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Abstract

This paper reconsiders the evolution of the growth of American cities since 1790

in light of new theories of urban growth. Our null hypothesis for long-term growth

is random growth. We obtain evidence supporting random growth against the alter-

native of mean reversion (convergence) in city sizes using panel unit root tests. We

also examine mobility within the distribution to try to extract growth patterns different

from the general unit root trend detected. We �nd evidence of high mobility when we

model growth as a �rst-order Markov process. Finally, using a cluster procedure we

�nd strong evidence in favor of conditional convergence in city growth rates within

convergence clubs, which we interpret as �local� mean-reverting behaviors. We inter-

pret the high mobility and the results of the clustering analysis as signs of a sequential

city growth pattern.

Key words: city size, urban growth, random growth, sequential city growth, transition

matrices, club convergence

JEL Classi�cation: C12, 018, R11, R12

�Corresponding Author: Rafael González-Val. E-mail: r.gonzalez-v@ub.edu. The authors acknowledge

�nancial support from the Spanish Ministerio de Educación y Ciencia (ECO2009-09332 and ECO2010-

16934 projects), the DGA (ADETRE research group) and FEDER. We have bene�ted from the helpful com-

ments of David Cuberes. Suggestions from Fernando Sanz also contributed to improving the paper. We are

also grateful to seminar participants at the IEB seminar (Barcelona, 2011) and to participants at the XIV

Encuentro de Economía Aplicada (Huelva, 2011). All remaining errors are ours.

1



1 Introduction

This paper reconsiders the evolution of the growth of American cities since 1790 in light

of new theories of urban growth, paying special attention to sequential city growth the-

ories. The urban system of the United States (US) has often been studied because of its

special characteristics. First, it is a relatively young system (the �rst census by the US

Census Bureau dates from 1790) characterized by the entry of new cities (Dobkins and

Ioannides, 2000). In addition, its inhabitants present very high mobility; Cheshire and Ma-

grini (2006) estimate that mobility in the US is 15 times higher than that in Europe. Both

characteristics, high mobility and the entry of new cities, should reduce the time transition

to spatial equilibrium between cities. In line with this, González-Val (2010) �nds that the

�nal decades of the twentieth century are characterized by stability in the number of cities

and the percentage of the US total population they represent, indicating a shift to a stable

city size distribution and a more consolidated urban landscape. Finally, industry cycles

have an important effect on the growth rates of American cities (Duranton, 2007). Thus, in

the second half of the nineteenth century and the early twentieth century, the growing urban

population was concentrated in the north-eastern region known as the manufacturing belt,

while in the second half of the twentieth century the rise of the Sun Belt (a phenomenon

known as regional inversion; Lanaspa-Santolaria et al., 2002) attracted population to the

West Coast area.

Many papers study the long-term evolution of American city growth. These include

Dobkins and Ioannides (2000, 2001), Kim (2000), Beeson et al. (2001), Overman and

Ioannides (2001), Black and Henderson (2003), Ioannides and Overman (2003), Kim and

Margo (2004), González-Val (2010) and Michaels et al. (2010). The spatial units (states,

counties, minor civil divisions, metropolitan areas, incorporated places, etc.) and time

periods studied and the statistical and econometrics methods used in the literature vary

widely.

Our aim is to analyze the evolution of the largest American cities from the beginning of
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the urban system in 1790. Such a wide time horizon enables us, �rst, to consider the effect

of the entry of new cities (most of them during the nineteenth century), and second, to look

for different patterns of city growth. New theories have recently emerged that examine both

aspects, concluding that historically city growth may have been sequential. Sequential city

growth means that cities have early periods of fast growth (from their date of entry as a

city) followed by slow growth and/or stagnation. The idea is that during some periods,

the largest cities that entered the distribution �rst are the ones that grow most. Later, their

growth slows, and the smaller cities that entered later are the ones that grow most. When

these reach a certain size, their growth rates slow again and other smaller cities are the

ones that grow fastest, and so on. It should be noted that the result is convergence among

cities. This convergence is not in size, as �nal city size is determined by other factors such

as amenities, city productivity, land availability, etc., but in the growth rates at the steady

state.

Only two papers model sequential city growth: Henderson and Venables (2009) and

Cuberes (2009). The model developed by Henderson and Venables (2009) examines city

formation in a country whose urban population is growing steadily over time, with new

cities required to accommodate this growth. It yields the sequential formation of cities,

where new cities grow from scratch to a stationary size. The basic assumptions are that

city formation requires investment in �xed capital in the form of housing and urban in-

frastructure and that agents are forward-looking. Cuberes (2009) presents another model

of sequential city growth; the key to generating sequential growth is the assumption of

irreversible investment in physical capital. The predictions of this second model are empir-

ically tested by Cuberes (2011), who �nds strong support for sequential city growth using

two comprehensive data sets on populations of cities and metropolitan areas for a large set

of countries.

The next section presents the data used. Our basic hypothesis for long-term growth is

random growth. We use random growth as a benchmark because the effect of other fac-

tors (locational fundamentals or increasing returns) may change over time when such a
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long period is considered because of the decrease in transport costs (Davis and Weinstein,

2002). Moreover, Ioannides and Overman (2003) and González-Val (2010) �nd that ran-

dom growth is a good description of city size growth in the US during the twentieth century.

Therefore, in Section 3 we test random growth versus mean reversion (convergence) in US

cities using panel unit root tests. We obtain evidence supporting random growth against

the alternative of mean reversion in city sizes. In Section 4, we examine mobility within

the distribution to try to extract growth patterns that are different from the general unit root

trend. We use two different techniques. First (Section 4.1), we calculate transition ma-

trices, which tell us the degree of mobility in terms of probability, applying a generalized

equation to enable cities to enter and leave the sample. Second (Section 4.2), we apply a

cluster algorithm to identify different groups of cities that converge with each other. The

results point to a certain type of sequential growth, at least within groups. We discuss the

different empirical results in Section 5, and conclude in Section 6.

2 Data

There are various ways of de�ning a �city.� The evolution of the American urban struc-

ture has been analyzed using different geographical units: counties (Beeson et al., 2001),

minor civil divisions (Michaels et al., 2010), metropolitan areas (Dobkins and Ioannides,

2000, 2001; Black and Henderson, 2003; Ioannides and Overman, 2003), urbanized areas

(Garmestani et al., 2005; Garmestani et al., 2008) or the economic areas recently de�ned

by Rozenfeld et al. (2011) using the city clustering algorithm. However, since our aim is

to study the evolution of the urban system from its origin, we must use data from �legal�

cities, which are those reported since the �rst census in 1790.1 Units such as metropolitan

1We talk about the �origin� of the urban system because the 1790 census is the �rst one, and provides

data on the �rst 16 cities. However, these cities existed earlier. Kim (2000) gives data for four and �ve cities

in 1690 and 1720, respectively. His data come from Bridenbaugh (1938) and the Historical Statistics of the

United States. However, we prefer to use a single source of data, the US Census Bureau. In addition, the

periodicity of these data would not be the same as the rest of the sample (decennial census).
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areas were introduced later.2 Thus, we identify cities as what the US Census Bureau de-

nominates incorporated places. These places have also been used recently in the empirical

analyses of American city size distribution (Eeckhout, 2004, 2009; Levy, 2009; Giesen et

al., 2010; González-Val, 2010).

The US Census Bureau uses the generic term �incorporated place� to refer to a type of

governmental unit incorporated under state law, such as a city, town (except New England

states, New York and Wisconsin), borough (except in Alaska and New York) or village,

with legally established limits, powers and functions. We take our data from the US Census

Bureau (2004);3 the sample consists of all the incorporated places with 100,000 inhabitants

or more in 2000.4

Unincorporated places (concentrations of population that form no part of an incorpo-

rated place but that are locally identi�ed with a name) are excluded because they began to

be counted after 1950 (they were renamed census designated places (CDPs) in 1980). Al-

though some of them are consolidated as incorporated places and are reported in the 2000

census as cities, we also exclude them. The only exception is Honolulu CDP, because in

Hawaiian state law there are no incorporated places; they are all unincorporated.

Therefore, our �nal sample in 2000 is the 190 largest cities. This sample size is similar

to that of other studies using Metropolitan Statistical Areas (MSAs). Black and Hender-

son (2003) use data from 194 (1900) to 282 (1990) MSAs, while the sample of Ioannides

and Overman (2003) ranges from 112 (1900) to 334 (1990). Their samples are slightly

2The standard de�nitions of the metropolitan areas were �rst issued in 1949 by the then Bureau of the

Budget, the predecessor of the present Of�ce of Management and Budget.
3Source: Table 32. Only 16 of all the cities (8.42%) show a signi�cant change in their boundaries (the

case of annexed areas): Anchorage, Boston, Columbus, Hampton, Honolulu CDP, Indianapolis, Jacksonville,

Lexington-Fayette, Nashville-Davidson, Newport News, New York, Philadelphia, Pittsburgh, Virginia Beach,

Washington and Winston-Salem. Information about entities whose names and/or boundaries have changed,

entities that no longer exist, newly established entities (both legal and statistical) and changes in geographic

relationships is given in the �geographic change notes� section.
4Imposing a minimum population threshold is relevant for the analysis of city size distribution (Eeckhout,

2004). However, it seems to be less decisive in the study of city growth. González-Val (2010) obtains the

same conclusion, using data from all incorporated places without any size restriction, as do Ioannides and

Overman (2003) with their sample of MSAs: the validity of random growth in the US city growth during

the twentieth century. Cuberes (2011) carries out several robustness checks and his results for sequential city

growth do not vary much with different cut-offs for selected cities.

5



larger because in the US to qualify as an MSA a central city of 50,000 or more inhabi-

tants is needed (a lower minimum population threshold than ours). In fact, most of these

incorporated places are the central city of an MSA.

Table 1 shows the sample sizes for each decade and the descriptive statistics. For the

�rst decades and until the mid-nineteenth century, the number of cities is low and grows

very slowly; however, these few cities represent about two-thirds of the total urban popula-

tion of the period. From 1850 to 1900, the number of cities doubles (from 73 to 157). The

last major entry of new cities takes place from 1900 to 1930, and from that date the number

of cities remains stable. In 2000, the percentage of the urban population represented by

this upper-tail distribution is much lower (31%) because of the appearance of many small

and mid-sized cities (there were 19,296 incorporated places in the 2000 census, with an av-

erage population of 8,968.44 inhabitants) and because a change had taken place to a more

consolidated urban landscape.

The size of our sample is an advantage from a methodological point of view because

the techniques we apply are specially designed for small samples. However, the sample is

de�ned according to the largest cities in the latest period, which might imply a slight bias

because these are the �winning� cities, namely those that have presented the highest growth

rates over time. We deal with this problem in Sections 3 and 4.2 where this possible bias

could have an in�uence.

3 Testing long-term trends: random growth versus mean

reversion

Description

Random growth theories are based on stochastic growth processes and probabilistic

models. The most important models are those of Champernowne (1953), Simon (1955)

and more recently Gabaix (1999) or Córdoba (2008). In the case of population growth,
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these models are able to reproduce two empirical regularities that are well known in urban

economics: Zipf's and Gibrat's laws (or the rank-size rule and the law of proportionate

growth).

Random growth theory is especially important from our long-term perspective, because

the in�uence of other factors such as locational fundamentals or increasing returns may

change (or even disappear) over time. Locational fundamentals are exogenous factors

linked to the physical landscape, such as temperature, rainfall, access to the sea, the pres-

ence of natural resources or the availability of arable land. These characteristics are ran-

domly distributed across space, and although they may have played a crucial role in early

settlements, one would expect their in�uence to decrease over time.5 By contrast, urban

increasing returns, also known as agglomeration economies, appear later as a consequence

of industrial development. The empirical literature on agglomeration economies and their

positive effects on urban growth is wide, although there is a great deal of variability in the

results reported in the literature; see the meta-analysis by Melo et al. (2009).

Therefore, our basic hypothesis for long-term growth is random growth (or Gibrat's

law6). We follow the methodology proposed by Clark and Stabler (1991), who suggested

that testing for random growth is equivalent to testing for the presence of a unit root. They

built on the Vining model of city growth with autocorrelated errors (Vining, 1976). Let

Sit be the size (population) of city i at time t. Starting from a simple AR growth model,

they assume that the relationship between the size of a city in time period t and t � 1 is

Sit = �itSit�1, where �it is the growth rate of city i over the period t� 1 to t. This growth

rate can be decomposed into two (Clark and Stabler, 1991) or three components (Bosker et

al., 2008): a random component, a non-stochastic component relating the current growth

rate to a (possibly time-varying) constant and past growth rates, and initial city size. Then,

5However, empirical studies demonstrate that in some cases their in�uence in determining agglomeration

remains important; see Ellison and Glaeser (1999) or Davis and Weinstein (2002).
6According to Gabaix and Ioannides (2004), �Gibrat's Law states that the growth rate of an economic en-

tity (�rm, mutual fund, city) of size S has a distribution function with mean and variance that are independent
of S.�
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after some algebra Clark and Stabler (1991) get the following expression:

� lnSit = ci +�i lnSit�1 +
nX

j=1

�ij� lnSit�j + uit, (1)

where ci is a constant, �ij is a parameter measuring the in�uence of past growth rates on

current city growth and uit is a random error term. �i is the key parameter that captures

the effect of initial city size on growth. Random growth would imply �i = 0, meaning

that the growth of a particular city does not depend on the initial city size. This shows that

testing for random growth (Gibrat's law) is equivalent to testing for a unit root in city sizes.

Evidence supporting a unit root (if �i is not signi�cantly different from zero) means that

city i's growth rate is independent of initial size. By contrast, when �i < 0 the evolution

of city i will be a stationary process (mean reversion).7 Using Eq. (1), Clark and Stabler

(1991) apply the standard Dickey�Fuller (1979) t-statistic, not rejecting random growth for

the seven largest cities in Canada from 1975 to 1984.

Results

Gabaix and Ioannides (2004) emphasize �that the next generation of city evolution em-

pirics could draw from the sophisticated econometric literature on unit roots.� According

to this suggestion, most recent studies apply unit root tests: Black and Henderson (2003),

Sharma (2003), Resende (2004), Henderson and Wang (2007) and Bosker et al. (2008).

Some authors (Black and Henderson, 2003; Henderson and Wang, 2007; Soo, 2007)

propose a growth equation to test the presence of a unit root, which they estimate using

panel data. However, there are problems with this methodology (Gabaix and Ioannides,

2004; Bosker et al., 2008; González-Val et al., 2010). First, data availability; we have only

22 temporal observations as the periodicity of our data is by decades (decade-by-decade

city sizes over a total period of 210 years), when the ideal would be to have at least annual

data (as Clark and Stabler, 1991, or Bosker et al., 2008). Most studies use data from

7A consequence of an estimated�i < 0 is that any shock will dissipate over time; see Davis andWeinstein
(2002).
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the decennial census, so this limitation is a common problem in the literature. Second,

an econometric issue; the presence of cross-sectional dependence across the cities in the

panel can give rise to estimations that are not very robust. Econometric literature clearly

establishes that panel unit root and stationarity tests that do not explicitly allow for this

feature among individuals present size distortions (Banerjee et al., 2005).

For this reason, as in González-Val et al. (2010), we use one of the most recent tests

especially created to deal with this question, namely Pesaran's (2007) test for unit roots in

heterogeneous panels with cross-section dependence. The test of the unit root hypothesis

is based on the t-ratio of the OLS estimate of bi in the following cross-sectional augmented

Dickey�Fuller (denoted by CADF) regression:

�yit = ai + biyi;t�1 + ci�yt�1 + di��yt + eit, (2)

where yit = lnSit, ai is the individual city-speci�c average growth rate and �yt is the cross-

section mean of yit, �yt = N�1
PN

j=1 yjt. To eliminate cross-dependence, the standard

Dickey�Fuller (or augmented Dickey�Fuller) regressions are augmented with the cross-

section averages of lagged levels and �rst differences of the individual series, such that the

in�uence of the unobservable common factor is asymptotically �ltered. The null hypothesis

assumes that all series are non-stationary, and Pesaran's CADF is consistent under the

alternative that only a fraction of the series is stationary.

Another advantage of Pesaran's CADF test over other recently developed unit root tests

(Levin et al., 2002) is that it is suitable for unbalanced panels, as is the case with our city

sample8. New cities appear over time, from 16 in 1790 to 190 in 2000. However, owing to

limitations in the data (the CADF test works with unbalanced panels but if we consider the

complete sample it is a strongly unbalanced panel; there is an excessive amount of missing

8Another panel test that deals with cross-section dependence and that is suitable for unbalanced panels is

Im, Pesaran and Shin (2003) test (IPS test). We also calculated this test and the results lead to more rejections

of the unit root null hypothesis. However, we do not show these results because as Baltagi (2008, p. 280)

points out the IPS test has size distortions when, as in our sample, N is large relative to T . In the related
literature, Breitung (2000) �nds that the IPS test suffers from a dramatic loss of power if individual speci�c

trends are included.
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data) we must restrict our analysis to a maximum of 150 cities. These 150 cities are a �xed

sample for the entire period, and correspond to the largest cities (upper-tail distribution)

in the year of reference. We consider three different periods: 1790�1900, 1900�2000 and

1790�2000. In the 1790�1900 period, the year of reference is 1860 while in 1900�2000

and 1790�2000 it is 1900 (we cannot use always the same year of reference owing to data

limitations). In this way, we can control the possible bias mentioned in Section 2, because

not all the largest cities of 1860 or 1900 would have maintained their positions a century

later. Therefore, the samples de�ned according to 1860 or 1900 ranks contain �winning�

and �losing� cities.9

Table 2 shows the results of the standardized Ztbar statistic of the CADF test, Z [�t],

and the corresponding p-value for four sample groups (top 10, 75, 100 and 150 largest

cities in the year of reference), different speci�cations: AR (p) with p = 1; 2; 3 including

a constant or constant and trend, and three different periods.10 In Panel A (1790�1900),

we must restrict the analysis to top 10 and 75 owing to data limitations; the results show

that we cannot reject the unit root in any case. Support for the unit root hypothesis is also

strong in Panel B (1900�2000), as we can only reject the null hypothesis in one case: the

model with one lag and no trend for the top 150 cities. Finally, Panel C, which considers

the entire period 1790�2000, shows less unanimous evidence. In this panel, the results are

similar for the four sample sizes. When only one lag is included, the null hypothesis of

9Moreover, 1900 is when our sample exceeds 150 cities (see Table 1).
10The estimations were made with the pescadf Stata package, developed by Piotr Lewandowski. The

number of cities in each panel in Table 2 is �xed, although some of the cities did not exist in all periods (that

is why Panels A and C are unbalanced panels). To clarify this point, these are the number of time observations

for each city in the panels:

Panel A: 1790�1900. Year of reference for Top cities: 1860. Top 75 (N=75): (N, T1-T75) = (75, 11 11 11

11 9 9 7 6 9 7 11 10 5 11 10 7 8 6 8 11 11 7 7 6 5 11 11 11 5 10 11 9 6 6 7 10 11 11 6 5 6 11 6 9 5 5 4 6

5 6 10 11 6 5 6 4 5 4 5 7 4 5 6 4 5 10 4 4 5 4 5 5 4 5 5). Top 10 is the subsample with the �rst 10 elements

(N=10, T1-T10).

Panel B: 1900�2000. Year of reference for Top cities: 1900. This is a balanced panel; there are 11 temporal

observations for each city.

Panel C: 1790�2000. Year of reference for Top cities: 1900. Top 150 (N=150): (N,T1-T150) = (150, 22 17

22 18 22 22 19 20 16 20 21 20 19 17 21 18 17 22 15 22 17 15 16 18 15 17 18 22 16 22 17 15 16 16 18 22 15

16 16 20 22 21 14 22 17 15 15 22 16 22 17 21 15 16 21 20 13 15 22 15 16 16 16 13 13 12 18 13 16 12 12 16

18 17 15 16 15 17 14 16 16 13 15 22 13 16 16 14 13 14 12 16 16 15 17 15 17 15 16 13 13 14 22 15 14 21 15

12 15 13 17 12 14 12 12 16 12 13 16 14 15 13 15 12 13 14 12 12 12 12 15 14 14 12 12 14 17 12 12 12 12 14

11 12 14 12 11 14 13 12). Top 10, Top 75 and Top 100 are the subsamples with the �rst 10 (N=10, T1-T10),

75 (N=75, T1-T75) and 100 (N=100, T1-T100) elements, respectively.

10



a unit root is rejected for any speci�cation. However, as the number of lags in the model

increases we soon �nd evidence in favor of our null hypothesis: in the model with two lags

when a trend is included, and in the model with three lags with any speci�cation. This last

result is especially relevant, as Said and Dickey's (1984) T 1=3 rule would establish the lag

choice p = 3 in that case
�
221=3 = 2:8

�
.

This evidence in favor of a unit root indicates that city growth during the 1790�2000

period was independent of initial size, supporting our hypothesis of random growth. The

evidence is even stronger when we consider subperiods (1790�1900 and 1900�2000). We

carried out several robustness checks with the Panel C sample (the whole 1790�2000 pe-

riod).11 First, we de�ned the sample according to the largest cities in 2000, the latest period

for which we have data. The results of the test, when it could be carried out,12 were similar:

with two lags or more, we could not reject the unit root for any speci�cation of the model.

We also tried de�ning the group of cities randomly, and again we obtained the result that

the null hypothesis of a unit root could not be rejected (in this case, the only model with

which it could be rejected was with p = 1 and without trend). Finally, we estimated sepa-

rately a panel for the sample of 16 cities that are present in all periods. In this case, as we

considered a balanced panel we were also able to run the tests of Levin et al. (2002) and Im

et al. (2003). The results for this group of the oldest cities were similar; we could not reject

the null hypothesis from two lags onward with any speci�cation of the model and with any

of the three tests.

4 What lies beneath the random growth? Intra-distribution

mobility

In Section 3, we found evidence supporting random growth against the alternative of mean

reversion (convergence) in American cities during the 1790�2000 period. This type of

11The speci�c values of the tests are available from the authors on request.
12In this case, owing to data limitations, we could only carry out the test for the top 75 cities.
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growth pattern implies that cities evolve according to a stochastic process in which the

growth rate does not depend on the initial size, so that the differences in the �nal sizes

of the cities depend on exogenously distributed characteristics (locational fundamentals

theory) or random shocks. In this case, under certain conditions the limit distribution of

city size must converge to a Pareto distribution that obeys Zipf's law (Gabaix, 1999).

In this section, we take a different perspective. Our intention is to examine mobility

within the distribution, trying to extract growth patterns different from the general unit root

trend detected in the previous section. To do this, we use two different techniques. First, we

calculate transition matrices, which tell us the degree of mobility in terms of probability.

Second, we apply a cluster algorithm to identify different groups of cities that converge

with each other. Both approaches are complementary; while the transition matrices de�ne

some groups in relative terms and the movements of cities between these groups are exam-

ined, with the second method we use the algorithm to identify endogenously the groups of

cities that converge over time, looking for evidence of some type of �local� mean-reverting

behavior.

4.1 Transition matrices

Description

Eaton and Eckstein (1997) were the �rst to apply Quah's (1993) transition matrices to

city size evolution. Let Ft be the vector representing the city size distribution at instant t,

relative to the average size. We can say that this distribution follows a stochastic process

de�ned by a Markov chain if the transition from one period to the next is given by:

Ft+1 =MtFt, (3)

whereMt is the movement matrix or transition matrix de�ning the law of movement from

one period to the next. If Mt is time-invariant, then we have a stationary process and

Mt = M . A Markov chain requires discrete time and a �nite space of states E, which
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represents a discrete approximation to population distribution. Implicit in (3) is also what

is known as the Markov property, i.e., that the future of the process depends only on its

most immediate past (a homogeneous �rst-order stationary Markov process). Element pij

of the matrixM represents the probability that a city in state i in tmoves to state j in t+1,

i; j 2 E. It is evident that pij � 0 and that
P

j2E

pij = 1;8i 2 E.

The elements of the matrix M can be estimated by maximum likelihood (Hamilton,

1994; Bosker et al., 2008) applying:

p̂ij =

T�1P

t=1

nit;jt+1

T�1P

t=1

nit

, (4)

where nit;jt+1 is the number of cities moving from state i in year t to state j in year t + 1

and nit the number of cities in state i in year t.

The general expression (3) is valid for the case in which no cities enter or leave the

sample from one year to the next. This is not our case, and thus we need to apply an

extended equation, which describes the evolution of a distribution that allows cities to enter

or leave.

In the case of a sample that grows over time, in which from one period to the next cities

only enter, Dobkins and Ioannides (2000) and Black and Henderson (2003) show that the

correct equation is:

Ft+1 = (1� it)MFt + itZt, (5)

where it is a scalar denoting the percentage of new cities in t + 1 over the total existing

cities in t+ 1 and Zt is the vector of relative frequencies of the cities that enter.

In our case, where cities enter and leave the sample from one period to the next, Lanaspa

et al. (2011) propose the next equation:

Ft+1 =MFt � ntMXt + ntZt, (6)
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where nt =
Nt
N
with N denoting the constant number of cities in each period and Nt

representing the number of cities entering or leaving from t to t+1, Zt(Xt) is the vector of

relative frequencies of the cities that enter (leave) the sample andM is the transition matrix

from t to t + 1 but only of the N � Nt cities that are in the sample both in t and in t + 1.

The difference between Eq. (6) and Black and Henderson's (2003) expression (Eq. 5) is

the term ntMXt, which represents the distribution of cities that leave the sample.

Results

Table 3 shows theM matrices for three different periods (again 1790�1900, 1900�2000

and 1790�2000) and three sample sizes (75, 100 and 150 cities). This methodology always

takes into account the largest cities at each moment in time, allowing these largest cities

to change, enter or leave the sample, or remain in it from one period to the next. 13 Five

states are considered; a larger number would increase the mobility arti�cially and a smaller

number would provide little information on intra-distribution mobility. The upper limits

for each state are 0.4, 0.7, 1, 2 and1 times the average for each year.14 The thresholds of

the different categories are not exactly the same, but they are very similar to those used by

Eaton and Eckstein (1997), Dobkins and Ioannides (2000) and Bosker et al. (2008). In any

case, one of the criteria used to de�ne them is that the number of cities in each of the cate-

gories should not be different. As is already known, the major problem with this approach

is that any choice of states inevitably involves a certain amount of arbitrariness. With this

in mind, we explored alternative cut-off points, although these are not very different from

the states �nally chosen, and the qualitative results remain the same. The relative frequen-

cies are also shown of the cities that enter ( Zt) and leave the sample ( Xt) throughout the

period, as de�ned above.

Several conclusions emerge from Table 3. The �rst and most important is that we �nd

intense mobility in the distribution of cities; persistence is not high. This is especially true

13But to de�ne the largest cities in each period, entry and exit, we use all the cities available each year.
14The average is not calculated for all the cities, but for those that remain in the sample for two consecutive

periods (see the de�nition of the matrixM ).
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for Panel A (1790�1900), which captures the creation of cities in the nineteenth century,

and Panel C (1790�2000), which represents the aggregate period. In fact, many of the ele-

ments in the diagonal of the matrices in Panel A, which correspond to the cities that belong

to the same state for two consecutive periods, are below 0.7, thus indicating high mobility

in that period. Panel B shows less mobility, as most of the elements in the diagonal of the

matrices are greater than 0.8. These results highlight the difference between the nineteenth

(high mobility) and twentieth century (a more stable urban system). The matrices in Panel

B are consistent with those of Black and Henderson (2003), as the period they consider is

similar (1900�1990). Focusing on the aggregate period 1790�2000 (Panel C), of the �fteen

elements in the diagonals, only three are higher than 0.9, while six values are between 0.7

and 0.8, and one is below 0.7. All of them are signi�cantly different from one (value one

represents no transitions to any other states and thus absolute persistence).15

It is usual in the literature to �nd little mobility, as detected for the US by Black and

Henderson (1999, 2003) and by Beeson et al. (2001), but those samples cover a consid-

erably shorter time horizon than the one we consider. Our sample covers more than two

centuries. By studying the urban structure from its beginning the conclusions may be dif-

ferent, because over these centuries, the late eighteenth, the nineteenth and the twentieth,

the American urban structure was formed and built through demographic expansion (waves

of immigration throughout the nineteenth century) and territorial expansion (the so-called

conquest of theWest and the founding of the cities of theWest andMid-West). Other works

that consider the same time horizon (1790�2000) also �nd evidence of high mobility within

the distribution (Batty, 2006; Cuberes, 2011). Thus, Batty (2006) develops rank-clocks that

show how, with the exception of New York, the cities of the original 13 colonies gradually

lost their positions with the entrance of new cities. Our data show the same behavior as a

consequence of the mobility noted above and the entry of new cities. If we rank cities in

2000 only New York, Philadelphia, Boston and Baltimore of all the cities that existed in

the �rst period (1790) are still among the top 20 cities (and only New York and Philadel-

15Standard errors, not shown, are available from the authors on request.

15



phia remain within the top 10 cities), while the rest have lost their positions and have been

overtaken by other cities that entered the system later.

Cuberes (2011) �nds that the average-rank of the fastest-growing cities (not just Amer-

ican cities, as his sample includes data for cities in other countries) tends to increase over

time, a result that he interprets as evidence in favor of sequential urban growth. If cities

grow sequentially, the cities that are initially the largest must represent a large share of

the total urban population of the country in the initial periods and a relatively smaller one

later on (although this is a necessary but not suf�cient condition). As Table 1 shows, the

behavior of our sample of cities is consistent with this af�rmation.

The second conclusion refers to the cities that enter ( Zt) and leave the sample (Xt). In

the three panels, those cities that leave the sample do so almost exclusively from the �fth

state, that of the smallest cities. It makes sense that large cities do not disappear suddenly.

In Cuberes (2009) and Henderson and Venables (2009), the explanation is that there is

irreversible investment. In Glaeser and Gyourko (2005), it happens because housing is a

durable good that depreciates slowly over time. This fact is not the same for cities entering

the sample; in Panels A and C they enter in all the states, except for that of the largest

cities. Nevertheless, in Panel B, which we claim represents a more stable urban structure,

cities only enter to the last two states (the smallest cities in the samples). From a long-term

perspective (Panel C), this result indicates that cities enter the sample with a considerable

size (most of them cities created in the West) and grow very quickly until they reach the

sizes of the pre-existing cities (leapfrogging).

4.2 Convergence clubs

Description

The results in Section 3 show that we cannot reject the random growth (unit root) hy-

pothesis for most of the proposed speci�cations, against the alternative hypothesis of con-

vergence (mean reversion). However, in the previous section we �nd evidence of high
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mobility when we model growth as a �rst-order Markov process. That approach explains

how cities move between the different population thresholds we de�ned; however, more

or less movement does not automatically imply convergence or divergence. Therefore, in

this section we apply a cluster algorithm to try to identify different groups of cities that

converge with each other, looking for evidence of some type of �local� mean-reverting be-

havior. Cluster analysis has previously been used to study clusters of cities within city size

distribution (Garmestani et al., 2005), but here we look for clusters in city growth rates

rather than clusters in city sizes.

The cluster procedure is based on the log t�test (Phillips and Sul, 2007, 2009), which

focuses on the evolution over time of the idiosyncratic transitions in relation to the com-

mon growth component. Therefore, in Section 3 we analyzed the evolution of the common

growth component using panel unit root tests and now we focus on the possible differ-

ences in the idiosyncratic transitions across cities. This new approach is different from that

of previous empirical studies on growth convergence clubs, such as Durlauf and Johnson

(1995) and Canova (2004). The regression model of the log t�test is:

log
H1
Ht
� 2 log (log t) = �0 + �1 log t+ ut, for t = T0; :::; T (7)

where H1
Ht
is the cross-sectional variance ratio,Ht is the transition distance,Ht = N

�1
NP

i=1

(hit � 1)
2
,

and hit is the relative transition coef�cient, de�ned as hit =
logSit

N�1

NP

i=1

logSit

(again Sit is the

size (population) of city i at time t.). These relative transition coef�cients exclude the com-

mon growth component (�t) by scaling, measuring city i's transition element relative to the

cross-section average. This means that hit traces out city i's individual trajectory relative

to the average, so Phillips and Sul (2009) call hit the �relative transition path.� Moreover,

hit also measures for each city i the departure from the common growth path �t in relative

terms. Eq. (7) is obtained from a neoclassical growth model (see Phillips and Sul, 2007).

Eq. (7) simply represents a time series regression; the null hypothesis is growth conver-

gence across all cities and the alternatives include no convergence and partial convergence
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among subgroups of cities. As the t-statistic of the test refers to the coef�cient �1 of the

log t regressor in Eq. (7), the test is called the ` log t' convergence test. It is important that

not only the sign of the coef�cient �1 of log t but also its magnitude measure the speed

of convergence. The interpretation of the results may change depending on whether the

estimated parameter is 2 > �1 � 0 or �1 � 2. In the case that �1 � 2 and the common

growth component �t follows a random walk with drift or a trend stationary process,
16 then

so large values of �1 will imply convergence in level city populations (cities end up with

the same population). However, if 2 > �1 � 0 this speed of convergence corresponds to

conditional convergence, in which population growth rates converge over time across the

cities within the club.17

The cluster procedure performs the log t test for each of the groups and stops when the

group of remaining cities does not satisfy the convergence test. First, it de�nes an initial

core primary group, and other groups are formed according to certain criteria that maximize

the value of the t-statistic. A much more detailed explanation of the constructive steps of

the procedure can be found in Phillips and Sul (2007, 2009).

Results

Table 4 shows the results of applying the cluster algorithm to our sample of cities.18

We only consider the whole period (1790�2000); owing to data limitations, we cannot

analyze subperiods as we did in the previous sections. Again, the results are reported for

three sample sizes: the top 75, 100 and 150 largest cities in 1900.19 In this case, the

16Note that the hypothesis of random growth in the common growth component was tested in Section 3.
17Note that this terminology is slightly different from the classical de�nition of conditional convergence,

which depends on individuals' structural characteristics and initial conditions (Galor, 1996). An analysis of

the general characteristics of the various convergence clubs as well as the many possible determining factors

and initial conditions in each case is beyond the scope of this paper.
18The estimations were performed with the Gauss code kindly provided by Donggyu Sul on his webpage.

As Phillips and Sul (2007) recommend, we set r = 0:3 ( r is the initiating sample fraction).
19To apply the algorithm we must have a balanced panel data. Given that most of the cities appear in the

sample after 1790, we must carry out a little data transformation, assigning a population of 1 to the cities

that did not exist in each period. This transformation means that these cities have a zero log-population in

the periods in which they did not exist. If this change affected the cluster procedure, the cities that appear in

the same period would be grouped in the same club; however, Figure 1 shows how the groups are formed by

cities that appear in different periods.
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choice of the reference period is relevant, because the largest cities in 2000 are a sample

of �winning� cities, those that since they �rst appeared have presented the highest growth

rates.20 However, some of the cities that were among the largest in 1900 have lost their

positions in the ranking and they have been overtaken by other cities. Therefore, if we

consider this sample of cities, we capture more heterogeneous behaviors.21

The �club� column shows the number of cities that are members of each convergence

group. The results are consistent for the three sample sizes, because despite enlarging the

sample the cities do not usually change groups. Only with the top 150 sample is there a

small redistribution of cities, because one less convergence club is detected. The distribu-

tion of cities within groups can be consulted in the Appendix.

Given that the city distribution is fairly consistent regardless of the sample size, for

clarity we will show only the graphs for the top 75. Figure 1 shows the evolution over time

of the log-population of the cities in each convergence club (we show the log-population

because by de�nition the test is performed with log-variables). Our analysis focuses on

these results. Figure 2 shows the evolution of the top 75 cities, and demonstrates that it is

dif�cult to deduce any speci�c type of pattern. However, some of the groups represented in

the remainder of the graphs show a sequential pattern, especially in the entry of new cities.

These new cities appear later in the sample, but grow at a faster rate than do the rest of

the cities in their club until they reach similar growth rates to the pre-existing cities.22 It

is surprising that in almost all convergence clubs (groups of cities that converge in growth

rates identi�ed by the cluster procedure), the cities do not appear in the sample at the same

time, but rather sequentially. This behavior is consistent with a pattern of sequential city

growth, at least within groups.

20In fact, with the largest cities in 2000 we �nd only four convergence clubs, because all of them are cities

characterized by high growth rates. The results are available from the authors on request.
21Altogether, 31 cities (20.7%) of the top 150 cities in 2000 are not in the top 150 cities in 1900. The

differences are greater still in the top 75 and 100, because there are 36 different cities (48% and 36% of the

sample, respectively).
22Some of the graphs are similar to Figure 4 (a) in Henderson and Venables (2009), obtained by simulations

of their theoretical model of city formation. However, these graphs should be taken with caution as they

show log-population and the log-scale smoothes cross-city differences in levels. Moreover, because a city's

log population is zero before it enters the sample, graphically most (but not all) of the catch-up is the steep

segment for the single decade in which the city appears.

19



The algorithm classi�es cities into 12 groups (convergence clubs). There are four re-

maining cities that are not classi�ed into any club and for which the convergence hypothe-

sis is rejected. In each group, the estimated coef�cient �̂1 is signi�cantly positive, strongly

supporting the club classi�cation. Furthermore, only one of the estimated coef�cients is

signi�cantly greater than two (club 2), indicating that the evidence in favor of level con-

vergence is small, while support for conditional convergence within each of the other clubs

is stronger because �̂1 < 2. Of the four cities belonging to club 2, three are in the South

Region, although the geographical distribution of cities shows no speci�c spatial pattern in

any of the groups. Only club 11 consists of cities belonging to the same region (Northeast),

although another common characteristic of these cities is that they are among the oldest.

The cities that have existed since 1790 are classi�ed into groups 10 to 12, indicating that

while they present a different growth pattern from the cities that appeared later, they also

differ from each other.

It should be noted that of the 12 clubs, only clubs 1 and 2 correspond to cities that

rise in the ranking (on average) from 1900 to 2000. The cities within the other clubs lose

positions in the ranking (on average), especially those in clubs 7, 9 and 12, con�rming

our idea that our sample captures more heterogeneous behaviors than does the sample of

�winning� cities in 2000, especially because we also include �failing� cities that performed

poorly in terms of growth over the entire time interval.

5 Discussion

Thus far, we found mixed evidence regarding city growth in the long-term. First, we can-

not reject the random growth (unit root) hypothesis for most of the proposed speci�cations,

against the alternative hypothesis of convergence (mean reversion). However, we �nd evi-

dence of high mobility when we model growth as a �rst-order Markov process; this mobil-

ity is consistent with the results of other studies that consider the same 1790�2000 period

(Batty, 2006; Cuberes, 2011). Finally, using a cluster procedure we �nd strong evidence
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supporting conditional convergence in city growth rates within convergence clubs, which

we can interpret as �local� mean-reverting behaviors. We interpret the high mobility and

the results of clustering analysis as signs of a sequential city growth pattern.

These results raise two questions: �rst, whether these different empirical results are

compatible and, second, whether the city size distribution has evolved according to the

random growth pattern (if Zipf's law holds) or whether, on the contrary, the trend has been

convergence among cities.

The �rst question asks whether a random growth result is compatible with a degree of

convergence in the evolution of city growth rates; in other words, whether a unit root is

compatible with some kind of mean-reverting component. Gabaix and Ioannides (2004)

answer this question by putting forward what they call �deviations from Gibrat's Law (ran-

dom growth) that do not affect the distribution,� starting from:

lnSit � lnSit�1 = � (Xit; t) + �it, (8)

where Xit is a possibly time-varying vector of characteristics of city i; � (Xit; t) is the

expectation of city i's growth rate as a function of economic conditions at time t; and �it

is white noise. In the simplest speci�cation, �it is independently and identically distributed

over time (this means that �it has a zero mean and a constant variance that is uncorrelated

with �is for t 6= s) and � (Xit; t) is constant.

Gabaix and Ioannides (2004) consider two types of deviations, relaxing both assump-

tions. Rossi-Hansberg and Wright (2007) discuss the economic interpretations of devia-

tions from Zipf's and Gibrat's laws. We are interested in the consequences of relaxing the

assumption of an i.i.d. �it, assuming constant � (Xit; t) = �. In its place, the following

stochastic structure is assumed: �it = bit + �it � �it�1, where bit is i.i.d. and �it follows a

stationary process. Replacing in (8) they obtain:

lnSit � lnSi0 = �t+
tX

s=1

bis + �it � �i0. (9)
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The term
Pt

s=1 bis gives a unit root in the growth process, while the term �it can have any

stationarity. According to Gabaix and Ioannides (2004), this means that �for Zipf's law

to hold, the city evolution process can contain a mean reversion component, as long as

it contains a non-zero unit root component.� Therefore, our mixed empirical evidence is

not contradictory, but rather compatible. In addition, our conclusion leads us directly to

our second question, the behavior of city size distribution over the 1790�2000 period (and

whether Zipf's law holds).

Let us denote S as the size (population) and R as its corresponding rank (1 for the

largest, 2 for the second largest and so on). A power law (Pareto distribution) links city

size and rank as follows: R (S) = AS�a. This expression has been used extensively in

urban economics to study city size distribution (see, for example, Eeckhout (2004) and

Ioannides and Overman (2003) for the US case). It is usually speci�ed and estimated in its

logarithmic version:

lnR = b� a lnS + �, (10)

where � is the error term and b and a are the parameters that characterize the distribution.

The latter is known as the Pareto exponent, and Zipf's law is considered to hold when

a = 1. This means that when ordered from largest to smallest, the size of the second city

is half that of the �rst one, the size of the third is a third of the �rst one and so on. The

greater the coef�cient, the more homogeneous are the city sizes. In addition, an increase

in the coef�cient over time would mean a process of convergence in city sizes. Similarly,

the smaller the coef�cient, the less homogeneous are city sizes, and a decreasing evolution

would mean a process of divergence.

Gabaix and Ibragimov (2011) propose specifying Equation (10) by subtracting 1=2

from the rank to obtain an unbiased estimation of a:

ln

�
R�

1

2

�
= b� a lnS + �. (11)

Equation (11) was estimated by OLS for our sample of cities in the different decades dur-
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ing the 1790�2000 period. Figure 3 shows the results.23 We estimated using all the cities

available in each decade (from 16 in 1790 to 190 in 2000). The results show that the distrib-

ution remained stable until 1950, so the entry of new cities did not have a signi�cant effect,

although the estimated coef�cients are less than one, indicating a high degree of inequality

among city sizes. Therefore, during this period the stable evolution of the city size distrib-

ution re�ects the random growth process, even though the resulting Pareto exponent of the

distribution is lower than one, rejecting Zipf's law for this group of the largest cities.24

From 1950 the estimated Pareto coef�cient grows to reach (and exceed) the value of

one. Note that from 1950 to 2000 only 11 cities enter the sample, so that the evolution of

the exponent reacts only to the city growth process. The increasing trend of the exponents

indicates a process of convergence among cities. We also estimated the Gini coef�cients

for each period. The Gini coef�cients have the advantage of not imposing a speci�c size

distribution (Pareto for rank-size coef�cients). The results are similar; from 1790 to 1950,

the Gini coef�cient rose from 0.65 to 0.68,25 while in 2000 it was 0.50. Therefore, during

this period the evolution of the distribution clearly corresponds to a convergence phase. The

explanation for this convergence process is well known in the literature (post-war subur-

banization). During the second half of the twentieth century, mid-sized and small American

cities grew much more than did the largest cities in the same metropolitan areas.26 Glaeser

et al. (2011) claim that some of the impact of sprawl and the role that the automobile played

in dispersing the American population can explain some of these patterns. The effect that

we capture from this process is that the cities of the upper-tail distribution became more

homogeneous in size because of the larger growth of mid-sized cities, thereby bringing

them closer to the largest ones.

23The Pareto exponent is estimated using Gabaix and Ibragimov's Rank-1=2 estimator. Dashed lines rep-
resent the standard errors calculated applying Gabaix and Ioannides's (2004) corrected standard errors: GI

s.e. = â � (2=N)
1=2
, whereN is the sample size.

24Except in 1830 and 1840, for which the con�dence intervals indicate that we cannot reject the fact that

the coef�cient is signi�cantly different from one.
25However, the evolution of the Gini coef�cient is not as stable as that of the Pareto exponent, because

within this period it does re�ect changes in the inequality of the distribution in some decades.
26Several works have studied the causes of this process. For example, Margo (1992) examines the role of

income.
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6 Conclusions

In this paper, we study the growth pattern of the system of cities in the United States from its

origin. We obtain several conclusions. First, we �nd evidence supporting random growth in

American cities during the 1790�2000 period, indicating that the growth rate does not de-

pend on initial size. Second, we �nd evidence of high intra-distribution mobility when we

consider growth as a �rst-order Markov process. Third, using a cluster procedure we �nd

evidence in favor of the conditional convergence of city growth rates within convergence

clubs, allowing us to conclude that �local� mean-reverting behaviors exist. Our results lend

support to recent theories of sequential city growth.
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Table 1: NUMBER OF CITIES AND DESCRIPTIVE STATISTICS BY YEAR
Year Cities Mean Standard deviation Minimum Maximum US urban population (UP) % of UP

1790 16 8,746.50 13,313.13 200 49,401 201,655 69.40%

1800 22 10,255.00 18,565.84 81 79,216 322,371 69.98%

1810 25 14,278.04 26,052.55 383 119,734 525,459 67.93%

1820 28 16,832.07 31,499.38 606 152,056 693,255 67.98%

1830 36 20,631.19 43,079.73 877 242,278 1,127,247 65.89%

1840 50 24,502.46 58,753.40 1,222 391,114 1,845,055 66.40%

1850 73 30,220.67 85,663.40 415 696,115 3,574,496 61.72%

1860 94 44,193.24 136,697.40 175 1,174,779 6,216,518 66.82%

1870 110 55,417.75 160,729.66 155 1,478,103 9,902,361 61.56%

1880 125 65,037.17 197,482.93 556 1,911,698 14,129,735 57.54%

1890 149 77,799.07 232,080.75 273 2,507,414 22,106,265 52.44%

1900 157 108,432.39 329,863.51 202 3,437,202 30,214,832 56.34%

1910 165 142,935.56 433,335.63 297 4,766,883 42,064,001 56.07%

1920 171 176,340.04 509,938.16 326 5,620,048 54,253,282 55.58%

1930 179 211,572.36 614,701.55 515 6,930,446 69,160,599 54.76%

1940 179 224,762.88 651,013.99 582 7,454,995 74,705,338 53.85%

1950 179 260,994.59 695,986.21 727 7,891,957 96,846,817 48.24%

1960 182 290,794.10 683,649.24 3,695 7,781,984 125,268,750 42.25%

1970 187 308,875.27 679,828.20 14,089 7,895,563 149,646,617 38.60%

1980 188 311,706.85 617,176.35 62,134 7,071,639 167,050,992 35.08%

1990 190 332,701.32 635,704.55 95,802 7,322,564 187,053,487 33.79%

2000 190 364,890.56 690,433.95 100,565 8,008,278 222,360,539 31.18%

Note: US urban population data are taken from US Census Bureau.

Source: http://www.census.gov/population/censusdata/table-4.pdf
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Table 2: PANEL UNIT ROOT TESTS, PESARAN'S CADF STATISTIC
Panel A: 1790-1900. Year of reference for Top cities: 1860

Augmenting lag (1) Augmenting lags (2) Augmenting lags (3)

Sample Size Constant Constant & trend Constant Constant & trend Constant Constant & trend

Top 10 4.448 (1.000) 4.522 (1.000) 10.877 (1.000) 8.882 (1.000) 10.877 (1.000) 8.882 (1.000)

Top 75 18.021 (1.000) 15.331 (1.000)

Panel B: 1900-2000. Year of reference for Top cities: 1900

Augmenting lag (1) Augmenting lags (2) Augmenting lags (3)

Sample Size Constant Constant & trend Constant Constant & trend Constant Constant & trend

Top 10 2.673 (0.996) 0.374 (0.646) 12.533 (1.000) 11.253 (1.000) 12.533 (1.000) 11.253 (1.000)

Top 75 5.152 (1.000) 1.049 (0.853) 34.011 (1.000) 30.349 (1.000) 34.011 (1.000) 30.349 (1.000)

Top 100 -0.799 (0.212) 2.250 (0.988) 39.273 (1.000) 35.044 (1.000) 39.273 (1.000) 35.044 (1.000)

Top 150 -5.100 (0.000) 2.612 (0.995) 48.540 (1.000) 43.583 (1.000) 48.540 (1.000) 43.583 (1.000)

Panel C: 1790-2000. Year of reference for Top cities: 1900

Augmenting lag (1) Augmenting lags (2) Augmenting lags (3)

Sample Size Constant Constant & trend Constant Constant & trend Constant Constant & trend

Top 10 -4.110 (0.000) -1.593 (0.056) -1.394 (0.082) -1.626 (0.052) -3.212 (0.001) -1.752 (0.040)

Top 75 -8.251 (0.000) -8.067 (0.000) -3.507 (0.000) -0.805 (0.210) 4.165 (1.000) 12.598 (1.000)

Top 100 -5.489 (0.000) -5.468 (0.000) -0.071 (0.472) 1.575 (0.942) 10.535 (1.000) 18.987 (1.000)

Top 150 -7.645 (0.000) -1.397 (0.081) -2.471 (0.007) 9.946 (1.000) 20.622 (1.000) 28.679 (1.000)

Note: Pesaran's (2007) Z [�t] test-statistic (p-value). Sample may not contain gaps; therefore,
the eight gaps in the sample were �lled using values calculated by linear interpolation.
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Table 3: AVERAGE 10-YEAR TRANSITION MATRICES
Panel A: 1790-1900 Panel B: 1900-2000 Panel C: 1790-2000

Sample Size: 75 Sample Size: 75 Sample Size: 75

1 2 1 0.7 0.4 1 2 1 0.7 0.4 1 2 1 0.7 0.4

1 0.933 0.067 0 0 0 1 0.922 0.078 0 0 0 1 0.928 0.072 0 0 0

2 0.082 0.755 0.163 0 0 2 0.033 0.856 0.111 0 0 2 0.050 0.820 0.130 0 0

1 0 0.279 0.512 0.209 0 1 0 0.112 0.747 0.141 0 1 0 0.162 0.676 0.162 0

0.7 0 0.011 0.080 0.670 0.239 0.7 0 0.005 0.076 0.839 0.080 0.7 0 0.006 0.077 0.792 0.125

0.4 0 0.004 0.010 0.086 0.900 0.4 0 0 0.013 0.134 0.853 0.4 0 0.002 0.012 0.106 0.880

Xt 0 0 0 0 0.05751 Xt 0 0 0 0.00135 0.07143 Xt 0 0 0 0.00073 0.06506

Zt 0 0.00160 0.00160 0.00320 0.14537 Zt 0 0 0 0.00674 0.06604 Zt 0 0.00073 0.00073 0.00512 0.10234

Sample Size: 100 Sample Size: 100 Sample Size: 100

1 2 1 0.7 0.4 1 2 1 0.7 0.4 1 2 1 0.7 0.4

1 0.918 0.082 0 0 0 1 0.913 0.087 0 0 0 1 0.915 0.085 0 0 0

2 0.102 0.780 0.102 0.016 0 2 0.056 0.839 0.105 0 0 2 0.071 0.820 0.104 0.005 0

1 0 0.102 0.592 0.306 0 1 0 0.118 0.756 0.126 0 1 0 0.114 0.710 0.176 0

0.7 0 0.041 0.082 0.653 0.224 0.7 0 0.009 0.101 0.780 0.110 0.7 0 0.018 0.095 0.742 0.145

0.4 0 0.003 0.003 0.087 0.907 0.4 0 0 0.011 0.122 0.867 0.4 0 0.001 0.007 0.105 0.887

Xt 0 0 0 0 0.02307 Xt 0 0 0 0 0.06949 Xt 0 0 0 0 0.04971

Zt 0 0.00136 0.00136 0.00407 0.13026 Zt 0 0 0 0.00302 0.06647 Zt 0 0.00058 0.00058 0.00347 0.09364

Sample Size: 150 Sample Size: 150 Sample Size: 150

1 2 1 0.7 0.4 1 2 1 0.7 0.4 1 2 1 0.7 0.4

1 0.921 0.079 0 0 0 1 0.898 0.102 0 0 0 1 0.908 0.092 0 0 0

2 0.143 0.661 0.196 0 0 2 0.068 0.837 0.095 0 0 2 0.085 0.797 0.118 0 0

1 0 0.141 0.684 0.175 0 1 0.006 0.116 0.749 0.129 0 1 0.005 0.123 0.731 0.141 0

0.7 0 0.037 0.111 0.667 0.185 0.7 0 0.018 0.078 0.806 0.098 0.7 0 0.023 0.086 0.771 0.120

0.4 0 0 0.002 0.084 0.914 0.4 0 0.002 0.003 0.125 0.870 0.4 0 0.001 0.003 0.109 0.887

Xt 0 0 0 0 0.00407 Xt 0 0 0 0 0.03928 Xt 0 0 0 0 0.02608

Zt 0 0.00114 0.00114 0.00457 0.14400 Zt 0 0 0 0.00333 0.03595 Zt 0 0.00042 0.00042 0.00379 0.07783
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Table 4: CONVERGENCE CLUBS, 1790-2000
Club �1 (t-statistic) Club �1 (t-statistic) Club �1 (t-statistic)
1 [7] 0.105 (0.146) 1 [12] 0.744 (2.386) 1 [26] 1.217 (6.979)

2 [4] 2.507 (3.844) 2 [7] 0.671 (4.686) 2 [17] 0.254 (3.720)

3 [6] 0.893 (2.326) 3 [6] 0.893 (2.326) 3 [9] 0.225 (2.674)

4 [5] 0.256 (3.225) 4 [7] 0.142 (0.910) 4 [15] 0.141 (1.634)

5 [6] 0.294 (1.885) 5 [12] 0.560 (2.119) 5 [20] 0.400 (1.462)

6 [8] 0.435 (5.784) 6 [12] 0.010 (0.087) 6 [23] 0.064 (0.502)

7 [14] 0.224 (2.389) 7 [18] 0.370 (4.367) 7 [21] 0.539 (4.215)

8 [6] 1.970 (1.188) 8 [6] 1.970 (1.188) 8 [3] 2.405 (2.303)

9 [4] 0.353 (0.985) 9 [5] 0.700 (2.794) 9 [6] 0.011 (0.396)

10 [5] 0.224 (4.673) 10 [5] 0.224 (4.673) 10 [3] 0.842 (6.385)

11 [3] 0.842 (6.385) 11 [3] 0.842 (6.385) 11 [3] 0.347 (0.711)

12 [3] 0.347 (0.711) 12 [3] 0.347 (0.711)

Sample Size: Top 75 Sample Size: Top 100 Sample Size: Top 150

Note: The numbers in brackets are the number of cities.Top cities are de�ned according to

ranks in 1900. The corresponding t-statistic in the regression is constructed in the usual way

using HAC standard errors. At the 5% level, for example, the null hypothesis of convergence

is rejected if t-statistic < -1.65. All of the t-statistics reported are positive, indicating that we

cannot reject the null hypothesis at the 5% in any case.
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Figure 1: Cities' log population evolution, Top 75, 1790�2000: Convergence clubs
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Figure 2: Cities' log population evolution, Top 75, 1790�2000
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Figure 3: Evolution of the estimated Pareto exponents
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Appendix: Cities within clubs

CITIES WITHIN CLUBS

Rank in 1900 First year in the sample Name Club (Sample Size: Top 75) Club (Sample Size: Top 100) Club (Sample Size: Top 150)

1 1790 New York 10 10 9

2 1840 Chicago

3 1790 Philadelphia 10 10 9

4 1830 St. Louis 2 2 2

5 1790 Boston 11 11 10

6 1790 Baltimore 10 10 9

7 1820 Cleveland 1 1 1

8 1810 Buffalo 3 3 3

9 1850 San Francisco 1 1 1

10 1810 Cincinnati 4 4 4

11 1800 Pittsburgh 3 3 3

12 1810 New Orleans 3 3 3

13 1820 Detroit 1 1 1

14 1840 Milwaukee 1 1 1

15 1800 Washington 2 2 2

16 1830 Newark 3 3 3

17 1840 Jersey 8 8 7

18 1790 Louisville 10 10 9

19 1860 Minneapolis 6 6 6

20 1790 Providence

21 1840 Indianapolis 3 3 3

22 1860 Kansas 5 5 5

23 1850 St. Paul 7 7 6

24 1830 Rochester 8 8 7

25 1860 Denver 5 5 5

26 1840 Toledo 6 6 6

27 1830 Columbus 3 3 3

28 1790 Worcester 11 11 10

29 1850 Syracuse 9 9 7

30 1790 New Haven

31 1840 Paterson 7 7 7

32 1860 Omaha 5 5 5

33 1850 Los Angeles 1 1 1

34 1850 Memphis 4 4 4

35 1830 Lowell 7 7 7

36 1790 Cambridge 12 12 11

37 1860 Portland 4 4 4

38 1850 Atlanta 6 6 6

39 1850 Grand Rapids 6 6 6

40 1810 Dayton 8 8 6

41 1790 Richmond 12 12 11

42 1800 Nashville-Davidson 1 1 1

43 1870 Seattle 5 5 5

44 1790 Hartford

45 1840 Bridgeport 8 8 7

46 1860 Oakland 6 6 6

47 1860 Des Moines 7 7 7

48 1790 Spring�eld 11 11 10

49 1850 Evansville 9 9 7

50 1790 Manchester 10 10 9

51 1840 Peoria 7 7 7

52 1800 Savannah 7 7 7

53 1860 Salt Lake 7 7 7
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Rank in 1900 First year in the sample Name Club (Sample Size: Top 75) Club (Sample Size: Top 100) Club (Sample Size: Top 150)

54 1850 San Antonio 2 2 2

55 1800 Erie 9 9 8

56 1810 Elizabeth 7 7 7

57 1880 Kansas 7 7 6

58 1860 Yonkers 7 7 6

59 1790 Norfolk 12 12 11

60 1860 Waterbury 7 7 7

61 1850 Fort Wayne 6 6 6

62 1850 Houston 1 1 1

63 1850 Akron 8 8 7

64 1880 Dallas 2 2 2

65 1880 Lincoln 4 4 4

66 1890 Honolulu CDP 5 5 5

67 1830 Mobile 7 7 6

68 1880 Birmingham 7 7 7

69 1850 Little Rock 4 4 4

70 1890 Tacoma 5 5 5

71 1890 Spokane 6 6 6

72 1850 South Bend 9 9 8

73 1830 Allentown 8 8 7

74 1840 Spring�eld 6 6 6

75 1860 Topeka 7 7 7

76 1850 Knoxville 5 5

77 1860 Rockford 7 6

78 1840 Montgomery 4 4

79 1870 Chattanooga 6 6

80 1850 Sacramento 2 2

81 1850 Jacksonville 1 1

82 1880 Fort Worth 4 4

83 1860 Cedar Rapids 6 6

84 1790 Lexington-Fayette 6 6

85 1880 Wichita 5 5

86 1850 Spring�eld 5 5

87 1850 Austin 1 1

88 1870 San Jose 1 1

89 1880 Colorado Springs 1 1

90 1870 Waco 7 6

91 1890 Newport News 5 5

92 1850 Madison 5 5

93 1850 Charlotte 2 2

94 1860 San Diego 1 1

95 1840 Columbus 5 5

96 1860 Stockton 2 2

97 1840 Portsmouth 9 7

98 1860 Lansing 7 7

99 1850 Shreveport 6 6

100 1880 Stamford 7 6

101 1880 El Paso 2

102 1870 Tampa 6

103 1790 Alexandria 9

104 1860 Ann Arbor 5

105 1870 Winston-Salem 5

106 1800 Raleigh 2

107 1860 Laredo 2

108 1890 Berkeley 7

109 1860 Flint 8

110 1880 Fresno 1

111 1840 Baton Rouge 4
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Rank in 1900 First year in the sample Name Club (Sample Size: Top 75) Club (Sample Size: Top 100) Club (Sample Size: Top 150)

112 1890 Oklahoma 4

113 1870 Greensboro 4

114 1890 Beaumont 7

115 1890 Pasadena 6

116 1850 Huntsville 3

117 1890 Riverside 1

118 1880 Vallejo 4

119 1850 Jackson 5

120 1870 Tucson 2

121 1860 Independence 5

122 1880 Durham 2

123 1860 Santa Rosa 1

124 1890 Albuquerque 2

125 1880 San Bernardino 3

126 1870 Boise 1

127 1890 Phoenix 1

128 1890 Pomona 3

129 1890 Santa Ana 1

130 1890 Bakers�eld 1

131 1860 Corpus Christi 4

132 1870 Reno 1

133 1870 Salem 2

134 1890 Abilene 6

135 1890 Salinas 1

136 1870 Eugene 2

137 1840 Tallahassee 2

138 1890 Hampton 5

139 1890 Orlando 2

140 1890 Long Beach 4

141 1890 Modesto 1

142 1870 Hayward 4

143 1900 Miami 5

144 1890 St. Petersburg 5

145 1870 Anaheim 1

146 1890 Amarillo 5

147 1900 Tulsa 4

148 1870 Plano 1

149 1880 Orange 1

150 1890 Arlington 1
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