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Abstract

Persistence of shocks to macroeconomic time series may differ depending on the sign
or on whether a threshold value is crossed. For example, positive shocks to gross domestic
product may be more persistent than negative shocks. Threshold (or asymmetric) moving
average (TMA) models, by explicitly taking into account threshold behavior, can help dis-
criminate whether there exists persistence asymmetry. Recently, building on the works of
Wecker (1981, JASA, 76(373)) and De Gooijer (1998, JTSA, 19(1)) among others, Guay
and Scaillet (2003, JBES, 21(1)) proposed TMA model in which both contemporaneous
and lagged asymmetric effects are present and provided indirect inference framework for
estimation and testing. This paper builds on their work and examines the properties of ef-
ficient method of moments (EMM) estimation of TMA class of models using Monte Carlo
simulation experiments. The model is also applied to analyze the persistence properties
of shocks in Turkish business cycles.
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1 Introduction

Recent years have witnessed a growing interest in nonlinear modeling of economic vari-
ables. Much effort has been devoted to nonlinear extensions of basic autoregressive in-
tegrated moving average (ARIMA) models. In general, most popular class of nonlinear
models have an extension in the form thresholds or state-dependency on the AR part
(e.g., Tsay (1989), Terasvirta (1994), Hamilton (1989)). These models have been rela-
tively successful in describing asymmetries in macroeconomic variables such as real GNP
growth rate. However, relatively little attention has been given to asymmetric/threshold
moving average (MA) models. Asymmetric MA models can be useful when an economic
variable responds to past and present shocks in a different manner based on the shock’s
properties.

Among the first contributions to the literature, Wecker (1981) proposed an asymmetric
moving average (asMA(q)) model in which time series respond to positive and negative
shocks with different rules. Brännäs & DeGooijer (1994) extended Wecker’s model by in-
cluding autoregressive dynamics in asMA(q) model (ARasMA(p,q) model) and examined
the US GNP growth rate. Zakoian (1994) proposed a threshold conditional heteroskedas-
ticity model by modifying Engle’s ARCH model to reflect differing effects of lagged shocks
on volatility. Motivated by the observation that conditional mean and conditional volatil-
ity dynamics of most financial return series respond to past shocks in an asymmetric
way, Brännäs & DeGooijer (2004) proposed modeling daily stock returns using a model
in which conditional mean dynamics follow an asMA(q) model and conditional variance
follows an asymmetric quadratic generalized autoregressive conditional heteroskedasticity
(asQGARCH) model. DeGooijer (1998) proposed self-exciting threshold moving average
model (SETMA) in which threshold effect depends on an observed variable. El-Babsiri &
Zakoian (2001) introduced contemporaneous asymmetry in conditional volatility models.
Guay & Scaillet (2003) modified basic asymmetric MA(q) model of Wecker in two ways:
they allowed for contemporaneous effects of shocks to differ and they did not impose a
priori value for the threshold parameter. Since the existence of asymmetric contempora-
neous effects prevents direct estimation using Maximum Likelihood (ML) they proposed
using simulation based indirect inference (II) of Gourieroux, Monfort & Renault (1993)
and Smith (1993) to estimate the parameters of threshold MA model and suggested a
testing framework.

This paper follows Guay & Scaillet (2003) and considers estimation of threshold MA
models in which contemporaneous shocks are also allowed to be asymmetric. The estima-
tion of the parameters is carried out using Efficient Method of Moments (EMM) of Gallant
& Tauchen (1996). In both II and EMM, it is assumed that endogenous variables of a
structural model can be summarized by a so-called auxiliary or instrumental model whose
estimation is relatively easier as compared to the structural model. In the II method,
artificial observations are simulated from the structural model and the parameters of the
auxiliary model are estimated. Then, parameter estimates from the simulated data are
matched to their counterparts in the observed data using a quadratic, GMM-type objec-
tive function. Because the data is simulated for each trial parameter vector of structural
model during the minimization algorithm, the II method can be very computationally
burdensome. Instead of matching parameter estimates from artificial and observed data,
EMM method relies on evaluating the scores of auxiliary model at the structural parame-
ter vector. Auxiliary model is estimated once with the observed data and evaluated with
the simulated data at a trial structural parameter vector. At the true structural parameter
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vector the expectations of the scores should be zero. Evidently, if the auxiliary model are
the same II and EMM methods are asymptotically equivalent. One can also use simulated
method of moments (SMM) suggested by McFadden (1989) and Lee & Ingram (1991). In
fact, EMM and SMM are special cases of II (Fackler & Tastan (2009), Guay & Scaillet
(2003)).

Under the null hypothesis of symmetric contemporaneous shock effects the model
reduces to an asymmetric MA model in which only lagged shocks have differing effects
(such as Wecker’s asMA(q) model with threshold value of zero). If this test indicates that
contemporaneous shock has symmetric effects then one can still use ML estimation and
conduct classical testing procedures. In this paper we propose to carry out this test using
LR-type tests within the EMM framework. If only asymmetric lagged effects are relevant
then an appropriate asymmetric model can be chosen following the framework suggested
by Brännäs & DeGooijer (1994).

General framework is applied to the problem of determining whether negative and pos-
itive shocks to measures of economic activity have different degrees of persistence. This
issue has been investigated by Beaudry & Koop (1993), Brännäs & DeGooijer (1994) and
Guay & Scaillet (2003) who found that shocks to US GNP growth series have asymmetric
effects. Gonzalo & Martinez (2006) also provided evidence in favor of small shocks being
transitory. Elwood (1998), on the other hand, argued that there is no difference in persis-
tence between negative and positive shocks for both US GNP and industrial production
index series. In this paper, we apply our framework to Turkish real GDP and industrial
production index data for the post-1980 period.

The outline of this paper is as follows. Next section describes the basic properties
of threshold MA models with contemporaneous shock asymmetry. Section 3 discusses
the details of the EMM estimation. A set of Monte Carlo experiments designed to asses
the properties of EMM estimation and testing strategy is discussed in Section 4. The
framework is applied to the disentanglement of the persistence of negative and positive
shocks to Turkish real GDP and industrial production index growth rates. Section 6
provides concluding remarks.

2 Threshold Moving Average Models

The simplest asymmetric moving average model is a first order MA model in which the ef-
fects of lagged positive and negative shocks are different. This model and its generalization
to asMA(q) was proposed by Wecker (1981)

yt = ǫt + β+1 ǫ
+
t−1 + β−1 ǫ

−
t−1, ǫt ∼ iid N(0, σ2) (1)

with
ǫ+t−1 = ǫt−1 11(ǫt−1>0)

ǫ−t−1 = ǫt−1 11(ǫt−≤0)

An asMA(q) model and its extension to ARasMA(p,q) (see Brännäs & DeGooijer (1994))
can easily be estimated using maximum likelihood method. The model nests the linear
ARMA(p,q) specification enabling the application of classical tests in the ML framework
(for example Wecker proposed a likelihood ratio (LR) test statistic). Since the model
applies different filters to positive and negative shocks it can be especially useful to examine
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persistence properties of shocks. Lasting effects of positive and negative shocks will be
given by the sums of respective parameter estimates.

The existence of asymmetric contemporaneous effects may effect the degree of the
persistence of shocks. Therefore, one needs to take into account the effects of current
shocks in computing persistence. This can be done in the framework of Guay & Scaillet
(2003) who proposed the following threshold moving average model with contemporaneous
shock asymmetry:

yt = β+(L)ǫ+t + β−(L)ǫ−t (2)

where
ǫ+t = ǫt 11(ǫt>γ)

ǫ−t = ǫt 11(ǫt≤γ)

and
ǫt ∼ iid N(0, σ2)

11(A) is the indicator function that equals 1 if the event A is correct and 0 otherwise. γ is the
threshold parameter. The polynomial terms include current as well as lagged asymmetric
affects:

β+(L) = β+0 + β+1 L+ . . .+ β+q L
q

β−(L) = β−0 + β−1 L+ . . .+ β−q L
q

For example a TMA(1) model is written as

yt = β+0 ǫ
+
t + β−0 ǫ

−
t + β+1 ǫ

+
t−1 + β−1 ǫ

−
t−1 (3)

Guay & Scaillet (2003) studied properties of TMA models in some detail. For the case
where threshold is γ = 0 moments and cross-moments of random variables ǫt, ǫ

+
t , ǫ

−
t are

given by

E(ǫ+t ) =
σ√
2π

E(ǫ−t ) = − σ√
2π

E(ǫ2t ) = σ2

E(ǫt−iǫ
+
t−j) = E(ǫt−iǫ

−
t−j) =

{

σ2

2 , if i = j;
0, for i 6= j.

E(ǫ+t−iǫ
+
t−j) = E(ǫ−t−iǫ

−
t−j) =

{

σ2

2 , if i = j;
σ2

2π , for i 6= j.

E(ǫ+t−iǫ
−
t−j) = E(ǫ−t−iǫ

+
t−j) =

{

0, if i = j;

−σ2

2π , for i 6= j.

for i, j ≥ 0. Using these one can find the unconditional moments of yt. The mean of the
process in general will not be zero.

µ = E(yt) =
[

(β+0 + β+1 )− (β−0 + β−1 )
] σ√

2π
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Second moment is given by

E(y2t ) =
(

β+
2

0 + β−
2

0 + β+
2

1 + β−
2

1

) σ2

2
+
(

β+0 β
+
1 + β−0 β

−
1 − β+0 β

−
1 − β−0 β

+
1

) σ2

π

Using this unconditional variance is written as

γ0 = E(y2t )− µ2

=
(

β+
2

0 + β−
2

0 + β+
2

1 + β−
2

1

) (π − 1)

2π
σ2 +

(

β+0 β
−
0 + β+1 β

−
1

) σ2

π

First autocovariance is given by

E(ytyt−1) =
(

β+
2

0 + β−
2

0 + β+
2

1 + β−
2

1 + β+0 β
+
1 + β−0 β

−
1 − β+0 β

−
1 − β−0 β

+
1

) σ2

2π

+
(

β+0 β
+
1 + β−0 β

−
1

) σ2

2
−
(

β+0 β
−
0 + β+1 β

−
1

) σ2

π

γ1 = E(ytyt−1)− µ2

=
(

β+0 β
+
1 + β−0 β

−
1

) (π − 1)

2π
σ2 + (β+0 β

−
1 + β−0 β

+
1 )
σ2

2π

Second and higher autocovariances will all be zero.
Under the hypothesis

β+0 = β−0 = β0, β+1 = β−1 = β1

we obtain a symmetrical moving average model of order one:

yt = β0ǫt + β1ǫt−1

The mean of the process will be zero. The variance and the first autocovariance reduce to

γ0 = (β20 + β21)σ
2,

and
γ1 = β0β1σ

2,

respectively. Notice that, under the null hypothesis, the model can be written as

yt = ut + βut−1, u ∼ iid N(0, σ2∗)

where ut = ǫtβ0, β = β1/β0 and σ2∗ = σ2β20 . Thus, the variance and the first autocovari-
ance can be written as

γ0 = (1 + β2)σ2∗ ,

γ1 = βσ2∗ ,

which are familiar formulas for an MA(1) process. The autocovariance structure for a
TMA(q) model with threshold γ = 0 and iid standard normal errors has been derived by
Guay & Scaillet (2003). For the general iid normal errors autocovariances are

γh =

q−h
∑

i=0

{

(β+i+hβ
+
i + β−i+hβ

−
i )

(π − 1)σ2

2π
+ (β+i+hβ

−
i + β−i+hβ

+
i )
σ2

2π

}

, if h ≤ q

= 0, if h > q
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Therefore autocorrelation function (γh/γ0) of a TMA(q) process will be zero after lag
q. In practice, this makes it particularly difficult to distinguish a TMA(q) model from
a linear MA(q) model using sample correlogram alone. Since yt is a combination of
truncated normal errors its unconditional distribution can be skewed and leptokurtic or
platykurtic. Figures (1) and ((2)) display distribution of a simulated TMA(1) process with
106 points. Figure (1) shows histogram and normal probability plot of TMA(1) process
using parameters β+0 = 0.5, β−0 = 1, β+1 = 0.2, β−1 = 0.8, σ2 = 1. In this case negative
shocks have a greater impact than positive shocks. Unconditional skewness and kurtosis
are -0.65 and 3.33, respectively. The opposite case in which positive shocks have a greater
impact than negative shocks is shown in Figure (2).

In fact, the presence of contemporaneous asymmetry in the effects of shocks alone can
create wide range of values for skewness and excess kurtosis in the observed series. To
visualize this, we fixed the lagged asymmetry parameters at β+1 = β−1 = 0.5 and created
a grid over [−1 : 0.1 : 1] for both parameters β+0 and β−0 . Fixing the variance at σ2 = 1
and threshold parameter γ = 0 we simulated samples of size 105 and calculated sample
skewness and kurtosis for each parameter combination. Figure (3) shows the behavior of
skewness and kurtosis when γ = 0. Also, Figure (4) displays skewness and kurtosis values
over threshold grid set [−1 : 0.1 : 1]. Evidently, depending on parameter combinations
and threshold value TMA process may have a symmetric, or skewed and/or leptokurtic
or platykurtic distribution. Although in practice skewness and excess kurtosis can be a
good indicator to consider a nonlinear model specification, they alone are not sufficient
since a threshold MA model can also have a symmetric and bell-shaped distribution.

3 Efficient Method of Moments Estimation

As we mentioned before, moving average models with lagged asymmetric effects (asMA(q)
model, see (Wecker 1981)) and its generalization to ARasMA(p,q) model (Brännäs &
DeGooijer 1994) can be estimated efficiently using maximum likelihood method. How-
ever, the presence of contemporaneous asymmetry in the effects of shocks prevents direct
estimation methods such as maximum likelihood. In this case, as suggested by Guay &
Scaillet (2003), one needs to resort to indirect simulation-based methods. Indirect infer-
ence strategy is based on using moment conditions from an auxiliary model which provides
information to identify the structural parameters and whose estimation is relatively easier
compared to the structural model.

Let θ be p× 1 vector of structural parameters of interest. Indirect inference estimator
is defined as

θ̂ = argmin
θ∈Θ

ψ(θ)⊤Wψ(θ), (4)

where ψ(θ) is q × 1 vector of moment conditions whose expectation at the true θ is zero,
andW is q×q positive-definite weighting matrix. Simulation based methods differ in how
they define the moment vector and the optimal weighting matrix. Gourieroux et al. (1993)
and Smith (1993) suggest matching the parameters of an auxiliary model in the moment
vector. For each trial value of θ in the numerical minimization routine, auxiliary parameter
vector must be estimated using simulated data and matched to the auxiliary parameter
estimates obtained from observed data. If the estimation of the auxiliary model is trivial,
such as least squares, the indirect inference is numerically fast and reliable. However, if
the estimation of the auxiliary parameter vector is relatively involved, such as numerical
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maximization of a loglikelihood function then the method can be computationally very
intensive. The efficient method of moments estimation strategy, suggested by Gallant &
Tauchen (1996), can overcome this computational burden through bypassing the numerical
optimization of the auxiliary criterion function. This is accomplished by using the scores
of the auxiliary model likelihood function as the moment conditions. Let β be p × 1
vector of auxiliary model parameters. Also let yt be vector of observed data and ỹt(θ)
be simulated data. The estimation of β is based on the maximization of loglikelihood
function of the auxiliary model:

Q(yt, β) =

T
∑

t=1

ℓ(yt, β)

whose solution is β̂. EMM uses the following moment conditions

ψ(θ) = E

[

∂ℓ(ỹt(θ); β̂)

∂β

]

=
1

N

N
∑

t=1

∂ℓ(ỹt(θ); β̂)

∂β
(5)

For notational simplicity let the individual scores be given by

st (ỹ(θ)) ≡
∂ℓ(ỹt(θ); β̂)

∂β

Notice that β̂ is calculated only once using the observed data. The expectation of the
score vector is then approximated using a long realization of simulated data from the
structural model. Now let H be the simulation constant and T the sample size, then
based on N = TH simulated values of endogenous variables, the EMM estimator can be
defined as

θ̂ = argmin
θ∈Θ

[

N−1
∑

st (ỹ(θ))
]⊤

W
[

N−1
∑

st (ỹ(θ))
]

, (6)

Optimal weighting matrix can be calculated as the the inverse of the long-run covariance
matrix of the scores based on observed data.

W = I−1
0

I0 = Var

(

1√
T

T
∑

t=1

st(yt, β̂)

)

HACC procedure suggested by Newey & West (1987) can be adopted to estimate the long-
run covariance matrix. Gallant & Tauchen (1996) show that

√
T (θ̂− θ) is asymptotically

normal with covariance matrix

Ω =
(

D⊤
θ I−1

0 Dθ

)−1
,

where Dθ is q × p matrix of derivatives of moment conditions

Dθ =
∂ψ(θ)

∂θ
≡ E

[

∂ψ(θ)

∂θ

]

which can be approximated using

Dθ ≈
1

N

∑ ∂st (ỹ(θ))

∂θ
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To estimate TMA(q) model using EMM let (2q + 3)× 1 vector

θ = [β+0 , β
−
0 , β

+
1 , . . . , β

+
q , β

−
1 , . . . , β

−
q , σ]

⊤

be structural parameters of interest. The following models can be used as auxiliary models
in the EMM estimation.

Auxiliary Model 1 The first auxiliary model is AR(p) model:

yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + ut

Q(yt, β) = −(T − p)

2
ln(2π)− (T − p)

2
ln(σ2)− 1

2σ2

T
∑

t=p+1

û2t

ût = yt − φ̂0 − φ̂1yt−1 − φ̂2yt−2 − · · · φ̂pyt−p

Auxiliary Model 2 Second auxiliary model was used by Michaelides & Ng (2000) in
the simulation estimation of nonlinear models of speculative storage. This model
contains polynomial autoregressive terms whose loglikelihood is given as follows

yt = φ0 + φ1yt−1 + φ2y
2
t−1 + φ3y

3
t−1 + · · ·+ φ3py

3
t−p + ut

Q(yt, β) = −(T − p)

2
ln(2π)− (T − p)

2
ln(σ2)− 1

2σ2

T
∑

t=p+1

û2t

ût = yt − φ̂0 − φ̂1yt−1 − φ̂2y
2
t−1 − φ̂3y

3
t−1 − · · · − φ̂3py

3
t−p

Auxiliary Model 3 Third auxiliary model was suggested by Guay & Scaillet (2003).
This model is a mix of the previous models. For example, for p = 4 and third order
polynomial terms the model can be written as

yt = φ0+φ1yt−1+φ2y
2
t−1+φ3y

3
t−1+φ4yt−2+φ5y

2
t−2+φ6y

3
t−2+φ7yt−3+φ8yt−4+ut

Q(yt, β) = −(T − p)

2
ln(2π)− (T − p)

2
ln(σ2)− 1

2σ2

T
∑

t=4

û2t

ût = yt− φ̂0− φ̂1yt−1− φ̂2y2t−1− φ̂3y3t−1− φ̂4yt−2− φ̂5y2t−2− φ̂6y3t−2− φ̂7yt−3− φ̂8yt−4

This model was found to be the most successful by Guay & Scaillet (2003) among
the three models above.

Auxiliary Model 4 An asymmetric MA(q) model can also be used as an auxiliary
model. For example with q = 2 an asMA model and its conditional loglikelihood
can be written as

yt = ǫt + β+1 ǫ
+
t−1 + β+2 ǫ

+
t−2 + β−1 ǫ

−
t−1 + β−2 ǫ

−
t−2,

Q(yt, β) = −T
2
log(2π) − T

2
log(σ2)−

T
∑

t=1

ǫ̂2t
2σ2

ǫ̂t = yt − β+1 ǫ̂
+
t−1 − β+2 ǫ̂

+
t−2 − β−1 ǫ̂

−
t−1 − β−2 ǫ̂

−
t−2

The first three models can easily be estimated using OLS and the scores can be evaluated
in a straightforward manner. Estimation of the last auxiliary model is relatively more
involved as it requires numerical maximization of the loglikelihood function. Also, another
difficulty with this models is that scores and derivatives need to be evaluated recursively
and using numerical differentiation routines. This may add to the computational burden.
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4 Simulation Study

This section provides a set of Monte Carlo experiments designed to assess properties of
the EMM estimator for the TMA model. Data is generated from the following TMA(1)
model

yt = β+0 ǫ
+
t + β−0 ǫ

−
t + β+1 ǫ

+
t−1 + β−1 ǫ

−
t−1

where the threshold is γ = 0. The true parameter values are β+0 = 0.5, β−0 = 1, β+1 =
0.2, β−1 = 0.8, σ = 1 which were also used by Guay & Scaillet (2003) in their simulation
study. Sample sizes (T ) and simulation lengths (N = TH) are T = 100, 250, 500, 1000
and H = 10, 20, 50, 100, respectively. For each combination of T and N we simulated data
from the data generating process described above and estimated the parameter vector
using EMM with auxiliary models described in the previous section. The first auxiliary
model is a linear AR(4) model. The second auxiliary model is polynomial AR model with
two lags and second and third powers. The third model, is a mix of the previous two
and was found to be the most successful auxiliary model among the three. We also used
auxiliary model 4. This is asymmetric MA model with two lags. Since the estimation is
more computationally burdensome for this auxiliary model we only used T = 250 with
H = 10, 50. The number of replications is set to 1000 for each experiment. In our
calculations we used Simulated GMM toolbox written in Matlab programming language
by P. L. Fackler and H. Tastan (see Fackler & Tastan (2009)). We calculated bias and root
mean squared error (RMSE) to compare the performance of auxiliary models. Results are
summarized in Tables 1 through 4. We also plot bias, RMSE and kernel density estimates
for each auxiliary model in Figures 5 to 14.

Table 1 summarizes experiment results from the auxiliary model 1 - AR(4) model.
In their experiments Guay & Scaillet (2003) also used AR(6), AR(8) and AR(10) but
found that AR(4) has the smallest RMSE. Indeed increasing the AR order will reduce
bias but at the same time increase the variance. Therefore we only used lag 4 in the
linear AR specification. In Table 1 we see that for each combination of T and H, β+0 , β

−
0

and σ are underestimated whereas β+1 and β−1 are overestimated. Our results cannot be
directly compared to Guay and Scaillet’s results because they did not estimate σ2 and
they only performed 500 Monte Carlo replications. Nevertheless, our results from EMM
estimation of TMA model with AR(4) moments, T = 250 and H = 10 are very close to
their results from the indirect inference estimation procedure (Table 6 last column in GS,
2003, p.6, note also that their sample size is 200). In general for a fixed T , increasing
the simulation constant H does not much contribute to the bias and the precision of the
estimates. The biggest reduction in bias and precision comes from increasing the sample
size. This behavior can be observed in Figures 5 and 6. Kernel density estimates for
the EMM estimators are given in Figure 7. Except for σ all densities are bimodal and
obviously they are not distributed normally. Overall, linear AR(p) models perform poorly
as the score generator in EMM context.

Results from auxiliary model 2 are summarized in Table 2. In general there is signif-
icant improvement in bias and RMSE compared to AR(4) model especially for samples
sizes larger than 250. However, for T = 100 bias and RMSE are larger for the parameters
corresponding to negative shocks (β−0 and β−1 ) and σ. Increasing the sample size improves
the bias and precision of the estimates. For example, for T = 250 and H = 10, biases for
positive shock parameters are −0.0085 and −0.0035 with RMSE 0.1446 and 0.1458, re-
spectively. This corresponds to about 44% improvement in the precision of the estimates.
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However, for the negative shock parameters improvement in bias and RMSE is negligible.
Again for a fixed sample size increasing the simulation length in the EMM estimation
does not much contribute to the reduction in bias and RMSE. The biggest improvement
comes from increasing the sample size. For example, for T = 500 and H = 10, bias and
RMSE of β+0 are 0.0038 and 0.1158, respectively. For T = 500 and H = 100 the bias
reduces to only 0.0036 with RMSE 0.1098. This behavior can also be observed in Figures
8 and Figure 9. Comparing our results to results from GS instrumental model II (Table
3, second column, p. 6) we see that EMM estimators have smaller bias and RMSE as
compared to indirect inference estimators. We also note that the biggest improvement in
RMSE for σ is attained with sample sizes larger than 500. Figure 10 plots kernel density
estimates for the auxiliary model 2. Unlike AR(4) case these densities have one mode and
more symmetrical.

Table 3 reports experiment results from auxiliary model 3. For T = 100 parameter
estimates are not very precise and increasing the simulation length does not much improve
the results. Increasing the sample size to 250 we observe that RMSE gets smaller. As
compared to the previous two models, we can say that auxiliary model 3 has smaller
RMSE in general. Similarly, increasing H does not much contribute to the reduction in
bias and RMSE. This behavior can be observed in Figure 11 and Figure 12. Compared
to the indirect inference estimation results given in Table 4 in GS (2003, p.7) RMSE
is slightly larger for contemporaneous shock parameters whereas it is smaller for lagged
shock parameters. We also note σ is not estimated very precisely for sample sizes 100 and
250 and it is always underestimated. Figure 13 displays kernel density estimates for the
auxiliary model 3.

Finally, we estimated the parameters of the TMA(1) model using scores of the auxiliary
model 4. We only used one sample size, 250, and two simulation lengths 2500 and 12500
corresponding to H = 10 and H = 50, respectively. Results are summarized in Table 4.
For all parameter estimates RMSE is much smaller in this case. However, we note there
are some convergence issues for this auxiliary model. Quasi-Newton optimization routine
was interrupted several times because it produced NaNs and Infs. Therefore, we used
Nelder-Mead simplex search method which does not rely on derivatives of the objective
function. Although the results seem superior to other auxiliary models they should be
interpreted with caution.

As we mentioned before, if the effect of contemporaneous shock is symmetric then
the model reduces to an asymmetric moving average model suggested by Wecker (1981).
An MA(q) model with only lagged asymmetries can easily be estimated using maximum
likelihood method and classical testing procedures can be applied. In the EMM framework,
the symmetry of contemporaneous shock can be tested using Likelihood Ratio type tests.
Under the null hypothesis

β+0 = β−0 = β0

the restricted model is an MA(q) model with only lagged asymmetries. The EMM LR-
type test statistic can be calculated by estimating both constrained and unconstrained
models and calculating

LR = TQ(θ̃)− TQ(θ̂) ∼ χ2
ν

where Q(θ̃) is the value of the simulated GMM objective function value at the restricted
parameter vector and Q(θ̂) is the objective function value at the unrestricted parameter
vector. T is the number of observations used in the estimation and ν = dim(θ̂)−dim(θ̃) = 2
is the number of restrictions.
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There is an established and efficient estimation and testing framework for MA models
with only lagged asymmetric effects. However, to carry out the LR-type test we need to
estimate the restricted model using EMM method. Thus, it would be useful to evaluate
the properties of EMM estimators for the asymmetric MA(q) model and compare it to
the ML estimator. For this purpose we conducted another Monte Carlo experiment in
which data is generated from the following asMA(1) model

yt = ǫt + β+1 ǫ
+
t−1 + β−1 ǫ

−
t−1, ǫt ∼ iid N(0, σ2)

in which Parameter values are chosen as β+1 = 0.6, β−1 = 0.9, σ = 1 and γ = 0. As in the
previous experiments, sample sizes (T ) and simulation lengths (N = TH) are chosen as
T = 100, 250, 500, 1000 and H = 10, 20, 50, 100, respectively. For each combination of T
and N we simulated data from asMA(1) model and estimated the parameter vector using
EMM with AR(4) chosen as the score generator. For comparison we also computed ML
estimates. We conducted 2000 Monte Carlo replications and calculated bias and RMSE.
The results are summarized in Table 5. As expected conditional ML estimator is much
more efficient and accurate than EMM estimator. Although β−1 is generally much more
accurately estimated for sample sizes 100 and 250 the bias of the EMM estimator of β+1
becomes smaller at T = 500 and T = 1000. σ is always underestimated in both EMM and
ML and its RMSE rapidly gets smaller especially for sample sizes greater than 250. Again,
we note that the biggest improvements in both accuracy and precision of the estimates
come from increasing the sample size. The contribution of H seems negligible. Figure 15
and Figure 16 display kernel density plots of EMM estimators for sample sizes T = 250
and T = 1000, respectively. These plots reveal that EMM sampling distributions are
approximately normal and reasonably accurate. Although conditional ML estimators are
more precise than EMM estimators RMSE values are acceptable for sample sizes greater
than 250. Overall large sample sizes may be needed to produce reliable inference.

To assess the behavior of the LR-type test statistic we conducted a small Monte Carlo
experiment. We generated data from the asymmetric MA(1) model using true parameter
values β+1 = 0.2, β−1 = 0.8 and σ = 1. Threshold value is set to γ = 0. We use auxiliary
model 3 with five lags for the first order polynomial and two lags for both second and
third order polynomials. We use the same instrumental model, hence the same moment
conditions for both restricted and unrestricted models. Two sample sizes, T = 250 and
T = 500 are considered and the simulation constant is set to H = 20. We used 1000
Monte Carlo replications to calculate rejection frequencies for nominal significance levels
0.01, 0.05 and 0.1. The results are summarized in Table 6. For the sample size 250 the
LR-type test is slightly oversized: it tends to reject the true model 1.3% of the time when
the nominal α-level is 0.01, 6.8% of the time when α = 0.05 and 12.6% of the time when
α = 0.1. When we increase the sample size to 500 rejection frequencies are much closer to
their nominal counterparts. In this case the LR-type test rejects the true model 5.6% of
the time when α = 0.05. The Type-I error behavior of LR-type test can also be followed
from Figure 17 which plots rejection frequencies and nominal significance levels.

To assess empirical power of the LR-type test statistic we fixed the parameter corre-
sponding to one-period lagged effects of positive shocks at β+1 = 0.5 and varied the the
parameter corresponding to the effect of negative shocks as

β−1 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
For each 11 value of β−1 we computed LR-type test statistic and the rejection frequency
of the null hypothesis at α = 0.05 significance level for sample sizes 250, 500 and 1000.
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The null hypothesis is incorrect for these values except for β−1 = 0.5. Figure 18 displays
size-unadjusted empirical power curves for each sample size. The first thing to notice
is that the power curve is not symmetric. The test is more powerful when β−1 < β+1 .
Although, as expected, the test becomes more powerful as the sample size increases its
asymmetry remains. We also note that empirical size at these parameter values is greater
than the nominal size. The smallest empirical size is achieved using T = 1000.

5 Application: Persistence of Shocks in Turkish

Business Cycles

Asymmetric persistence of shocks have been investigated by several studies. Beaudry &
Koop (1993) provided evidence that there is statistically significant difference in persis-
tence between negative and positive shocks for the post-war US GNP data. They found
that negative shocks are less persistent than positive shocks. Using modified critical values
Hess & Iwata (1997) re-examined the results of Beaudry and Koop (1993) and concluded
that their results are slightly weakened but still valid. Hess & Iwata (1997) also applied
their model to G-7 countries and, except for France, did not find any asymmetric persis-
tence. Using an autoregressive asymmetric moving average (ARasMA) model Brännäs &
DeGooijer (1994) provided evidence on the asymmetric effects of shocks in US GNP series.
In contrast, using asymmetric moving average and autoregressive models Elwood (1998)
argued that there is no difference in persistence between negative and positive shocks for
both US GNP and industrial production index series. Guay & Scaillet (2003) analyzed the
same problem without a priori imposing a value for the threshold parameter and allowed
for contemporaneous asymmetry in a threshold moving average model for the US GNP
data. They found that a shock with a value greater than the threshold value of −0.85
is significantly more persistent than a smaller shock. Gonzalo & Martinez (2006) also
analyzed US GNP data using a threshold integrated moving average (TIMA) framework
in which asymmetry is produced by the size of the shock. They found that the size of the
shock is significant in generating persistence asymmetry and that small shocks tend to be
transitory.

In this section we investigate whether the persistence of positive shocks to output is
significantly different from the persistence of negative shocks in Turkish economy. To see
if the results are robust to the measure of economic activity we use both real GDP and
industrial production index to estimate an appropriate threshold model.

A mentioned by Elwood (1998) the question of asymmetry in business cycle is differ-
ent from the question of asymmetry in persistence. Business cycle asymmetry focuses on
the behavior of an aggregate measure of economic activity over expansions and contrac-
tions (e.g., Neftci (1982), Hamilton (1989), Sichel (1993), among others). Persistence in
asymmetry, on the other hand, focuses on the lasting influence of negative and positive
shocks regardless of where they occur in the business cycle (Elwood 1998). Empirical
studies using Turkish data have identified four contraction and five expansion phases for
the post-1985 period. For example, using 2-state Markov-switching autoregression model
Tastan & Yildirim (2008) found that expansionary and contractionary phases in indus-
trial production index growth rate have different characteristics. They estimates intercept
terms for the recession and expansion phases as -0.0419 and 0.0605, respectively . The
expansion regime is found to be slightly more volatile than the recession regime. They also
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found that the duration of recessions is about 10 months while the duration of expansion
is about 38 months (about 3.16 years). Their results reflect that recessions are relatively
short-lived compared to other developing countries whereas the duration of expansions is
relatively larger compared to EU enlargement countries. Also, their results from paramet-
ric asymmetry tests indicate that recessions are more deep and more steep than expansions
and the probability of switching from recession to expansion is significantly larger than
the probability of switching from expansion to recession. Yildirim & Tastan (2007) argued
that there is a negative correlation between the deepness and duration of recessions. The
deeper the recessions the shorter the recessions.

We first examine the persistency asymmetry in shocks to Turkish real GDP growth
rate for the period 1987.Q1-2009.Q4. The quarterly data is taken from IMF-IFS database
and seasonally adjusted using Census-X12 method. Natural logarithm of the season-
ally adjusted RGDP series is subjected to Augmented Dickey-Fuller tests. ADF test
with a constant and time trend indicated that the series contain a unit root.1 The
growth rate of the RGDP series is calculated as the first difference of logarithmic se-
ries, ∆yt = ln(RGDPt) − ln(RGDPt−1), and ADF test indicates that it is stationary.
Then, a linear ARMA(p,q) specification for ∆yt is investigated. The correlogram of ∆yt
indicates and ARMA(1,1), MA(4) or ARMA(1,4) model can possibly be fit. However,
neither specification passes the RESET and BDS tests. For example, the BDS test ap-
plied to the residuals of ARMA(1,1) model is calculated as 2.03 with p-value of 0.04 when
integrating dimension is 2, and 2.68 with p-value 0.007 when integrating dimension is 3.
Similarly, the BDS test statistic for the residuals of MA(4) is 3.41 with p-value 0.0007.
The RESET test for the MA(4) model is calculated as 9.57 with p-value 0.008. Linear
models seem to be not able to produce iid residuals, thus a nonlinear alternative would
be more adequate.

In search of an appropriate asymmetric model for the mean-adjusted growth series
we estimated several TMA(q) models for q = 1, 2, 3, 4 using the EMM framework with
auxiliary model III with five lags for the first-order polynomial and three lags for the second
and third-order polynomials. Simulation constant is set to H = 50. Then, we tested
whether contemporaneous shocks are asymmetric by allowing only lagged asymmetries in
the model. To test this hypothesis we used the LR-type test discussed in the previous
section. Since our purpose is to examine the persistence of negative and positive shocks,
we imposed zero threshold in the model. We used the same auxiliary model for both
restricted and unrestricted models in the LR-test. Results are summarized in Table 7.
LR-type tests for each TMA(q) model indicates that the impact of contemporaneous
shocks is symmetric. Thus, an MA model with asymmetries in only lagged shock effects
would be more appropriate for the growth rate of Turkish Real GDP.

To find the most appropriate specification we estimated several asymmetric MA mod-
els. We also allowed for autoregressive dynamics in our search for best fit. Among several
ARasMA(p,q) models with p = 1, 2 and q = 1, 2, 3, 4 an asymmetric MA(4) model pro-
vides the best fit using the Akaike Information Criterion. Minimum Residual Sum of
Squares (RSS) and maximum loglikelihood values were also achieved with this asMA(4)
model. The results are given below:

1The ADF test statistic is −2.99 with a p-value of 0.14. The lag length of the test regression is chosen SIC
and is zero.
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∆yt = 0.019
(0.1×10−4)

− 0.14
(0.15)

ǫ̂+t−1 − 0.35
(0.16)

ǫ̂+t−2 + 0.03
(0.13)

ǫ̂+t−3 − 1.15
(0.17)

ǫ̂+t−4

− 0.27
(0.12)

ǫ̂−t−1 − 0.05
(0.13)

ǫ̂−t−2 − 0.18
(0.21)

ǫ̂−t−3 − 0.12
(0.15)

ǫ̂−t−4 + ǫ̂t

σ̂ = 0.023(0.001) RSS = 0.052 AIC = −4.42 ln(L) = 210.504

Under the null hypothesis of β+i = β−i , i = 1, . . . , q the model reduces to a symmetric
MA(q) model which can easily be tested using likelihood ratio test statistic:

LR = 2[lnL(θ̂)− lnL(θ̃)] ∼ χ2
q ,

where lnL(θ̂) and lnL(θ̃) are unrestricted and restricted values of loglikelihood. The LR
test statistic is calculated as 19.97 which has a p-value 0.0005 at 4 degrees of freedom.
Thus, there is significant asymmetric effects from past innovations in the growth rate of
real GDP. We also note that the BDS test statistic for the residuals from this model is
-0.26 with p-value 0.79. An LBQ test up to 12 lags has a p-value of 0.99. In contrast, a
linear symmetric MA(4) model cannot produce iid residuals. Parameter estimates reflect
that the extent of the response of RGDP growth to positive and negative shocks is quite
different. We observe that all parameter estimates associated with negative shocks have
negative sign. This is also true for positive shocks except for lag three. The biggest
difference is observed at lag 4. A positive shock at lag four reduces the growth rate
by 1.15 whereas the impact of a negative shock with the same magnitude is only -0.12.
The LR test statistic for the null hypothesis that the sums of parameters associated with
positive and negative shocks, i.e.,

H0 :

4
∑

i=1

β+i =

4
∑

i=1

β−i

is calculated as 16.416 with p-value< 0.0001. Thus, the null hypothesis of symmetry is
decisively rejected in favor of positive shocks having a greater impact on the growth rate
of real GDP. The sums of positive and negative parameters are estimated as −1.61 and
−0.62, respectively. The impact of positive shocks is about 2.5 times larger than the
impact of negative shocks.

We now examine the asymmetry in persistence of shocks to growth rate of Turkish
Industrial Production Index for the period from the first month of 1985 to the second
month of 2010. The data is taken from IMF IFS database and the last four observations
were updated from Turkish Statistical Institute. The skewness of the growth rate of
industrial production index is −0.41 and its kurtosis is 4.74. Normality of the series is
decisively rejected using Jarque-Bera test. We take the first difference of logarithmic
series and then search for the best linear ARMA model. The ACF has peaks at first and
second lags as well several peaks at more distant lags. The PACF also has significant
peaks at first and second lags. LBQ tests are all significant for each lag lengths from 1
to 36. We first attempted to fit low-order ARMA(p,q) models to this series. AIC chooses
ARMA(1,4) whereas SIC chooses ARMA(1,1). However, none of the models produce
uncorrelated residuals as evidenced by significant LBQ statistics. Also the BDS statistics
for each series have p-values less than 0.001. Although RESET tests applied to each
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ARMA model did not indicate any functional form misspecification, linear models are not
capable of producing uncorrelated residuals. We also augmented ARMA(p,q) models by
adding autoregressive and moving average terms at higher lags but residuals were still
correlated indicating that there may still be predictive content in the series.

To see if a threshold model is more appropriate for the industrial production growth
rate series we followed the same methodology. We first tested for the significance of con-
temporaneous shocks and then proceeded according to the test results. We used the same
moment generator with simulation constant H = 50. After adjustments for the auxil-
iary model the data set contains 296 observations. Table 8 summarizes estimation results
from TMA(q), q = 1, 2, 3, 4, models. The first column presents results from TMA(1)
model. The OID test statistic is calculated as 23.026 with p-value 0.003 indicating that
TMA(1) model may not be appropriate. The EMM LR-type test statistic has a p-value of
0.0004 indicating that the null hypothesis of symmetric contemporaneous shock effects is
rejected in favor of TMA(1) model. The LR-type test for TMA(2) model (second column)
also rejects the null hypothesis of symmetric contemporaneous effects. But the OID test
statistic is significant at 4.6% level or higher. OID test statistics for TMA(3) and TMA(4)
models have p-values 0.2 and 0.78, respectively. Also, EMM LR-type test statistics are all
insignificant for these models indicating that an MA model with only lagged asymmetries
may be more appropriate. To choose the lag length for TMA model one can also use EMM
LR-type test statistics. The test statistic for TMA(1) (null model) vs. TMA(2) (alterna-
tive model) is 10.203 which is significant at 5% level (critical value is χ2

2,0.05 = 5.99). The
test statistics for TMA(2) vs. TMA(3) is calculated as 6.833 indicating that TMA(3) is
preferred to TMA(2). The test statistic between TMA(3) and TMA(4) is insignificant,
thus, we prefer TMA(3) model to base our inference regarding the persistence of growth
rate shocks. The sum of positive and negative shock parameters gives us information
on the relative persistency of shocks. In TMA(3) model these are

∑3
j=0 β

+
j = 0.23 and

∑3
j=0 β

−
j = 0.197 for positive and negative shocks, respectively. These results indicate

that there is not much difference in the persistence of shocks based on the sign for the
industrial production growth rate.

Brännäs & Ohlsson (1999) argued that detection of nonlinearities in time series may
depend on sampling frequency. For example, asymmetric monthly time series may become
symmetric when aggregated to quarterly or annual frequencies. To see if our results from
monthly industrial production index growth are robust to sampling frequency, we also
carried out the estimation and testing for asymmetries in quarterly growth rates. The
quarterly growth rates series extend from 1980.Q1 to 2009.Q4 and contain 120 observa-
tions. We estimated TMA(q) models from lag one to four using the same auxiliary model
as before. LR-type tests indicate that, unlike the monthly series, for each lag specification
there are no contemporaneous asymmetric effects. For example, for TMA(4) model LR-
type test statistics is 0.15 with p-value=0.93. Therefore, an asymmetric ARasMA(p,q)
specification should be preferred. Preliminary analysis indicates that an ARMA(1,4)
model could be fitted to the data which produces serially uncorrelated residuals. Thus,
we estimated an ARasMA(1,4) model using conditional ML for the quarterly growth rate
series. The log-likelihood value for the unrestricted model is 202.39 whereas the restricted
model has a log-likelihood value of 200.21. The LR test statistic is 4.36 (p-value=0.36).
Thus, we cannot reject the null hypothesis that the effects of past shocks to quarterly
growth rates are symmetric. Apparently when aggregated to quarterly frequency, asym-
metries in monthly growth rates of industrial production index disappears. There is no
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difference between negative and positive shocks in terms of persistence which is in line
with the results obtained from TMA model with contemporaneous shock asymmetry for
the monthly growth rates of industrial production.

6 Concluding Remarks

In this paper, we have examined properties of efficient method of moments (EMM) esti-
mator for asymmetric (or threshold) moving average models with contemporaneous and
lagged asymmetries in the effects of innovations. An LR-type test statistic in EMM frame-
work is proposed to test for the null hypothesis of symmetric effects of contemporaneous
shocks. Since under the null hypothesis the model reduces to an asymmetric MA model,
direct estimation by maximum likelihood can be performed if the LR-type test statistic is
insignificant. A set of Monte Carlo experiments indicates that EMM estimator has rea-
sonable accuracy and precision for autoregressive auxiliary models with second and third
order lag polynomials.

The framework is also applied to the disentanglement of the effects of positive and
negative shocks to Turkish output growth rate. Results indicate that contemporaneous
shocks to both real GDP and quarterly industrial production index growth rates are sym-
metric. Past shocks to real GDP growth rate tend to have asymmetric effects with positive
shocks having greater impact than negative shocks. Although results from monthly indus-
trial production growth rate indicates that the effects of contemporaneous negative and
positive shocks are asymmetric, their persistence is very close to each other. However,
when aggregated to quarterly frequency both contemporaneous and lagged asymmetries
disappear.
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Table 1: Auxiliary Model 1: AR(4)

β+
0 β−

0 β+
1 β−

1 σ

T H Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 10 -0.1036 0.2774 -0.0946 0.2590 0.0890 0.2861 0.0285 0.2362 -0.1000 0.2145

20 -0.1138 0.2790 -0.0915 0.2526 0.0954 0.2929 0.0376 0.2367 -0.0925 0.1896
50 -0.1111 0.2866 -0.0901 0.2528 0.1006 0.2840 0.0379 0.2321 -0.0928 0.1689
100 -0.1017 0.2716 -0.0871 0.2447 0.0927 0.2832 0.0290 0.2299 -0.0945 0.1702

250 10 -0.1069 0.2459 -0.0615 0.2040 0.1169 0.2593 0.0581 0.1957 -0.0467 0.0711
20 -0.1070 0.2461 -0.0630 0.2084 0.1143 0.2595 0.0569 0.1974 -0.0503 0.0735
50 -0.1015 0.2405 -0.0652 0.2025 0.1116 0.2542 0.0630 0.1963 -0.0450 0.0680
100 -0.1002 0.2415 -0.0640 0.2038 0.1068 0.2520 0.0579 0.1971 -0.0485 0.0768

500 10 -0.1006 0.2288 -0.0552 0.1933 0.1148 0.2474 0.0663 0.1902 -0.0310 0.0482
20 -0.1028 0.2304 -0.0587 0.1938 0.1090 0.2476 0.0752 0.1927 -0.0295 0.0464
50 -0.0960 0.2286 -0.0649 0.1995 0.1090 0.2435 0.0760 0.1937 -0.0320 0.0490
100 -0.0948 0.2271 -0.0617 0.1986 0.1052 0.2404 0.0737 0.1961 -0.0307 0.0476

1000 10 -0.0908 0.2204 -0.0641 0.1915 0.0996 0.2312 0.0850 0.1910 -0.0226 0.0357
20 -0.0940 0.2230 -0.0597 0.1931 0.1074 0.2356 0.0779 0.1903 -0.0240 0.0358
50 -0.0990 0.2275 -0.0512 0.1883 0.1107 0.2405 0.0698 0.1843 -0.0244 0.0366
100 -0.0849 0.2136 -0.0554 0.1921 0.0954 0.2245 0.0709 0.1867 -0.0230 0.0346

Table 2: Auxiliary Model 2

β+
0 β−

0 β+
1 β−

1 σ

T H Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 10 -0.0679 0.1986 -0.1893 0.3487 -0.0486 0.1984 -0.1769 0.3115 -0.1801 0.5749

20 -0.0722 0.2213 -0.2067 0.3640 -0.0497 0.2073 -0.1742 0.3249 -0.2019 0.5696
50 -0.0654 0.1988 -0.2138 0.3602 -0.0494 0.1993 -0.1917 0.3150 -0.1277 0.4685
100 -0.0602 0.1864 -0.2096 0.3562 -0.0536 0.1854 -0.1964 0.3146 -0.1430 0.4636

250 10 -0.0085 0.1446 -0.0559 0.1903 -0.0035 0.1458 -0.0611 0.1835 -0.0688 0.2078
20 -0.0116 0.1434 -0.0548 0.1886 -0.0084 0.1426 -0.0640 0.1804 -0.0616 0.2022
50 -0.0011 0.1410 -0.0637 0.1892 -0.0115 0.1379 -0.0650 0.1862 -0.0636 0.1862
100 -0.0113 0.1363 -0.0559 0.1955 -0.0101 0.1422 -0.0723 0.1934 -0.0722 0.2241

500 10 0.0038 0.1158 -0.0321 0.1277 -0.0019 0.1120 -0.0189 0.1272 -0.0352 0.0743
20 0.0003 0.1124 -0.0264 0.1228 -0.0010 0.1119 -0.0232 0.1262 -0.0369 0.0568
50 -0.0004 0.1118 -0.0234 0.1217 -0.0025 0.1114 -0.0196 0.1279 -0.0350 0.0493
100 0.0036 0.1098 -0.0297 0.1246 -0.0005 0.1121 -0.0174 0.1303 -0.0345 0.0554

1000 10 -0.0026 0.0921 -0.0150 0.0992 0.0025 0.0873 -0.0085 0.1025 -0.0204 0.0323
20 0.0049 0.0829 -0.0197 0.0940 -0.0026 0.0812 -0.0034 0.0957 -0.0187 0.0310
50 0.0005 0.0869 -0.0155 0.0966 -0.0017 0.0855 -0.0077 0.0988 -0.0198 0.0315
100 0.0035 0.0904 -0.0189 0.0983 -0.0029 0.0864 -0.0048 0.0976 -0.0197 0.0313
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Table 3: Auxiliary Model 3

β+
0 β−

0 β+
1 β−

1 σ

T H Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 10 -0.0985 0.3586 -0.2167 0.3722 -0.0496 0.6347 -0.1721 0.3135 -0.1529 0.5139

20 -0.0923 0.2659 -0.2258 0.3704 -0.0468 0.2202 -0.1960 0.3157 -0.1927 0.5491
50 -0.0796 0.1999 -0.2475 0.3765 -0.0475 0.1901 -0.1943 0.3184 -0.1737 0.5186
100 -0.0874 0.2355 -0.2189 0.3650 -0.0491 0.2216 -0.1980 0.3185 -0.1421 0.4639

250 10 -0.0152 0.1427 -0.0713 0.1882 -0.0021 0.1282 -0.0560 0.1744 -0.0760 0.2421
20 -0.0160 0.1337 -0.0650 0.1821 -0.0005 0.1215 -0.0649 0.1710 -0.0651 0.2010
50 -0.0059 0.1353 -0.0736 0.1883 -0.0058 0.1234 -0.0624 0.1718 -0.0702 0.2259
100 -0.0083 0.1253 -0.0800 0.1978 -0.0010 0.1238 -0.0689 0.1794 -0.0766 0.2374

500 10 0.0032 0.0988 -0.0321 0.1162 -0.0007 0.0917 -0.0227 0.1130 -0.0417 0.0664
20 0.0018 0.0974 -0.0330 0.1128 -0.0001 0.0941 -0.0182 0.1130 -0.0391 0.0603
50 0.0032 0.1003 -0.0322 0.1113 0.0015 0.0941 -0.0193 0.1101 -0.0415 0.0621
100 0.0017 0.0937 -0.0297 0.1105 -0.0008 0.0858 -0.0177 0.1082 -0.0393 0.0672

1000 10 0.0036 0.0680 -0.0157 0.0759 -0.0039 0.0588 -0.0104 0.0754 -0.0213 0.0339
20 0.0105 0.0645 -0.0226 0.0774 -0.0016 0.0577 -0.0099 0.0766 -0.0241 0.0343
50 0.0095 0.0663 -0.0232 0.0803 -0.0040 0.0608 -0.0038 0.0783 -0.0208 0.0320
100 0.0067 0.0683 -0.0181 0.0759 -0.0013 0.0616 -0.0116 0.0758 -0.0227 0.0333

Table 4: Auxiliary Model 4

β+
0 β−

0 β+
1 β−

1 σ

T H Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
250 10 -0.0168 0.1230 0.0333 0.1647 0.0019 0.0588 0.0258 0.1364 -0.0491 0.1284
250 50 -0.0133 0.1261 0.0356 0.1752 -0.0029 0.0562 0.0307 0.1350 -0.0501 0.1315

20



Table 5: EMM and ML Estimation of asMA(1) Model

EMM β+
1 β−

1 σ

T H Bias RMSE Bias RMSE Bias RMSE
100 10 0.0161 0.2901 -0.0026 0.3619 -0.1152 0.1871

20 0.0162 0.2804 -0.0022 0.3619 -0.1160 0.1891
50 0.0153 0.2802 -0.0035 0.3575 -0.1147 0.1844
100 0.0146 0.2790 -0.0057 0.3535 -0.1129 0.1817

250 10 0.0162 0.1574 0.0062 0.2304 -0.0430 0.0767
20 0.0119 0.1535 0.0036 0.2211 -0.0424 0.0751
50 0.0102 0.1483 0.0032 0.2180 -0.0416 0.0731
100 0.0107 0.1485 0.0031 0.2178 -0.0419 0.0735

500 10 0.0020 0.1032 0.0081 0.1603 -0.0238 0.0496
20 0.0022 0.1017 0.0069 0.1573 -0.0230 0.0479
50 0.0021 0.0998 0.0070 0.1559 -0.0231 0.0479
100 0.0017 0.0986 0.0056 0.1539 -0.0227 0.0473

1000 10 -0.0013 0.0704 0.0056 0.1092 -0.0109 0.0305
20 -0.0013 0.0685 0.0049 0.1074 -0.0106 0.0298
50 -0.0019 0.0681 0.0053 0.1054 -0.0105 0.0290
100 -0.0020 0.0679 0.0045 0.1041 -0.0104 0.0288

ML
100 0.0045 0.1340 -0.0006 0.1474 -0.0057 0.0738
250 0.0018 0.0736 -0.0002 0.0836 -0.0008 0.0457
500 0.0006 0.0512 -0.0001 0.0547 -0.0021 0.0317
1000 -0.0000 0.0355 -0.0007 0.0384 -0.0001 0.0220

Table 6: EMM LR-type Test Rejection Frequencies

T

Nominal α 250 500
0.01 0.013 0.01
0.05 0.068 0.056
0.1 0.126 0.093
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Table 7: Estimation Results for RGDP Growth Rate
Parameter TMA(1) TMA(2) TMA(3) TMA(4)

β+
0 0.0530 (0.349) 0.349 (1.292) 0.407 (2.060) -0.509 (0.353)

β−
0 0.932 (0.125) -0.202 (0.564) -0.457 (1.092) -0.106 (0.744)

β+
1 0.679 (0.296) 0.148 (0.480) -0.00002 (4.095) 0.028 (0.308)

β+
2 – 0.294 (1.072) 0.200 (4.168) -0.085 (0.261)

β+
3 – – 0.164 (0.991) 0.064 (0.118)

β+
4 – – – 0.246 (0.416)

β−
1 -0.505 (0.131) 0.976 (0.157) 0.082 (1.442) -0.048 (0.559)

β−
2 – -0.285 (0.504) -0.095 (1.511) -0.010 (0.310)

β−
3 – – 0.935 (0.766) -0.004 (0.388)

β−
4 – – – -0.139 (0.678)
σ 0.028 (0.0002) 0.028 (0.0004) 0.028 (0.001) 0.061 (0.004)

OID 6.184 [0.63] 5.389 [0.49] 3.926 [0.42] 2.224 [0.33]
LR 0.353 [0.84] 0.99 [0.61] 1.204 [0.55] 1.607 [0.45]

Notes: Table summarizes estimation and test results for Real GDP growth rate. Auxiliary model III is used as
moment generator for both restricted and unrestricted models. The number of structural parameters is 2q + 3
and the number of moment conditions is 13. Simulation constant is H = 50. Asymptotic standard errors
are shown in parentheses. OID is the overidentifying restrictions test which has a chi-squared distribution
with 10 − 2q degrees of freedom. LR is the EMM LR-type test statistic discussed in the text which has a χ2

2

distribution. The null hypothesis of the LR test is that the effect of shocks in the current period is symmetric
but the lagged effects are asymmetric (asMA(q) model). P-values are shown in brackets.

Table 8: Estimation Results for IPI Growth Rate
Parameter TMA(1) TMA(2) TMA(3) TMA(4)

β+
0 -0.609 (0.214) 0.014 (0.137) 0.129 (0.206) -0.188 (0.209)

β−
0 0.438 (0.171) 0.654 (0.242) 0.733 (0.262) -0.092 (0.371)

β+
1 0.406 (0.146) -0.123 (0.153) -0.110 (0.269) -0.004 (0.247)

β+
2 – 0.368 (0.199) 0.439 (0.246) 0.249 (0.496)

β+
3 – – -0.228 (0.194) -0.779 (0.303)

β+
4 – – – 0.560 (0.214)

β−
1 -0.657 (0.252) -0.384 (0.231) -0.477 (0.312) -0.385 (0.203)

β−
2 – -0.026 (0.080) -0.035 (0.167) 0.101 (0.684)

β−
3 – – -0.024 (0.132) 0.140 (0.561)

β−
4 – – – 0.075 (0.225)
σ 0.083 (0.028) 0.089 (0.025) 0.079 (0.014) 0.083 (0.011)

OID 23.026 [0.003] 12.823 [0.046] 5.99 [0.20] 0.780 [0.68]
LR 9.006 [0.0004] 6.679 [0.036] 0.55 [0.76] -0.0097 [1.00]

Notes: Table summarizes estimation and test results for the growth rate industrial production index (IPI).
Auxiliary model III is used as moment generator for both restricted and unrestricted models. The number of
structural parameters is 2q + 3 and the number of moment conditions is 13. Simulation constant is H = 50.
Asymptotic standard errors are shown in parentheses. OID is the overidentifying restrictions test which has a
chi-squared distribution with 10−2q degrees of freedom. LR is the EMM LR-type test statistic discussed in the
text which has a χ2

2
distribution. The null hypothesis of the LR test is that the effect of shocks in the current

period is symmetric but the lagged effects are asymmetric (asMA(q) model). P-values are shown in brackets.
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Figure 1: Histogram and Normal Probability Plot for TMA(1) Model with parameters β+
0 =

0.5, β−
0 = 1, β+

1 = 0.2, β−
1 = 0.8, σ2 = 1

−2 0 2 4
0

2

4

6

8

10

12

14
x 10

4

−2 0 2 4 6

0.001

0.01 

0.05 
0.10 

0.25 

0.50 

0.75 

0.90 

0.98 

0.999

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

Figure 2: Histogram and Normal Probability Plot for TMA(1) Model with parameters β+
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Figure 3: Skewness and kurtosis
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Figure 6: Auxiliary Model 1: RMSE and T
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Figure 7: Auxiliary Model 1: Kernel density estimates
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Figure 8: Auxiliary Model 2: RMSE and H
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Figure 9: Auxiliary Model 2: RMSE and T
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Figure 10: Auxiliary Model 2: Kernel density estimates
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Figure 11: Auxiliary Model 3: RMSE and H
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Figure 12: Auxiliary Model 3: RMSE and T
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Figure 13: Auxiliary Model 3: Kernel density estimates
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Figure 14: Auxiliary Model 4: Kernel Density Estimates
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Figure 15: ML and EMM Estimation of asMA(1) Model: Kernel Density Estimates, T = 250
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Figure 16: ML and EMM Estimation of asMA(1) Model: Kernel Density Estimates, T = 1000

37



0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

LR−type test rejection frequencies
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Figure 18: EMM LR-type test empirical power
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