the designer to compute the outcome func-

tion G̃(s̃) are defined as follows:
Rule 1: If for each agent i ∈ N , (θi, φi) = (0, 0), then the designer sets
mi = (ai, ti, zi) (i ∈ N), m = (m1, · · · ,mn). Go to Rule 5;
Rule 2: If there exists one agent j satisfying the following two conditions, then
G̃(s̃) = aj:
(2.1) Agent j submits non-zero (θj, φj) (i.e., (θj, φj) 6= (0, 0)), aj ∈ F (tj); for
each agent i 6= j, (θi, φi) = (0, 0);
(2.2) For each agent i ∈ N , aj ºtj

i ai;
Rule 3: If there are at least two agents that submit non-zero (θj, φj), and
(ai, ti, zi) = (a, t, 0) (i ∈ N) with a ∈ F (t), then the designer transfers
(θi, φi, ai, ti, zi, a

′
i, t

′
i, z

′
i) (i ∈ N) to the simulating algorithm and gets m =

(m1, · · · ,mn); Go to Rule 5;
Rule 4: Otherwise the designer sets mi = (ai, ti, zi) (i ∈ N), m = (m1, · · · ,mn);
Rule 5: If for each agent i ∈ N , mi = (a, t, 0) and a ∈ F (t), then G̃(s̃) = a.
Rule 6: If there exists one agent j ∈ N such that mi = (a, t, 0) (for each agent
i 6= j) with a ∈ F (t), but mj = (aj, tj, zj) 6= (a, t, 0), then:
(6.1) If (θj, φj) = (0, 0), then [G̃(s̃) = aj if a ≻t

j aj; G̃(s̃) = a otherwise];

(6.2) If (θj, φj) 6= (0, 0), then [G̃(s̃) = aj if a ≻t
j aj and aj ∈ F (tj); G̃(s̃) = a

otherwise];
Rule 7: The designer claims G̃(s̃) = a′, where a′ is the outcome specified in
m = (m1, · · · ,mn) and chosen by the agent with the lowest index among those
who has the highest integer.

Definition 3: A Nash equilibrium of the algorithmic mechanism Γ̃ played in
state t is a strategy profile s̃∗ = (s̃∗1, · · · , s̃∗n) such that for any agent i ∈ N ,
s̃i ∈ S̃i, G̃(s̃∗1, · · · , s̃∗n) ºt

i G̃(s̃i, s̃
∗
−i).

9

3.4 Condition λπ/2

Following condition λ in Ref. [2], here we define a condition λπ/2.

Definition 4: Condition λπ/2 contains seven parts. The first four parts are
defined as follows:
1) λ

π/2

1 : Given an SCR F , there exist two states t̂, t̄ ∈ T , t̂ 6= t̄ such that
â ºt̄

i ā (for each i ∈ N , â ∈ F (t̂), ā ∈ F (t̄)) with strict relation for some
agent; and the number of agents that encounter a preference change around
â in going from state t̂ to t̄ is at least two. Denote by l the number of these
agents. Without loss of generality, let these l agents be the last l agents among
n agents, i.e., agent (n − l + 1), · · · , n.

2) λ
π/2

2 : Consider the state t̄ specified in condition λ
π/2

1 , if there exists another

t̂′ ∈ T , t̂′ 6= t̂ that satisfies λ
π/2

1 , then â ºt̄
i â′ (for each i ∈ N , â ∈ F (t̂),

â′ ∈ F (t̂′)) with strict relation for some agent.

3) λ
π/2

3 : Consider the states t̂, t̄ specified in condition λ
π/2

1 , if there is an agent
i ∈ N such that some outcome a′ ∈ A satisfies a′ ≻t̄

i â with a′ ∈ F (t′), then
a′ ≻t̂

i â.

4) λ
π/2

4 : Consider the outcome â specified in condition λ
π/2

1 , for any state t ∈ T ,
â is top ranked for each agent i among the first (n − l) agents.

Definition 5: Consider the state t̄ specified in condition λ
π/2

1 . Suppose λ
π/2

1

and λ
π/2

2 are satisfied, and m = (m1, · · · ,mm) is computed by the simulating
algorithm in Rule 3. $C···CC , $C···CD, $D···DC and $D···DD are defined as the
payoffs to the n-th agent in state t̄ when the chosen states in Step 6 of the
simulating algorithm are |C · · ·CC〉, |C · · ·CD〉, |D · · ·DC〉 and |D · · ·DD〉
respectively.

Note: 1) Here |C · · ·CC〉, |C · · ·CD〉, |D · · ·DC〉 and |D · · ·DD〉 are simply
mathematical notions, not quantum states.
2) When an agent faces a certain outcome, his payoff is the utility that he
exactly obtains; when an agent faces an uncertain outcome among a set of
outcomes, his payoff is the ex-ante expected utility before the final outcome
is realized.

The rest parts of condition λπ/2 are defined as:
5) λ

π/2

5 : For each agent i, when he faces an uncertain outcome among a set of
outcomes, his payoff is the utility corresponding to the worst outcome among
the set of outcomes.
6) λ

π/2

6 : $C···CC > $D···DD.

7) λ
π/2

7 : $C···CC > $C···CD cos2(π/l) + $D···DC sin2(π/l).

10

3.5 Main result

Proposition 1: For n ≥ 3, given an SCR F that is monotonic and satisfies
no-veto, suppose the designer uses the algorithmic mechanism Γ̃, then F will
not be Nash implementable if condition λπ/2 is satisfied.

Proof : Since the designer uses the algorithmic mechanism Γ̃, each agent i
submits s̃i = (θi, φi, ci) (where ci = (ai, ti, zi, a

′
i, t

′
i, z

′
i)) to the designer. As

specified in condition λ
π/2

1 and λ
π/2

2 , there exists two states t̂, t̄ ∈ T , t̂ 6= t̄
such that â ∈ F (t̂) is Pareto superior to ā ∈ F (t̄) in state t̄. Suppose the true
state is t̄. For each agent i among the first (n−l) agents, let ci = (â, t̂, 0, â, t̂, 0);
for each agent i among the last l agents, let ci = (â, t̂, 0, a′

i, ∗, ∗), where a′
i is

top ranked for agent i in state t̄, and ∗ represents any legal value.

Now consider the n agents choose s̃ = (θ, φ, c), where θ = (0, · · · , 0︸ ︷︷ ︸
n

), φ =

(0, · · · , 0︸ ︷︷ ︸
n−l

, π/l, · · · , π/l︸ ︷︷ ︸
l

), c = (c1, · · · , cn). Then, G̃ enters Rule 3. According to

the proof of Proposition 2 in Ref. [2], in Step 6 of the simulating algorithm,
the probability that the chosen “collapsed” state is |C · · ·CC〉 is equal to 1. In
Step 7 of the simulating algorithm, mi = card(i, 0) = (â, t̂, 0) for each agent
i ∈ N . Thus, by Rule 5 of G̃, G̃(s̃) = â /∈ F (t̄).

Let us check whether in state t̄, the n-th agent has an incentive to unilaterally
deviate from s̃n = (0, π/l, â, t̂, 0, a′

n, ∗, ∗). There are four possible deviations:

Case 1 : Consider a unilateral deviation s̄n = (0, π/l, ān, t̄n, z̄n, ∗, ∗, ∗), where
(ān, t̄n, z̄n) 6= (â, t̂, 0). Because each agent (n− l+1) ≤ i ≤ (n−1) still submits
(0, π/l, â, t̂, 0, a′

i, ∗, ∗), in Step 6 of the simulating algorithm, the probability
that the chosen state is |C · · ·CC〉 is still equal to 1. After Rule 3, mi = (â, t̂, 0)
for i = 1, · · · , (n − 1), mn = (ān, t̄n, z̄n). Thus, Rule (6.2) is triggered. Note
that agent n can obtain â in state t̄ if he submits (0, π/l, â, t̂, 0, a′

n, ∗, ∗), hence
it is not profitable for him to deviate and submit another outcome ān with
ān ¹t̄

n â. Therefore, there must be ān ≻t̄
n â.

• Suppose ān ∈ F (t̄n). Since λ
π/2

3 is satisfied, then ān ≻t̂
n â. By Rule (6.2),

G̃(s̃−n, s̄n) = â;
• Suppose ān /∈ F (t̄n), then by Rule (6.2), G̃(s̃−n, s̄n) = â.
Therefore, this unilateral deviation s̄n is not profitable for agent n. By sym-
metry, in state t̄, no agent i among the last l agents can profit by unilaterally
submitting s̄i = (0, π/l, āi, t̄i, z̄i, ∗, ∗, ∗), where (āi, t̄i, z̄i) 6= (â, t̂, 0).

Case 2 : Consider a unilateral deviation s̄n = (θ̄n, φ̄n, â, t̂, 0, a′
n, ∗, ∗), where

(θ̄n, φ̄n) 6= (0, π/l). If l = 2 and (θ̄n, φ̄n) = (0, 0), let j = n − 1, then Rules
2 is triggered. G̃(s̃−n, s̄n) = â. Thus, this deviation is not profitable for agent

11

n. Otherwise, Rule 3 is triggered. According to the proof of Proposition 2 in
Ref. [2], the payoff $n to agent n is given as follows:

$n = $C···CCPC···CC + $C···CDPC···CD + $D···DCPD···DC + $D···DDPD···DD (10)

where PC···CC , PC···CD, PD···DC and PD···DD are the probabilities that the chosen
state is |C · · ·CC〉, |C · · ·CD〉, |D · · ·DC〉, |D · · ·DD〉 respectively:

PC···CC = cos2(θ̄n/2)[1 − sin2(φ̄n − π/l)];

PC···CD = sin2(θ̄n/2) cos2(π/l);

PD···DC = sin2(θ̄n/2) sin2(π/l);

PD···DD = cos2(θ̄n/2) sin2(φ̄n − π/l)

Note that conditions λ
π/2

6 , λ
π/2

7 are satisfied. Since (θi, φi) = (0, 0) for i =
1, · · · , (n − l), and (θi, φi) = (0, π/l) for i = (n − l + 1), · · · , (n − 1), then the
optimal parameters (θ̄n, φ̄n) for the n-th agent are (0, π/l), and the maximum
value of $n is $C···CC = un(â, t̄) (see the proof of Proposition 2 in Ref. [2]).
Note that (θ̄n, φ̄n) 6= (0, π/l), therefore $n < $C···CC = un(â, t̄). By symmetry,
in state t̄, no agent i among the last l agents can profit by unilaterally setting
s̄i = (θ̄i, φ̄i, â, t̂, 0, a′

i, ∗, ∗), where (θ̄i, φ̄i) 6= (0, π/l).

Case 3 : Consider a unilateral deviation s̄′n = (0, 0, ān, t̄n, z̄n, ā
′
n, ∗, ∗), where l =

2, (ān, t̄n, z̄n) 6= (â, t̂, 0). Thus, s̃i = (0, 0, â, t̂, 0, â, t̂, 0) for i = 1, · · · , (n − 2);
s̃n−1 = (0, π/2, â, t̂, 0, a′

n−1, ∗, ∗). Let j = n − 1, then condition (2.1) is sat-

isfied. If â ºt̂
n ān, then Rules 2 is triggered and G̃(s̃−n, s̄

′
n) = â. Otherwise

â ≺t̂
n ān, hence Rule 2 is not triggered. Note that Rule 3 cannot be triggered

either, G̃ enters Rule 4. Let j = n, then Rule (6.1) is triggered. Since â ≺t̂
n ān,

G̃(s̃−n, s̄
′
n) = â. Hence, this deviation is not profitable for agent n.

By symmetry, in state t̄, no agent i among the last l agents can profit by uni-
laterally setting s̄′i = (0, 0, āi, t̄i, z̄i, ā

′
i, ∗, ∗), where l = 2, (āi, t̄i, z̄i) 6= (â, t̂, 0).

Case 4 : Consider a unilateral deviation s̄′n = (θ̄n, φ̄n, ān, t̄n, z̄n, ā
′
n, ∗, ∗), where

[l ≥ 3 or (θ̄n, φ̄n) 6= (0, 0)], (θ̄n, φ̄n) 6= (0, π/l). Thus, Rule 3 is triggered. In Step
6 of the simulating algorithm, when the chosen state is |C · · ·CC〉, |C · · ·CD〉,
|D · · ·DC〉 or |D · · ·DD〉, we denote the corresponding probability is P ′

C···CC ,
P ′

C···CD, P ′
D···DC , P ′

D···DD respectively. In Step 7 of the simulating algorithm,
we denote the corresponding message as m′

i. In the end, we denote the payoff
to the n-th agent is $′C···CC , $′C···CD, $′D···DC , $′D···DD respectively.

As a comparison, we construct a temporal deviation s̄n = (θ̄n, φ̄n, â, t̂, 0, a′
n, ∗, ∗),

where (θ̄n, φ̄n) is the same as above. In Step 6 of the simulating algorithm,
when the chosen state is |C · · ·CC〉, |C · · ·CD〉, |D · · ·DC〉 or |D · · ·DD〉, we
denote the corresponding probability is PC···CC , PC···CD, PD···DC , PD···DD re-
spectively. In Step 7 of the simulating algorithm, we denote the corresponding
message as mi. In the end, we denote the payoff to the n-th agent is $C···CC ,
$C···CD, $D···DC , $D···DD respectively.

12

Since the two deviations s̄′n and s̄n have the same parameters (θ̄n, φ̄n), the
probabilities that the chosen state is |C · · ·CC〉, |C · · ·CD〉, |D · · ·DC〉 or
|D · · ·DD〉 are the same, i.e., P ′

C···CC = PC···CC , P ′
C···CD = PC···CD, P ′

D···DC =
PD···DC , and P ′

D···DD = PD···DD. Therefore, the payoff $′n to agent n for the
deviation s̄′n can be written as follows:

$′n = $′C···CCPC···CC + $′C···CDPC···CD + $′D···DCPD···DC + $′D···DDPD···DD (11)

Now we compare the payoffs to the n-th agent for two deviations s̄′n, s̄n:
1) Suppose the chosen state is |C · · ·CC〉. Then m′

i = mi = (â, t̂, 0) for each
i = 1, · · · , n−1; m′

n = (ān, t̄n, z̄n), mn = (â, t̂, 0). For deviation s̄′n, the outcome
cannot be better than â by Rule 6; for deviation s̄n, the outcome is â by Rule
5. Thus, $′C···CC ≤ $C···CC .
2) Suppose the chosen state is |C · · ·CD〉. Then m′

i = mi = (â, t̂, 0) for each
i = 1, · · · , n − 1; m′

n = (ā′
n, ∗, ∗), mn = (a′

n, ∗, ∗). Since a′
n is top ranked

for agent n in state t̄, then ā′
n ¹t̄

n a′
n for any ā′

n ∈ A. Thus, by Rule 6,
$′C···CD ≤ $C···CD.
3) Suppose the chosen state is |D · · ·DC〉. Then m′

i = mi = (â, t̂, 0) for each
i = 1, · · · , (n − l); m′

i = mi = (a′
i, ∗, ∗) for each i = (n − l + 1), · · · , (n − 1);

m′
n = (ān, t̄n, z̄n), mn = (â, t̂, 0).

For deviation s̄′n, the outcome is uncertain among {â, a′
n−l+1, · · · , a′

n−1, ān};
for deviation s̄n, the outcome is uncertain among {â, a′

n−l+1, · · · , a′
n−1}. Since

λ
π/2

5 is satisfied, $′D···DC ≤ $D···DC .
4) Suppose the chosen state is |D · · ·DD〉. Then m′

i = mi = (â, t̂, 0) for each
i = 1, · · · , (n − l); m′

i = mi = (a′
i, ∗, ∗) for each i = (n − l + 1), · · · , (n − 1);

m′
n = (ā′

n, ∗, ∗), mn = (a′
n, ∗, ∗).

For deviation s̄′n, the outcome is uncertain among {â, a′
n−l+1, · · · , a′

n−1, ā
′
n}; for

deviation s̄n, the outcome is uncertain among {â, a′
n−l+1, · · · , a′

n−1, a
′
n}. Since

a′
n is top ranked for agent n in state t̄, then ā′

n ¹t̄
n a′

n for any ā′
n ∈ A. Thus,

by Rule (6.2), $′D···DD ≤ $D···DD.

As a result, $′n ≤ $n. Following Case 2, there holds $′n < un(â, t̄). Consequently,
this deviation s̄′n is not profitable for agent n. By symmetry, in state t̄, no
agent i among the last l agents can profit by a unilateral deviation s̄′i =
(θ̄′i, φ̄

′
i, āi, t̄i, z̄i, ā

′
i, ∗, ∗), where [l ≥ 3 or (θ̄i, φ̄i) 6= (0, 0)], (θ̄i, φ̄i) 6= (0, π/l).

Since λ
π/2

4 is satisfied, â is top ranked for each agent i among the first (n− l)
agents in state t̄. Thus, no agent i among the first (n− l) agents can profit by
unilaterally changing his s̃i. To sum up, s̃ ∈ N (Γ̃, t̄). Since G̃(s̃) = â /∈ F (t̄), F
is not Nash implementable. ¤

Remark 4: In Ref. [2], the setup of quantum mechanism is constructed by the
agents to combat the designer who claims a bad social choice rule (from the
agents’ perspectives). In this paper, it is up to the designer to choose which
mechanism to work. The designer can freely choose his favorite mechanism

13

between the traditional Maskin’s mechanism Γ and the algorithmic mechanism
Γ̃. Given an SCR F that is monotonic and satisfies no-veto, even if F would not
be Nash implemented by virtue of the algorithmic mechanism Γ̃, the designer
can insist on choosing the Maskin’s mechanism Γ as long as he is willing to
implement F in Nash equilibrium. In this sense, the algorithmic mechanism
has no effect to the designer.

An interesting question arises naturally: by using the algorithmic mechanism
Γ̃, can the designer Nash implement an SCR F which is not Nash imple-
mentable according to the Maskin’s theorem? In the next Section, we will
show a positive answer by constructing an example.

4 Example

Let N = {Apple, Lily, Cindy}, T = {t1, t2, t3}, A = {a1, a2, a3, a4, a5}. In
each state t ∈ T , the preference relations (ºt

i)i∈N over the outcome set A and
two SCRs F , F ′ are given in Table 1. Obviously, F is monotonic and satisfies
no-veto. Thus, by the Maskin’s theorem, F is Nash implementable. Note that
F ′(t2) = {a1} and in going from state t2 to t3, no preference change around a1 is
occurred, but a1 /∈ F ′(t3) = {a5}. Therefore, F ′ does not satisfy monotonicity.
According to the Maskin’s theorem, F ′ cannot be Nash implemented.

Table 1: Consider two SCRs F and F ′ as follows. Although F ′ is Pareto-
efficient to F , F ′ cannot be Nash implemented because it does not satisfy
monotonicity; whereas F can be Nash implemented since it satisfies mono-
tonicity and no-veto.

State t1 State t2 State t3

Apple Lily Cindy Apple Lily Cindy Apple Lily Cindy

a3 a2 a1 a4 a3 a1 a4 a3 a1

a5 a5 a3 a5 a5 a2 a5 a5 a5

a1 a1 a2 a1 a1 a3 a1 a1 a2

a2 a4 a5 a2 a2 a4 a2 a2 a3

a4 a3 a4 a3 a4 a5 a3 a4 a4

F ′(t1) = {a1} F ′(t2) = {a1} F ′(t3) = {a5}
F (t1) = {a1} F (t2) = {a2} F (t3) = {a5}

Note that the difference between F and F ′ occurs in state t2, and every agent
prefers a1 ∈ F ′(t2) to a2 ∈ F (t2). Consequently, F ′ is Pareto superior to F

14

from the agents’ viewpoints. Suppose the designer wishes to maximize the total
social surplus, then he also prefers F ′ to F . However, the Maskin’s theorem
says that it is F instead of F ′ that can be Nash implemented. Can the designer
find a way to break through the Maskin’s theorem and let the Pareto-efficient
SCR F ′ be Nash implementable? Interestingly, we will show that the answer
may be “yes”.

Let t̂ = t1, â = a1 ∈ F (t̂), t̄ = t2, ā = a2 ∈ F (t̄), then â ≻t̄
i ā for every i ∈ N .

Both Apple and Lily encounter a preference change around â in going from
state t̂ to t̄. It can be easily checked that λ

π/2

1 , λ
π/2

2 , λ
π/2

3 and λ
π/2

4 are satisfied,

and l = 2. Suppose λ
π/2

5 is satisfied.

To implement F ′ in Nash equilibrium, the designer can announce an algorith-
mic mechanism Γ̃ = ((S̃i)i∈N , G̃) as follows: The strategy set of each agent i
is Si = [0, π]× [0, π/2]×A×T ×Z+ ×A×T ×Z+; A typical strategy chosen
by agent i is described as s̃i = (θi, φi, ai, ti, zi, a

′
i, t

′
i, z

′
i); The outcome function

G̃(s̃) is just specified in Section 3.3. At first sight, the algorithmic mechanism
Γ̃ seems to be intended to implement F rather than F ′. However, as we will
show soon, in the end it is F ′ that will be Nash implemented.

Let Cindy be the first agent. Consider the strategy profile s̃ = (θ, φ, c),
where θ = (0, 0, 0), φ = (0, π/2, π/2), c = (cCindy, cApple, cLily), cCindy =
((â, t̂, 0), (â, t̂, 0)), cApple = ((â, t̂, 0), (a4, ∗, ∗)), cLily = ((â, t̂, 0), (a3, ∗, ∗)). Sup-
pose uApple(a

4, t2) = 5, uApple(a
1, t2) = 3, uApple(a

3, t2) = 0; uLily(a
3, t2) = 5,

uLily(a
1, t2) = 3, uLily(a

4, t2) = 0.

When the true state is t2, for any agent i ∈ {Apple, Lily}, let her be the
last agent and consider her payoff. Then, $CCC = 3 (the final outcome is a1),
$CCD = 5 (the final outcome is a4 if i = Apple, and a3 if i = Lily), $DDC = 0

(the final outcome is a3 if i = Apple, and a4 if i = Lily). By λ
π/2

5 , $DDD = 0

(the final outcome is uncertain between a3 and a4). Hence, condition λ
π/2

6 and

λ
π/2

7 are satisfied. Similar to the proof of Proposition 7 in Ref. [4], we need to
show by two steps that for all t ∈ T , the set of Nash equilibrium outcomes of
the mechanism Γ̃ coincides with F ′(t), i.e., G̃(N (Γ̃, t)) = F ′(t).

4.1 Step 1: For all t ∈ T , F ′(t) ⊆ G̃(N (Γ̃, t))

4.1.1 The true state is t1

Consider the strategy profile used by the agents, s̃∗i = (0, 0, a1, t1, 0, ∗, ∗, ∗) for
every i ∈ N . First, note that this profile falls under Rule 1 of G̃; then after
Rule 5, G̃(s̃∗) = a1 would be implemented. Now let us check whether in state
t1, there exists some agent j that has an incentive to unilaterally deviate from

15

s̃∗j :

(i) Suppose there exists some agent j ∈ {Apple, Lily} that unilaterally submits
s̃j = (θj, φj, a

1, t1, 0, ∗, ∗, ∗), where (θj, φj) 6= (0, 0). Then, Rule 2 is triggered,
and G̃(s̃∗−j, s̃j) = a1. Therefore, this deviation is not profitable for any agent
j ∈ {Apple, Lily}.

(ii) Suppose there exists some agent j ∈ {Apple, Lily} that unilaterally sub-
mits s̃j = (0, 0, aj, tj, zj, ∗, ∗, ∗), where (aj, tj, zj) 6= (a1, t1, 0). Note that after
Rule 1, agent j could only hope to induce Rule (6.1). But since s̃∗ = (s̃∗i)i∈N

includes a unanimous report of the true state t1, agent j could only change
the outcome if he chose an outcome that he does not prefer to a1. Therefore,
this deviation is not profitable for any agent j ∈ {Apple, Lily}.

(iii) Suppose Apple unilaterally submits s̃Apple = (θApple, φApple, a
3, ∗, ∗, ∗, ∗, ∗),

where (θApple, φApple) 6= (0, 0). Since a3 /∈ F (t) for any t ∈ T , Rule 2 cannot be
triggered. On the other hand, Rule 3 cannot be triggered either. After Rule
4, Rule (6.2) is triggered, G̃(s̃Apple, s̃

∗
Lily, s̃

∗
Cindy) = a1 since a3 /∈ F (t) for any

t ∈ T . Therefore, this deviation is not profitable for Apple.
Suppose Lily unilaterally submits s̃Lily = (θLily, φLily, a

2, tLily, ∗, ∗, ∗, ∗), where
(θLily, φLily) 6= (0, 0). If tLily = t2, since a2 �t2

Apple a1, condition (2.2) is not
satisfied; if tLily 6= t2, then condition (2.1) is not satisfied. Hence, Rule 2 cannot
be triggered. Note that Rule 3 cannot be triggered either. After Rule 4, Rule
(6.2) is triggered. Since a1 ⊁t1

Lily a2, G̃(s̃∗Apple, s̃Lily, s̃
∗
Cindy) = a1. Therefore, this

deviation is not profitable for Lily.

(iv) Suppose Apple unilaterally submits s̃Apple = (θApple, φApple, a
5, tApple, ∗, ∗, ∗, ∗),

where (θApple, φApple) 6= (0, 0). If tApple = t3, since a5 �t3

Cindy a1, condition (2.2)
is not satisfied; if tApple 6= t3, then condition (2.1) is not satisfied. Hence, Rule 2
cannot be triggered. Note that Rule 3 cannot be triggered either. After Rule 4,
Rule (6.2) is triggered. Since a1 ⊁t1

Apple a5, G̃(s̃Apple, s̃
∗
Lily, s̃

∗
Cindy) = a1. There-

fore, this deviation is not profitable for Apple. Similarly, it is not profitable for
Lily to unilaterally submit non-zero (θLily, φLily) and cLily = (a5, ∗, ∗, ∗, ∗, ∗).

It can be easily seen that for any agent j ∈ {Apple, Lily}, any other unilateral
deviation from s̃∗j in state t1 will invoke Rule (6.2) and the outcome cannot
be better than a1. Since a1 is already top ranked for Cindy in state t1, it is
not profitable for Cindy to unilaterally deviate from s̃∗Cindy.

As a result, s̃∗ = (s̃∗i)i∈N ∈ N (Γ̃, t1), and F ′(t1) = {a1} ⊆ G̃(N (Γ̃, t1)).

16

4.1.2 The true state is t2

Consider the following strategy profile used by the agents,

s̃∗Apple = (0, π/2, a1, t1, 0, a4, ∗, ∗),
s̃∗Lily = (0, π/2, a1, t1, 0, a3, ∗, ∗),
s̃∗Cindy = (0, 0, a1, t1, 0, a1, t1, 0)

First, note that this profile falls under Rule 3 of G̃. Since condition λπ/2 is
satisfied, after Rule 3 the designer will get mi = (a1, t1, 0) for each i ∈ N ; and
G̃(s̃∗) = a1 would be implemented after Rule 5. Now let us check whether in
state t2, there exists some agent j that has an incentive to unilaterally deviate
from s̃∗j :

(i) Suppose Apple unilaterally submits s̃Apple = (0, 0, a1, t1, 0, a4, ∗, ∗). Let j =
Lily, aj = a1, tj = t1. Note that for each i 6= j, (θi, φi) = (0, 0); for each i ∈ N ,
ai = a1, so a1 ºt1

i ai. Hence, Rule 2 is triggered, and G̃(s̃Apple, s̃
∗
Lily, s̃

∗
Cindy) =

a1. Obviously, this deviation is not profitable for Apple. Similarly, it is not
profitable for Lily to unilaterally submit (0, 0, a1, t1, 0, a3, ∗, ∗).

(ii) Suppose Apple unilaterally submits s̃Apple = (0, 0, a4, ∗, ∗, ∗, ∗, ∗). Let j =
Lily, aj = a1, tj = t1. Note that for each i 6= j, (θi, φi) = (0, 0); a1 ºt1

Apple a4,

a1 ºt1

Lily a1, a1 ºt1

Cindy a1. Hence, Rule 2 is triggered and G̃(s̃Apple, s̃
∗
Lily, s̃

∗
Cindy) =

a1. Thus, this deviation is not profitable for Apple. Similarly, it is not profitable
for Lily to unilaterally submit (0, 0, a3, ∗, ∗, ∗, ∗, ∗).

(iii) Suppose Apple unilaterally submits s̃Apple = (0, 0, a5, ∗, ∗, ∗, ∗, ∗). Let j =
Lily, aj = a1, tj = t1. Since a1 �t1

Apple a5, condition (2.2) is not satisfied. Note
that Rule 3 cannot be triggered either. After Rule 4, Rule 6 is triggered. Now
j = Apple, aj = a5, a = a1, t = t1. Since (θApple, φApple) = (0, 0), Rule (6.1) is
triggered. Since a1 ⊁t1

Apple a5, G̃(s̃Apple, s̃
∗
Lily, s̃

∗
Cindy) = a1. Thus, this deviation

is not profitable for Apple. Similarly, it is not profitable for Lily to unilaterally
submit (0, 0, a5, ∗, ∗, ∗, ∗, ∗).

(iv) Suppose Apple unilaterally submits s̃Apple = (0, π/2, a4, ∗, ∗, ∗, ∗, ∗). Then,
Rule 4 is triggered. After Rule 4, mApple = (a4, ∗, ∗), mLily = mCindy =
(a1, t1, 0). Since (θApple, φApple) = (0, π/2), Rule (6.2) is triggered. Since a4 /∈
F (t) for any t ∈ T , G̃(s̃Apple, s̃

∗
Lily, s̃

∗
Cindy) = a1. Thus, this deviation is not

profitable for Apple. Similarly, it is not profitable for Lily to unilaterally sub-
mit (0, π/2, a3, ∗, ∗, ∗, ∗, ∗).

(v) Suppose Apple unilaterally submits s̃Apple = (0, π/2, a5, ∗, ∗, ∗, ∗, ∗). Then,
Rule 4 is triggered. After Rule 4, mApple = (a5, ∗, ∗), mLily = mCindy =
(a1, t1, 0). Since (θApple, φApple) = (0, π/2), Rule (6.2) is triggered. Since a1 ⊁t1

Apple

a5, by Rule (6.2) G̃(s̃Apple, s̃
∗
Lily, s̃

∗
Cindy) = a1. Thus, this deviation is not prof-

17

itable for Apple. Similarly, it is not profitable for Lily to unilaterally submit
(0, π/2, a5, ∗, ∗, ∗, ∗, ∗).

(vi) Suppose Apple unilaterally sets s̃Apple = (θApple, φApple, a
1, t1, 0, a4, ∗, ∗),

where (θApple, φApple) 6= (0, 0), (θApple, φApple) 6= (0, π/2). Thus, Rule 3 is trig-
gered. Since cApple is not changed, then the payoffs $CCC , $CCD, $DDC and
$DDD to Apple remain unchanged. According to the proof of Proposition 1,
the optimal value of (θApple, φApple) is (0, π/2). Put differently, for any arbi-
trary (θApple, φApple) 6= (0, π/2), $Apple < $CCC = uApple(a

1, t2). Thus, this devi-
ation is not profitable for Apple. Similarly, it is not profitable for Lily to uni-
laterally set s̃Lily = (θLily, φLily, a

1, t1, 0, a3, ∗, ∗), where (θLily, φLily) 6= (0, 0),
(θLily, φLily) 6= (0, π/2).

(vii) Suppose Apple unilaterally sets s̃Apple = (θApple, φApple, a
1, t1, 0, a5, ∗, ∗),

where (θApple, φApple) 6= (0, 0), (θApple, φApple) 6= (0, π/2). Thus, Rule 3 is trig-
gered. It can be seen easily that $CCC and $DDC to Apple remain unchanged
by this deviation. Consider the payoff $CCD to Apple, then the corresponding
chosen state is |CCD〉. Thus, mApple = (a5, ∗, ∗), mLily = mCindy = (a1, t1, 0).
Since (θApple, φApple) 6= (0, 0), Rule (6.2) is triggered. Because a1 ⊁t1

Apple a5, the
outcome is still a1. Hence, the payoff $CCD to Apple is not changed by this
deviation.

Consider the payoff $DDD to Apple, then the corresponding chosen state is
|DDD〉. Thus, mApple = (a5, ∗, ∗), mLily = (a3, ∗, ∗), mCindy = (a1, t1, 0). The
outcome is uncertain among a set of outcomes {a1, a3, a5}. Note that for s̃∗ =
(s̃∗i)i∈N , the outcome is uncertain among a set of outcomes {a1, a3, a4}. By

condition λ
π/2

5 , the payoff $DDD to Apple remains unchanged.

Thus, conditions λ
π/2

6 and λ
π/2

7 still hold. According to the proof of Proposition
1, the optimal parameters (θApple, φApple) is (0, π/2). Put differently, for any
arbitrary (θApple, φApple) 6= (0, π/2), $Apple < $CCC = uApple(a

1, t2). Therefore,
this deviation is not profitable for Apple. Similarly, it is not profitable for Lily
to unilaterally set s̃Lily = (θLily, φLily, a

1, t1, 0, a5, ∗, ∗), where (θLily, φLily) 6=
(0, 0), (θLily, φLily) 6= (0, π/2).

(viii) Suppose Apple unilaterally sets s̃Apple = (θApple, φApple, aj, tj, zj, ∗, ∗, ∗),
where (θApple, φApple) 6= (0, 0), (aj, tj, zj) 6= (a1, t1, 0). Thus, Rule 4 is trig-
gered. After then, Rule (6.2) is triggered. Consider the payoff $CCC and $CCD

to Apple, since Apple can only obtain an outcome not better than a1 by Rule
(6.2), the payoff $CCC and $CCD to Apple cannot be increased by this devia-
tion.

Consider the payoff $DDC and $DDD to Apple, no matter whether the chosen
state is |DDC〉 or |DDD〉, mLily = (a3, ∗, ∗), mCindy = (a1, ∗, ∗). Since a3 is

the worst outcome for Apple in state t2, by λ
π/2

5 , the payoff $DDC and $DDD to

18

Apple remain unchanged by this deviation. According to Case 3 in the proof
of Proposition 1, this deviation is not profitable for Apple. Similarly, it is
not profitable for Lily to unilaterally set s̃Lily = (θLily, φLily, aj, tj, zj, ∗, ∗, ∗),
where (θLily, φLily) 6= (0, 0), (aj, tj, zj) 6= (a1, t1, 0).

It can be seen that for agent Apple, any other unilateral deviation from s̃∗Apple

in state t2 cannot make Apple obtain more payoffs. Similarly, for agent Lily,
there is no unilateral profitable deviation from s̃∗Lily in state t2. Since a1 is
already top ranked for Cindy, it is not profitable for Cindy to unilaterally
deviate from s̃∗Cindy in state t2. As a result, s̃∗ = (s̃∗i)i∈N ∈ N (Γ̃, t2), and

F ′(t2) = {a1} ⊆ G̃(N (Γ̃, t2)).

4.1.3 The true state is t3

Consider the strategy profile used by the agents, s̃∗i = (0, 0, a5, t3, 0, ∗, ∗, ∗) for
every i ∈ N . First, note that this profile falls under Rule 1 of G̃; then after
Rule 5, G̃(s̃∗) = a5 would be implemented. Now let us check whether in state
t3, there exists some agent j that has an incentive to unilaterally deviate from
s̃∗j :

(i) Suppose there exists some agent j ∈ N that unilaterally submits s̃j =
(θj, φj, a

5, t3, 0, ∗, ∗, ∗), where (θj, φj) 6= (0, 0). Then, Rule 2 is triggered, and
G̃(s̃∗−j, s̃j) = a5. Therefore, this deviation is not profitable for any agent j ∈ N .

(ii) Suppose there exists some agent j ∈ N that unilaterally submits s̃j =
(0, 0, aj, tj, zj, ∗, ∗, ∗), where (aj, tj, zj) 6= (a5, t3, 0). Note that after Rule 1,
agent j could only hope to induce Rule (6.1). But since s̃∗ = (s̃∗i)i∈N includes
a unanimous report of the true state t3, agent j could only change the outcome
if he chose an outcome that he does not prefer to a5. Therefore, this deviation
is not profitable for any agent j ∈ N .

(iii) Suppose Apple unilaterally submits s̃Apple = (θApple, φApple, a
4, ∗, ∗, ∗, ∗, ∗),

where (θApple, φApple) 6= (0, 0). Since a4 /∈ F (t) for any t ∈ T , Rule 2 cannot
be triggered. Note that Rule 3 cannot be triggered either. After Rule 4, Rule
(6.2) is triggered. Since a4 /∈ F (t) for any t ∈ T , G̃(s̃Apple, s̃

∗
Lily, s̃

∗
Cindy) = a5.

Therefore, this deviation is not profitable for Apple.

Suppose Lily unilaterally submits s̃Lily = (θLily, φLily, a
3, ∗, ∗, ∗, ∗, ∗), where

(θLily, φLily) 6= (0, 0). Since a3 /∈ F (t) for any t ∈ T , Rule 2 cannot be trig-
gered. Note that Rule 3 cannot be triggered either. After Rule 4, Rule (6.2) is
triggered. Since a3 /∈ F (t) for any t ∈ T , G̃(s̃∗Apple, s̃Lily, s̃

∗
Cindy) = a5. There-

fore, this deviation is not profitable for Lily.

Suppose Cindy unilaterally submits s̃Cindy = (θCindy, φCindy, a
1, tCindy, ∗, ∗, ∗, ∗),

where (θCindy, φCindy) 6= (0, 0). If tCindy = t1, since a1 �t1

Apple a5, condition (2.2)

19

is not satisfied; if tCindy 6= t1, then condition (2.1) is not satisfied. Hence, Rule
2 is not triggered. Note that Rule 3 cannot be triggered either. After Rule 4,
Rule (6.2) is triggered. Since a5 ⊁t3

Cindy a1, G̃(s̃∗Apple, s̃
∗
Lily, s̃Cindy) = a5. Hence,

this deviation is not profitable for Cindy.

It can be easily seen that for any agent j ∈ N , any other unilateral deviation
from s̃∗j in state t3 will invoke Rule (6.2) and the outcome cannot be better than

a5. As a result, s̃∗ = (s̃∗i)i∈N ∈ N (Γ̃, t3), and F ′(t3) = {a5} ⊆ G̃(N (Γ̃, t3)).

4.2 Step 2: For all t ∈ T , G̃(N (Γ̃, t)) ⊆ F ′(t)

Given any state t ∈ T , let s̃ ∈ N (Γ̃, t) and let a be the corresponding outcome
according to G̃. Suppose that a is a result of either Rule 6 or 7, then there
exists j ∈ N such that every k 6= j can increase his payoff by choosing two
high enough integers zk and z′k. Therefore, a must be top ranked for at least
(n − 1) agents. However, it can be seen from Table 1 that no outcome is top
ranked for at least (n − 1) agents in any state t ∈ T . Therefore, the Nash
equilibrium outcome of Γ̃ cannot be yielded by Rule 6 or 7.

Lemma 1: a is not a result of Rule 2.
Proof : Suppose a is a result of Rule 2, then there exists one agent j that
submits non-zero (θj, φj) with aj ∈ F (tj); for each agent i 6= j, (θi, φi) = (0, 0);

for each agent i ∈ N , aj ºtj
i ai. Now let us check whether there exists some

agent k 6= j who can profit by unilaterally setting (θk, φk) 6= (0, 0) and two
large enough integers zk > 0, z′k > 0.

First, note that by this deviation, Rule 2 cannot be triggered because (θj, φj) 6=
(0, 0), (θk, φk) 6= (0, 0); and Rule 3 cannot be triggered because zk > 0. Hence,
Rule 4 is triggered. After Rule 4, suppose Rule 6 can be triggered when some
agent k 6= j deviates. Since zk > 0, then for every agent i 6= k, there must
be mi = (aj, tj, 0) and aj ∈ F (tj). Consequently, aj should be top ranked for
every agent i 6= k. Otherwise, by using Rule 7, any agent i′ (i′ 6= k, i′ 6= j)
can invoke his top ranked outcome by submitting two high enough integers
zi′ and z′i′ . However, for the case of Table 1, there is no outcome that is top
ranked for (n − 1) agents in any state. Therefore, Rule 6 cannot be triggered
when some agent k 6= j deviates.

We are left with Rule 7. Note that when any agent k 6= j deviates, according to
Rule 7, he can invoke his top ranked outcome by submitting two large enough
integers zk and z′k. Hence, in order to let a be a Nash equilibrium outcome of
Rule 2, a must be top ranked for at least (n−1) agents. However, for the case
of Table 1, no outcome can be top ranked for at least (n − 1) agents in any
state. As a result, a cannot be a result of Rule 2. ¤

20

Finally we are left with a being a result of Rule 5, then there is a unanimous
m = (a, t, 0) with a ∈ F (t). Consider the following three cases:

4.2.1 The true state is t1

As we have seen in Section 4.1.1, one Nash equilibrium strategy for every agent
i is the unanimous report s̃∗i = (0, 0, a1, t1, 0, ∗, ∗, ∗), and the Nash equilibrium
outcome is a1.

Suppose there is another Nash equilibrium strategy s̄ = (s̄i)i∈N which yields
a unanimous m̄ = (ā, t̄, 0) with ā ∈ F (t̄), ā 6= a1. Then for each agent
i ∈ N , there are two cases about s̄i: s̄i = (θ̄i, φ̄i, ā, t̄, 0, ā′

i, t̄
′
i, z̄

′
i), or s̄i =

(θ̄i, φ̄i, āi, t̄i, z̄i, ā, t̄, 0).

Because F is monotonic, in going from state t̄ to t1, a preference change around
ā must have occurred, i.e., there exists i ∈ N and b ∈ A, such that ā ºt̄

i b,
and b ≻t1

i ā. Therefore, agent i can profit by the following unilateral deviation
from s̄i: for the former case of s̄i, agent i sends (θ̄i, φ̄i, b, ∗, ∗, ā′

i, t̄
′
i, z̄

′
i); for the

latter case of s̄i, agent i sends (θ̄i, φ̄i, āi, t̄i, z̄i, b, ∗, ∗). By doing so, the outcome
b would be implemented by Rule (6.1) and agent i profits from this deviation.
Thereby contradicting s̄ = (s̄i)i∈N is a Nash equilibrium.

As a result, s̃∗ = (s̃∗i)i∈N , where s̃∗i = (0, 0, a1, t1, 0, ∗, ∗, ∗), is the unique Nash
equilibrium in state t1. G̃(N (Γ̃, t1)) = {a1} ⊆ F ′(t1).

4.2.2 The true state is t2

As we have seen in Section 4.1.2, there is one Nash equilibrium yielded by
Rules 3 and 5. Note that in Rule 5, a unanimous m = (a, t, 0) with a ∈ F (t)
may come from Rule 1, 3 or 4.

Suppose a comes from Rules 4 and 5, then for each i ∈ N , s̄i = (θ̄i, φ̄i, a, t, 0, ∗, ∗, ∗).
Note that Rule 3 should not be triggered before Rule 4. Since card(i, 0) =
(a, t, 0) for each i ∈ N , then there exists only one agent j such that (θ̄j, φ̄j) 6=
(0, 0), and (θ̄i, φ̄i) = (0, 0) for every i 6= j. Since there is a unanimous
m = (a, t, 0) with a ∈ F (t), condition (2.1) is satisfied. Because Rule 2 should
not be triggered before Rule 3, condition (2.2) should not be satisfied. There-
fore, there must exist some k ∈ N such that aj �tj

k ak. Note that ai = a, ti = t
for every i ∈ N . Then, a �t

k a. This contradiction shows that a cannot come
from Rules 4 and 5.

Let us check whether in state t2, there is another unanimous m = (a, t, 0) with
a ∈ F (t) come from Rules 1 and 5. There are three possible options:

21

(i) Suppose every agent i submits a unanimous report (0, 0, a2, t2, 0, ∗, ∗, ∗).
Thus, Rule 1 would be triggered and mi = (a, t, 0) = (a2, t2, 0) (i ∈ N). The
outcome would be a2 yielded by Rule 5. However, Apple has an incentive
to unilaterally deviate and submit (0, π/2, a5, t3, 0, ∗, ∗, ∗). Let j = Apple,
aj = a5, tj = t3. Note that for each i 6= Apple, (θi, φi) = (0, 0), ai = a2;
for each i ∈ N , a5 ºt3

i ai. Thus, Rule 2 would be triggered and a profitable
outcome a5 for Apple would be implemented. Similarly, Lily has an incentive to
unilaterally deviate and submit (0, π/2, a5, t3, 0, ∗, ∗, ∗). Consequently, in state
t2, the unanimous report (0, 0, a2, t2, 0, ∗, ∗, ∗) cannot be a Nash equilibrium.

(ii) Suppose every agent i submits a unanimous report (0, 0, a1, t1, 0, ∗, ∗, ∗).
Thus, Rule 1 would be triggered and mi = (a, t, 0) = (a1, t1, 0) (i ∈ N).
The outcome would be a1 yielded by Rule 5. However, in going from state
t1 to t2, a preference change around a1 occurs for Apple, i.e., a1 ≻t1

Apple a4,

and a4 ≻t2

Apple a1. Thus, Apple has an incentive to unilaterally deviate and
submit (0, 0, a4, ∗, ∗, ∗, ∗, ∗). After Rule 1, let j = Apple, aj = a4, a = a1,
t = t1. Since a1 ≻t1

Apple a4, a profitable outcome a4 for Apple would be im-
plemented by Rule (6.1). Similarly, Lily has an incentive to unilaterally devi-
ate and submit (0, 0, a3, ∗, ∗, ∗, ∗, ∗). Thus, in state t2, the unanimous report
(0, 0, a1, t1, 0, ∗, ∗, ∗) cannot be a Nash equilibrium.

(iii) Suppose every agent i submits a unanimous report (0, 0, a5, t3, 0, ∗, ∗, ∗).
Thus, Rule 1 would be triggered and mi = (a, t, 0) = (a5, t3, 0) (i ∈ N). The
outcome would be a5 yielded by Rule 5. However, in going from state t3 to
t2, a preference change around a5 occurs for Cindy, i.e., a5 ≻t3

Cindy a2, and

a2 ≻t2

Cindy a5. Thus, Cindy has an incentive to unilaterally deviate and submit
(0, 0, a2, ∗, ∗, ∗, ∗, ∗). After Rule 1, let j = Cindy, aj = a2, a = a5, t = t3.
Since a5 ≻t3

Cindy a2, a profitable outcome a2 for Cindy would be implemented
by Rule (6.1). Thus, in state t2, the unanimous report (0, 0, a5, t3, 0, ∗, ∗, ∗)
cannot be a Nash equilibrium.

As a result, in state t2, there is no Nash equilibrium come from Rules 1
and 5. Put differently, any Nash equilibrium must come from Rules 3 and
5 in state t2. According to Section 4.1.2, in state t2, the unique Nash equi-
librium is s̃∗ = (s̃∗Apple, s̃

∗
Lily, s̃

∗
Cindy), where s̃∗Apple = (0, π/2, a1, t1, 0, a4, ∗, ∗),

s̃∗Lily = (0, π/2, a1, t1, 0, a3, ∗, ∗), s̃∗Cindy = (0, 0, a1, t1, 0, a1, t1, 0). Consequently,

G̃(N (Γ̃, t2)) = {a1} ⊆ F ′(t2).

4.2.3 The true state is t3

As we have seen in Section 4.1.3, one Nash equilibrium strategy for every agent
i is the unanimous report s̃∗i = (0, 0, a5, t3, 0, ∗, ∗, ∗), and the Nash equilibrium
outcome is a5.

22

Suppose there is another Nash equilibrium strategy s̄ = (s̄i)i∈N which yields a
unanimous m̄ = (ā, t̄, 0) with ā ∈ F (t̄), ā 6= a5. Then for each i ∈ N , there are
two cases about s̄i: s̄i = (θ̄i, φ̄i, ā, t̄, 0, ā′

i, t̄
′
i, z̄

′
i), or s̄i = (θ̄i, φ̄i, āi, t̄i, z̄i, ā, t̄, 0).

Because F is monotonic, in going from state t̄ to t3, a preference change around
ā must have occurred, i.e., there exists i ∈ N and b ∈ A, such that ā ºt̄

i b,
and b ≻t3

i ā. Therefore, agent i can profit by the following unilateral deviation
from s̄i: for the former case of s̄i, agent i sends (θ̄i, φ̄i, b, ∗, ∗, ā′

i, t̄
′
i, z̄

′
i); for the

latter case of s̄i, agent i sends (θ̄i, φ̄i, āi, t̄i, z̄i, b, ∗, ∗). By doing so, the outcome
b would be implemented by Rule (6.1) and agent i profits from this deviation.
Thereby contradicting s̄ = (s̄i)i∈N is a Nash equilibrium.

As a result, s̃∗ = (s̃∗i)i∈N , s̃∗i = (0, 0, a5, t3, 0, ∗, ∗, ∗), is the unique Nash equi-
librium in state t3. G̃(N (Γ̃, t3)) = {a5} ⊆ F ′(t3).

To sum up, for all t ∈ T , G̃(N (Γ̃, t)) = F ′(t). Although the Pareto-efficient
SCR F ′ is not monotonic, the designer can implement it in Nash equilibrium
by using the algorithmic mechanism Γ̃ if condition λπ/2 is satisfied.

5 Conclusions

In this paper, we propose an algorithmic mechanism to go beyond the obstacle
of how to realize the quantum mechanism. It should be noted that the intro-
duction of complex numbers is a novel idea to the theory of mechanism design.
To the best of our knowledge, up to now there is no similar work before. Since
the algorithmic mechanism works in the macro world, the Maskin’s theorem
are amended immediately in the macro world.

Furthermore, we propose that by using the algorithmic mechanism, a Pareto-
efficient social choice rule that is not monotonic may be Nash implemented.
This result is positive not only to the agents, but also to the designer if the
designer wishes to maximize the total social surplus. Since the Maskin’s mech-
anism has been widely applied to many disciplines, there are many works to
do in the future to generalize the algorithmic mechanism further.

Acknowledgments

The author is very grateful to Ms. Fang Chen, Hanyue Wu (Apple), Hanxing
Wu (Lily) and Hanchen Wu (Cindy) for their great support.

23

References

[1] E. Maskin, Nash equilibrium and welfare optimality, Rev. Econom. Stud. 66

(1999) 23-38.

[2] H. Wu, Quantum mechanism helps agents combat “bad” social choice rules.
International Journal of Quantum Information 9 (2011) 615-623.
http://arxiv.org/abs/1002.4294

[3] T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J.L. O’Brien,
Quantum computers, Nature, 464 (2010) 45-53.

[4] R. Serrano, The theory of implementation of social choice rules, SIAM Review

46 (2004) 377-414.

24

start_time = cputime

% n: the number of agents. In Table 1, there are 3 agents: Apple, Lily, Cindy
n=3;

% : the coefficient of entanglement. It is simply set to its maximum .
gamma=pi/2;

% Defining the array of and .
theta=zeros(n,1);
phi=zeros(n,1);

% Reading Apple’s parameters. For example,
theta(1)=0;
phi(1)=pi/2;

% Reading Lily’s parameters. For example,
theta(2)=0;
phi(2)=pi/2;

% Reading Cindy’s parameters. For example,
theta(3)=0;
phi(3)=0;

���������
�� πωω == �

���������
�� πωω == �

��������
	 ωω == �

�
θ ��

�
���� �=φ

��
�	����
��������������������� ���

�

θ ��
�

���� �=φ

��πγ

���������	��
��
���

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents the local operation of agent 1. (See Eq 7)
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing
for agent=2 : n

% B varies from to
B(1,1)=exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2)=i*sin(theta(agent)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C=zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

�
�ω

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
�ω

�
ω�

25

���������	��
��
��������������������������������

% Computing
psi2=zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row)=A(row,1)*cos(gamma/2)+A(row,2)*i*sin(gamma/2);
end

% Computing
psi3=zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row)=cos(gamma/2)*psi2(row) - i*sin(gamma/2)*psi2(power(2,n)-row+1);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

��
� ψψ += �

����
�

�� ������ ��� ωωωψ ⊗⊗⊗=

�� ψψ

�ψ �ψ �� ψψ

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
% ‘0’ stands for , ‘1’ stands for
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of messages for all agents
message=cell(n,1);

% For each agent , the algorithm generates the message
for index=1 : n - sizeofindexstr(2)

message{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)
 if indexstr(index)=='0' % Note: ‘0’ stands for

message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',0)');
else

message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',1)');
end

end

% The algorithm sends messages to the designer
for index=1:n

disp(message(index));
end

end_time = cputime;
runtime=end_time – start_time

�
��� ∈

�
��� ��� �� �

����	�	
���	
��������	���	��������																								�
�
��� ��� �� �

� �

�

26

