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Abstract

This note presents a simple generalization of the adaptive expectations mecha-

nism in which the learning parameter is time variant. It is shown that expectations

generated in this way are rational in the sense of producing minimum mean squared

forecast errors for a broad class of time series models, namely any process that can

be written in linear state space form.
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1 Introduction

Although it is tempting to see a dichotomy in the macroeconomics literature between

those (early) models based on adaptive expectations and those (more recent) models
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based on rational expectations, the connection between the two mechanisms in fact

runs deep. Indeed, the original contribution of Muth (1960) was to highlight that adap-

tive expectations are only rational in the sense of minimizing mean squared forecast

errors under strict assumptions as to the underlying data generating process. This pa-

per extends that insight to a more general case, and shows that for a very broad class

of time series models–all those that can be written in linear state space form–a gen-

eralized form of adaptive expectations is rational in the sense of producing minimum

mean squared forecast errors. The necessary generalization to the adaptive expecta-

tions mechanism is the introduction of a time-varying adaptation or learning parameter,

which depends on the underlying characteristics of the model.

In addition to Muth (1960), who showed that adaptive expectations are rational if the

data generating process is a random walk with noise, contributions by Theil and Wage

(1964) and Nerlove and Wage (1964) addressed the optimality of the closely related

procedure of exponential smoothing. All three papers are special cases of the more

general approach taken here, which uses the Kalman Filter to derive similar results for

the full set of time series models that can be written in linear state space form. The only

previous research that uses the Kalman Filter in this way is Cuthbertson (1988), who

also focuses on an adaptive expectations model with a time-varying adjustment param-

eter. However, he does not provide a general framework that establishes the optimality

of such forecasts, but instead relies on a series of special cases. In addition, Farmer

(2002) develops a generalized version of adaptive expectations which he shows to be

rational under given circumstances, but his approach again relies on more specific cases

than the one used here. The present contribution represents a further generalization of

both approaches.

The paper proceeds as follows. To introduce the material, Section 2 provides an alter-

native proof of the proposition in Muth (1960) by transforming the model into linear

state space form and applying the Kalman Filter. Section 3 presents the general prob-
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lem for any linear state space model, applies the Kalman Filter, and shows that its

forecasts can be expressed as a generalization of the traditional adaptive expectations

model. Section 4 concludes.

2 Adaptive Expectations, Rationality, and the Kalman

Filter

As is well known, the traditional adaptive expectations model applied to, for example,

a commodity price pt , takes the following form:

p∗t = p∗t−1 +β
(

pt−1 − p∗t−1

)

(1)

where stars indicate expected prices, and 0 < β < 1 is a learning parameter that deter-

mines the speed with which prior errors are “corrected” when making forecasts. Early

work using adaptive expectations justified it on intuitive grounds (e.g., Nerlove, 1956).

Muth (1960) subsequently showed that expectations formed in this way are rational

in the sense of minimizing mean squared forecast errors provided that prices evolve

according to a random walk, i.e.:

pt = pt−1 + et (2)

where et is a standard, white noise error term.

By way of introduction to the generalized model presented in the next section, it is

useful to provide an alternative proof of Muth’s result. This is easily done using the

Kalman Filter. To set up the problem, I rewrite the price process in terms of a stochastic
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trend µt , as follows:

pt = µt +ηt (3)

µt = µt−1 +ωt (4)

An agent who is rational produces one-step ahead forecasts (mt ) of pt that minimize

the mean squared forecast error. Since the system described by equations (3) and (4)

takes the form of a linear state space model, minimum mean squared error forecasts

can be obtained recursively by applying the Kalman Filter:1

vt = pt −mt (5)

Vt = var(vt) = Qt +σ2
η (6)

Kt =
Qt

Vt

(7)

mt+1 = mt +Ktvt (8)

Qt+1 = Qt (1−Kt)+σ2
ω (9)

Substituting equation (5) into equation (8) gives:

mt+1 = mt +Kt (pt −mt) (10)

which takes the traditional adaptive expectations form of equation (1) provided that Kt

is a constant. To prove that this is the case, substitute equation (6) into equation (7) to

give:

Kt =
Qt

Qt +σ2
η

(11)

Time invariance of K therefore reduces to time invariance of Q, i.e. Qt+1 = Qt = Q.

1Standard sources such as Durbin and Koopman (2001) and Harvey (1989) provide full derivations and

proofs of the properties of the Kalman Filter.
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Substituting (11) into (9) and imposing the equality yields:

Q = Q

(

1−
Q

Q+σ2
η

)

+σ2
ω (12)

Solving for Q and retaining only the positive solution because it is a variance gives:

Q =
σ2

ω +
√

σ4
ω +4σ2

ω σ2
η

2
(13)

which must be strictly positive for any non-trivial model. It therefore follows that Kt is

indeed constant, and that equation (10) is in the traditional adaptive expectations form.

Moreover, it follows from equation (11) and the fact that σ2
η is strictly positive that

0 < K < 1, as in the traditional model.

3 Generalized Adaptive Expectations

This section extends the analysis in Section 2 to a more general setting. Specifically,

I use the Kalman Filter to show that the generalized form of adaptive expectations

given by equation (10) is rational for a broad range of data generating processes in a

multivariate setting. The sense in which equation (10) represents a generalization of the

adaptive expectations mechanism is that the learning parameter βt is not time invariant,

as in the original model, but instead can change over time.

The linear state space model takes the following general form, using matrix notation:

yt = Ztαt + εt εt ∼ N(0,Ht) (14)

αt+1 = Ttαt +Rtηt ηt ∼ (0,Qt) (15)

α1 ∼ N(a1,P1) (16)
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It is a very general specification that includes, for example, all models in the ARIMA

class. By defining yt as a p x 1 vector, it also includes multivariate extensions of the

ARIMA class. In addition, appropriate specification of the matrices Zt and Tt allows

for the imposition of cross-equation restrictions consistent with an underlying model

of the economy.

The Kalman Filter for the model in equations (11) and (12) is given by:

vt = yt −Ztat (17)

Kt = TtPtZ
′

tF
−1
t (18)

at+1 = Ttat +Ktvt (19)

Ft = ZtPtZ
′

t +Ht (20)

Lt = Tt −KtZt (21)

Pt+1 = TtPtL
′

t +RtQtR
′

t (22)

Substituting equation (14) into equation (16) gives:

at+1 = Ttat +Kt (yt −Ztat) (23)

and premultiplying by Zt+1 gives:

Zt+1at+1 = Zt+1Ttat +Zt+1Kt (yt −Ztat) (24)

To see that equation (21) takes the form of generalized adaptive expectations, note that
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from (12) and (13) E [yt] = Ztat = ZtTt−1at−1, and thus:

E [yt+1] = E [yt]+Zt+1Kt (yt−E [yt]) (25)

In general, Zt+1Kt will be time-varying, and so the coefficient of adaptation will

change over time, rather than remain constant as in the traditional adaptive expecta-

tions model.

4 Conclusion

This note has developed a simple generalization of the adaptive expectations mech-

anism in which the learning parameter is time-varying. Whereas standard adaptive

expectations are only rational when the underlying data generating process is a random

walk with noise, the generalization is rational for a much broader class of time series

models. Because the proof of rationality relies on the Kalman Filter, generalized adap-

tive expectations can easily be seen to be rational for any time series model that can

be written in linear state space form. This class of models is very broad, and includes,

for example, all ARIMA models. The analysis presented here highlights the connec-

tion between adaptive and rational expectations, in an extension of the original work of

Muth (1960).
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