
Munich Personal RePEc Archive

A New-Keynesian model of the yield

curve with learning dynamics: A

Bayesian evaluation

Dewachter, Hans and Iania, Leonardo and Lyrio, Marco

University of Leuven (KUL), University of Leuven (KUL), Insper
Institute of Education and Research

September 2011

Online at https://mpra.ub.uni-muenchen.de/34461/

MPRA Paper No. 34461, posted 02 Nov 2011 14:15 UTC



A New-Keynesian Model of the Yield Curve with Learning

Dynamics: A Bayesian Evaluation�

Hans Dewachtery Leonardo Ianiaz Marco Lyriox

September 2011

Abstract

We estimate a New-Keynesian macro-�nance model of the yield curve incorporating learning by
private agents with respect to the long-run expectation of in�ation and the equilibrium real interest
rate. A preliminary analysis shows that some liquidity premia, expressed as a degree of mispricing
relative to no-arbitrage restrictions, and time variation in the prices of risk are important features
of the data. These features are, therefore, included in our learning model. The model is estimated
on U.S. data using Bayesian techniques. The learning model succeeds in explaining the yield curve
movements in terms of macroeconomic shocks. The results also show that the introduction of a learn-
ing dynamics is not su¢cient to explain the rejection of the extended expectations hypothesis. The
learning mechanism, however, reveals some interesting points. We observe an important di¤erence
between the estimated in�ation target of the central bank and the perceived long-run in�ation ex-
pectation of private agents, implying the latter were weakly anchored. This is especially the case for
the period from mid-1970s to mid-1990s. The learning model also allows a new interpretation of the
standard level, slope, and curvature factors based on macroeconomic variables. In line with standard
macro-�nance models, the slope and curvature factors are mainly driven by exogenous monetary pol-
icy shocks. Most of the variation in the level factor, however, is due to shocks to the output-neutral
real rate, in contrast to the mentioned literature which attributes most of its variation to long-run
in�ation expectations.
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1 Introduction

The modeling of the term structure of interest rates has evolved signi�canlty since Du¢e and Kan (1996)

provided a complete characterization of the class of no-arbitrage a¢ne models in which bond yields

are a linear function of latent variables. The system proposed by Du¢e and Kan was soon extended

by a vector autoregressive (VAR) model including both latent factors and observable macroeconomic

variables (see Ang and Piazzesi (2003)). This reduced-form framework naturally led to more structural

approaches where the macroeconomic dynamics are governed by rational expectations linearized New-

Keynesian models, as in Hördahl, Tristani, and Vestin (2006) and Rudebusch and Wu (2008). Although

such New-Keynesian models impose a number of restrictions on the macro dynamics, the pricing kernel

adopted in these models is still determined exogenously, allowing some �exibility in the speci�cation of

the risk premia. Wu (2006) and Bekaert, Cho, and Moreno (2010) come a step closer to the structure

implied by dynamic stochastic general equilibrium (DSGE) models by imposing a stochastic discount

factor consistent with the utility function of the representative agent of the linearized economy, leading

to endogenous and constant prices of risk. The evolution of macro-�nance models for the yield curve

suggests that a possible benchmark for such models could be described by a New-Keynesian framework

characterized by (i) rational expectations, (ii) the lack of arbitrage opportunities, and (iii) consistent

and, therefore, constant prices of risk.

Despite the mentioned advances of macro-�nance models, their empirical success in �tting the yield

curve seems to depend on the inclusion of highly inert latent factors. Kozicki and Tinsley (2001) and

Kozicki and Tinsley (2002) suggest that one such factor may be related to the long-run in�ation ex-

pectation of agents (endpoints). Bekaert, Cho, and Moreno (2010), Dewachter and Lyrio (2006), and

Hördahl, Tristani, and Vestin (2006) use a similar approach and introduce a time-varying in�ation target

of the central bank and show that it is crucial to explain the time variation in long-run yields. Dewachter

and Lyrio (2008), on the other hand, propose an alternative model in which the rational expectations

assumption is replaced by a learning mechanism which allows private agents to update their long-run

expectations about in�ation and the equilibrium real interest rate. These expectations seem to be su¢-

ciently volatile to account for most of the variation in long-maturity yields. The inclusion of learning in

yield curve models might also help clarify a common rejection of the extended expectations hypothesis.

Empirical tests have consistently rejected the joint null hypothesis of rational expectations and the ex-

tended expectations hypothesis for the yield curve (see Shiller, Campbell, and Schoenholtz (1983)). In

general, these rejections have been interpreted as a rejection of the expectations hypothesis. Kozicki and

Tinsley (2005b) point out, however, that the introduction of learning by private agents with respect to

the central bank�s in�ation target might generate su¢ciently strong deviations from rational expectations

to explain such rejections. This is the case since long-horizon yields depend on long-horizon expectations

of the policy rate which incorporates in�ation expectations. These expectations, in turn, are anchored

by market perceptions regarding the central bank�s in�ation target.

This paper assesses the empirical success of a New-Keynesian macro-�nance model for the yield curve

incorporating learning by private agents with respect to the long-run values of macroeconomic variables.
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Since our goal is to develop a model which is able to identify the economic sources behind movements

in the yield curve with an improved ability to �t the data, we relax the other two restrictions imposed

by consistent macro-�nance models, i.e. (i) the absence of arbitrage opportunities, and (ii) the use of

endogenous constant prices of risk. In order to assess the empirical implication of each of these restrictions,

we �rst compare the performance of a benchmark model characterized by rational expectations, no-

arbitrage, and consistent prices of risk with two extensions to this model. A �rst extension to the

benchmark model allows for time-varying prices of risk and hence does not impose consistency between

the pricing kernel and the linearized New-Keynesian macroeconomic framework. In our set-up, the prices

of risk are a function of the observable macroeconomic variables. A second extension allows for liquidity

premia, i.e. mispricing terms expressed as constant maturity-speci�c deviations of the actual yield curve

from the one implied by no-arbitrage restrictions. These imply arbitrage possibilities which are di¢cult

to justify within a pure macro-�nance framework. We interpret these mispricing terms as liquidity or

preferred habitat e¤ects. Since both extensions turn out to be important, they are incorporated in our

macro-�nance model with learning. This �nal version allows us to evaluate the mentioned conjecutre

by Kozicki and Tinsley (2005b) regarding the expectations hypothesis puzzle. The learning dynamics

adopted in this paper is an extension to the one proposed by Kozicki and Tinsley (2005b) and Dewachter

and Lyrio (2008). It allows private agents to update their perceived long-run expectations of in�ation

and the equilibrium real rate taking into consideration public and private signals, the latter consisting of

exogenous belief shocks and endogenous adaptive learning.

All model versions are estimated on U.S. data using Bayesian techniques.1 Although computationally

intensive, this approach integrates informative priors avoiding unreasonable regions of the parameter space

and numerical near singularities. The posterior distribution of the parameters is obtained using standard

Markov Chain Monte Carlo (MCMC) methods based on three information sources: macroeconomic

variables, the yield curve, and surveys of in�ation expectations. The inclusion of survey data in the

measurement equation is motivated by the need for the identi�cation of the perceived macroeconomic

dynamics.2 Model versions are compared using the marginal likelihood of the respective models and the

Schwarz Bayesian Information Criterion (BIC).

As mentioned before, our results indicate that some liquidity premia (mispricing) and time variation

in the prices of risk are important features of the data. These features are, therefore, incorporated in a

extended model with learning. Although the estimates for the structural part of this model are in general

in line with the literature, the results show that the introduction of a learning dynamics is not su¢cient to

explain the rejection of the extended expectations hypothesis. The learning mechanism, however, reveals

some interesting points. The results show an important disconnection between the in�ation target of

the central bank and the perceived long-run in�ation expectation of private agents, implying that the

latter were weakly anchored. This is especially the case from the mid-1970s to the mid-1990s. Also, this

disconnection and the variability in the perceived output-neutral real rate seem important to explain

1The Bayesian approach is still less common in the macro-�nance literature compared with methods which reliy on the
Full Information Maximum Likelihood (FIML). Doh (2006, 2007) are exceptions.

2Chun (2011) also points out the importance of survey expectations to explain bond yields movements.
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a signi�cant part of the variability in long-term yields. Finally, the learning model also allows a new

interpretation of the standard level, slope, and curvature factors based on macroeconomic variables. In

line with standard macro-�nance models, the slope and curvature factors are mainly driven by exogenous

monetary policy shocks. Most of the variation in the level factor, however, is due to shocks to the

output-neutral real rate, in contrast to the mentioned literature, which attributes most of its variation

to long-run in�ation expectations.

The remainder of the paper is organized as follows. In Section 2, we present a general macro-�nance

framework incorporating a New-Keynesian macro model with learning, liquidity premia (mispricing), and

�exible prices of risk. Section 3 describes the econometric methodology used in the paper and Section

4 presents the empirical results. The latter includes a comparison among the alternative versions of

the macro-�nance model, a analysis of the posterior density of our extended learning model, and the

implications for the yield curve. Section 5 summarizes the main �ndings of the paper.

2 The model

The class of macro-�nance models for the yield curve is built around (i) a macroeconomic framework,

described under the historical probability measure, and (ii) a �nancial framework, which models the term

structure of interest rates under the risk-neutral measure. This section presents a macro-�nance model

which extends standard models in both dimensions.

For the macroeconomic dynamics, our benchmark case consists of a standard rational expectations

New-Keynesian macro model, including unobserved variables representing the in�ation target of the

central bank and the output-neutral real interest rate. We extend this framework with the inclusion

of learning by private agents with respect to the long-run in�ation expectation and the output-neutral

real interest rate. This gives rise to the distinction between actual and perceived laws of motion for the

macroeconomy.

For the yield curve, our benchmark case assumes no-arbitrage and consistency between the stochastic

discount factor and the structural macroeconomic framework, as in Bekaert, Cho, and Moreno (2010),

which gives rise to endogenous and constant prices of risk. We extend this case allowing for (i) liquidity

premia, expressed as constant mispricing terms relative to the no-arbitrage model, and (ii) time-varying

prices of risk, which implies we do not impose consistency between the pricing kernel and the IS equation.

In the empirical section below, we �rst assess the separate impact of allowing for mispricing and time-

varying prices of risk on the performance of the benchmark model. In this section, we present a model

including all three features, i.e. learning, mispricing, and time-varying prices of risk. The benchmark

case and its extensions can be easily recovered from this general set-up.

2.1 Macroeconomic dynamics

The macroeconomic dynamics is described by a standard New-Keynesian framework incorporating a

Phillips curve (AS equation), an IS equation, and a monetary policy rule. Our structural model also
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includes two unobserved variables representing the in�ation target of the central bank, ��t , and the

output-neutral real interest rate, ��t :
3

Pro�t maximization by price-setting �rms leads to the Phillips curve relating current in�ation, �t, to

real marginal costs, st. Assuming that real marginal costs are proportional to the output gap, yt, and a

cost-push shock, v�;t, we obtain the standard aggregate supply curve:

�t = c�;t + �1;�Et�t+1 + �2;��t�1 + �yt + v�;t; (1)

c�;t = (1� �1;� � �2;�)�
�
t ;

�1;� =
�

1 + ���
, �2;� =

��
1 + ���

,
(2)

with the cost-push shock following a �rst-order autoregressive process:

v�;t = '�v�;t�1 + �v�"v� ;t: (3)

with "v� ;t � IID N (0; 1). This set-up is based on Calvo (1983) sticky price model in which at each

period only a fraction of �rms reoptimizes prices. Following Galí and Gertler (1999), we assume that

nonoptimizing �rms use the following indexation scheme:

z�;t = �
�
t + ��(�t�1 � �

�
t ), (4)

where 0 � �� � 1. We impose a vertical Phillips curve in the long run by restricting the discount factor,

�, to 1. In this case, �1;� = (1� �2;�):

We adopt a Fuhrer (2000) type of IS equation characterized by endogenous inertia in the output gap

dynamics due to the inclusion of habit formation in the consumer�s utility function. Maximization of

consumer�s expected utility leads to the standard IS equation:

yt = �yEtyt+1 + (1� �y)yt�1 � �(it � Et�t+1 � �
�
t ) + vy;t; (5)

�y =
�

� + h(� � 1)
; � =

1

� + h(� � 1)
, (6)

where � and h represent the level of relative risk aversion and habit persistence, respectively, and vy;t

follows a �rst-order autoregressive process:4

vy;t = 'yvy;t�1 + �vy"vy;t: (7)

3The introduction of a time-varying equilibrium real rate is motivated by recent estimates for the U.S. by Laubach
and Williams (2003), Clark and Kozicki (2004), and Bjørnland, Leitemo, and Maih (2008). Trehan and Wu (2007) also
stress the importance of accounting for the time variation in the equilibrium real rate in the analysis of monetary policy.
Additional evidence comes from the TIPS market. Gürkaynak, Sack, and Wright (2008) show that long-run real yields
display signi�cant and persistent time variation. We model this rate as a purely exogenous process, capturing persistent
shocks in productivity, preferences, �scal policy or �nancial premia.

4Consumer�s utility function is given by

U(Cs; Fs) =
FsC

1��
s � 1

1� �
;

where Cs represents consumption and Fs is a combined factor consisting of preference shocks Gs and habit Hs, Fs = GsHs:
Habit is speci�ed as a function of past consumption, Hs = C

�
s�1, with � = h(� � 1) and 0 � h � 1: Furthermore,

vy;t = � lnGt.
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with "vy ;t � IID N (0; 1): The output-neutral real interest rate is implicitly de�ned as the long-run

equilibrium real interest rate. Ex-ante real rates (it � Et�t+1) above (below) �
�
t lead to a decrease

(increase) in output. A relatively strong forward-looking behavior is an implicit characteristic of both

the Phillips curve and the IS equation described above. This is due to the fact the parameters �1;� and

�y are necessarily betwen 0:5 and 1.

The risk-free monetary policy interest rate, it, is modeled as an extended Taylor (1993) rule:

it = (1� 
i)i
T
t + 
iit�1 + vi;t; (8)

vi;t = 'ivi;t�1 + �vi"vi;t, (9)

with "v
i
;t � IID N (0; 1), and where vi;t is a autoregressive policy shock

5 and the target interest rate,

iTt , is a function of both the in�ation and output gaps:

iTt = �
�
t + Et�t+1 + 
�(�t � �

�
t ) + 
yyt. (10)

This speci�cation implies that for 
� > 0 and 
y > 0 central banks follow an active policy. The targeted

real interest rate (iTt � Et�t+1) increases above (decreases below) �
�
t in function of positive (negative)

in�ation or output gaps:

iTt � Et�t+1 � �
�
t = 
�(�t � �

�
t ) + 
yyt: (11)

Eq. (10) shows that ��t can also be interpreted as the real rate target of the central bank. Since in

steady state �t = �
�
t and yt = 0, the central bank implicitly aims at a real rate equal to �

�
t . Finally, the

dynamics of ��t and �
�
t are modeled as random walks:

��t = �
�
t�1 + ���"��;t,

��t = �
�
t�1 + ���"��;t.

(12)

with "��;t � IID N (0; 1) and "��;t � IID N (0; 1):This introduces stochastic endpoints for in�ation

and the risk-free interest rate.6 By construction, in�ation (�t) and the real rate (it � �t) converge in

expectation towards ��t and �
�
t ; respectively (lims!1Et�t+s = �

�
t and lims!1Etit+s = �

�
t + �

�
t ).

2.1.1 Learning dynamics

We follow Kozicki and Tinsley (2005a) and Doh (2007) and di¤erentiate between the beliefs held by

private agents and those held by the central bank.7 We restrict these di¤erences to the unobserved

long-run tendencies of the economy, i.e. the long-run in�ation expectation and the output-neutral real

interest rate. Such di¤erences can be motivated by the assumption that private agents have imperfect

information with respect to the central bank�s in�ation target and the output-neutral real rate. One

5Therefore, next to allowing for endogenous inertia through in�ation indexation, habit formation and interest rate
smoothing, we also incorporate exogenous inertia induced by the autocorrelation of supply, demand, and policy shocks,
respectively.

6As shown by Kozicki and Tinsley (2001), stochastic endpoints are crucial in modeling the link between macroeconomic
variables and the yield curve. Most macro-�nance models, however, only include one stochastic endpoint, i.e. the in�ation
target of the central bank.

7Orphanides and Wei (2010) also stress the importance of allowing for evolving beliefs about the macroeconomy dynamics
to explain movements in long-term yields.
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could also assume there is imperfect policy credibility of the central bank with respect to its in�ation

target. Therefore, we distinguish the stochastic trends perceived by private agents, ��Pt and ��Pt , from the

actual stochastic trends inferred by the central bank, ��t and �
�
t . Conditional on the perceived stochastic

endpoints, agents form their expectations rationally.8 The perceived stochastic endpoints change over

time according to the following rules:

��Pt = ��Pt�1 + !�� ���"��;t| {z }
public signal

+ (1� !��)
�
���b"��b;t + g�

�
�t � E

P
t�1�t

��

| {z }
private signal

;

��Pt = ��Pt�1 + !�� ���"��;t| {z }
public signal

+ (1� !��)
�
���b"��b;t + g�

�
it � �t � E

P
t�1(it � �t)

��

| {z }
private signal

;
(13)

with initial conditions ��P0 and ��P0 and where EP denotes the subjective expectations operator. The

updating rules include two sources of information. (i) Public signals: These are the observed shocks ("��;t,

"��;t) to the actual stochastic trends. The parameters !�� and !�� measure the weight attached to these

signals and re�ect their perceived quality. (ii) Private signals: These are subjective inferences regarding

the changes in the stochastic trends and are composed of two shocks: (a) exogenous belief shocks ("��b;t,

"��b;t); and (b) endogenous adaptive revisions of the perceived endpoints induced by prediction errors for

in�ation and the ex-post real interest rate with constant gains g� and g�, respectively.

The learning model in Eq. (13) incorporates a number of standard expectations formation processes.

First, the full-information, rational expectations case implies that agents (i) perceive the observed signals

"��;t and "��;t as fully informative, such that !�� = !�� = 1, and (ii) have perfect information regarding

the initial state, i.e. ��P0 = ��0 and �
�P
0 = ��0. In the imperfect information case, where 0 < !�� < 1 and

0 < !�� < 1, agents attach value to both public and private signals. Second, constant gain learning (e.g.

Dewachter and Lyrio (2008)) is obtained by setting !�� = !�� = 0, and ���b = ���b = 0: In this case,

agents attach no value to public signals and only update their perceived stochastic trends as a result of

prediction errors.

2.1.2 Actual and Perceived Laws of Motion

The structural model in Eqs. (1), (5), (8), (12) and (13) can be written in state space form. We

collect the observable macroeconomic factors in Xm
t = [�t; yt; it; v�;t; vy;t; vi;t]

0, the actual stochastic

trends in X�
t = [��t ; �

�
t ]
0, and the perceived trends in X�P

t = [��Pt ; ��Pt ]0. Analogously, the structural

macroeconomic shocks are grouped in "vt = ["v�;t; "vy;t; "vi;t]
0, the shocks to the stochastic trends in

"�t = ["��;t; "��;t]
0, and the belief shocks in "�bt = ["��b;t; "��b;t]

0.

The Perceived Law of Motion (PLM) expresses the macroeconomic dynamics as perceived by private

agents. The PLM is obtained as the rational expectations (RE) solution to the structural equations

replacing the actual stochastic endpoints (X�
t ) by their perceived counterparts (X

�P
t ). The Actual Law

of Motion (ALM) is obtained (i) by substituting the expectations Et
�
Xm
t+1

�
by the subjective expectations

EPt
�
Xm
t+1

�
implied by the PLM into the structural dynamics of the model, and (ii) by taking into account

8We assume that agents know the structural dynamics and observe the macroeconomic variables �t; yt and it and the
exogenous factors v�;t; vy;t and vi;t:
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the dynamics of the perceived stochastic endpoints in Eq. (13). In Appendix A, we show that the ALM

can be summarized with respect to the full state vector Xt = [Xm0
t ; X

�P 0
t ; X�0

t ]
0 and shock vector

"t = ["
v0
t ; "

�b0
t ; "

�0
t ]
0 as:

Xt = C
A +�AXt�1 + �

ASA"t. (14)

Analogously, the PLM can be described in state space form as:

Xt = C
P +�PXt�1 + �

PSP "Pt . (15)

The learning dynamics described in Eq. (13) has a signi�cant impact on the actual macroeconomic

outcome (ALM). To see this, �rst note that the model described in Section 2.1 implies the existence

of an expectations channel. Since subjective expectations with respect to the macroeconomic factors

(EPt
�
Xm
t+1

�
) are conditioned on the perceived stochastic endpoints X�P

t , which follow the learning dy-

namics in Eq. (13), the latter a¤ect the actual macroeconomic dynamics Xm
t . As a consequence, both

components of the private signal updating the perceived stochastic endpoints in Eq. (13) a¤ect the ALM.

The �rst component includes exogenous belief shocks ("��b;t, "��b;t) and their impact depends on the in-

formation content attributed to them (lower values for !�� and !�� imply a higher impact). Such shocks

are only neutralized in the full-information RE case, i.e. when !�� = !�� = 1. The second component is

endogenous and represents a constant gain learning. It implies a feedback from the actual macroeconomic

dynamics, including the actual stochastic endpoints, to the perceived endpoints. If actual endpoints are

higher (lower) than perceived endpoints, agents underpredict (overpredict) the in�ation rate and the real

interest rate, resulting in positive (negative) prediction errors. With adaptive learning, implying positive

gains (g� > 0 and g� > 0), these prediction errors a¤ect the perceived endpoints and generate a trend-

wise convergence between actual and perceived stochastic endpoints. This convergence is imposed in the

estimation.9

2.2 The term structure of interest rates

Bond prices are determined in �nancial markets by private agents using subjective expectations with

respect to the macroeconomic dynamics. The solution for bond prices is, therefore, implied by the PLM

in Eq. (15). We follow Ang and Piazzesi (2003) and solve for the a¢ne yield curve representation. We

assume a log-normal stochastic discount factor:

mt+1 = exp(�it �
1
2�

0
tS
PSP 0�t � �

0
tS
P "Pt+1); (16)

with prices of risk �t linear in the state variable Xt:

�t = �0 + �1Xt: (17)

Imposing the no-arbitrage condition on zero-coupon bond prices with time to maturity � , p
(�)
t ; implies

that bond prices satisfy the equilibrium pricing condition:

p
(�)
t = EPt

h
mt+1 p

(��1)
t+1

i
, (18)

9Denoting the expectations generated under the ALM by EAt , we impose that lim
s!1

EAt
�

X�P
t+s

�

= X�
t :
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and can be written as an exponentially a¢ne function of the state vector:

p
(�)
t = exp(a� + b�Xt); (19)

where the price loadings can be expressed as:

a� = a��1 + b��1(C
P � �PSPSP 0�0) +

1
2b��1�

PSPSP 0�P 0b0��1 � �0;

b� = b��1(�
P � �PSPSP 0�1)� �

0
1;

(20)

with the risk-free interest rate identi�ed as it = �0+ �
0
1Xt, and initial conditions a0 = 0 and b0 = 0: Note

that the learning dynamics is integrated in the yield curve model through the PLM matrices CP , �P ,

�P , and SP de�ned in Appendix A.

Since the time t yield on a zero-coupon bond with maturity � is de�ned as y
(�)
t = � ln(p

(�)
t )=� ; the

no-arbitrage yield curve is linear in the state vector:

y
(�)
t = A� +B�Xt; (21)

with yield loadings A� = �a�=� and B� = �b�=� : This representation is not necessarily consistent with

the macroeconomic part of the model, as noted by Wu (2006) and Bekaert, Cho, and Moreno (2010). Full

consistency implies additional restrictions on the prices of risk, aligning the pricing kernel in Eq. (16)

with the IS curve in Eq. (5). Within the above linearized and homoskedastic macroeconomic framework,

consistency implies constant prices of risk (�0 = �
IS
0 , �1 = 0), speci�ed along the lines of Bekaert, Cho,

and Moreno (2010). Therefore, the expected excess holding return ehr
(�)
t which is in general a¢ne in the

state vector Xt:

ehr
(�)
t = EPt ln(P

(��1)
t+1 �P

(�)
t ) = b��1�

PSPSP 0�0+b��1�
PSPSP 0�1Xt�

1

2
b��1�

PSPSP 0�P 0b��1
0 (22)

leads to constant risk premia once consistency is imposed. Finally, the no-arbitrage yield curve is extended

with the inclusion of a maturity-speci�c constant liquidity premium �� and measurement error �
(�)
y;t :

y
(�)
t = A� +B�Xt + �� + �

(�)
y;t ; (23)

with �1 = 0, i.e. no liquidity premium on the one-period bond, and all measurement errors normally

distributed (i.i.d.) with mean zero and maturity speci�c variance �2�y;� :

3 Econometric methodology

The empirical analysis is done within a Bayesian framework. In Secton 3.1, we show how the posterior

density is computed taking into account the learning dynamics adopted by private agents. Section 3.2

describes the four model versions analyzed in this paper.

3.1 Posterior distribution

Denoting the data set by ZT and the parameter vector for model version i by �i; we can describe the

posterior density of �i according to Bayes Theorem as:

p(�i j Z
T ) /

L(ZT j �i)p(�i)

p(ZT )
; (24)
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with p(�i) the prior for the parameters in model version i, L(Z
T j �i) the likelihood function, and p(Z

T )

the marginal likelihood of ZT (given version i of the model). The likelihood function is constructed under

the ALM, treating the factors ��t ; �
�
t ; �

�P
t and ��Pt as unobserved variables to the econometrician. The

transition equation therefore is given by the ALM dynamics in Eq. (14), which we rewrite making explicit

the dependence on the parameter vector �i:

Xt = C
A(�i) + �

A(�i)Xt�1 + �
A(�i)S

A(�i)"t; "t � N(0; I): (25)

The likelihood function is based on the prediction errors identi�ed by the measurement equation,

which includes three types of information: (i) macroeconomic data from �t; yt and it; (ii) yield curve

data, y
(� i)
t ; i = 1; : : : ; ny; and (iii) survey data on in�ation expectations, S

(� i); i = 1; : : : ; ns. The

measurement equation is a¢ne in the state vector Xt:

Zt = AZ(�i) +BZ(�i)Xt + �Z(�i) + �Z(�i)�Z;t, �Z;t � N(0; I); (26)

with Zt = [�t; yt; it; y
(�1)
t ; : : : ; y

(�ny )

t ; S
(�1)
t ; : : : ; S

(�ns )
t ]0: The vector �Z contains the mispricing terms

�� . We assume that the variance-covariance matrix of the measurement errors, 
Z = �Z�
0
Z , is diagonal

and the macroeconomic variables are observed without measurement errors, making 
Z singular.

The log likelihood function is obtained by integrating out the unobserved latent factors using the

Kalman �lter:

L(ZT j �i) = �
T

2
ln(2�)�

1

2

TX

t=1

h
ln(
��VZ;tjt�1

��) + (Zt � Ztjt�1)0
�
VZ;tjt�1

��1
(Zt � Ztjt�1)

i
; (27)

with the prediction and updating equations for the mean given by

Ztjt�1 = AZ +BZXtjt�1 + �Z ;

Xtjt�1 = C
A +�AXt�1jt�1;

Xtjt = Xtjt�1 +Ktjt�1(Zt � Ztjt�1);

(28)

and for the variance VZ given by

VZ;tjt�1 = BZPtjt�1B
0
Z +
Z ;

Ptjt�1 = �
APt�1jt�1�

A0 + �ASASA0�A0;

Ptjt = (I �Ktjt�1BZ)Ptjt�1;

(29)

with a Kalman gain

Ktjt�1 = Ptjt�1B
0
Z(BZPtjt�1B

0
Z +�Z�

0
Z)
�1: (30)

The posterior density of �i is in general not known in closed form. We use MCMC methods, in par-

ticular the Metropolis-Hastings algorithm, to simulate draws from the posterior. We follow the standard

two-step procedure. First, a simulated annealing procedure is used to �nd the mode of the posterior.10

10The following additional conditions are imposed in the estimation. We impose determinacy of the solution for RE
models. For the learning model, we impose non-explosive behavior of the ALM by excluding explosive roots. We initialize
the Kalman �lter by estimating the initial values of the unobserved variables. For the initial variance-covariance matrix,
we solve for the steady state of the Riccati equation. This steady state exists given the imposed cointegration of the latent
factors with the observed macroeconomic factors.
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In a second step, the Metropolis-Hastings procedure is used to trace the posterior density of �i:
11

Given the likelihood L(ZT j �i) and the prior p(�i), the marginal likelihood of the data for model

version i is obtained by integrating over the parameter vector �i. The marginal likelihood and the BIC

criterion are used to evaluate the relative performance of the di¤erent versions of the model.

3.2 Model versions

We assess four versions of the macro-�nance model: (i) the Benchmark Model, which assumes rational ex-

pectations and full-information by private agents, imposes consistency between the pricing kernel and the

IS equation (i.e. implied constant prices of risk), and prices bonds according to no-arbitrage restrictions;

(ii) the Mispricing Model, an extension of the benchmark model allowing for liquidity premia, expressed

as constant mispricing terms relative to the no-arbitrage model; (iii) the Flexible Price of Risk Model,

an extension of the benchmark model allowing for �exible prices of risk; and (iv) the Learning Model,

a general model including learning by private agents with respect to the long-run in�ation expectation

and the equilibrium real rate, and also allowing for liquidity premia and �exible prices of risk. Table 1

summarizes the di¤erences across the models. Below we specify the parameter vector to be estimated for

each of the versions of the model.

Insert Table 1

Benchmark Model (B). The parameter vector for the Benchmark Model is:

�B =
�
��; �; h; �; 
�; 
y; 
i; '�; 'y; 'i; ��; �y; �i; ��� ; ��� ; �

�
0; �

�
0;

��y;1; ��y;2; ��y;4; ��y;12; ��y;20; ��y;40; ���;4; ���;40

i0
;

where the parameters ��0 and �
�
0 are the estimated initial values for the latent variables �

�
t and �

�
t :

Mispricing Model (Misp). The �rst extension to the benchmark model allows for mispricing in terms

of constant maturity-speci�c deviations of the actual yield curve from the one implied by no-arbitrage

restrictions. Since the mispricing terms, �� ; are not systematically related to macroeconomic variables,

we refer to them as liquidity e¤ects. We include a liquidity e¤ect for yields with maturities of 2, 4, 12,

20 and 40 quarters. The parameter vector in this case is given by:

�Misp =
�
�0B ; �2; �4; �12; �20; �40

�0
:

Flexible Price of Risk Model (FPR). In the benchmark model, the prices of risk are implied by the

structural macroeconomic framework and are time invariant. This version of the model relaxes this

constraint.12 Nevertheless, to reduce the number of parameters to be estimated, we impose some structure

on the prices of risk. We assume that (i) the prices of risk only load on observable macroeconomic

11The Metropolis-Hastings algorithm is based on a total of 200,000 simulations with a training sample of 20,000. An
acceptance ratio of 40% is targeted in the algorithm. Parameters are drawn based on the Gaussian random walk model.
Finally, we use Geweke (1999)�s test for di¤erences in means and cumulative mean plots to assess convergence.
12Hördahl, Tristani, and Vestin (2006) and Rudebusch and Wu (2008) also estimate an alternative version of the structural

model where the parameters in �0 and �1 are estimated freely.
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variables, �t; yt and it;
13 and (ii) the prices of risk and the risk premia are stationary under the PLM:

�0 =

2

66666666
4

�0;�
�0;y
�0;i
�0;��
�0;��
0
0

3

77777777
5

; �1 =

2

66666666
4

�1;�� �1;�y �1;�i 0 0 0 ��1;�� � �1;�i ��1;�i 0 0
�1;y� �1;yy �1;yi 0 0 0 ��1;y� � �1;yi ��1;yi 0 0
�1;i� �1;iy �1;ii 0 0 0 ��1;i� � �1;ii ��1;ii 0 0
�1;�� �1;�y �1;�i 0 0 0 ��1;�� � �1;�i ��1;�i 0 0
�1;��� �1;��y �1;��i 0 0 0 ��1;��� � �1;��i ��1;��i 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

3

77777777
5

:

Therefore, the parameter vector to be estimated is:

�FPR =
�
�0B ; �0;�;�0;y;�0;i;�0;�� ;�0;�� ; �1;��;�1;�y;�1;�i; �1;y�;�1;yy;�1;yi; �1;i�;�1;iy;�1;ii

�0
:

Learning Model (Learning). The last version of the model includes learning by private agents and allows

for the two extensions of the benchmark model discussed above, i.e. mispricing and �exible prices of risk.

As a result, the parameter vector is:

�Learning = [�
0
FPR; �2; �4; �12; �20; �40; !�� ; !�� ; g�; g�; ���b ; ���b ; �

�b
0 ; �

�b
0 ]

0;

where the last eight parameters refer to the learning dynamics explained in Section 2.1.1.

4 Empirical analysis

We describe the data in Section 4.1 and the prior distribution for the parameters in each model version

in Section 4.2. In Section 4.3, we compare the performance of the models by means of the marginal

likelihood and BIC statistics. Since the Learning Model outperforms the other versions of the macro-

�nance model, we discuss the posterior density and implied factors of this model in Sections 4.4 and 4.5,

and the implications for the yield curve in Sections 4.6 and 4.7.

4.1 Data

The data set consists of quarterly observations for the U.S. economy covering the period from 1960:Q2

to 2006:Q4 (187 observations). The data include observations on macroeconomic variables, the term

structure of interest rates, and in�ation expectations. The macroeconomic variables are the in�ation

rate, the output gap, and the central bank policy interest rate. In�ation is computed based on the

quarterly GDP de�ator and is expressed in per annum terms. The output gap is the percentage deviation

of GDP from the potential output reported by the Congressional Budget O¢ce (CBO). The policy rate is

the e¤ective federal funds rate.14 The term structure of interest rate data consist of yields of bonds with

maturities of 1, 2, 4, 12, 20 and 40 quarters. For 1- and 2-quarter yields, we use data from the secondary

market for Treasury bills.15 For 4-, 12-, 20- and 40-quarter yields, we combine the data sets compiled

13This type of restriction is based on the statistical tests rejecting the unit root hypothesis for term and risk premia.
In our context, it implies the stationarity of the prices of risk. In the empirical implementation, we restrict �1 further.
Statistical analysis also shows that we can set �1;��: and �1;��: to zero.
14For in�ation and real GDP, the data series GDPDEF and GDPC1 are retrieved from the Federal Reserve Economic

Data (FRED) data base, respectively. We use the 2006 vintage of potential output. Data on the e¤ective federal funds rate
are obtained from the Federal Reserve Bank of St. Louis FRED database.
15We use the FRED series TB3MS and TB6MS for the 1- and 2-quarter yields, respectively.
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by Gürkaynak, Sack, and Wright (2007) and McCulloch and Kwon (1993).16 In�ation expectation data

are obtained from the Survey of Professional Forecasters (SPF) provided by the Federal Reserve Bank of

Philadelphia. We use the series for the 4- and 40-quarter average in�ation expectation.17

4.2 Priors

Tables 2 and 3 report the prior distribution, mean, and standard deviation of the parameters of the

respective models. Table 2 lists the priors for the parameters which are common to all models, i.e.

the structural parameters and parameters related to structural shocks and measurement errors. Table 3

contains the priors for the set of parameters which vary according to each model, i.e. related to mispricing,

prices of risk, and learning.

Insert Tables 2 and 3

Phillips curve. We adopt a beta distribution for the in�ation indexation parameter (��) with a mean of

0:7 and standard deviation of 0:05. This attributes a signi�cant role to the endogenous backward-looking

component in in�ation (�2;� = 0:41). We assume a strict prior for the output sensitivity of in�ation (�),

represented by a normal distribution with a mean of 0:12 and standard deviation of 0:03.18

IS curve. For the level of relative risk aversion (�); we follow the standard macroeconomic view and

adopt a prior with mass concentrated on the lower values of �: For this, we choose a gamma distribution

with a mean of 1:5 and standard deviation of 0:4.19

Monetary policy. The priors for the monetary policy rule are obtained from the Taylor rule literature.

The in�ation gap and output gap parameters (
�, 
y) have normal distributions with a mean of 0:5. The

di¤erences in the standard deviations (i.e. �
� = 0:25 and �
y = 0:4) re�ect the reported uncertainty

in the estimates for these parameters. For the interest rate smoothing parameter (
i), we use a normal

distribution with a mean of 0:8 and standard deviation of 0:2. The high standard deviation re�ects the

ongoing debate concerning the degree of interest smoothing (see Rudebusch (2002), English, Nelson, and

Sack (2003), and Gerlach-Kristen (2004)).

Structural shocks. We use loose priors for the autocorrelation parameters of the three structural shocks,

i.e. a normal distribution with mean and standard deviation equal to 0.5. The standard deviation for the

permanent shocks (��� and ���) are uniformly distributed with support between 0 and 1% per quarter.

They prevent permanent shocks from becoming excessively large but are su¢ciently wide to include a

signi�cant range for these parameters.

Measurement errors. We use a inverted gamma distribution with a mean of 0:005 and standard deviation

of 0:003 for the standard deviation of the measurement errors of bond yields and in�ation expectations.20

16The Gürkaynak, Sack, and Wright (2007) data set starts on the 14th of June 1961 for bonds with maturities of 4,
12 and 20 quarters and on the 16th of August 1971 for the 40-quarter bond. Missing observations are obtained from the
McCulloch and Kwon (1993) data set.
17Table B1 in the Appendix reports the descriptive statistics of the data.
18The value for the mean corresponds to the one found by Bekaert, Cho, and Moreno (2010). This bias towards lower

estimates is in line with estimation results using General Method of Moments (GMM) or Maximum Likelihood (ML)
techniques (e.g. Cho and Moreno (2006)).
19This prior contrasts with estimates from the �nance literature which often reports values between 20 and 100.
20To prevent singularity problems in the estimation, we impose a lower bound of 5 basis points on all measurement errors.



13

Mispricing. For the liquidity premia (�� ), we use a normal distribution with a mean of 0 and standard

deviation of 0:005. This re�ects a belief on relatively small average mispricing errors.

Prices of risk. We choose relatively uninformative priors for the prices of risk. The priors are set such

that at the mean the model implies (i) a positive constant risk premium (E(�0) < 0); and (ii) a risk

premium increasing with the in�ation and the interest rate gaps, (�t � �
�
t ) and (it� ��t � �t); while

decreasing with the output gap, yt:

Learning. We impose relatively strict priors for the parameters w�� and w�� :We adopt beta distributions

with support on the interval [0; 1] with a mean of 0:85 and standard deviation of 0:10. The prior is thus

biased towards the full-information RE model.21 For the constant gains (g�, g�), we apply a uniform

distribution on the interval [0; 0:25]: This support is su¢ciently large to contain most of the estimates

reported in the literature (e.g. Kozicki and Tinsley (2005a) and Milani (2007)).

4.3 Relative performance of the models

The marginal likelihood of the data and the BIC statistics for each model are reported in Table 1.

The BIC serves as a goodness-of-�t measure up to a penalty for model dimensionality. We assess the

empirical relevance of allowing for mispricing in the macro-�nance model by comparing the performance

of the Benchmark Model with that of the Mispricing Model. We observe that the marginal likelihood

of the Mispricing Model (7628) is signi�cantly higher than the one implied by the Benchmark Model

(7381). This shows the importance of allowing for mispricing terms in the modeling of the yield curve.

Section (4.6) below analyses the estimated mispricing parameters for the Learning Model together with

the analysis of the implied �t of the yield curve.

We now evaluate the e¤ect of time-varying prices of risk on the performance of the macro-�nance

model. Since the marginal likelihood of the Flexible Price of Risk model (7638) is signi�cantly higher

than that of the Benchmark Model (7381), we can reject the implied constant prices of risk which

guarantee consistency between the macroeconomic framework and the pricing kernel (�0 = �
IS
0 , �1 = 0).

Nevertheless, in order to assess whether our results also imply a rejection of the extended expectations

hypothesis, which simply postulates time-invariant prices of risk (�0 6= 0, �1 = 0), we need to determine

if the parameters in �1 are statistically di¤erent from zero. This is indeed the case as can be seen in

Table C4 in the Appendix. The results then point to the need to allow for time-varying prices of risk

and, therefore, risk premia in the modeling of bond yields.

The above results indicate that one should incorporate both extensions (mispricing and time-varying

prices of risk) in a macro-�nance model. This is done in the Learning Model. The results show that this

version outperforms all other versions with a marginal likelihood (7741) substantially higher than that for

the alternative models. Therefore, the three extensions combined signi�cantly improve the overall �t of

the model. Assuming a uniform prior over the alternative model versions, the posterior odds ratio of the

learning version equals its Bayes factor of (approximately) 1, suggesting the superiority of this version

21This is especially justi�ed for the output-neutral real rate since the data set does not contain much information identi-
fying the di¤erence between the private sector and the central bank assessment about this rate. We, therefore, e¤ectively
penalize real rate processes that deviate too much from the one implied by the restrictions of a RE equilibrium.
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relative to all other versions of the model. Results for the BIC statistics in Table 1 lead to a similar

conclusion. Despite the fact that the Learning Model is the largest model, it is clearly preferred in terms

of the BIC statistic.

Table 1 also decomposes the performance of the models in terms of the macroeconomic, yield curve

and in�ation expectations dimensions. We use the likelihood of the prediction errors of the respective data

subsets as performance measure. This decomposition also shows that the Learning Model outperforms

all other model versions in each dimension. In the sections below, therefore, we only assess the posterior

distribution of the parameters in the Learning Model and its implications for the yield curve.

4.4 Posterior distribution of the Learning Model

Tables 4 and 5 report the mean, standard deviation, mode, and 90% con�dence interval for the posterior

distribution of the parameters in the Learning Model.22 We focus on four sets of parameters related to:

(i) the New-Keynesian macro model; (ii) the structural and belief shocks; (iii) the prices of risk; and

(iv) the learning dynamics. The mispricing parameters are discussed in Section (4.6) where we examine

the implied �t of the yield curve. When not stated di¤erently, the estimates refer to the mode of the

posterior distribution.

Insert Tables 4 and 5

Structural model. The estimates for the structural model in Eqs. (1), (5), and (8) shown in Table 4 are

in line with �ndings in the macro literature. The results reject the purely forward-looking New-Keynesian

model in favor of a hybrid version containing also a backward-looking component. The following remarks

can be made with respect to each structural equation.

Phillips curve. The in�ation indexation parameter (��) with a mode of 0:53 implies a relatively high

weight on the forward-looking in�ation component, i.e. �1;� = 0:66. Such value is typically not recovered

in the macro-�nance literature. For instance, Bekaert, Cho, and Moreno (2010) report implied values in

the range of [0:53; 0:63]: Nevertheless, our estimate is aligned with results reported in the macro literature

(e.g. Galí and Gertler (1999) and Galí, Gertler, and David Lopez-Salido (2005)). The estimate for the

mode of the in�ation sensitivity to the output gap (�) is relatively small (0:012), despite the strict prior

around a mean value of 0:12: This indicates a weak link between detrended output and in�ation and

re�ects the mismatch in the persistence of the two variables. Although lower than theoretically expected,

this estimate is high compared to other General Method of Moments (GMM) or Maximum Likelihood

(ML) based studies (e.g. Cho and Moreno (2006) report a value of 0.001).

IS curve. The habit persistence parameter (h) is estimated at a mode of 0:76 and with a relatively high

precision: The estimate for the risk aversion parameter (�) also seems reasonable from a macroeconomic

perspective. Its mode is equal to 2:55 with 90% of the support contained in the interval [1:9; 3:2].23

22Appendix C presents the posterior distribution of the parameters for the other versions of the model.
23This range of values is quite di¤erent from the ones found in the macro-�nance literature. Dewachter and Lyrio (2008),

for example, estimate a number of models and obtain risk aversion parameters between 22 and 62.
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Combined, these values result in a relatively strong forward-looking component with a weight on the

expected future output gap (�y) equal to 0:69.

Monetary policy. Our estimates imply an active monetary policy rule both in the in�ation and output

gaps. Both 
� and 
y (with modes at 0:44 and 0:63; respectively) are positive, statistically signi�cant,

and close to the values implied by the standard Taylor rule. We also �nd a relatively low value for

the interest rate smoothing parameter (
i) with a mode of 0:69 in the con�dence interval [0:64; 0:78].

This implies that it would take the FED less than two quarters to halve the gap between the actual

and the target interest rate. We believe this estimate is more realistic than the ones commonly reported

in the literature (around 0:9 on a quarterly frequency) which suggest a halving time of more than six

quarters. Our results are in line with the macro literature, e.g. Trehan and Wu (2007), and underscore

the importance of omitted variable bias in Taylor rule estimations.24

Structural and belief shocks. We estimate the standard deviation of seven shocks in the Learning

Model : three temporary structural macroeconomic shocks, i.e. supply, demand and policy rate shocks

(�v� , �vy , �vi); two permanent shocks associated with the in�ation target and the output-neutral real

rate (��� , ���); and two belief shocks related to the in�ation target and the output-neutral real rate

(���b , ���b).

The estimates in Table 4 indicate that the supply and policy rate shocks are relatively large (�v� =

0:012 and �vi = 0:012) and negatively autocorrelated ('� = �0:38 and 'i = �0:15). Although the

negative autocorrelation might be surprising, note that the model incorporates two additional channels

modeling persistence: (i) the endogenous persistence due to in�ation indexation (��) and interest rate

smoothing (
i); and (ii) the dependence of in�ation and the interest rate on the processes modeling the

perceived stochastic endpoints for in�ation and the output-neutral real rate. Finally, a low �rst-order

correlation for supply and policy rate shocks has also been reported by Ireland (2007). The demand

shock, on the other side, is relatively small (�vy = 0:003) and with a autocorrelation ('y) of 0:65.

An important feature of the learning dynamics described in Eq. (13) is the introduction of exogenous

belief shocks. We �nd that, for in�ation, belief shocks (see Table 5) are relatively large in comparison

with actual in�ation target shocks (���b = 0:58% compared to ��� = 0:04%). This implies a relatively

smooth in�ation target dynamics while still allowing for substantial variation in the perceived long-run

in�ation expectation. On the contrary, shocks to the output-neutral real rate are larger than belief

shocks to this rate (��� = 0:73% compared to ���b = 0:50%). Although this highlights the importance of

output-neutral real rate shocks for the the yield curve dynamics, especially for long-term yields, it could

also point to some form of misspeci�cation of our model. This source of variation is typically ignored in

standard macro-�nance models by assuming a constant equilibrium real rate. Both �ndings are important

departures from the results of standard macro-�nance models.

24The omitted variable bias argument in the interest rate smoothing parameter has been put forward by Rudebusch
(2002). Subsequent studies using latent factors in the Taylor rule found that a substantial part of the interest rate inertia
could be attributed to omitted variables. For instance, Gerlach-Kristen (2004) estimates this parameter around 0:6 with a
standard error of 0:2, while English, Nelson, and Sack (2003) report values around 0:6 with a standard error of 0:15.
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Prices of risk. As mentioned before, it has been argued by Kozicki and Tinsley (2005b) that models

containing asymmetric information and learning dynamics can explain the rejection of the expectations

hypothesis. These authors take into consideration the fact that private agents� perception about the

central bank�s in�ation target might deviate from the central bank�s true target. This is relevant since

long-horizon yields are related to long-horizon expectations of the policy rate which includes in�ation

expectations and the latter are anchored by market perceptions of the central bank�s in�ation target.

The authors conclude that the common rejection of the expectations hypothesis might re�ect incorrect

assumptions about expectations formation process and not an incorrect link between long and short

rates. Our estimation results of the Learning Model suggest this is not the case. This can be seen by

the fact that even allowing for learning some of the time-varying prices of risk parameters in �1 remain

signi�cant (see Table 5). In order to reproduce the data dynamics, therefore, it seems crucial to allow for

time-varying risk premia in the dynamics of bond yields.

Learning dynamics. The size and signi�cance of the learning parameters in Table 5 indicate substan-

tial deviations from the full-information RE model. Noting that the latter model is embedded in the

Learning Model, i.e. for !�� = !�� = 1, it is clearly rejected in favor of the alternative of learning, i.e

0 < !�� < 1; 0 < !�� < 1. The deviation from the full-information case is especially pronounced for

the perceived long-run in�ation expectation suggesting that this expectation is weakly anchored. The

signi�cant learning e¤ect is due to (i) a relatively large weight attached to private signals in the updating

rule for the perceived stochastic endpoint for in�ation (1 � !�� = 0:35), (ii) a relatively large size of

belief shock (���b = 0:58%), and (iii) a signi�cant constant gain (g� = 0:22): As can be seen in Eq. (13),

multiplying the constant gain (g�) by (1�!��) yields the total impact of the subjective forecast error on

the perceived long-run in�ation rate, which in our case is equal to 0:07 and in line with estimates reported

in the literature. For instance, Milani (2007) �nds values in the range 0:02 � 0:03, while Kozicki and

Tinsley (2005a) �nd higher values (around 0:10) using a similar learning model. For the output-neutral

real rate, the estimates imply only marginal e¤ects of learning on its dynamics due to the low weight

given to private signals in the updating rule for the perceived equilibrium real rate (1� !�� = 0:03).

4.5 Macro factors implied by the Learning Model

Figure 1 displays the �ltered time series for the ten macroeconomic factors implied by the mode of the

posterior distribution of the Learning Model. They include three observable factors (in�ation, the output

gap and the federal funds rate), three exogenous shocks (supply, demand and policy rate shocks), and

four stochastic endpoints (actual and perceived) for in�ation and the output-neutral real rate. Figure 2

depicts the actual and perceived stochastic endpoints and the respective 90% con�dence intervals together

with the respective observed macroeconomic variables.

Insert Figure 1 and 2

From Figure 1; we observe the mentioned disconnection between the in�ation target of the central

bank and the the perceived long-run in�ation expectation of private agents. This can be seen by the
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signi�cant and persistent di¤erences between the two series. The series for the perceived long-run in�ation

expectation displays substantial time variation, while the time path of the in�ation target is mostly

contained within the con�dence interval between 1%� 3:8% (see top-right panel of Figure 2). A similar

type of disconnection between subjective in�ation expectations and the in�ation target is found in Kozicki

and Tinsley (2005a) and Dewachter and Lyrio (2008). The results suggest that subjective in�ation

expectations were not well anchored, especially over the �rst part of the sample.

For the output-neutral real rate, we notice a strong similarity between the actual and perceived rates.

As mentioned before, this is implied by the estimate for w�� (0:97) in Eq. (13) which assigns a marginal

role to the learning dynamics. Figure 2 shows that the �ltered output-neutral real rate is typically

contained in the interval between 0%�5% p.a. (with a historical average close to 2:5% p.a.) and displays

signi�cant persistence with relatively low rates in the 1970s and substantially higher rates in the 1980s.

The perceived output-neutral real rate (bottom-left panel of Figure 2) also displays signi�cant volatility

and persistence, features also reported by e.g. Laubach and Williams (2003), Clark and Kozicki (2004)

and Bjørnland, Leitemo, and Maih (2008). Figure 2 also illustrates the substantial di¤erences in the

uncertainty surrounding the estimated time paths of the two series. The perceived real rate (bottom-left

panel) is identi�ed with signi�cant more precision than the actual rate (bottom-right panel) due primarily

to the yield curve dynamics. The dynamics of the actual real rate is only weakly identi�ed by the ALM,

as can be observed from its large con�dence interval. In fact, the 90% con�dence interval reported in the

bottom-right panel of Figure 2 does not exclude a constant or very smooth actual output-neutral real

rate.

The variability in the perceived output-neutral real rate and the disconnection between the in�ation

target of the central bank and the subjective in�ation expectations of private agents help explain a

signi�cant part of the variation in long-term yields. This is done without having to assign an excessively

large standard deviation for the in�ation target of the central bank.25 The estimated mode for the

in�ation target is around two percent while the �ltered in�ation expectations are in line with survey

data (see Figure 2). For the output-neutral real rate, however, its estimated standard deviation might

be excessively large (see Figure 1).

4.6 The �t of the yield curve

The yield curve model implied by the Learning Model includes eight factors: three observable macroeco-

nomic factors, three exogenous shocks, and two latent factors tracking the perceived stochastic endpoints

for in�ation and the output-neutral real interest rate.26 Figure 3 shows the yield curve loadings, i.e. the

sensitivity of the yield curve with respect to each macroeconomic factor. As can be seen, long-term yields

are a¤ected almost one-to-one by both stochastic endpoints. The factor loadings on the policy rate reveal

a slope factor response, while other macroeconomic variables, i.e. in�ation and demand shocks, a¤ect

25For instance, Doh (2006) reports standard deviations between 30 and 35 basis points per quarter for U.S. data for the
period 1960-2005. Dewachter and Lyrio (2006) and Bekaert, Cho, and Moreno (2010) �nd values ranging from 30 to more
than 73 basis points per quarter.
26The Learning Model features a total of ten factors. However, only the factors entering the PLM are relevant for the

yield curve, given that the yields are formed under the subjective expectations operator.
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primarily the intermediate maturities.

Insert Figure 3

The performance of the model in �tting the yield curve can be assessed by the standard deviation

of the measurement errors (��y;� ) in Table 4. For yields with maturity above 2 quarters, this value is

below 40 basis points.27 These values are small relative to the total variation of the yields, which exceed

240 basis points (see Table B1 in the Appendix). These values are also in line with estimates reported

in the macro-�nance literature. For instance, Bekaert, Cho, and Moreno (2010) report measurement

error standard deviations of 45 and 54 basis points for the 4- and 40-quarter yields. Estimates based on

comparable models presented in Dewachter and Lyrio (2008) are around 50 basis points. Interestingly,

De Graeve, Emiris, and Wouters (2009) report signi�cantly lower measurement errors (of the order of

10 to 20 basis points). Comparing these statistics, we conclude that the Learning Model is relatively

successful in explaining the yield curve variation in terms of macroeconomic shocks. More than 95% of

the unconditional variance in yields with maturities beyond 4 quarters is explained by the model. Figure

4 illustrates the yield curve �t implied by the model and Figure 5 decomposes the �t of the 40-quarter

yield into a expected real rate, expected in�ation and risk premium component. The top panel in this

�gure shows the signi�cant contribution of the expected in�ation in the composition of the 40-quarter

yield. The bottom panel shows the �t of the model-implied in�ation expectation with respect to the one

provided by the Survey of Professional Forecasters.

Insert Figures 4 and 5

Despite the large number of factors included in the model, the average mispricing (�� ) seems econom-

ically important and increasing with maturity up to 20 quarters (see Table 5), i.e. model-implied yields

are too high at the short end (negative liquidity premium) and too low at the long end of the yield curve

(positive liquidity premium).28 Nevertheless, only the negative mispricing term at the short end of the

yield curve (�2) is statistically signi�cant.

Finally, Figure 6 displays the expected excess holding return (per annum for a quarterly holding

period) expressed in Eq. (22) together with the NBER recession dates.29 As can be observed, risk

premia have an important time-varying component ranging from �2% p.a. in 1965 to more than 6%

p.a. in 1984 for the 40-quarter maturity bond. Similar time patterns and orders of magnitude have

been reported by Du¤ee (2002) and Campbell, Sunderam, and Viceira (2009). In line with intuition, the

observed risk premia are countercyclical, generating large and positive risk premia during recessions and

27A remarkable aspect of the data is the bad �t of the short end of the yield curve with �tting errors around one percent.
This �nding is due to the choice of policy rate. With the federal funds rate representing the policy rate, there is an obvious
tension with short-term Treasury rates, given that on average these have been below the federal funds rate. This persistent
gap is picked up in the measurement error.
28The negative liquidity premium at the short end of the yield curve should not come as a surprise. The positive spread

between the federal funds rate and the short-term treasuries is well documented and is typically attributed to a risk premium
in the federal funds rate re�ecting private banks� uncertainty over reserve management.
29The average excess holding return and standard deviation (in brackets) implied by the data are: 1:1% (0:2%), 1:5%

(0:7%), 1:7% (1%) and 2% (1:7%) for the 4-, 12-, 20- and 40-quarter bonds, respectively. The average risk premium implied
by the model (at the mode) are, respectively, 0:4%, 1:2%,1:6% and 2:1%.
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smaller and even negative risk premia during expansions.30

Insert Figure 6

4.7 What factors drive the yield curve?

We turn to the identi�cation of the macroeconomic factors driving monetary policy and the yield curve.

Monetary policy is identi�ed by the federal funds rate and the yield curve is decomposed into its level,

slope and curvature factors. We follow the literature (e.g. Bekaert, Cho, and Moreno (2010)) by identify-

ing (i) the level factor as the average yield across maturity, (ii) the slope factor as the 40-quarter maturity

yield spread (relative to the 1-quarter yield), and (iii) the curvature factor as the sum of the 40-quarter

and 1-quarter yields minus two times the 4-quarter yield. Table 6 presents the variance decomposition for

the federal funds rate and the level, slope and curvature factors for horizons of 1, 4, 20 and 40 quarters.

The results show that the high frequency variation in the monetary policy is largely due to independent

monetary policy shocks. Such shocks account for over 80% of the 1-quarter variation in the federal funds

rate, with macroeconomic shocks having only a marginal contribution.31 Supply and demand shocks

become more important for intermediate horizons, which is explained by the presence of interest rate

smoothing. At the 4-quarter horizon, supply and demand shocks account for 25% of the total variation in

the policy rate. For longer horizons, monetary policy is dominated by long-term equilibrium forces. For

a 40-quarter horizon, movements in the federal funds rate are mostly due to movements in the output-

neutral real rate (75%), with belief shocks to long-run in�ation expectations accounting for another 10%.

Insert Table 6

The variance decomposition of the level factor contradicts the results of standard macro-�nance

models, which attribute most of its variation to long-run in�ation expectations, e.g. Doh (2006) and

De Graeve, Emiris, and Wouters (2009). Our results indicate that, for all horizons, shocks to the output-

neutral real rate are responsible for most of the variation in the level factor, explaining 85% of the

variation for the 40-quarter horizon. Policy rate shocks are also signi�cant for short-term horizons (up

to 4 quarters) with a smaller contribution of supply shocks. Finally, belief shocks to long-run in�ation

expectations become relevant for intermediate and long horizons.

The variance decomposition for the slope and curvature factors are more in line with standard macro-

�nance models (e.g. Bekaert, Cho, and Moreno (2010)). The variation in both factors and for all horizons

is dominated by exogenous monetary policy shocks. For the slope factor, demand shocks have a signi�cant

impact for horizons of 4 quarters and above, while for the curvature factor this impact is present for all

horizons.

30Rudebusch, Sack, and Swanson (2007) show that a decline in the term premium has been associated with a stimulus
to the economy.
31This is in line with e.g. Bekaert, Cho, and Moreno (2010).
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5 Conclusion

We estimate a New-Keynesian macro-�nance model of the yield curve incorporating learning by private

agents with respect to the long-run expectation of in�ation and the equilibrium real interest rate. Private

agent�s perception about these two variables are updated taking into consideration their own belief shocks

and a constant gain learning process. A preliminary analysis shows that some liquidity premia, expressed

as some degree of mispricing relative to no-arbitrage restrictions, and time variation in the prices of risk

are important features of the data. These features are, therefore, included in our Learning Model.

The Learning Model succeeds to some extent in explaining the yield curve movements in terms of

macroeconomic shocks. Interestingly, the variability in the perceived stochastic endpoints for in�ation

and the equilibrium real rate turn out to be important in explaining the variability of long-term yields.

The results for this model also show an important di¤erence between the estimated in�ation target of

the central bank and the perceived long-run in�ation expectation of private agents. This is especially the

case for the period from the mid-1970s to the mid-1990s and show that private agents� perceptions about

long-term in�ation were weakly anchored.

The structural decomposition of the yield curve into its macroeconomic components also provides

new insights concerning the interpretation of the level, slope and curvature factors. For the slope and

curvature factors, the decomposition generated by the Learning Model is in line with standard macro-

�nance models. These factors are primarily a¤ected by exogenous monetary policy shocks, with demand

shocks contributing substantially. For the level factor, standard models attribute most of its variation

to long-run in�ation expectations. We �nd, however, that shocks to the output-neutral real rate are

responsible for most of the variation in this factor. We should emphasize that the pronounced variability

of the output-neutral real rate could be a sign of model misspeci�cation.

Several extensions of the model could be undertaken. First, our results document the signi�cance

of mispricing terms within a structural macro-�nance model. This mispricing can be quite substantial,

especially at the short end of the yield curve, suggesting the need for further analysis of these results. In

recent research, Dewachter and Iania (2010) show the importance of including �nancial factors related

to the overall liquidity and counterparty risk in the money market in the modeling of the yield curve.

The inclusion of such factors in our framework could eliminate the signi�cance of such mispricing terms.

Second, in this paper, we use a short-cut to identify the output-neutral real rate. Given the importance

of this factor for long-term yields, an important task is to verify further the interpretation of this factor

within a learning model. To this end, our model could be extended with the introduction of a complete

micro-founded supply side. Such an extension would facilitate the identi�cation of the long-run real

interest rate and would re�ne the set of observable macroeconomic shocks, as in De Graeve, Emiris, and

Wouters (2009).
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Tables and Graphs

Table 1: Properties and performance of alternative model versions

Model

Benchmark Mispricing FPR Learning

Properties
Mispricing No Yes No Yes

Prices of risk Consistent: �IS0 Consistent: �IS0 Free: �0;�1 Free: �0;�1

Expectations Full-info RE Full-info RE Full-info RE Learning

Overall performance
Marginal likelihood 7381 7628 7638 7741

BIC -14815 -15333 -15384 -15442

BIC decomposition
Macro (-2lnlik) -3760 -3711 -3745 -3772

Yields (-2lnlik) -9037 -9392 -9504 -9538

In�. exp.(-2lnlik) -2227 -2197 -2182 -2256

Penalty 131 157 194 272

Note : The marginal likelihood is computed using the modi�ed harmonic mean procedure of Geweke. The
�ndings are robust to alternative cut-o¤ levels. The BIC refers to the Schwarz Bayesian Information Criterion
and is computed at the mode of the posterior distribution. The decomposition of the likelihood and the
BIC are based on the likelihood of the prediction errors of the respective data series. FRP : Flexible Price
of Risk Model.
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Table 2: Prior distribution of parameters for alternative model versions (part I)

Prior distribution Model

Parameter Type Mean Stdev Benchmark Mispricing FPR Learning

Structural parameters

�� B 0.700 0.050 yes yes yes yes

� N 0.120 0.030 yes yes yes yes

h B 0.700 0.050 yes yes yes yes

� G 1.500 0.335 yes yes yes yes


� N 0.500 0.250 yes yes yes yes


y N 0.500 0.400 yes yes yes yes


i N 0.800 0.200 yes yes yes yes

Autocorrelation structural shocks

'� N 0.500 0.500 yes yes yes yes

'y N 0.500 0.500 yes yes yes yes

'i N 0.500 0.500 yes yes yes yes

Standard deviation structural shocks

�v� IG 0.010 0.003 yes yes yes yes

�vy IG 0.010 0.003 yes yes yes yes

�vi IG 0.010 0.003 yes yes yes yes

��� U 0.005 0.003 yes yes yes yes

��� U 0.005 0.003 yes yes yes yes

Initial values stochastic endpoints

��0 N 0.020 0.010 yes yes yes yes

��0 N 0.020 0.010 yes yes yes yes

Standard deviation measurement errors yields

��y;1 IG 0.005 0.003 yes yes yes yes

��y;2 IG 0.005 0.003 yes yes yes yes

��y;4 IG 0.005 0.003 yes yes yes yes

��y;12 IG 0.005 0.003 yes yes yes yes

��y;20 IG 0.005 0.003 yes yes yes yes

��y;40 IG 0.005 0.003 yes yes yes yes

Standard deviation measurement errors in�ation expectations

���;4 IG 0.005 0.003 yes yes yes yes

���;40 IG 0.005 0.003 yes yes yes yes

Note: This table reports the prior distributions used in the estimation. Column 1 presents the parameters. The second
column speci�es the type of distribution function: B (beta), G (gamma), IG (inverted gamma), N (normal), and U
(uniform). Columns 3 and 4 report the mean and standard deviation as implied by the respective prior distributions.
Columns 5 to 8 indicate whether or not the parameter is estimated in the respective model. The entry �yes� indicates the
parameter is estimated and �no� it is not.
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Table 3: Prior distribution of parameters for alternative model versions (part II)

Prior distribution Model

Parameter Type Mean Stdev Benchmark Mispricing FPR Learning

Average mispricing yields

�2 N 0.000 0.005 no yes no yes

�4 N 0.000 0.005 no yes no yes

�12 N 0.000 0.005 no yes no yes

�20 N 0.000 0.005 no yes no yes

�40 N 0.000 0.005 no yes no yes

Prices of risk: �0(�10
�2
)

�0;� N -0.050 0.150 impl impl yes yes

�0;y N -0.050 0.150 impl impl yes yes

�0;i N -0.050 0.150 impl impl yes yes

�0;�� N -0.050 0.150 impl impl yes yes

�0;�� N -0.050 0.150 impl impl yes yes

Prices of risk: �1(�10
�2
)

�1;�� N -0.050 0.150 no no yes yes

�1;�y N 0.000 0.500 no no yes yes

�1;�i N 0.000 0.500 no no yes yes

�1;y� N 0.000 0.500 no no yes yes

�1;yy N 0.050 0.150 no no yes yes

�1;yi N 0.000 0.500 no no yes yes

�1;i� N 0.000 0.500 no no yes yes

�1;iy N 0.000 0.500 no no yes yes

�1;ii N -0.050 0.150 no no yes yes

Learning parameters

!�� B 0.850 0.100 no no no yes

!�� B 0.850 0.100 no no no yes

g� U 0.125 0.075 no no no yes

g� U 0.125 0.075 no no no yes

���b U 0.010 0.006 no no no yes

���b U 0.010 0.006 no no no yes

��P0 U 0.02 0.012 no no no yes

��P0 U 0.02 0.012 no no no yes

Note: This table reports the prior distributions used in the estimation. Column 1 presents the parameters. Column 2
speci�es the type of distribution function: B (beta), G (gamma), IG (inverted gamma), N (normal), and U (uniform).
Columns 3 and 4 report the mean and standard deviation as implied by the respective prior distributions. Columns 5 to
8 indicate whether or not the parameter is estimated in the respective model. The entry �yes� indicates the parameter is
estimated and �no� it is not. Finally �impl� implies the parameter is implied by other structural parameters.
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Table 4: Posterior density estimates I - Learning Model

Posterior

Parameter Mean Stdev Mode 5% 95%

Structural parameters

�� 0.5337 0.0327 0.5288 0.4829 0.5891

� 0.0137 0.0042 0.0117 0.0078 0.0212

h 0.7512 0.0445 0.7566 0.6741 0.8179

� 2.6779 0.4004 2.5551 1.9344 3.2328


� 0.3707 0.1081 0.4389 0.2296 0.5824


y 0.6673 0.1638 0.6341 0.4931 1.0214


i 0.6827 0.0406 0.6896 0.6462 0.7849

Autocorrelation structural shocks

'� -0.3657 0.0839 -0.3781 -0.5056 -0.2332

'y 0.6285 0.0472 0.6489 0.5675 0.7230

'i -0.1609 0.0603 -0.1531 -0.2175 -0.0228

Standard deviation structural shocks

�v� 0.0118 0.0010 0.0120 0.0101 0.0136

�vy 0.0032 0.0003 0.0031 0.0027 0.0038

�vi 0.0117 0.0007 0.0119 0.0110 0.0131

��� 0.0015 0.0010 0.0004 0.0001 0.0034

��� 0.0074 0.0014 0.0073 0.0039 0.0083

Initial values stochastic endpoints

��0 0.0182 0.0085 0.0184 0.0051 0.0332

��0 0.0204 0.0072 0.0197 0.0061 0.0308

Standard deviation measurement error yield curve

��y;1 0.0103 0.0005 0.0101 0.0094 0.0111

��y;2 0.0044 0.0003 0.0044 0.0040 0.0049

��y;4 0.0040 0.0002 0.0040 0.0037 0.0043

��y;12 0.0020 0.0001 0.0019 0.0018 0.0022

��y;20 0.0008 0.0001 0.0008 0.0006 0.0010

��y;40 0.0035 0.0002 0.0034 0.0032 0.0039

Standard deviation measurement error in�ation expectation

���;4 0.0052 0.0004 0.0051 0.0046 0.0058

���;40 0.0010 0.0001 0.0010 0.0008 0.0012

Note: This table reports the posterior density estimates for the parameters of the Learning Model.
Column 1 presents the parameters, Columns 2, 3, and 4 report the mean, standard deviation, and
mode of the posterior distribution, respectively. Columns 5 and 6 report the 5-th and 95-th
percentile of the posterior distribution, respectively. All results are obtained using the Metropolis-
Hastings algorithm.
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Table 5: Posterior density estimates II - Learning Model

Posterior

Parameter Mean Stdev Mode 5% 95%

Average mispricing yields

�2 -0.0034 0.0016 -0.0032 -0.0054 -0.0001

�4 -0.0001 0.0019 0.0003 -0.0023 0.0038

�12 0.0010 0.0021 0.0017 -0.0010 0.0058

�20 0.0011 0.0022 0.0018 -0.0008 0.0063

�40 0.0010 0.0038 0.0013 -0.0023 0.0095

Prices of risk: �0(�10
�2)

�0;� -0.0700 0.1379 -0.1257 -0.3218 0.1365

�0;y -0.0675 0.1359 0.0432 -0.2558 0.1843

�0;i -0.0844 0.1456 -0.0193 -0.3322 0.1576

�0;�� -0.0576 0.1680 -0.0559 -0.2970 0.2323

�0;�� -0.1026 0.0796 -0.1144 -0.2128 0.0385

Prices of risk: �1(�10
�4)

�1;�� 0.0728 0.0779 -0.0030 -0.0456 0.1973

�1;�y 0.3139 0.0944 0.2782 0.1737 0.4842

�1;�i -1.1067 0.2303 -0.9401 -1.5123 -0.7743

�1;y� -0.1302 0.3327 -0.0016 -0.8500 0.2734

�1;yy 0.1051 0.1363 0.0575 -0.1463 0.3112

�1;yi -0.4329 0.4250 -0.5493 -1.0148 0.3596

�1;i� -0.0445 0.0469 -0.0382 -0.1268 0.0337

�1;iy -0.0274 0.0363 -0.0198 -0.0887 0.0326

�1;ii 0.5592 0.0718 0.5353 0.4471 0.6808

Learning parameters

w�� 0.6083 0.0645 0.6550 0.4897 0.6907

w�� 0.7789 0.1441 0.9746 0.5858 0.9872

g� 0.2191 0.0255 0.2190 0.1668 0.2479

g� 0.1200 0.0746 0.0443 0.0117 0.2392

���b 0.0045 0.0014 0.0058 0.0015 0.0067

���b 0.0121 0.0058 0.0050 0.0017 0.0194

��b0 0.0057 0.0039 0.0037 0.0006 0.0125

��b0 0.0240 0.0087 0.0231 0.0078 0.0366

Note: This table reports the posterior density estimates for the parameters of the Learning Model.
Column 1 presents the parameters, Columns 2, 3, and 4 report the mean, standard deviation, and
mode of the posterior distribution, respectively. Columns 5 and 6 report the 5-th and 95-th
percentile of the posterior distribution, respectively. All results are obtained using the Metropolis-
Hastings algorithm.
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Table 6: Variance decomposition of the yield curve - Learning Model

Type of shock Fed funds rate Level Slope Curvature
Horizon: 1 quarter

Supply ("v� ) 0.04 0.08 0.01 0.13

Demand ("vy ) 0.04 0.04 0.03 0.22

Policy rate ("v
i
) 0.81 0.33 0.88 0.63

In�ation target ("��) 0.00 0.00 0.00 0.00

Eql. real rate ("��) 0.11 0.52 0.06 0.02

Belief in�ation ("��b) 0.00 0.03 0.01 0.00

Belief real rate ("��b) 0.00 0.00 0.00 0.00

Horizon: 4 quarters

Supply ("v� ) 0.09 0.08 0.05 0.13

Demand ("vy ) 0.16 0.07 0.24 0.23

Policy rate ("v
i
) 0.43 0.12 0.65 0.62

In�ation target ("��) 0.00 0.00 0.00 0.00

Eql. real rate ("��) 0.30 0.68 0.05 0.02

Belief in�ation ("��b) 0.02 0.05 0.01 0.00

Belief real rate ("��b) 0.00 0.00 0.00 0.00

Horizon: 20 quarters

Supply ("v� ) 0.06 0.04 0.06 0.13

Demand ("vy ) 0.07 0.02 0.32 0.24

Policy rate ("v
i
) 0.12 0.03 0.55 0.60

In�ation target ("��) 0.00 0.00 0.00 0.00

Eql. real rate ("��) 0.66 0.82 0.04 0.02

Belief in�ation ("��b) 0.09 0.09 0.03 0.01

Belief real rate ("��b) 0.00 0.00 0.00 0.00

Horizon: 40 quarters

Supply ("v� ) 0.04 0.03 0.06 0.13

Demand ("vy ) 0.04 0.01 0.32 0.23

Policy rate ("v
i
) 0.07 0.02 0.53 0.59

In�ation target ("��) 0.00 0.00 0.00 0.00

Eql. real rate ("��) 0.75 0.85 0.04 0.02

Belief in�ation ("��b) 0.10 0.09 0.05 0.03

Belief real rate ("��b) 0.00 0.00 0.00 0.00
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Figure 1: Macroeconomic factors - Learning Model

Figure 2: Perceived and actual stochastic endpoints - Learning Model
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Figure 3: Factor loadings of the yield curve - Learning Model

Figure 4: Observed and fitted yield curve - Learning Model



32

Figure 5: Decomposition of the 40-quarter yield and inflation expectation - Learning
Model

Figure 6: Expected excess holding return - Learning Model
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Appendix A: Derivation of the Actual and Perceived Laws of Motion

As mentioned before, the structural model in Eqs. (1), (5), (8), (12) and (13) can be written in state

space form. Collecting the observable macroeconomic factors in Xm
t = [�t; yt; it; v�;t; vy;t; vi;t]

0; the

actual stochastic trends in X�
t = [��t ; �

�
t ]
0, the perceived trends in X�P

t = [��Pt ; ��Pt ]0, and the shocks

in "vt = ["v�;t; "vy;t; "vi;t]
0; "�t = ["��;t; "��;t]

0, and "�bt = ["��b;t; "��b;t]
0; the structural dynamics can be

rewritten using matrices A, B, C, D, F , �v and �� as:

AXm
t = C +BEt

�
Xm
t+1

�
+DXm

t�1 + FX
�
t +�

v"vt ;

X�
t = X

�
t�1 +�

�"�t ;
(31)

with F de�ned as (A � B �D)H and H being a matrix containing the cointegrating relations, i.e. the

dependence of Xm
t on X�

t :
32 The full-information rational expectations (RE) solution (conditional on

X�
t ) can be written as a reduced-form VAR:

�
Xm
t

X�
t

�
=

�
CRE

0

�
+

�
�RE (I � �RE)H
0 I

� �
Xm
t�1

X�
t�1

�
+

�
�RE1;1 �RE1;2
0 ��

� �
"vt
"�t

�
: (32)

The PLM is obtained as the RE solution to the structural equations replacing the actual stochastic

endpoints (X�
t ) by their perceived counterparts (X

�P
t ):33

�
Xm
t

X�P
t

�
=

�
CRE

0

�
+

�
�RE (I � �RE)H
0 I

� �
Xm
t�1

X�P
t�1

�
+

�
�RE1;1 �RE1;2
0 ��P

� �
"vt
"�Pt

�
: (33)

The ALM is obtained (i) by substituting the expectations Et
�
Xm
t+1

�
by the subjective expectations

EPt
�
Xm
t+1

�
implied by the PLM in Eq. (33) into the structural Eq. (31):

(A�B�RE)Xm
t = C +B(CRE) +B(I � �RE)HX�P

t +DXm
t�1 + FX

�
t +�

v"vt ;

X�
t = X

�
t�1 +�

�"�t ;
(34)

and (ii) by taking into account the dynamics of the perceived stochastic endpoints in Eq. (13) expressed

in state-space form as:34

X�P
t = X�P

t�1 +W�
�"�t + (I �W )

�
��b"�bt +GV

�
Xm
t � E

P
t�1 [X

m
t ]
�	
. (35)

The ALM in Eqs. (34) and (35) can subsequently be summarized with respect to the full state vector

Xt = [X
m0
t ; X

�P 0
t ; X�0

t ]
0and shock vector "t = ["

v0
t ; "

�b0
t ; "

�0
t ]
0as:

Xt = C
A +�AXt�1 + �

ASA"t; (36)

with

CA =

2

4
(A�B�RE) �B(I � �RE)H �F
�(I �W )GV I 0

0 0 I

3

5

�1 2

4
(C +BC

RE
)

�(I �W )GV CRE

0

3

5 ; (37)

32The matrix H is given by H0 =

�

1 0 1 0 0 0
0 0 1 0 0 0

�

such that lim
s!1

Et
�

Xm
t+s

�

= HX�
t .

33 In line with the literature, we assume that agents ignore the dynamics of the updating rule. In solving the model, agents
do not consider the implications of current forecast errors on subsequent inferences of the stochastic endpoints. Instead,
agents regard the perceived stochastic endpoints as purely exogenous martingale processes, with impact matrix ��P .
34The matrices W; G and ��b are diagonal matrices containing the weights !�� and !�� ; the gains g� and g�, and the

standard deviations ���b and ���b , respectively. Finally, V is a transformation matrix selecting from (Xm
t � EPt�1(X

m
t ))

the in�ation and real interest rate forecast errors.
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�A =

2

4
(A�B�RE) �B(I � �RE)H �F
�(I �W )GV I 0

0 0 I

3

5

�1 2

4
D 0 0

�(I �W )GV �RE I � (I �W )GV (I � �RE)H 0
0 0 I

3

5 ;

(38)

�ASA =

2

4
(A�B�RE) �B(I � �RE)H �F
�(I �W )GV I 0

0 0 I

3

5

�1 2

4
�v 0 0
0 (I �W )��b W��

0 0 ��

3

5 : (39)

Analogously, the PLM in Eq. (33) can be stated in state space form as:

Xt = C
P +�PXt�1 + �

PSP "Pt ; (40)

with

CP =

2

4
CRE

0
0

3

5 ; �P =

2

4
�RE (I � �RE)H 0
0 I 0
0 0 0

3

5 ; �PSP =

2

4
�RE1;1 �RE1;2 0
0 ��P 0
0 0 0

3

5 : (41)

In both cases, the structural model implies zero vectors of constants, i.e. CA = CP = 0. 35

35The cointegration between actual and perceived endpoints requires adaptive learning (G > 0): In case of no endogenous
updating (G = 0); cointegration does not hold since the perceived endpoints also depend on the independent belief shocks.
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Appendix B: Descriptive statistics of the data

Table B1: Descriptive statitistic of the data

Macro variables Yields In�. exp.

In�. O. gap FF rate 1q 2q 4q 12q 20q 40q 4q 40q

Data 187 187 187 187 187 187 187 187 187 147 109

Mean 0.037 -0.006 0.061 0.055 0.057 0.061 0.065 0.067 0.070 0.040 0.039

Std. Dev. 0.024 0.025 0.034 0.028 0.027 0.028 0.027 0.026 0.024 0.020 0.015

Skewness 1.167 -0.041 1.233 1.031 0.951 0.899 0.891 0.921 0.945 0.909 1.247

Kurtosis 3.881 3.329 5.122 4.460 4.189 4.031 3.756 3.628 3.563 2.958 3.999

Correlation matrix

In�ation 1

O. gap -0.311 1

FF rate 0.737 -0.152 1

Yield (1) 0.717 -0.156 0.992 1

Yield (2) 0.708 -0.169 0.987 0.998 1

Yield (4) 0.666 -0.192 0.969 0.982 0.989 1

Yield (12) 0.619 -0.248 0.928 0.950 0.962 0.984 1

Yield (20) 0.601 -0.283 0.900 0.924 0.938 0.963 0.995 1

Yield (40) 0.595 -0.327 0.864 0.887 0.901 0.930 0.976 0.992 1

In�.exp.(4) 0.873 -0.335 0.896 0.890 0.887 0.863 0.847 0.839 0.836 1

In�.exp.(40) 0.835 -0.367 0.876 0.872 0.872 0.857 0.862 0.867 0.875 0.983 1

Note: The data set consists of quarterly observations for the U.S. economy covering the period from 1960:Q2 to 2006:Q4 (187
observations). In�ation is computed based on the quarterly GDP de�ator and is expressed in per annum terms. The output
gap is the percentage deviation of GDP from the potential output reported by the Congressional Budget O¢ce (CBO). The
policy rate is the e¤ective federal funds rate. The term structure of interest rate data consist of yields of bonds with maturities
of 1, 2, 4, 12, 20 and 40 quarters. For 1- and 2-quarter yields, we use data from the secondary market for Treasury bills. For
4-, 12-, 20- and 40-quarter yields, we combine the data sets compiled by Gürkaynak, Sack, and Wright (2007) and McCulloch
and Kwon (1993). The 4- and 40-quarter average in�ation expectation data are obtained from the Survey of Professional
Forecasters (SPF). O. gap denotes output gap, FF rate the federal funds rate, Mean the sample arithmetic average, expressed
as p.a. percentage, and Std. Dev. the standard deviation.
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Appendix C: Posterior distribution of alternative models
This appendix presents the posterior distribution of the parameters of the Benchmark Model, the

Mispricing Model, the Flexible Price of Risk Model.

Table C1: Posterior density estimates - Benchmark Model

Posterior
Parameter Mean Stdev Mode 5% 95%

Structural parameters

�� 0.5343 0.0703 0.5063 0.4405 0.6723

� 0.0085 0.0037 0.0072 0.0035 0.0153

h 0.7022 0.0483 0.7057 0.6185 0.7764

� 2.1574 0.354 2.0651 1.6220 2.7805


� 0.4105 0.1098 0.4056 0.2295 0.596


y 0.3765 0.0575 0.3697 0.2855 0.4729


i 0.6205 0.0429 0.6296 0.5450 0.6817

Autocorrelation structural shocks

'� -0.2476 0.0858 -0.2326 -0.395 -0.1189

'y 0.666 0.0384 0.6702 0.6009 0.7282

'i -0.2417 0.0653 -0.2409 -0.3473 -0.1357

Standard deviation structural shocks

�v� 0.0097 0.0009 0.0096 0.0085 0.0113

�vy 0.0031 0.0003 0.0031 0.0027 0.0037

�vi 0.0111 0.0006 0.0111 0.0102 0.0121

��� 0.0029 0.0001 0.0029 0.0027 0.0032

��� 0.0049 0.0002 0.0049 0.0045 0.0052

Initial values stochastic endpoints

��0 0.0291 0.0042 0.0291 0.0222 0.0359

��0 0.0158 0.0050 0.0161 0.0074 0.0241

Standard deviation measurement error yield curve

��y;1 0.0102 0.0005 0.0102 0.0094 0.0112

��y;2 0.0080 0.0004 0.008 0.0073 0.0088

��y;4 0.0054 0.0003 0.0054 0.005 0.0059

��y;12 0.0027 0.0002 0.0026 0.0024 0.0029

��y;20 0.0010 0.0002 0.001 0.0008 0.0013

��y;40 0.0059 0.0003 0.0058 0.0053 0.0065

Standard deviation measurement error in�ation expectation

���;4 0.0060 0.0010 0.0055 0.0047 0.0081

���;40 0.0011 0.0002 0.0010 0.0008 0.0014

Note: This table reports the posterior density estimates for the parameters of the Learning Model.
Column 1 presents the parameters, Columns 2, 3, and 4 report the mean, standard deviation, and
mode of the posterior distribution, respectively. Columns 5 and 6 report the 5-th and 95-th
percentile of the posterior distribution, respectively. All results are obtained using the Metropolis-
Hastings algorithm.
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Table C2: Posterior density estimates - Mispricing Model

Posterior

Parameter Mean Stdev Mode 5% 95%

Structural parameters

�� 0.4453 0.0292 0.4468 0.4006 0.4956

� 0.0098 0.0039 0.0089 0.0042 0.0167

h 0.7559 0.046 0.7589 0.6772 0.8300

� 2.7394 0.411 2.7017 2.1159 3.4655


� 0.1963 0.0801 0.1692 0.0762 0.3359


y 0.2019 0.0384 0.2015 0.1358 0.2637


i 0.5232 0.0404 0.5326 0.4496 0.5822

Autocorrelation structural shocks

'� -0.1676 0.0634 -0.1618 -0.2736 -0.0648

'y 0.5894 0.0494 0.5923 0.5022 0.6624

'i -0.1800 0.0762 -0.1887 -0.2984 -0.0521

Standard deviation structural shocks

�v� 0.0104 0.0009 0.0102 0.0089 0.0119

�vy 0.0031 0.0003 0.0031 0.0026 0.0037

�vi 0.0117 0.0006 0.0117 0.0107 0.0127

��� 0.0033 0.0002 0.0033 0.0030 0.0037

��� 0.0065 0.0004 0.0065 0.0059 0.0073

Initial values stochastic endpoints

��0 0.0202 0.0043 0.0205 0.013 0.0273

��0 0.0191 0.0059 0.0188 0.0097 0.0293

Standard deviation measurement error yield curve

��y;1 0.0102 0.0005 0.0101 0.0094 0.0111

��y;2 0.0057 0.0003 0.0057 0.0052 0.0063

��y;4 0.0041 0.0002 0.0041 0.0038 0.0045

��y;12 0.0021 0.0001 0.0021 0.0019 0.0023

��y;20 0.0008 0.0001 0.0008 0.0006 0.0010

��y;40 0.0036 0.0002 0.0036 0.0033 0.0040

Standard deviation measurement error in�ation expectation

���;4 0.0047 0.0003 0.0047 0.0042 0.0052

���;40 0.0010 0.0002 0.0010 0.0008 0.0013

Average mispricing yields

�2 -0.0048 0.0006 -0.0047 -0.0057 -0.0038

�4 -0.0016 0.0007 -0.0016 -0.0028 -0.0004

�12 0.0014 0.0011 0.0014 -0.0003 0.0034

�20 0.0041 0.0011 0.0041 0.0022 0.0062

�40 0.0106 0.0013 0.0106 0.0085 0.0130

Note: This table reports the posterior density estimates for the parameters of the Learning Model.
Column 1 presents the parameters, Columns 2, 3, and 4 report the mean, standard deviation, and
mode of the posterior distribution, respectively. Columns 5 and 6 report the 5-th and 95-th
percentile of the posterior distribution, respectively. All results are obtained using the Metropolis-
Hastings algorithm.
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Table C3: Posterior density estimates I - Flexible Price of Risk Model

Posterior

Parameter Mean Stdev Mode 5% 95%

Structural parameters

�� 0.5010 0.0298 0.4726 0.4440 0.5373

� 0.0117 0.0038 0.0095 0.0057 0.0184

h 0.7574 0.0444 0.7136 0.6770 0.8285

� 2.9300 0.3636 3.4849 2.4057 3.6332


� 0.3493 0.1138 0.3273 0.2161 0.5339


y 0.7060 0.1433 0.7402 0.4649 0.9662


i 0.7529 0.0262 0.7798 0.7047 0.7976

Autocorrelation structural shocks

'� -0.2552 0.0701 -0.2370 -0.3501 -0.1186

'y 0.6202 0.0501 0.5858 0.5300 0.6845

'i -0.1275 0.0423 -0.0864 -0.1891 -0.0494

Standard deviation structural shocks

�v� 0.0115 0.0010 0.0118 0.0098 0.0132

�vy 0.0032 0.0004 0.0033 0.0026 0.0038

�vi 0.0128 0.0006 0.0138 0.0121 0.0141

��� 0.0035 0.0002 0.0034 0.0031 0.0039

��� 0.0069 0.0003 0.0069 0.0064 0.0075

Initial values stochastic endpoints

��0 0.0194 0.0048 0.0241 0.0123 0.0268

��0 0.0133 0.0033 0.0179 0.0085 0.0193

Standard deviation measurement error yield curve

��y;1 0.0103 0.0005 0.0099 0.0095 0.0113

��y;2 0.0049 0.0003 0.0050 0.0045 0.0053

��y;4 0.0042 0.0002 0.0041 0.0037 0.0045

��y;12 0.0020 0.0001 0.0019 0.0018 0.0022

��y;20 0.0008 0.0001 0.0007 0.0006 0.0010

��y;40 0.0035 0.0002 0.0034 0.0032 0.0038

Standard deviation measurement error in�ation expectation

���;4 0.0046 0.0003 0.0043 0.0042 0.0051

���;40 0.0011 0.0002 0.0010 0.0008 0.0014

Note: This table reports the posterior density estimates for the parameters of the Learning Model.
Column 1 presents the parameters, Columns 2, 3, and 4 report the mean, standard deviation, and
mode of the posterior distribution, respectively. Columns 5 and 6 report the 5-th and 95-th
percentile of the posterior distribution, respectively. All results are obtained using the Metropolis-
Hastings algorithm.
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Table C4: Posterior density estimates II - Flexible Price of Risk Model

Posterior

Parameter Mean Stdev Mode 5% 95%

Prices of risk: �0(�10
�2)

�0;� -0.2077 0.0906 -0.0889 -0.2905 -0.0447

�0;y -0.1883 0.1236 -0.1213 -0.3643 0.0026

�0;i -0.1716 0.0609 -0.2017 -0.2918 -0.1126

�0;�� -0.1159 0.0930 -0.1315 -0.2956 0.0751

�0;�� -0.0759 0.0266 -0.0620 -0.1304 -0.0325

Prices of risk: �1(�10
�4)

�1;�� 0.1580 0.0661 0.1628 0.0673 0.2798

�1;�y 0.4902 0.0904 0.4948 0.3262 0.6406

�1;�i -1.3656 0.2117 -1.5239 -1.7286 -1.0038

�1;y� -0.4380 0.3497 -0.1740 -0.9482 0.2550

�1;yy -0.0363 0.0820 0.0768 -0.1751 0.0592

�1;yi -0.3625 0.5253 -0.5938 -1.6301 0.1121

�1;i� -0.0557 0.0339 -0.0749 -0.1232 -0.0194

�1;iy -0.0797 0.0314 -0.0802 -0.1317 -0.0319

�1;ii 0.5578 0.0539 0.5094 0.4805 0.6577

Note: This table reports the posterior density estimates for the parameters of the Learning Model.
Column 1 presents the parameters, Columns 2, 3, and 4 report the mean, standard deviation, and
mode of the posterior distribution, respectively. Columns 5 and 6 report the 5-th and 95-th
percentile of the posterior distribution, respectively. All results are obtained using the Metropolis-
Hastings algorithm.
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