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Replicability of Nitrogen Recommendations 

from Ramped Calibration Strips in Winter Wheat 

 

Abstract Ramped calibration strips have been suggested as a way for grain producers to 

determine nitrogen needs more accurately. The strips use incrementally increasing levels of 

nitrogen and enable producers to conduct an experiment in each field to determine nitrogen 

needs. This study determines whether predictions from the program Ramp Analyzer 1.2 are 

replicable in Oklahoma hard red winter wheat (Triticumaestivum). Predictions are derived from 

36 individual strips from on-farm experiments—two pairs of adjacent strips at each of nine 

winter wheat fields in Canadian County, OK. The two pairs of strips within each field were 

between 120 and 155 m apart. Each strip was analyzed three times during the 2006-2007 

growing season. Nitrogen recommendations from Ramp Analyzer 1.2 are not correlated even for 

strips that were placed side by side, and recommendations from strips in the same field show no 

more homogeneity than randomly selected strips throughout the county. The results indicate that 

ramped calibration strips are unlikely to produce accurate nitrogen requirement predictions at 

any spatial scale, whether at the county level or for subsections of a single field. In contrast, a 

procedure that uses only measures from the plot with no nitrogen and the plot with the highest 

level of nitrogen applied does show replicability. Thus, improvements in the ramped calibration 

strip technology are needed if it is to become viable. 

Key words Fertilizer · Nitrogen · Precision Agriculture ·  Ramped Calibration Strip ·  Winter 

Wheat 

 

Introduction 

Potential benefits to producers and the environment have motivated a flurry of research, as well 

as the development of precision agriculture technologies and techniques to improve nitrogen-use 

efficiency (NUE) (Cassman et al. 1998; Greenhalgh and Faeth 2001; López-Bellido and López-

Bellido 2001; López-Bellido et al. 2004; Raun and Johnson 1999). Low NUE is due substantially 

to producers’ response to the uncertainty of nitrogen (N) requirements across space and time 

(Babcock 1992; Tembo et al. 2008). Producers ‘over-apply’ N in most years and fields because 

they want to ensure that enough N is available if crop N requirements are higher than expected.  
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A ramped calibration strip (RCS) system has been designed to predict crop N 

requirements based on midseason measures of the normalized difference vegetation index 

(NDVI) from growing wheat (Arnall et al. 2008; Raun et al. 2008). The RCS system is based on 

the assumption that NDVI data at Feekes Growth Stage 5 (Large 1954) are directly related to 

wheat grain yield (Raun et al. 2008). The Oklahoma Cooperative Extension Service recommends 

that, shortly after planting, producers who use the RCS prediction technique apply incrementally 

increasing N rates on one or more strips in a field (Arnall et al. 2008). The RCS applicator 

applies 16 incremental N rates, increasing the N rates sequentially from one end of the strip to 

the other (Raun et al. 2008). Some N may be applied to the entire field before creating the RCS 

to prevent early season N stress, or the strip may be superimposed on the rate the farmer usually 

applies (Arnall et al. 2008; Raun et al. 2008). Producers can either use visual inspection or a 

hand-held Greenseeker sensor at Feekes Growth Stage 5 (Large 1954) to predict the N 

application rate at which yield will cease to respond to topdressed N. A large part of the impetus 

behind the development of the RCS method was producer receptiveness to other visual methods 

for determining midseason topdressed N requirements (Raun et al. 2008), such as the calibration 

stamp technology developed by Raun et al. (2005b). To date, no published research has tested 

the accuracy of RCS-based predictions of crop N requirements, although the RCS system is 

already in use by some winter wheat producers who have built their own RCS applicators (Raun 

et al. 2008). 

If NDVI data recorded from a RCS can reduce uncertainty sufficiently about crop N 

requirements—including uncertainty caused by spatial variability and by prediction and 

measurement errors—the RCS might pay for itself by reducing average annual N expense and 

increasing average yield. The cost of using a RCS might be reduced further if the RCS predicts 
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strong spatial correlation between N requirements for fields in a region. Ample research has 

shown that average crop yields (and yield potential) vary at regional and sub-regional scales. For 

example, based on the European Nomenclature of Territorial Units for Statistics (NTUS), Bakker 

et al. (2005) showed that average yield not only varies significantly between large territorial 

units but also between smaller subdivisions of these, and that the variation in yield is strongly 

correlated with soil and climate characteristics. Moen et al. (1994) developed a crop simulation 

model to predict regional yield potential based on field-level simulation with planting date, soil 

type and climate data as modeling inputs, pointing out that regional predictions of yield potential 

could assist producers in identifying reasonable yield goals and economically optimal N 

application rates. Similarly, Easterling et al. (1998) created a model to predict wheat yield in the 

US Great Plains using climate and wheat yield data from 1984 to 1992, and found that their 

model had the highest predictive power when climate data were disaggregated at a spatial scale 

of 84 km by 111 km. They also found that spatial disaggregation of soil data did not significantly 

improve model fit. Although the variation of mineral N availability has also been well-

documented within individual fields (Blackmer et al. 1996; Scharf et al. 2005; Stenberg et al. 

2005), and even at resolutions of less than one m
2
 in Oklahoma (Solie et al. 1999), several 

studies have determined that it is not always profitable to address small-scale spatial variation 

(Batte2000; Biermacher et al. 2009; Boyer et al. 2010).Thus, a producer might need only one 

RCS per five fields (if they are close together, similar in soil type, and planted on the same date), 

rather than five or more strips for the same set of fields, as currently recommended (Arnall et al. 

2008). Perhaps RCS data could even be collected at experimental stations and then disseminated 

at no cost to producers. Region-level information from RCS experiments might be especially 

valuable to producers who grow wheat for both grain and grazing—a common practice in 
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Oklahoma—because they might find establishing calibration strips to be prohibitively costly due 

to the need for fencing to exclude cattle. The objective of this paper is to determine the statistical 

relationships between N recommendations based on RCS predictions at different spatial scales 

(within and between fields) and at varying times during the same growing season, and to use this 

statistical analysis to draw inferences regarding the suitability of the RCS method for predicting 

crop N requirements at the single-field and regional levels. 

 

Materials and methods 

The dataset used consists of observations from nine on-farm RCS trials conducted in Canadian 

County, Oklahoma. The data are from farmers’ fields that were planted in the autumn of 2006. 

Two pairs of RCSs were established in each field using topdress urea-ammonium nitrate solution 

(UAN) shortly after plant emergence. Paired strips were created by making two adjacent passes 

over the field with the RCS applicator, therefore, the rates in the paired strips increased in 

opposite directions. The strips began with 242 kg ha
−1

, and every 3 m the N was reduced in 16 

equal steps. No N was applied on the seventeenth section. The maximum rate of 242 kg ha
−1

 was 

then applied on an eighteenth section to help in locating the end of the strip. The strips were 4 m 

wide. The two pairs of strips in each field ranged from 120 to 155 m apart. Figure 1 shows the 

basic RCS placement in the on-farm trials in this dataset. 

The NDVI data from each strip were obtained with a hand-held Greenseeker optical 

sensor three times during the growing season. Readings were taken every 0.1 seconds from 0.6 m 

wide by 1 cm long sections as the operator walked the down the center of each strip, taking 

approximately 150 readings. The same operator made each reading, so operator variability was 
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not a source of error. The operator was trained to avoid areas of the strip where bare soil was 

visible. 

The program Ramp Analyzer 1.2 fitted a linear response-plateau function to the NDVI 

data to determine N requirements (Raun et al. 2008). For each RCS reading, N input 

requirements were predicted in two ways: 1) by direct use of the fitted linear response-plateau 

parameters to determine the application rate at which NDVI response to N ceased (hereafter 

called the RCS recommendation) and 2) by using a N fertilizer optimization algorithm (NFOA) 

developed by Raun et al. (2005a) (hereafter called the NFOA recommendation). Thus, three RCS 

and three NFOA recommendations were available for each RCS—one of each type at each of 

three dates.  

A linear plateau model was defined mathematically as 

 ),min( PlateaubNay  ,   (1) 

where y is NDVI, N is N applied and Plateau is the NDVI plateau at which additional N had no 

effect on NDVI. Ramp Analyzer 1.2 used a heuristic estimation procedure for the parameters in 

Eq. 1. The program for this procedurewas written in Visual Basic in such a way that it can be 

solved on a personal digital assistant (PDA). The parameters were selected based on least 

squares regressions of NDVI against the number of readings taken at that point. These 

regressions were computed as 

 ii iNDVI   10 ,    (2)
 

where the coefficients β0 and β 1 from this equation are analogous to a and b, respectively, from 

Eq. 1.   To select the intercept and slope parameters, parameters of Eq. 2 were estimated with the 
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first few readings from the strip, and then further values were added one at a time. The intercept 

and slope parameters were selected from the regression with the largest R
2
. The plateau level of 

NDVI was estimated by starting with the last few readings and then further values were added 

one at a time. The Plateau in Eq. 1 was the value of β0 from the regression in which the slope 

parameter, β 1, in Eq. 2 was closest to zero. The predicted optimal value of N was the value of N 

corresponding to the point where the two functions crossed, i.e. (Plateau − a) ∕ b. 

The NFOA used only the NDVI values from the part of the strip with no N and those 

from the part of where the highest level was applied. The NFOA had a maximum predicted yield 

of 6048 kg ha
-1

 (90 bu ac
-1

)—the approximate biological maximum yield for rain-fed hard red 

winter wheat in Oklahoma (Raun et al. 2002)—even when the predicted intercept was above this 

level. Such censoring may mean that the NFOA predicted no N response even when the raw 

NDVI data clearly showed one. Table 1 lists the planting dates and sensing dates for each field. 

These data were used to determine how repeatable NFOA and RCS recommendations were over 

space and across sensing dates within fields as a measure of the amount of noise present in the 

predictions. 

The important question of repeatability of RCS and NFOA recommendations across time 

(within a single growing season) and space was addressed. Poor repeatability of these 

recommendations at the same strip over time, or weak correlation between recommendations 

from two adjacent strips would indicate that the RCS or NFOA recommendations were too noisy 

to be useful in predicting N requirements at the single-field level. Such noise could stem from 

either measurement error or considerable spatial variability within the field.  
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Graphical analyses and correlation coefficients were used to determine the strength and 

significance of the relationships between both RCS and NFOA recommendations from: 1) strips 

in the same pair at the same sensing date, 2) different pairs (mean recommendation) in the same 

field at the same sensing date and 3) the same strip at the second and third sensing dates. The 

second and third sensing dates were chosen because the second date was usually closest to 

Feekes 5 (Large 1954)—the growth stage at which topdressed N is usually applied—and because 

the third sensing date (usually in March) was closest to harvest, and might therefore have been 

the most accurate. The correlation and plot of the relationship between RCS and NFOA 

recommendations at the same strip for the same sensing date were also calculated. 

To provide further statistical confirmation of the graphical results, a Tobit model (Greene 

2008) was used because the N recommendations are truncated at zero to avoid recommending a 

negative amount of N. The following no-intercept Tobit model was estimated: 
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where ijtr is the recommended N application rate on strip i in pair j on sensing date t, j is a 

fixed effect for pair j, jD is an indicator variable equal to one for pair j and zero otherwise, 
*

ijtr is 

a latent variable representing the level of N (including residual and applied N) the plants in strip i 

in pair j on sensing date t need to reach the predicted plateau yield, ijt  is a random error term 

distributed with mean zero and variance 2

  and J is the number of strip pairs. 
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The first hypothesis tested was that N requirement predictions from the RCS did not vary 

between pairs within the same field, i.e. JJ   14321  , , ,  . Rejection of this 

hypothesis would indicate that predicted N requirements from the RCS varied consistently by 

pair within each field. Failure to reject the hypothesis would indicate that RCS recommendations 

from strips in one pair are no more homogeneous than randomly selected recommendations from 

strips in the field, because either there was little variation in actual N requirements among 

locations within a field or the RCS was not precise enough to detect this variation. If the RCS 

lacks predictive power because of noise, this means it cannot be used successfully to predict N 

requirements for nearby fields. Next, the model was restricted so that predicted N requirements 

could not vary by field, i.e. , ,  , yjyj  
 
to determine whether the RCS detected significant 

variation in N requirements between fields. Failure to reject this restriction would indicate that 

RCS recommendations within one field are no more homogeneous than randomly selected 

recommendations from Canadian County as a whole. Equation 3 was then re-estimated using the 

NFOA predictions as the dependent variable ( ijtr ) to determine whether the NFOA 

recommendations varied consistently within and between fields. 

 

Results and discussion 

Figure 2 shows scatter plots and the correlations of N recommendations from strips in the same 

pair at the same sensing date for the RCS (Fig. 2a) and NFOA (Fig. 2b). The correlation between 

RCS recommendations from adjacent strips in Fig. 2a is slightly negative, although not 

significant (p = 0.61). This result indicates that the RCS is a noisy predictor of N requirements. 

On the other hand, the correlation between NFOA recommendations from adjacent strips in Fig. 
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2b is 0.56, and is statistically significant (p < 0.01). Figure 3a shows the mean RCS 

recommendation from one pair of strips plotted against the mean RCS recommendation from the 

other pair of strips in the same field at the same sensing date. Figure 3b plots the NFOA 

recommendations in the same way. The mean RCS recommendations from pairs in the same 

field have a weak correlation (0.01) that is not statistically significant (p = 0.98). However, the 

mean NFOA recommendations from the different pairs are strongly correlated (r = 0.74, p < 

0.01). Because RCS recommendations from adjacent strips are not correlated, lack of correlation 

between mean recommendations from strips in the same field probably indicates that variation in 

RCS recommendations was caused predominantly by noisy measurements rather than by actual 

variation in N requirements within the field. Although N requirements almost certainly varied 

throughout and amongst the trial fields (Lobell et al. 2005; Mamo et al. 2003; Scharf et al. 2005), 

the RCS recommendations did not match expected patterns of spatial variation in N 

requirements, e.g. strong positive correlation between N requirements at proximal locations, or 

even positive correlation between N requirements in different parts of the same field. 

Figures 4a and 4b show scatter plots of recommendations at the same strip at the second 

sensing date (usually February) and the third sensing date (usually March) for the RCS and 

NFOA, respectively. For the RCS, the correlation is 0.10 and is not statistically significant (p = 

0.57). The correlation for the NFOA recommendations is 0.56 and is significant at the 0.01 

confidence level. The weak correlation between N recommendations from the same RCS in 

February and March is particularly disconcerting as it indicates that a RCS is likely to give 

widely disparate N recommendations on different dates. Thus, in this set of fields in 2006, the 

RCS was almost certainly not an adequate predictor of crop N requirements. One caveat is that, 

while our dataset includes nine fields, it includes only one year. A single county-wide weather 
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event in 2006 could have caused the weak correlation between RCS recommendations at the 

different sensing dates. Even so, given the lack of expected spatial patterns in RCS N 

recommendations, lack of temporal correlation between recommendations from the same strip is 

not surprising. 

One reason the NFOA recommendations show stronger spatial and temporal correlation 

may be the NFOA’s propensity to predict optimal rates of zero kg ha-1
. The NFOA restricts the 

predicted plateau yield for each strip to be no greater than 6048 kg ha
-1

. Thus, when the NFOA 

predicts a yield intercept >6048 kg ha
-1

, the predicted plateau yield is still no greater than 6048 

kg ha
-1

, without regard to NDVI response to N.  

Figure 5 shows a scatter plot of the NFOA recommendations against those of RCS from 

the same strip at the same sensing date. Note that the NFOA often recommends no N application, 

whereas the RCS recommends applying N in 36 out of 100 observations. Even when NDVI data 

indicate an N response, i.e. the average NDVI reading at one end of the strip is different from 

that at the other end, the NFOA still assumes no N response by assuming that the relationship 

between NDVI and yield is estimated without error.  

The estimated parameters of Eq. 3 for the RCS recommendations are given in Table 2. 

The model with pair effects allows the mean predicted N requirement to be unique for each pair 

of adjacent strips, whereas the model with field effects is restricted such that pairs in the same 

field must have the same mean prediction, and the pooled model assumes the same mean N 

requirement for all strips in the dataset.  

To determine whether the field itself affects the RCS N recommendation, the field effects 

model was tested against the pooled model using a likelihood ratio test. The null hypothesis that 
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field does not affect RCS N recommendations cannot be rejected (LR = 11.66 < critical value = 

13.36, 1 df, α = 0.01), suggesting that the RCS recommendation system does not detect variation 

in N requirements among fields, or that RCS N recommendations within a field are no more 

homogeneous than recommendations from randomly selected strips from Canadian county. 

Because variation in N requirements among fields is well documented (Lobell et al. 2005; Mamo 

et al. 2003; Washmon et al. 2002), this result probably indicates that the RCS system is not 

precise enough to detect such variability, and cannot make accurate N recommendations at the 

county-level. The likelihood ratio test to determine whether mean N recommendations vary 

among pairs of adjacent strips also fails to reject the null hypothesis of no difference (LR = 24.94 

< critical value = 27.59, 17 df, α = 0.05). The inference is that recommendations from two 

adjacent strips in a pair selected at random are no more homogeneous than readings from two 

randomly selected strips from different pairs—perhaps on opposite sides of Canadian county. 

The fact that RCS predictions of N requirements do not show more homogeneity within pairs 

than within the field as a whole indicates that the predictions are imprecise. The lack of 

replicability of RCS N requirement predictions over space (especially between strips in the same 

pair) might be caused by considerable small-scale spatial variation in N requirements within and 

amongst the strips in a single field. However, the finding that N recommendations from the same 

strip show no repetition on different dates within the same growing season indicates that the RCS 

N requirement predictions are simply very noisy. It is clear from Raun et al. (2005a) that the 

relationship between midseason NDVI data and yield not only varies from field-to-field and 

year-to-year but also that the error terms in the estimated relationship are heteroskedastic, i.e. the 

variance of the error increases with NDVI. This means that large small-scale variation in NDVI, 

especially when NDVI values are large, does not necessarily indicate considerable small-scale 
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variation in yield potential or crop N requirements. Yet, such variation in NDVI readings over 

the length of a RCS could result in systematic errors in the N response function and flawed N 

recommendations. This issue might be attenuated by using shorter RCSs, which would 

presumably exhibit less within-strip spatial variation in NDVI response to N. 

Table 3 gives the mean N application rate recommended by the NFOA with and without 

fixed effects for the strip pair and field, as estimated by Eq. 3. The null hypothesis that NFOA N 

recommendations do not differ among fields is rejected (LR = 113.48 > critical value = 20.09, 8 

df, α = 0.01). Thus, it is possible that the NFOA detects actual variation in N requirements in 

different fields. Including pair effects slightly improves the model fit relative to field effects 

alone (LR = 19.06 > critical value = 16.92, 9 df, α = 0.05), providing evidence of modest spatial 

variation within the fields. The clear replicability of the NFOA recommendations provides 

evidence that the lack of replicability of the RCS recommendations is not because of some 

anomaly in the sites. 

Why are the RCS predictions so inaccurate when the RCS uses more observations than 

does the NFOA? One possible source of error is the heuristic estimation algorithm that was used. 

It may be possible to obtain more accurate estimates of the parameters of the linear plateau 

model with nonlinear least squares or nonlinear maximum likelihood. Another possible weakness 

occurs when an area being sensed has bare ground. These cases create errors with large negative 

skewness, and the estimation procedure used by Ramp Analyzer 1.2 might be overly sensitive to 

these observations. Estimating a stochastic frontier function as in Coelli (1996) would provide 

one way to remove the effects of these outliers. Another problem can occur when the response to 

N is almost flat. In this case, even a small change in measurement can change the 

recommendation from a very high level of N to a very low level. 
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Conclusions 

First and foremost, the results indicate that the use of Ramp Analyzer 1.2 and RCS is too noisy a 

method to be useful to predict accurately and consistently optimal N application levels at any 

spatial scale, i.e. at the regional, single-field or sub-field levels. Thus, the RCS method needs 

substantial modification to improve its predictive power. Potential ways to improve the RCS 

approach include using shorter strips and more statistically advanced estimation procedures. 

Incorporating RCS data into a Bayesian statistical framework could improve the value of the 

RCS method by enabling it to be used in conjunction with other readily available data, such as 

historical yields and weather data. Research that validates the predictive power of the RCS 

technology is lacking, although many producers find the visual information acquired from the 

strips appealing. What is clear from the results of this analysis is that further research and 

development are necessary to improve and verify the accuracy of RCS N recommendations. 
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Table 1.Planting date and sensing dates for each field 

Field Planting date Sensing dates 

1 11/6/2007 01/31/2008 

2 10/10/2007 02/01/2008 

02/19/2008 

03/11/2008 

3 10/14/2007 01/31/2008 

02/19/2008 

03/11/2008 

4 10/12/2007 01/31/2008 

02/20/2008 

03/11/2008 

5 10/5/2007 01/31/2008 

02/19/2008 

03/11/2008 

6 10/9/2007 01/23/2008 

01/31/2008 

02/19/2008 

7 10/12/2007 02/04/2008 

02/19/2008 

03/11/2008 

8 10/12/2007 02/04/2008 

02/20/2008 

03/11/2008 

9 10/10/2007 01/31/2008 

02/19/2008 

03/11/2008 
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Table 2. Mean ramped strip recommendation, with and without fixed effects for strip pair and 

field 

  Model 

Parameter Definition Pair effects Field effects
a
 Pooled

b
 

1  Fixed effect for pair 1 10.08 

(21.18) 

19.04 

(16.07) 

35.19
***c

 

(3.42)
d
 

2  Fixed effect for pair 2 28.00 

(21.18) 

19.04 

(16.07) 

35.19
***

 

(3.42) 

3  Fixed effect for pair 3 65.15
***

 

(12.23) 

48.91
***

 

(9.28) 

35.19
***

 

(3.42) 

4  Fixed effect for pair 4 32.67 

(12.23)
 ***

 

48.91
***

 

(9.28) 

35.19
***

 

(3.42) 

5  Fixed effect for pair 5 59.36
***

 

(12.23) 

49.75
***

 

(9.28) 

35.19
***

 

(3.42) 

6  Fixed effect for pair 6 40.13
***

 

(12.23) 

49.75
***

 

(9.28) 

35.19
***

 

(3.42) 

7  Fixed effect for pair 7 35.47
***

 

(12.23) 

23.07
**

 

(9.37) 

35.19
***

 

(3.42) 

8  Fixed effect for pair 8 10.40 

(12.54) 

23.07
**

 

(9.37) 

35.19
***

 

(3.42) 

9  Fixed effect for pair 9 26.88
**

 

(12.23) 

31.08
***

 

(9.28) 

35.19
***

 

(3.42) 

10  Fixed effect for pair 10 35.28
***

 

(12.23) 

31.08
***

 

(9.28) 

35.19
***

 

(3.42) 

11  Fixed effect for pair 11 35.47
***

 

(12.23) 

34.91
***

 

(9.28) 

35.19
***

 

(3.42) 

12  Fixed effect for pair 12 34.35
***

 

(12.23) 

34.91
***

 

(9.28) 

35.19
***

 

(3.42) 

13  Fixed effect for pair 13 16.07 

(12.51) 

18.61
**

 

(9.49) 

35.19
***

 

(3.42) 

14  Fixed effect for pair 14 21.72
*
 

(12.48) 

18.61
***

 

(9.49) 

35.19
***

 

(3.42) 

15  Fixed effect for pair 15 24.64
**

 

(12.23) 

33.13
***

 

(9.28) 

35.19
***

 

(3.42) 

16  Fixed effect for pair 16 41.63
***

 

(12.23) 

33.13
***

 

(9.28) 

35.19
***

 

(3.42) 
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Table 2. Mean ramped strip recommendation, with and without fixed effects for strip pair and 

field 

17  Fixed effect for pair 17 68.48
***

 

(12.33) 

47.25
***

 

(9.34) 

35.19
***

 

(3.42) 

18  Fixed effect for pair 18 26.69
**

 

(12.23) 

47.25
***

 

(9.34) 

35.19
***

 

(3.42) 

2

  Variance of error 29.95
***

 

(2.18) 

32.15
***

 

(2.34) 

34.05
***

 

(2.48) 

Log Likelihood -466.79 -473.43 -479.26 

Note: Units are kg ha
-1

. 
a
 This model is restricted such that 1817654321  , , , ,    . 

b
 This model is restricted such that 18321  , ,    . 

c
 One, two or three asterisks (*) indicate statistical significance at the 0.10, 0.05 or 0.01 

confidence level, respectively. 
d
 Numbers in parentheses are standard errors. 
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Table 3. Mean nitrogen fertilizer optimization algorithm recommendation, with and without 

fixed effects for strip pair and field 

  Model 

Parameter Definition Pair effects Field effects
a
 Pooled

b
 

1  Fixed effect for pair 1 7.28 

(19.12) 

10.64 

(15.47) 

16.11
***c

 

(6.24)
d
 

2  Fixed effect for pair 2 14.00 

(19.12) 

10.64 

(15.47) 

16.11
***

 

(6.24) 

3  Fixed effect for pair 3 -156.84 

(0.00) 

-46.00
***

 

(17.01) 

16.11
***

 

(6.24) 

4  Fixed effect for pair 4 -30.53
*
 

(16.83) 

-46.00
***

 

(17.01) 

16.11
***

 

(6.24) 

5  Fixed effect for pair 5 63.65
***

 

(11.04) 

63.00
***

 

(8.93) 

16.11
***

 

(6.24) 

6  Fixed effect for pair 6 62.35
***

 

(11.04) 

63.00
***

 

(8.93) 

16.11
***

 

(6.24) 

7  Fixed effect for pair 7 -156.84 

(0.00) 

-186.66 

(0.00) 

16.11
***

 

(6.24) 

8  Fixed effect for pair 8 -156.84 

(0.00) 

-186.66 

(0.00) 

16.11
***

 

(6.24) 

9  Fixed effect for pair 9 107.71
***

 

(11.04) 

81.48
***

 

(8.93) 

16.11
***

 

(6.24) 

10  Fixed effect for pair 10 55.25
***

 

(11.04) 

81.48
***

 

(8.93) 

16.11
***

 

(6.24) 

11  Fixed effect for pair 11 43.12
***

 

(11.04) 

26.81
***

 

(9.20) 

16.11
***

 

(6.24) 

12  Fixed effect for pair 12 9.86 

(12.00) 

26.81
***

 

(9.20) 

16.11
***

 

(6.24) 

13  Fixed effect for pair 13 26.74
**

 

(11.23) 

39.94
***

 

(9.06) 

16.11
***

 

(6.24) 

14  Fixed effect for pair 14 53.94
***

 

(11.15) 

39.94
***

 

(9.06) 

16.11
***

 

(6.24) 

15  Fixed effect for pair 15 -29.28
*
 

(16.63) 

-45.06
***

 

(16.81) 

16.11
***

 

(6.24) 

16  Fixed effect for pair 16 -156.84 

(0.00) 

-45.06
***

 

(16.81) 

16.11
***

 

(6.24) 
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Table 3. Mean nitrogen fertilizer optimization algorithm recommendation, with and without 

fixed effects for strip pair and field 

17  Fixed effect for pair 17 45.36
***

 

(11.17) 

40.42
***

 

(8.99) 

16.11
***

 

(6.24) 

18  Fixed effect for pair 18 36.03
***

 

(11.04) 

40.42
***

 

(8.99) 

16.11
***

 

(6.24) 

2

  Variance of error 27.04
***

 

(2.53) 

30.93
***

 

(2.89) 

55.42
***

 

(5.56) 

Log Likelihood -292.12 -301.65 -358.39 

Note: Units are kg ha
-1

. 
a
 This model is restricted such that 1817654321  , , , ,    . 

b
 This model is restricted such that 18321  , ,    . 

c
 One, two, or three asterisks (*) indicate statistical significance at the 0.10, 0.05 or 0.01 

confidence level, respectively. 
d
 Numbers in parentheses are standard errors. 
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Fig. 1 Diagram of basic placement of two pairs of ramped calibration strips in an on-farm trial. 
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  a            b 

 
Fig. 2 Ramped calibration strip recommendation for one strip vs. that from the other strip in the same pair at the same sensing date (a) 

and nitrogen fertilizer optimization algorithm recommendation for one strip vs. that from the other strip in the same pair at the same 

sensing date (b) for all nine experiments.
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     a             b 

 
Fig. 3 Mean ramped calibration strip recommendation from one pair of strips vs. that from the other pair in the same field at the same 

sensing date (a) and mean nitrogen fertilizer optimization algorithm recommendation from one pair of strips vs. that from the other 

pair in the same field at the same sensing date (b) for all nine experiments. 
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     a              b 

 
Fig. 4 Ramped calibration strip recommendation in mid-March vs. that from the same strip in mid-February (a) and nitrogen fertilizer 

optimization algorithm recommendation in mid-March vs. that from the same strip in mid-February (b) for all nine experiments.
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Fig. 5 Ramped strip recommendation vs. nitrogen fertilizer optimization algorithm 

recommendation from the same strip at the same sensing date for all nine experiments. 


