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The purpose of this paper is to obtain insight into conditions under which a resource exchange alliance
can provide greater profit than the setting without an alliance, and to propose a model to design a resource
exchange alliance. We first consider a setting in which customers want a combined product assembled from
products sold by different sellers. We show that without an alliance the sellers will tend to price their
products too high and sell too little, thereby foregoing potential profit, especially when capacity is large.
This provides an economic motivation for interest in alliances, because the hope may be that some of the
foregone profit may be captured under an alliance. We then consider a resource exchange alliance, including
the effect of the alliance on competition among alliance members. We show that the foregone profit may
indeed be captured under such an alliance. The problem of determining the optimal amounts of resources
to exchange is formulated as a stochastic mathematical program with equilibrium constraints. We show
how to determine whether there exists a unique equilibrium after resource exchange, how to compute the

equilibrium, and how to compute the optimal resource exchange.

Key words: alliance, resource exchange, pricing, revenue management, stochastic mathematical

programming with equilibrium constraints, non-cooperative game

1. Introduction

An important way in which carriers such as airlines and ocean carriers collaborate is through
the formation of alliances. For example, in an airline alliance each alliance member (marketing
member) can sell tickets for flights operated by another alliance member (operating member) and
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the marketing member can put its own code on the flight. That enables airlines to sell tickets for
itineraries that include flights operated by multiple airlines, thereby dramatically increasing the
number of itinerary products that each airline can sell.

Another example of a widely used carrier alliance is the type of alliance that ocean container car-
riers enter into when they introduce new joint services. A “service” is a cycle (also called a “loop”
or a “rotation”) of voyages that repeat according to a regular schedule, typically with weekly depar-
tures at each port included in the cycle. Suppose the cycle is ports A,B,C',D,E A. A set of ships is
dedicated to the service, with each ship visiting the ports in the sequence A,B,C,D,E A,B,. ... To
offer weekly departures at each port included in the cycle, the headway between successive ships
traversing the cycle must be one week. Thus, if it takes a ship n weeks to complete one cycle,
then n ships are needed to offer the service with weekly departures at each port in the cycle. For
many services that visit ports in Asia and North America, and services that visit ports in Asia
and Europe, it takes a ship approximately 6 weeks to complete one cycle, and thus 6 ships are
needed to offer the service. Taking into account that a large container ship can cost several hundred
million US dollars (and the trend is towards even larger container ships, because larger container
ships tend to have significantly lower per unit operating costs), it becomes clear that for even the
large carriers it would require an enormous investment to introduce a new service. A solution is
for several carriers to enter into an alliance to offer a new service. Many services that visit ports in
Asia and North America, and services that visit ports in Asia and Europe, are offered by alliances
between two carriers. Each carrier in the alliance provides one or more ships to be used for the
service. The capacity on each ship is then allocated to all the alliance members, often in propor-
tion to the capacity that the alliance member contributed to the service. For example, if carrier 1
contributes 2 ships and carrier 2 contributes 4 ships to the service, and all the ships in the service
have the same capacity, then carrier 1 can use 1/3 of each ship’s capacity, and carrier 2 can use
2/3 of each ship’s capacity. That way, each carrier in the alliance can offer weekly departures at

each port in the service even though it did not have enough ships by itself to do so.



Vacation packages provide another example of seller alliances enabling the sale of products
combined from the resources of several sellers. For example, a vacation package may consist of
airline tickets for 2 people, a hotel room for 4 nights, and car rental for 5 days. The resources
used to provide the combined product are provided by 3 sellers: the airline, the hotel, and the car
rental company. Computers and peripherals provide another example of products combined from
the resources of several sellers. There are many similar examples.

The examples above illustrate that alliances are or can be important in various industries, and
that alliances can be structured in many different ways. The detail rules of an alliance are clearly
important for both the stability of the alliance, as well as the well-being of each member of the
alliance. Boyd (1998) and Vinod (2005) discuss the basic alliance types in the airline industry.
The major distinguishing factors between different alliance structures involve the control of the
inventory of the resources and the pricing of the products that alliance members offer for sale.
For example, in a so-called “free-sell” airline alliance, the alliance members agree in advance of
the selling season on the transfer prices at which operating members will sell capacity on flights
to marketing members. However, under free-sell, during the selling season the operating members
still control the availability of all the capacity on the flights operated by them, even if the flights
are included in the code-share agreement. Both legal and operational reasons prevent airlines in
alliances from merging their revenue management systems (Barla and Constantatos 2006).

Another type of alliance structure is a so-called “resource exchange” or “hard block” alliance,
in which the sellers exchange resources (for example, seat space on various flights or container
capacity on various voyages, and possibly money). After the exchange, each seller can control the
received resources as though they are the owner of the resources. Resource exchange alliances are
more common among ocean carriers than airlines. An example of a resource exchange alliance
between ocean carriers was given above. As an example of a resource exchange alliance between
airlines, airline 1 may receive 15 seats on flight A operated by airline 2, and airline 2 may receive
10 seats on flight B operated by airline 1 as well as $2000. After the exchange, airline 1 controls

the revenue management for the 15 seats on flight A that it received from airline 2, as well as



for the remaining seats on the flights that it operates, and similarly, airline 2 controls the revenue
management for the 10 seats on flight B that it received from airline 1, as well as for the remaining
seats on the flights that it operates.

Since the control of transfer prices by free-sell alliances may cause suspicions of price collusion,
resource exchange alliances have a potential benefit over free-sell alliances regarding competition
and anti-trust regulation. However, we should mention that the structure of carrier alliances varies
from alliance to alliance, and no carrier alliance is structured as simply as the stylistic cases of
free-sell alliances or resource exchange alliances.

After formation of an alliance the alliance members compete to sell substitute products. In that
way, alliances increase competition (more specifically, alliances increase horizontal competition).
Currently, airline revenue management systems do not take into account the effect of alliances on
the competition they are facing. For example, airline revenue management systems treat seats that
they give to another airline in a resource exchange alliance as sales (Vinod 2005), instead of as an
increase in the resources available to the other airline for use in selling competing products.

In this paper we focus on resource exchange alliances. We propose an alliance design model
that takes into account how the alliance members compete after the resource exchange by selling
substitutable (and also complementary) products. It will be shown that a resource exchange alliance
can increase both profits and consumer surplus at the same time that it increases horizontal
competition.

First we provide an economic motivation for interest in resource exchange alliances. Specifically,
in Section 3 we consider a model with two sellers, each of whom sells one type of resource. Customers
are interested in a product that requires both resource types. First we consider the case without an
alliance, in which each seller sets the price for its resource, and customers buy resources from both
sellers to obtain the desired product. Then we compare the equilibrium prices, quantities, profits,
and consumer surpluses without an alliance with the prices, quantities, profits, and consumer
surpluses that would result from perfect coordination. It is shown that the equilibrium prices

without an alliance are higher than the prices under perfect coordination, and the equilibrium



quantities without an alliance are lower than the quantities under perfect coordination. Intuitively
this happens because without an alliance each seller is implicitly attempting to gather a larger
share of the total revenue. This effect is especially pronounced if the capacity is large, and it results
in both the total profit and the consumer surplus being smaller without an alliance than under
perfect coordination.

Second we consider a resource exchange alliance. We show that both the total profit and the
consumer surplus of a resource exchange alliance with exchange quantities chosen to maximize the
total profit are always greater than the total profit and the consumer surplus respectively without
an alliance (except if the capacity is small, in which case the equilibrium prices, quantities, profits,
and consumer surpluses are the same for the settings with an alliance, without an alliance, and
with perfect coordination). In addition, we show that the equilibrium prices, quantities, profits,
and consumer surpluses are equal for a resource exchange alliance with exchange quantities chosen
to maximize the total profit and for perfect coordination, except when the sellers’ products are
complementary (which would be unusual in a resource exchange alliance) and the capacity is large.

In Section 4, we consider models of no alliance, perfect coordination, and a resource exchange
alliance for the case in which each seller has multiple resources. For resource exchange alliances we
formulate an optimization model to determine the amount of each resource to be exchanged, taking
into account the consequences of the exchange on the subsequent competition among the alliance
members. If one assumes that after the resources have been exchanged, each alliance member
chooses the prices of its products to maximize its own profit, and that this behavior of the alliance
members leads to an equilibrium, then the problem can be formulated as a mathematical program
with equilibrium constraints. An important question is whether, for each resource exchange, there
exists an equilibrium and, if so, whether it is unique. In Section 5 we show how to determine whether
a unique equilibrium exists, and how to compute it. A trust region algorithm is used to solve the
mathematical program with equilibrium constraints. Illustrative numerical results are provided in
Section 6, and we compare the results for the cases with no alliance, perfect coordination, and a

resource exchange alliance.



2. Related Literature

There are broadly two streams of literature related to this paper — literature that study the impact
of alliances, such as the impact of airline alliances on pricing, competition, and public welfare; and
literature that address the design of alliance agreements. The literature on alliance design is sparse
relative to the literature on the impact of alliances. Also, most papers on alliances have addressed
either ocean shipping alliances or airline alliances.

The literature on ocean shipping alliances have addressed questions such as network design under
alliances, choice of resource exchange amounts, revenue sharing, or the stability of alliances. For
example, Midoro and Pitto (2000) investigated factors which affect the stability of liner shipping
alliances, and Slack et al. (2002) empirically examined the changes in services made by container
shipping lines in response to the formation of alliances. Song and Panayides (2002) analyzed two
examples using cooperative game theory to investigate the rationale behind and decision-making
behavior in liner shipping alliances. Lu et al. (2010) studied a model of a resource exchange alliance
between two carriers to determine the resource exchange or purchase amount to maximize the
profit of an individual alliance member. Agarwal and Ergun (2010) considered a service network
design problem in which ocean carriers share capacity on their ships. Their design problem does
not take into account that carriers will compete when they share capacity on the same ships.

The literature on airline alliances have addressed questions such as the choice of flights to include
in code-share agreements, the choice of transfer prices or proration rates in free-sell alliances, the
effect of alliances on booking limits and the number of seats sold, and the effect of cargo alliances
on the passenger market. For example, Brueckner (2001) considers a model with two airlines, with
and without an alliance, and showed that for most parameter values, the alliance decreases the
amount sold of the common interhub product, and increases the amounts sold of all the other
products, especially the shared interline products. Sivakumar (2003) presented Code Share Opti-
mizer, a tool built by United Airlines that considers the interaction between proration agreements,

demand, fares, and market shares. O’Neal et al. (2007) built a code-share flight profitability tool



to automate the code-share flight selection process at Delta airlines. Abdelghany et al. (2009) also
presented a model for airlines to determine a set of flights for a code-share agreement. Zhang et al.
(2004) examined the effect of an air cargo alliance between two passenger airlines on the passen-
ger market. Netessine and Shumsky (2005) consider a model with multiple airlines, in which each
airline has two fare classes for each flight, and each airline chooses a booking limit for each flight.
The horizontal competition setting involves two airlines with one flight each, in which demand
that is not accommodated on the first choice airline overflows to the other airline. In the ver-
tical competition setting connecting passengers travel on flights of more than one airline. The
equilibrium booking limits are compared with the booking limits under perfect coordination. The
question of transfer prices that achieves perfect coordination is also investigated. These transfer
prices are functions of the booking limits of both airlines, and also depends on the expectations
of functions of random demand. Thus these coordinating transfer prices are not numbers deter-
mined before the airlines make their booking limit decisions. Wen and Hsu (2006) proposed a
multi-objective optimization model to determine flight frequencies on airline code-share alliance
networks. Barla and Constantatos (2006) consider a market with three competitors, two of which
decide to cooperate where demand is uncertain. Under a “strategic alliance (SA)”, the partners
(a) jointly choose capacity in order to maximize their total expected profit, (b) share this capacity
among themselves based on the Nash bargaining outcome, and (¢) market their capacity shares
independently after demand is revealed. They show that the profits of the cooperating firms is
greater under SA than under a full merger (in their model, a merger does not include maintaining
different brands), and thus SA is not necessarily a second best solution that is justified by regu-
lations restricting airline mergers. Houghtalen et al. (2010) used the model in Agarwal and Ergun
(2010) to choose capacity exchange prices for air cargo carriers. Their model also does not take into
account that air cargo carriers (and freight forwarders) will compete when they exchange capacity.

Wright et al. (2010) formulate a Markov-game model of two airlines under a free-sell alliance.

They first describe centralized booking control which gives an upper-bound on the total revenue



for the alliance, and they find that no Markovian transfer-pricing scheme with decentralized book-
ing control can guarantee the same revenues as centralized booking control. They examine static
and dynamic transfer-pricing schemes, and show that the performance of static transfer-pricing
schemes depends on the homogeneity and stability of the relative values that each airline places
on the inventory used in interline itineraries. They also conclude that there is no one best dynamic
proration scheme.

Hu et al. (2011) also study a model of a free-sell airline alliance. Similar to our model, their
model is a two-stage model with the alliance design decision in the first stage and operational selling
decisions of individual airlines in the second stage, formulated as a Nash equilibrium problem.
Their alliance design decisions are static proration rates, whereas our alliance design decisions
are static resource exchange amounts. In their model the prices and proration rates are the same
irrespective of which airline sells the interline itinerary, whereas our model makes provision for
different prices and demands for the same interline itinerary sold by different marketing airlines.
Their second-stage decisions are static booking limits, whereas our second-stage decisious are static
product prices. The booking limits in their model are capacity allocations to different itineraries,
and not nested booking limits on the flight legs. The demand in both models may be random.
However, in their model the demand for different itineraries (and fare classes) are assumed to be
independent, and also independent of the second-stage decisions (booking limits), whereas in our
model the demand for different itineraries are allowed to be dependent, and to depend on the
second-stage decisions (prices). In both models existence and uniqueness of a Nash equilibrium in
the second stage is somewhat problematic — for their model, a Nash equilibrium always exists,
but is not unique, whereas for our model existence and uniqueness of a Nash equilibrium can be
guaranteed in special cases (for example, when the demands for products are independent of the
prices of other products), but not in general. For our model, existence and uniqueness of a Nash
equilibrium can be verified numerically for a given demand model. In both papers, total profits

under alliances are compared with total profits under a centralized solution, and it is investigated



when the profits are equal. In our paper we compare the consumer surplus in addition to total

seller profits.

3. Two-Resource Model

Consider 2 sellers, indexed by —1 and 1. Each seller produces one resource. Seller ¢ produces
resource ¢, and a maximum quantity b; of resource ¢ can be consumed. Seller ¢ has a constant
marginal cost of ¢; per unit of resource 4 consumed, and seller ¢ chooses the price §; + ¢; per unit
of resource 4, that is, §; denotes the price in excess of the marginal cost ¢; per unit of resource 1.
Customers want to consume a product that requires one unit of each resource. (In this section,
there is no demand for a product that consists of only one resource.) Thus customers buy units of
a product consisting of one unit of each resource and pay ¢ ; + 4 1 4+ ¢; + 9, per unit of product.

The demand d for products depends on the prices as follows:

d = max{0, @a—B(j_, +7)} (1)

where @& and 8 are positive constants known to each seller. Assume that & > 0, that is, demand is
positive if each seller charges only its marginal cost. The detailed calculations for this section are

given in Appendix A.

3.1. No Alliance

First consider the case with no alliance, which is modeled as a non-cooperative game. Let b, :=
min{b_,,b; }. Thus, the number of products sold is given by min{bmi,, max{0, & — B(§_1 + 71)}},

and the profit of seller ¢ is given by
3i(iG=i) = Jimin{buin, max{0, &— B(J_; + §i)}}
If by, > @&/3, then the equilibrium prices are given by

i =

L=
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the equilibrium demand is equal to

~ (% ~ % a
a—pEL+g) = 3 > 0 (3)
the resulting profit of seller ¢ is equal to
. a3 _ &
g7 min{buin, max{0, & — (g~ ; +97)}} = Y (4)

and thus the total profit of both sellers together is equal to

~ ~ D ~* ~% ~x | ~ D[ ~% ~ % 26[2
Y [0‘_5(9—1"‘91)}"‘91 [a_/B(y—l_l_yl)] = 9,3 (5)
and the consumer surplus is equal to
1/a 2a)\a a2
2\p 38/)3 185

If bpin < @/3, then all pairs of prices (§_;, 7;) on the line segment between (bmin//S’, [&— 2bmin]//3’)
and ([& — 2byn]/ B, buin / B) are equilibria. For all of these equilibrium prices the total price is equal

t0 (& — bmin)/ A, the demand is equal t0 by;n, the resulting profit of seller ¢ is equal to 7;byin, and

thus the total profit of both sellers together is equal to

Zj—1 bmin + ZJ1 bmin

and the consumer surplus is equal to

3.2. Perfect Coordination

In this section we determine the maximum achievable total profit of the two sellers together, that
is, the total profit if the sellers would perfectly coordinate pricing.

The total profit of the two sellers is given by

9(@G-1,91) = [J-1+ o] min{by;,, max{0, & — B(?j—l +41)}}
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If by > @&/2, then the optimal total price is equal to

Yai1+y = 9)

R =

Note that (2) and (9) show that §*, + 97 >y + y;, that is, the total of the equilibrium prices is
greater than the optimal total price. (These results are reminiscent of the comparison of the cases
with and without vertical integration by Spengler (1950); however, the setting here is different
because one seller does not buy a product from another seller and add a mark-up before reselling

it.) The corresponding demand is equal to

~ (i~ — a & ~ (% ~%
a—PB(F-1+y) = 3~ 3 = a— By, +97) (10)
the total profit of both sellers together is equal to
_ I , &’
gl [a-foarm] = 3 (1)

and the consumer surplus is equal to

a-a)e - )
2\p3 28) 2 ]

If bin < @&/2, then the optimal total price is given by §_1 + 1 = (& — bin) /B, with correspond-

jo)
no

=™

ing demand equal to b,;,. The total profit of both sellers together is equal to (§_; + 71) buin =
(& — byin) bumin /B, and the consumer surplus is equal to [&/B — (& = buin) /B buin /2 = B2,/ (28).

Note that when capacity is small, by;, < &/3, the total profit of the setting with no alliance
cannot be increased by coordination, and the consumer surplus is also the same for the two settings.
When capacity is large, byin > &/2, the relative amount by which the total profit can be increased
is given by

1

= T3

]

and the relative amount by which the consumer surplus can be increased is given by
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When capacity is intermediate, &/3 < by, < &/2, then the relative amount by which the total

profit can be increased is bounded by

& . 5~2
a—bpyiy 2a

B bmin - 95

0 <

<

| =

262

93
and the relative amount by which the consumer surplus can be increased is bounded by

b2 &2

min

283 188 5
OSTSZ

183

This potential increase in profit is the major economic motivation for sellers’ interest in alliances.
The extent to which this increase can be attained by an alliance depends on the capacity and the
customer choice behavior, including the extent to which the sellers can differentiate their products.
In the next section we consider a resource exchange alliance and investigate the effect of both
capacity and product differentiation on the total profit and the consumer surplus with and without

an alliance.

3.3. Resource Exchange Alliance

Consider a resource exchange alliance involving the two sellers. Let z; € [0,b;] denote the amount
of resource ¢ that seller ¢ makes available to seller —i, and let = := (x_;,z;). Then the number of
units of the two-resource product that seller ¢ can sell is ¢;(z) := min{b; — z;, x_;}. Assume that
seller ¢ pays seller —i an amount c_; for each unit of resource —i that seller ¢ consumes, so that
each seller has marginal cost equal to c_; + ¢; for the two-resource product.

Specifically, a resource exchange alliance with zero exchange of resources (z = 0) may be chosen,
in which case the sellers sell only the separate resources as in the case without an alliance. Thus,
in general, the total profit of an optimally designed resource exchange alliance is no less than
the total profit without an alliance. We consider the setting in which each alliance member sells
only the two-resource product, and products consisting of a single resource are not sold separately.
Let y; denote the difference between the price of seller ¢ and the marginal cost ¢_; + ¢; for the

two-resource product.
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The demand d;(y;,y_;) for the product sold by seller 7 depends on the prices as follows:

di(yi,y—:) = max{0, a— By; +vy_:)} (13)

where « and S are positive constants, and y € (—f, ). Here provision is made for brand distinction
between the products sold by the sellers. The constants are known to each seller. To keep the
number of parameters in this example small, the constants «, 8, and -y are the same for both
sellers.

Thus, the number of wunits of product sold by seller ¢ is given by

min {¢;(z), max{0, o — By; +vy_;) } }, and the profit of seller 7 is given by

9i(%,yi,y—;) = y;min{g(r), max{0, « — By; +yy_;}}

Next we establish a relation between & and B, and «, f and v, to facilitate comparison among
the settings with no alliance, with perfect coordination, and with an alliance. Consider prices
(J_1,71) in the no-alliance setting, such that g_; +7; < &/B. Suppose that the two alliance members
charge the same price y_; =y, = y_1 + y; for the two-resource products. Then the total demand
in the no-alliance setting given by (1) is equal to & — B(§_1 + §1) > 0, and the total demand in
the alliance setting given by (13) is equal to 2(a — fy; +vyy1) = 2a¢ — 2(f — ¥)(§_1 + 91). Thus
the total demand in the two settings is the same if & = 2« and = 2(8 —~). It is also shown in
Appendix A.4 that a model of perfect coordination with demand given by (13) leads to the same
optimal prices, demands, profits, and consumer surplus as the model in Section 3.2 with demand
given by (1) if & = 2 and 8 = 2(8 — ). Hence the results for the settings with no alliance, with
perfect coordination, and with an alliance will be compared using & = 2« and § = 2(8—").

For the setting with an alliance, for any given resource exchange z, let (y*,(x),y;(z)) denote

the equilibrium prices of the two sellers for the two-resource product (existence and uniqueness of

the equilibrium are addressed in the detail calculations in Appendix A.3. The resulting profit of

*
—i

seller ¢ is given by ¢;(z,y; (z),y”,(z)). The alliance design problem is to choose z € [0,b_,] x [0, b, ]

to maximize

flx) = ga(z,y",(2),y7(2) + 9:(z, 97 (2),yZ, (z))
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Let z* denote an optimal resource exchange.

A natural question is how the total profit f(z*) should be partitioned among the alliance mem-
bers. First, note that if money can be exchanged together with the other resources, then any
partition of the total profit can be achieved. In that case the Nash bargaining solution is easy:
each alliance member receives its profit in the setting without an alliance plus half the difference
between the maximum total profit f(z*) of the alliance and the total profit without an alliance.

Table 1 and Figure 1 summarize the results for the settings with no alliance, with perfect coordi-
nation, and with an alliance. The calculations are given in Appendix A. Here we just mention that
there are three cases regarding capacity: (1) Capacity by, is large enough so that both sellers can
be provided with sufficient product capacity ¢;(z) to make capacity not constraining in equilibrium
(bmin > 208/ (28 — 7)), (2) Capacity by, is so small that the product capacity g;(z) of both sellers
must be constraining in equilibrium (b, < aB(B8+7)/(28% —v?)), and (3) Capacity by, is small
enough that the product capacity g;(z) of at least one seller must be constraining in equilibrium,
but large enough so that one seller can be provided with sufficient product capacity ¢;(z) to make
capacity not constraining in equilibrium (af(8 +7)/(28% —v*) < byin < 2a6/(28 —7)). In addi-
tion, there are two cases regarding the degree of product differentiation: (1) v >0, and (2) v <0.
Figure 2 shows a plot of the relative increase in total profit with an alliance over no alliance, that
is, (f(z") = [9-1 (020, 97) + 9:(F7, 92D /191 (521, 97) + 91 (97,921 )]; as a function of buin /o and /B
The figure shows that the relative increase is largest when the capacity is large (byi, > «) and the
products of the sellers are substitutes (y > 0). Figure 3 shows a plot of the relative gap in total
profit between perfect coordination and an alliance, that is, (§(y_1,91) — f(z*))/g(y_1,91), as a
function of b, /a and y/f. The figure shows that the total profit under an alliance equals the total
profit under perfect coordination, except when the capacity is large (b, > 2c/3) and the products
of the sellers are complements (v < 0). Figure 4 shows a plot of the relative increase in consumer
surplus with an alliance over no alliance, as a function of by, /a and /. The figure shows that,
similar to total profit, the relative increase is largest when the capacity is large (byi, > ) and the

products of the sellers are substitutes (y > 0).
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Figure 1

Figure 2
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Figure 3 Plot of the relative gap in total profit between perfect coordination and an alliance, that is, (§(§—1,71) —
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Figure 4 Plot of the relative increase in consumer surplus with an alliance over no alliance, as a function of bmin/

and /8.
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Table 1 Comparison of no alliance, perfect coordination, and a resource exchange alliance, in terms of price,
demand, total profit, and consumer surplus, for a single product with two resources.
Region Capacity Cross-Price Quantity No-Alliance | Perfect Coordination| Alliance
Coefficient
1 0 < byyn < 22 ve(—B,8)|  Total Price 20 bmin i e
Total Demand bmin Brmin bunin
Toal Proi | S| tputs | oty
Consumer Surplus #‘_"i) ﬁ‘l‘;—i_“;y) ;E‘B—i_“j)
2 |2 <y, <min {a, 233"::} v€E(=B,8) Total Price Ty % 2;;1"3,’)"
Total Demand 2 Dimin bimin
Total Profit L G pintmin | (2 bmin)imin
Consumer Surplus 9(51) ﬁg‘i‘“; 4b(‘§i,"j)
3 20 <hy.<a | ye(-f.0]]  ToalPrice | g2 S 5
Total Demand 2 bunin 5
Total Profit IS 22 bgin)bin e
Consumer Surplus 9(,6(’{7) ﬁ‘};ifj) %
4 a < bpin v €(=p,0] Total Price 3(557) 5 CT—
Total Demand 2 a %
Total Profit 9(‘;{:) 2(5{7) %
Consumer Surplus 9(5’:) 4(;;:) m
5 @ < buin y€[0,8) Total Price o S5 By
Total Demand %" «@ @
Total Profit g(éci) _,(g:) #;)
Consumer Surplus 9(5&) 4(5{7) 4(:;7;)

4. Multiple-Resource Model

In this section we present a model for a resource exchange alliance with multiple resources. In

addition to the alliance model, we also present models for the settings with no alliance and with

perfect coordination to facilitate comparisons.

Cousider 2 sellers, indexed by ¢ = £1. (It can easily be seen from the results in Section 4.3 how to

extend the model and the solution method to a setting with more than 2 sellers, at the cost of more

complicated notation.) Seller 7 produces k; resource types indexed by j =1,...,k;. For example,

resource j may denote the flight of airline 7 scheduled to depart from Atlanta to New York every

Monday at 8am. Initially, before any resource exchange, seller ¢ has quantity b; ; of resource j, and

a constant marginal cost of ¢; ; per unit of resource j consumed.
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4.1. Multiple-Resource Network Example

In this section we provide an example with multiple resources to illustrate the models that will be
formulated in later sections. An airline flight network is shown in Figure 5, and some flight data
are given in Table 2. In this network, airport 1 is a connection hub for both airlines. Each airline
operates 4 flights. For example, flight 5, taking place from airport 1 to airport 4, is operated by
airline 1, and has a capacity of 300 seats. The set of products that can be sold by each airline is
different in the case with no alliance and the case with an alliance. Table 3 shows the products
and the corresponding itineraries (here simply specified by the origin-destination pair) which could
be offered by the two airlines. The column labeled “Airline” specifies which airlines can sell each
product in the case with no alliance and the case with an alliance. For example, in the case with
no alliance, product 7 can be sold by airline 1 only, and in the case with an alliance, product 7
can be sold by both airlines (A denotes both airlines under alliance). Product 17, involving travel
from airport 3 to airport 4 via airport 1, can only be sold in the case with an alliance, and in that
case it can be sold by both airlines. However, note that there is demand for travel from airport 3
to airport 4 both in the case with no alliance and in the case with an alliance. In the case with
no alliance, all demand for travel from airport 3 to airport 4 is satisfied by buying two separate
tickets; a ticket from airline -1 for travel from airport 3 to airport 1 and a ticket from airline 1 for
travel from airport 1 to airport 4. In the case with an alliance, demand for travel from airport 3
to airport 4 can be satisfied in four different ways: (1) by buying a ticket from airline -1 for travel
from airport 3 to airport 1 and a ticket from airline 1 for travel from airport 1 to airport 4, or (2)
by buying a ticket from airline 1 for travel from airport 3 to airport 1 and a ticket from airline -1
for travel from airport 1 to airport 4, or (3) by buying a ticket for travel from airport 3 to airport 4
via airport 1 from airline -1, or (4) by buying a ticket for travel from airport 3 to airport 4 via
airport 1 from airline 1. In the case with an alliance, the choices exercised by the buyers, and thus
the resulting aggregate demand, depend on the prices of the airlines for the different products. In

this paper we consider linear models of aggregate demand, as specified in more detail later.
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Flight number | Airline | Departure | Arrival | Capacity
Airport 2 Airport 3 1 -1 1 2 300
2 -1 2 1 300
Flight 3 3 -1 1 3 300
4 -1 3 1 300
Flight 7 5 1 1 4 300
. ) 6 1 4 1 300
Airport 4 Flight 6 Flight 8 Airport 5 7 1 1 5 300
8 1 5 1 300
Figure 5 Multiple-resource network example Table 2 Flight information

Table 3 Product information for network example.

Product | Airline | Origin | Destination || Product | Airline | Origin | Destination
1 -lor A 1 2 11 lor A 4 5
2 -lor A 2 1 12 lor A 5 4
3 -lorA 1 3 13 A only 2 4
4 -lor A 3 1 14 A only 4 2
5 -lor A 2 3 15 A only 2 5
6 -lor A 3 2 16 A only 5 2
7 lorA 1 4 17 A only 3 4
8 lorA 4 1 18 A only 4 3
9 lor A 1 5 19 A only 3 5
10 lor A 5 1 20 A only 5 3

4.2. Resource Exchange Alliance Model

In this section we introduce a model of a resource exchange alliance involving multiple resources.
After resource exchange, seller ¢ may have some of each resource supplied by seller —i, as well as
some of each resource supplied by itself. Index the union of the resources by 7 =1,...,k, where
k=Fk_i+Fk. Let b; = (b;1,...,b;x) denote the initial endowment of seller i of each resource (b; ; =0
if resource j is supplied by seller —i). Let x; denote the amount of resource j that seller 1 makes
available to seller —1. For example, z = (—110, —120, —100, —150, 140, 170, 130, 160) for the network
in Section 4.1 means that airline —1 gives 110 seats on flight 1 to airline 1, airline 1 gives 140 seats
on flight 5 to airline —1, etc.

After resource exchange, seller ¢ can sell m; products, indexed by £=1,...,m;. In the example
in Table 3, m; =20 for ¢ = £1. Let y; , denote the price of seller ¢ for product ¢ in excess of the
marginal cost of the product, and d;, denote the demand for product £ of seller . Consider the
following linear demand model:

die = — Z Ei¢oyie + Z B_ioy—iw+Ciyg (14)

=1 =1
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where F; , » denotes the rate of change of the demand for product ¢ of seller 7+ with respect to the
price of product ¢' of the same seller ¢, and B_; , » denotes the rate of change of the demand for
product £ of seller ¢ with respect to the price of product £ of the other seller —i. Using matrix
notation, d; = — F;y; + B_;y_; + C;, where d;,y;, C; e R"i | E;, ¢ R™i*™i B, € R™-i*™i and attention
is restricted to values of (y_1,y;) such that d; >0 for 1 = +1. Let A; € R¥*™ be the “network
matrix”, i.e., A;;, denotes the amount of resource j consumed by each unit of product ¢ sold by
seller 4.

Next we introduce the two-stage alliance design problem. Given a first stage resource exchange

decision z € R¥, at the second stage each seller ¢ wants to solve the following optimization problem:

max, -yl d;
Mt Adi < by —ix (15)
di = —FEy;+B_yy_;+C; > 0
We are interested in the Nash equilibrium defined by the two optimization problems (15) for i = £1.

A stochastic version of the alliance design problem is as follows. At the first stage, when z is
chosen, elements of matrices E; and B;, and vectors C};, are random. However, the network matrices
A; are deterministic. Let & := (F_;, F;,B_;,B;,C_;,C;) denote the random data vector. In the
first stage the expected value with respect to the distribution of £ of an objective (specified below)
is optimized. Also, note that the Nash equilibrium associated with the second stage depends on
the realization of &.

Let Q; := E; + E] € R™*™i denote the symmetric version of F;. We assume that matrices E;,
and hence @);, are positive definite. Let I, denote the m x m identity matrix, 0,, denotes the zero
vector in R™, and 0,,,, denotes the zero matrix in R™*™. Then the optimization problem (15) can
be written as follows:

mi%_ %%’TQ@'?J@' —y B_iy_i — Cly;
yi€RL " (16)
st. Wi(Ewy;—B_jy—;)) > ni+iMz.

where
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A point (y*,(z),y;(z)) is a solution of the equilibrium problem if y;(z) is an optimal solution of
problem (16) for ¢ =1 when y_; =y*,(x), and also y*,(z) is an optimal solution of problem (16)
for i = —1 when y; = y;(z). Note that (y*,(x),y;(z)) also depends on &, but the dependence is not
shown in the notation. (The above problem is called a generalized Nash equilibrium problem since
the feasible set of problem (16) depends on y_;.) Let V;(z,€), i = £1, denote the optimal objective

values of problem (16) at the equilibrium point given data &, i.e.,
Vi(z,8) = 3y;(2)" Qi (v) —y; (2) " B_yy~(z) — Cly; () (17)

Note that these functions are well defined only if the equilibrium point (y*,(z),y;(z)) exists and
is unique. We will discuss existence and uniqueness of the equilibrium point in Section 4.3.

At the first stage, we consider designs of the resource exchange alliance that aim to maximize
the total profit of the sellers. Let b =b, —b_, € R*. Note that b; > 0 if resource j is supplied
by seller 1 and b; < 0 if resource j is supplied by seller —1. Let [; and u; be lower and upper
bounds, respectively, such that b;/; > 0 and b;u; > 0, that is, [;, u;, and b; have the same sign, and

|| < |u;| <|b;]. Then the first stage problem is as follows:

max {f(z) = E[V_i(z,8) + Vi(z,€)]}

st bjz; > 0 Vi=1,...,k (18)

As mentioned, the expectation in (18) is with respect to a specified probability distribution of the
data vector £. In particular, if a single value for £ is considered in the first stage, then problem (18)

is deterministic and the expectation operator can be removed.

4.3. Existence and Uniqueness of Nash Equilibrium

Recall that the matrices ); are positive definite, and hence problem (16) is a convex quadratic
programming problem. The first order (KKT) necessary and sufficient optimality conditions for

problem (16) are
Qiyi—B_iy_i—C;—EIW X, =0
Wi (Byy; — B_iy—;) —ni —iMzz > 0
N Wi (Ey; —B_yy—;) —m; —iMz] = 0
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where \; denotes the vector of Lagrange multipliers associated with the inequality constraints
in (16).

The optimality conditions (19) can be written as a variational inequality. A widely used approach
to establish existence and uniqueness of a solution to the optimality conditions, and thus existence
and uniqueness of a Nash equilibrium, is to exploit monotonicity of the variational inequality.
However, in this case the variational inequality is not monotone, and thus a different approach is
required.

Cousider the optimization problem
min > N Wi (Biy; — B_iy—;) — 1 — iMx]
Y_1.Y1LA—1AL j—f1
Ao >0, =41
Note that the objective value of problem (20) is nonnegative at all feasible points, and
(y* 1,97, A", AT) is a solution of the optimality conditions (19) if and only if its objective value in

problem (20) is zero, in which case it is an optimal solution of problem (20). It follows from the

first equation of (19) that
NWi = 4 QB —y ,BLE - ClE!

After substitution of this into the objective, problem (20) becomes

min > (v QiE; ' —yL,BLE ' —CIE; ") (Biyi — B_yy—;) — A] (; + iM;x)

Y_1Y1LA—1AL j=f1
s.t. Qiyi—B_yy_i—C;—E]W X\, = 0, i==+1 (21)
Wi (Eyy; — B_iy—i) —mi —iMz > 0, i==£1
N> 0, i=+41

Note that the objective function of problem (21) is quadratic with its quadratic term
(yl—17 yil') \II (yl—la yI)T7 where

Q.+B"E'B, -B_,-Q_E_|B

U - _
-B,—Q.E{'B_, Qi+B{E"|B

(22)

Note that problem (21) is a convex quadratic program if and only if the matrix ¥, or equivalently

the symmetric matrix ¥ + W7, is positive semidefinite.
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THEOREM 1. Suppose that the problem (21) is feasible and that the matriz ¥, defined in (22), is
positive definite. Then problem (21) has an optimal solution (y* ,y;, A", A}) with (y*,,y;) being
unique. Moreover, if the optimal objective value of problem (21) is zero, then (y*,,y;) is the unique

Nash equilibrium.

The proof is given in Appendix B.

Note that a similar approach can be used if there are more than two sellers. In such a case
more than two sets of optimality conditions of the form (19) will be involved, and in the quadratic
program (21) the index ¢ will take on more than two values.

Hence, the question of existence and uniqueness of the Nash equilibrium can be answered with
the following steps: (1) verification that the matrix ¥ (or the symmetric matrix ¥ + ¥T) is positive
definite, (2) solution of the convex quadratic program (21) if ¥ is positive definite, and (3) verifica-
tion that the optimal objective value is zero. Note that if ¥ is positive definite, then the quadratic
program (21) can be solved efficiently and hence existence and uniqueness of the equilibrium point
can easily be verified numerically. Some simple necessary conditions and sufficient conditions for
¥ to be positive definite can be identified, but it seems difficult to give simple conditions that are
both necessary and sufficient for ¥ to be positive definite. A necessary condition for ¥ to be posi-
tive definite is that its block diagonal matrices QQ_; + BIlEle_l and (), + BlTEjllBl be positive
definite. Note that these matrices are indeed positive definite because E_; and E; are positive
definite. Also, note that if B_; and B; are null matrices, then matrix ¥ is the block diagonal
matrix diag(Q_;,Q;), and hence VU is positive definite because Q_; and @), are positive definite.
More general, if matrices E; are “significantly bigger” than B;, then one may expect matrix ¥ to
be positive definite. Intuitively, if the demand for a seller’s product depends more strongly on the
prices of that seller (and especially the price of that product) than the prices of the other seller,

then one may expect matrix ¥ to be positive definite. Another instructive example is the following.

ExXAaMPLE 1. Suppose that the products of the two sellers are direct substitutes for each other,

that is, for each product of seller i there is a product of seller —¢ that is a close substitute. This
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allows the possibility that seller —: may not be able to sell the substitute product because it does
not have the resources to do so. It seems that in the applications of interest, the set of products can
always be chosen so that this property holds. Hence, the matrices B; are squared, i.e., m_; =m,.

Suppose that the matrices F; and B;, ¢ = +£1, are diagonal. Then @; = E; and

E_  +B* E;' —-B_,—-B,

Vo= —-B_,—B, E, +BE"}|

Since matrices F; are positive definite it follows that E, + B?E_] is positive definite, and thus
it follows by the Schur complement condition for positive definiteness that ¥ is positive definite
if and only if the matrix E_, + B2 E{" — (B_, + B,)*(E, + B}E~{)! is positive definite. Since

matrices F; and B; are diagonal, this matrix is positive definite if and only if the matrix

(E_,+B* E;YE+BE)-(B_.,+B,)* = E . E +B? BE |E;'-2B_,B,

is positive definite. In turn this matrix is positive definite if and only if the matrix

EilElz + Bile - 2E_1E1B_1Bl — (E_1E1 - B_1B1)2

is positive definite. Note that the last matrix is always positive semidefinite and is positive definite

if and only if matrix £ E; — B_; B; does not have any zero diagonal elements.

4.4. No Alliance Model

In this section, we present a model for the setting with no alliance. This model will be used to
compare the profit under no alliance with the profit under an alliance and the profit under perfect
coordination. First we describe the demand model for the setting with no alliance.

Under an alliance, there are a total of m distinct products. Some of the products may be offered
by only one seller, and some of the products may be offered by both sellers. In the example in
Table 3, m = 20 and each of the 20 products is offered by both sellers in an alliance. These m
products can be partitioned into three subsets: sets L;, for ¢ = &1, of products which can be offered

by seller ¢+ with and without an alliance, and set Ly of products which could be offered only under



25

an alliance. For the example in Table 3, L _; contains products 1 to 6, L; contains products 7 to 12,
and Ly contains products 13 to 20.

As before, let g; , denote the price of seller 7 for product ¢ € L;. Suppose that the resulting
demand for product £ € L; is given by

dig = — Z Eioviiw + Z B_iwfoiw+Ciy (23)

t'ekL; ekl _;
Using matrix notation, d; = —E;§; + B_;j_; + C;, where d;,§;,C; € Rl E, e RLilxILil B, e
RIZ-i %Il - and attention is restricted to values of (§_y,#;) such that d; > 0 for s = 1. Let A
denote the amount of resource j consumed by each unit of product £ € L;, and let A; € Rk < /Ll
denote the network matrix.

Similar to the example with two resources in Section 3, the parameters E, B,C in demand
model (14) and the parameters E, B, C' in demand model (23) should be related in a particular way
to facilitate a fair comparison of the prices, demands, total profit, and consumer surplus between
the settings with and without an alliance. The derivation of the relation is given in Appendix C.

The setting with no alliance is formulated as a non-cooperative game in which each seller ¢ wants

to solve the optimization problem

max g} I
yl,JieRLLi
d; = _Etgz+B—iy—t+Cz > 0

The no alliance outcome is the Nash equilibrium defined by the two optimization problems (24)
for + = £1, as long as it exists and is unique. The Nash equilibrium is computed using the same

approach described in Section 4.3.

4.5. Perfect Coordination Model

The models with and without an alliance presented above are compared with a perfect coordination

model, given in this section. The perfect coordination model considers a setting in which the sellers
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coordinate pricing to maximize the sum of the sellers’ profits, as given by the following optimization

problem:
max > vyl (=Eyi+B_yy_; +C;)
(y—1,91)ER™ =1 XR™1L ;=3
s.t. > Ai(—Ey;+B_jy_;+C;)) < bi+0bh (25)
i=%1

-Ey;+B_yy+C; > 0, i=+1

5. Solution Approach

In this section, we present a solution method for the multiple-resource model described in Section 4.
Recall that we solve the problem (21) to solve the second-stage Nash equilibrium problem, and
that problem (21) can be solved efficiently if the matrix ¥ defined in (22) is positive definite. Next
consider the first stage problem (18). Recall that the expectation in (18) is taken with respect to
the probability distribution of the random data vector £. We assume that we can sample from that
distribution by using Monte Carlo sampling techniques and hence generate an independent and
identically distributed sample £, ...,&Y. Next we approximate the expectation with the sample

average and construct the following Sample Average Approximation (SAA) problem:

g {Ja(e) = S, Va4 Vilon )]}

ot bz, > 0 Vi=1,...,k (26)
Gl <zl <0yl Vi=1,...,k
Theoretical properties of the SAA approach have been studied extensively (e.g., Shapiro et al.
2009). Under mild conditions, the optimal objective value and optimal solution of the SAA prob-
lem (26) converge exponentially fast to the optimal objective value and optimal solution of the
problem (18) (cf., Shapiro and Xu 2008). The first-stage problem may not be convex, and thus it
may be hard to solve problem (26) to optimality. For that reason, we may only ensure convergence
to a stationary point of the problem (18). Nevertheless, in our numerical experiments, typically
solutions seem to be stable and insensitive to the choice of starting point.
In order to solve the SAA problem (26) numerically, we need to compute derivatives V,V;(x,&")
of the first-stage objective functions V; at a feasible point x and sample point £”. Consider a

feasible point z, and assume that ¥ is positive definite and that the second-stage problem has

an equilibrium point (y*,(z),y;(x)) (the equilibrium depends on £" as well, but the dependence
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is not shown in the notation). Let (y*,(z),y;(z), A" (x),A}(x)) be a solution of the system (19)
of first order optimality conditions (and thus (y*,(x),y;(x),\*(z),Aj(x)) is also a solution of
the quadratic programming problem (20)). Note that, since ¥ is positive definite, it holds that
(y*,(z),y;(z)) is unique and is a continuous function of z (e.g., Bonnans and Shapiro 2000).

Recall that Lagrange multipliers corresponding to inactive constraints are zeros. Let

denote the index set of active constraints of the problem (16). It is said that the strict complemen-
tarity condition holds at an equilibrium point (y*,(z),y;(x)) if among the corresponding Lagrange
multiplier vectors \;, there exists at least one such that [A;]; > 0 for all j € Z;(y; (), y*;(z), ), for
1= =1, i.e., there are Lagrange multipliers corresponding to the active constraints that are positive.

Now, suppose that the strict complementarity condition holds at (y* (), y; (z)), with [Af(z)]; >0
for all j € Z;(y!(x),y" ,(z),z), for ¢ = £1. Then for small perturbations dz of x, the active con-
straints remain active and the inactive constraints remain inactive. Therefore, by linearizing the
optimality conditions (19) at (y*,(z),y;(z),A\",(x), A](x)), the following system of m_; +m, + 2k

linear equations in m_; +m; + 2k unknowns (dy_,,dy;,d\_;,d\;) is obtained:
Qidy; — B_jdy_; — E;I—Wde)‘i =0, 1==x1
(Wi (Eidy; — B_idy_;) _iMidI]]’ =0, j €Ly} (2),y (), x), i ==£1 (27)
Suppose that the linear system (27) is nonsingular. Then for any dz sufficiently small, the sys-
tem (27) has a unique solution, and by the Implicit Function Theorem, the solution of (27)
gives the differential of (y*,(z),y}(z), \*,(x),Aj(z)) at z. More specifically, the system (27)
can be written in the form S(dy_,,dy,,d\_i,d)\;) = T dz, where S € R(m-1F+mi+2k)x(m_1+mi+2k)

and T € RUm-1+mi+2k)xk If § is nonsingular, then (dy_,,dy,,d\_1,d)\,) = S™*T'dz, and thus

Vy*(z),y;(z), A" (z),\[(x)) =S *T. It follows from (17) that

V.Vi(z,€) = Vyi (2)Quy; (2) — Vi (2) B_yZ,(2) — VyZi(2) BLy; (v) - Vyi (2)"C;  (28)

ViVi(@,6) = Vyi () Qi Vy; (x) = Vy; (2) B, VyZ,(x) — Vy,(2)"BLVy; (z) (29)
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can be calculated easily.

The analysis above shows that sufficient conditions for differentiability of V; with respect to =
at (z,£) are the strict complementarity condition and nondegeneracy of the system (27). These
conditions are not necessary — for example, if M; =0 for s = 1, then V;(z,£) is constant and hence
differentiable with respect to z. Also, the expectation operator often smooths nondifferentiable
functions. For example, if V,V;(z,&) exists for almost every ¢ and a mild boundedness condition
holds, then E[V;(z,¢)] is differentiable at z and V, E[V;(z,&)] = E[V,V,(z,£)] (e.g., Shapiro et al.
2009, Theorem 7.44).

The derivatives in (28) and (29) are used to solve SAA problems (26) with a trust-region method.

Numerical results are given in Section 6.

6. Numerical Examples

In this section, we present numerical results to compare profits in settings with an alliance, no
alliance, and perfect coordination, for the multiple-resource models described in Sections 4. We
present results for the network example given in Section 4.1. We first present the results for the
deterministic case with known demand functions in Section 6.1, and then present results for the

stochastic case with random demand functions in Section 6.2.

6.1. Deterministic Examples

We first describe how the input data E;, B;, and C; for the numerical examples were chosen. For
the example network, m_; =m; = 20, and thus E;, B; € R?°*2° and C; € R*® for ¢ = +1. For each
instance, a specific ratio r; € [0,1) is chosen such that |B_; | =ri|E; |- Thus, r; is similar to
the ratio 7/ of the two-resource example in Section 3.3, and represents the level of differentiation
between the sellers’ products. For all instances, it was verified that the resulting matrix ¥ defined
in (22) was positive definite.

For the no alliance setting, we used the transformations in Appendix C to obtain Ei, Bi, and C;.
In addition, we investigated the effect of a difference in product attractiveness between the settings

with and without an alliance. As mentioned, in a setting without an alliance, a buyer may have to



29

buy products from multiple sellers and combine them to obtain the product desired by the buyer.
Under an alliance a seller may offer the combined product to the buyer, making it more convenient
for the buyer to obtain the product (“one-stop shopping”). There may be additional ways in which
an alliance increases demand. For example, with an airline alliance, the coordination of connecting
flight schedules to reduce lay-over time or missed connections, rebooking in case of missed con-
nections, and coordination of baggage handling, may further enhance the combined product under
an alliance. This might increase the potential demand level under an alliance compared to that
under no alliance. Motivated by these observations, we solved some instances in which the demands
under no alliance is obtained using the transformations in Appendix C, but with a reduction in the
demand for products assembled from more than one seller by a factor of , € (0, 1] (in the notation
of that section, the part of the demand for products in L; derived from the demand for products
in Ly ULg, was reduced by a factor of ry).

The two-stage alliance design problem (18) was solved using a trust region algorithm. At each
iteration, given the current value of the resource exchange vector x, the convex quadratic pro-
gram (20) was solved. It was verified that the optimal objective value of (20) was zero, that is, the
solution of (20) gave a solution of the second stage equilibrium problem (15) for s = £1. It was also
verified that the strict complimentary condition held and that the system (27) was nonsingular.
Next the derivatives of the objective function of (18) with respect to x could be computed, and
the trust region algorithm could execute the next iteration.

As mentioned, the objective function of (18) may not be convex. To address the concern of
potential multiple local optima, for each instance we used 50 different starting points x for the first
iteration. For each instance, all 50 starting points lead to similar final solutions and final objective
values.

For the no alliance model, the second-stage equilibrium problem had to be solved only once for
each instance. For the perfect coordination model, the convex quadratic optimization problem (25)

also had to be solved only once for each instance.
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Table 4

different levels of product differentiation.

Comparison of total profit for a resource exchange alliance, no alliance, and perfect coordination, for

e ry=0.2 ry =0.5 ry =0.8
Deterministic Model Total Relative Total Relative Total Relative
(ry=1) Revenue | increase (%) | Revenue |increase (%) | Revenue |increase (%)
No alliance 318060.00 322790.00 326980.00
Perfect Coordination | 343430.00 7.98 343340.00 6.37 343300.00 4.99
Alliance 343235.54 7.92 341615.26 5.83 336386.89 2.88
Table 5 Comparison of maximum achievable total revenue under different convenience level
. ry = 0.2 (High ry = 0.6 ro =1 (No Difference
Deterministic Model Total (Re%at)ive Total Relative Total( Relative)
(r, =0.5) Revenue | increase (%) | Revenue |increase (%) | Revenue |increase (%)
No alliance 311590.00 318450.00 322790.00
Perfect Coordination | 343340.00 10.19 343340.00 7.82 343340.00 6.37
Alliance 341615.26 9.64 318450.00 7.27 341615.26 5.83

Table 4 presents the total profits under different levels of product differentiation represented
by different values of r; for r, =1 and with diagonal matrices £; and B;. The largest increase in
profits relative to the no alliance setting was obtained under high levels of product differentiation.
For example, when r; = 0.2, an alliance increases the profit of the no alliance setting by 7.92%, and
perfect coordination increases the profit by 7.98%. Even under a low level of product differentiation
(r; = 0.8), an alliance still increases the profit by 2.88%, and perfect coordination increases the
profit by 4.99%. Similar results were obtained with non-diagonal matrices.

We also compared profits for different values of r,. Table 5 compares the total profits under
different levels of convenience represented by different values of 7, for r; = 0.5 and with diagonal

matrices F; and B;. As expected, the relative increase in profit is larger for smaller values of r,.

6.2. Stochastic Examples

In this section, we present results for the stochastic model (that is, the first stage problem (18)
with expectation in the objective) presented in Section 4. The random data E;, B;, and C; followed
a multivariate normal distribution with means as described in Section 6.1, standard deviations
proportional to the means, and correlation coefficients of 0.6.

We generated and solved SAA problems with different sample sizes N = 20,40,...,500. At each

iteration of the first-stage problem, the second-stage problem was solved for each of the N sample
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Table 6 Optimal solution under different sample sizes for the stochastic case

n |iter 0bJopt llgll Zopt

20 | 41 |-340950.08 | 1.08E-04 | 144.41 154.96 139.45 148.01 -150.07 -158.56 -139.32 -152.32
100 | 39 |-340886.90 | 3.53E-05 | 144.35 154.93 139.36 147.87 -150.27 -158.53 -139.27 -152.48
300 | 43 |-340933.57 | 3.25E-05 | 144.67 155.34 139.76 148.27 -149.94 -158.16 -138.82 -152.14
500 | 41 [-341329.49 | 8.62E-05 | 144.61 155.32 139.73 148.23 -149.95 -158.20 -138.86 -152.18
2 n: sample size

b jter: number of iterations when algorithm stopped

¢ 0bjop: objective function value at the optimal solution

4 | gll: gradient norm at the optimal solution

¢ T,p: optimal solution

points £". Then, for each of the N sample points £, the derivatives of V;(z,{") were computed as
given in (28) and (29). The averages of these derivatives over the N sample points then gave the
derivatives of the first-stage objective of the SAA problem (26).

Finally, after a resource exchange x was chosen by solving a SAA problem, we compared the
total profits in the alliance, no alliance, and perfect coordination settings with an independent and
identically distributed sample of 1000 sample points, independent of the samples used in the SAA
problem. Table 6 reports the number of iterations of the trust region algorithm until termination,
the resource exchange solution z,,; at termination, the objective value (0bj,,;) of the SAA problem
at z,pt, and the gradient norm (||g||) of the SAA objective function at z,,, for different sample
sizes IV, for the network example in Section 4.1. As far as we know, these are the first stochastic
mathematical programs with equilibrium constraints motivated by an application that have been
solved.

Figure 6 presents a histogram of the pairwise difference in total profit between an alliance
and no alliance, using a sample of 1000 sample points, independent of the samples used in the
SAA problem. The total profit under an alliance was larger for all 1000 sample points, with the

percentage increase varying from 5.24% to 6.31%.

6.3. Robustness With Respect To Resource Exchange

So far, we have compared the total profit under an alliance with the total profit under no alliance
after computing the optimal exchange. An important question is how robust the improvement in

total profit is with respect to choice of resource exchange. In this section we present a simple



32

Figure 6  Histogram of the pairwise difference in total profit between an alliance and no alliance, using a sample

of 1000 sample points.
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example to cast some light on the question.

Suppose that airline —1 operates a flight with capacity 300 from A to B, and airline 1 operates a
flight with capacity 300 from B to C. After resource exchange, each airline can offer three products:
itineraries from A to B, from B to C, and from A via B to C. Figure 7(a) shows the percentage
increase in total profit of the alliance relative to no alliance, as a function of the number of seats
that airline 1 (airline —1) makes available to airline —1 (airline 1) shown on the z-axis (y-axis).
Figure 7(b) shows a histogram of the percentage increase in total profit of the alliance relative to no
alliance for 770 different resource exchanges. As shown, the percentage increase ranges from -4.78%
to 3.77%, the alliance profit is larger than the no alliance profit for 68% of the exchanges, and
the average percentage increase is 0.75%. Thus, an alliance with an exchange that is not carefully
chosen could be worse than no alliance, but the improvement of an alliance over no alliance seems

quite robust with respect to deviations from the optimal exchange.
7. Conclusion

In this paper we presented an economic motivation for interest in alliances, by showing that without
an alliance sellers will tend to price their products too high and sell too little, thereby foregoing
potential profit, especially if the capacity is large. We showed that under a resource exchange

alliance, some of the foregone profit can be captured. In fact, in the two-resource example, the
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(a) Percentage increase in total profit of the alliance (b) Histogram of percentage increase in total profit
relative to no alliance, as a function of the resource of the alliance relative to no alliance for 770 different

exchange. resource exchanges.

Figure 7 Robustness of increase in total profit of the alliance relative to no alliance with respect to resource

exchange.

alliance attained the same total profit as perfect coordination, except when capacity is large and
the products of the sellers are complements.

We formulated the problem of determining the optimal amounts of resources to exchange as
a mathematical program with equilibrium constraints, taking the competition into account that
results from alliance members selling similar products. In general, mathematical programs with
equilibrium constraints are hard to solve, especially in the stochastic case with random problem
parameters. We used a trust region algorithm to search for an optimal exchange, and used it to
solve example problems.

Many research questions regarding alliances remain. In this paper we consider one type of
alliance, namely resource exchange alliances. Such alliances are attractive because they do not
require complicated coordination after the resource exchange has taken place, and because such
alliances should not have anti-trust problems, since they enhance competition instead of reducing
competition. However, there are many other potential alliance structures of interest that remain
to be analyzed and compared in greater detail.

The problem of optimal revenue management under an alliance is very challenging, and has not
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received much attention in the literature. This paper does not address operational level revenue
management under an alliance — the purpose of this paper is to obtain insight into conditions
under which a resource exchange alliance can provide greater profit than the setting without an
alliance, and to propose a model and a method to compute good resource exchange amounts. Thus

the problem of optimal revenue management under an alliance remains to be addressed.
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Appendix A: Derivation of Results for Two-Resource Model
Appendix A.1: No Alliance

First consider the case in which by, > & — (g1 +9,) > 0 (it is shown later for which input

parameter values this condition holds). In this case the profit function of seller 7 is given by
9i(Gi,9-1) = Ui |a—PB(G-i+ )

Then the best response function of seller ¢ is given by

- &~ Py
Bi(y z) - ~
2
Solving the system
G = &P
(3 2,@

for i = +£1, the equilibrium (g* ,,J7) is obtained, where

«
Y 3

The demand at the equilibrium prices (¢*,,9;) is equal to
~ (% ~ % a
a—pEL+g) = 3 > 0 (30)

Therefore, if by,;, > &/3, then the equilibrium prices are given by (2), the equilibrium demand is
given by (3), the resulting profit of seller ¢ is given by (4), and thus the total profit of both sellers
together is given by (5) and the consumer surplus is given by (6).

Next, consider the case in which b,,;, < &/3. Note that in this case & > 3b,,i, > buin-
Case (1): First, consider any pair of prices (§_,,4:) such that § 1 +§; < (& — byiw)/S. In Figure 8,

this corresponds to (a). Then & — B(Q—l + 91) > buin > 0, and thus the profit of seller i is given by

gi@ia ?in) = Yibmin

Thus, if 1+ 91 < (& — byin)/ B, then the profit of seller 4 is increasing in §;, and hence such a pair

of prices (§_1,7;) cannot be an equilibrium.
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Y1 e 2y—1+y1=c-1+ % Y1 = 2yt i = o %

a Qbmi@C ] N
BB i
01+b7mf i .
i J‘ —i= 01+B
| - .
i : ) Hyl‘*’?]*lf‘aibmm
ot 1777%@ o 2bmin o Y-1
(a) Case 1: j—1 4 §1 < (& — bmin)/B. (b) Case 2: §_1 + i1 > &/B.
Y e 2y—1+ y1:071+% L 2yt y12071+%

(c) Case 3.1: @/B > j—1+i1 > (& —bmin)/B and j_1 + (d) Case 3.2: &/B > §_1 + §1 > (& — bmin)/B and

241 >d//é. 291+ >6¢/,§.

Y1 =2yt =t % Y12yt =t %

(e) Case 4: j—1+ 71 = (& —bmin)/B and (§—1 < bmin/B (f) Case 5: The line segment between (bmin/3, @/3 —
or §1 < bmin/B). 2bmin/f3) and (6/f — 2bmin/ B, bmin/B)-

Figure 8  Different regions of the pair of prices (g—1, 1) corresponding to different cases.
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Case (2): Next, consider any pair of prices (§_;,%;) such that §_, + g, > d/ﬁ. In Figure 8, this
corresponds to (b). Then the demand and profit of each seller is zero.

Case (3.1): Next, consider any pair of prices (§_1,%;) such that &/ > § 1 + 91 > (& — bui) /B and
J_1 + 21, > &/B. In Figure 8, this corresponds to (c). Then 0 < & — B(gj_l + 91) < buin, and thus

the profit of seller 7 is given by
9i(0i,9-5) = Ui |&—B(J-i+ i)

Note that

09.(91,9-1)/051 = G—Pi 126 < 0
Thus, if 64//5’ >y 491> (a— bmin)/B and §g_; + 27, > 07/3, then the profit of seller 1 is decreasing
in ¢;, and hence such a pair of prices (¢§_;,9;) cannot be an equilibrium.
Case (3.2): Next, consider any pair of prices (§_1,%;) such that &/ > § 1 + 91 > (& — bui) /B and
20 1479 > &/B. In Figure 8, this corresponds to (d). It follows similarly to Case 3.1 that the profit
of seller —1 is decreasing in §_;, and hence such a pair of prices (7_1,%;) cannot be an equilibrium.
Case (4.1): Next, consider any pair of prices (§_1,%;) such that §_; + 91 = (& — bmin)/f and 0 <
71 < bmin/ﬁ. Note that & — B(g],l + 1) = buin, and thus the corresponding profit of seller —1 is

given by

Next, consider §_; := (64/3 - gjl) /2. First, note that

o< gadp = S O
1 =~ —1 1 - - ~ =
I

& — B
= 5 >0
o &—B(O‘/ﬂ2_y1+1>>0

Also, note that

:lj,l < bmin//é
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& G+ (@—buw) /B < &/p
& 2+ < a/f
&/B— i .

= g_1<T = Y

and thus & — B (§ 1 +1) < & — B (j_1 + 1) = bwin. Thus the corresponding profit of seller —1 is

given by
g a1(0-1,9) = 9 [& B(?J 1+y1)]
Next, note that
:lj,l < bmin/B
= ( min ﬁy 1) > 0
= br2nm + 2bmin13g—1 + 52?;2_1 > 4bmin13g—1
~ 2 ~
= (bmin + 59—1) > 4/3y—1 bmin
Dnin/ B+ 7
o mm//B+y 1) <mm+ﬁy 1) mm
2
&/ (/B - bmm/ﬂ B(&/B = buinlB—11)

> y_ bmin
2 Y1

& g (a—BQ—1—B?J1) > Y_1bmin
& ga@-1,%) > g-1(U-1,%)

Thus such a pair of prices (§_;,9;) cannot be an equilibrium.

Case (4.2): Next, consider any pair of prices (§_1,9;) such that § ; +¢, = (& — bmm)/ﬂ~ and 0 < ¢, <
buain/ B Consider g, := (&/B - g,l) /2. 1t follows similarly to Case 4.1 that §1(J1,9_1) > g1 (1,51
and thus such a pair of prices (§_;,7%;) cannot be an equilibrium. In Figure 8, Case (4.1) and

Case (4.2) correspond to (e).
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Case (5): The only remaining pairs of prices to check are pairs (§_;,9;) on the line segment between
(bmin/ﬁ, d/ﬁ~ — 2bmin/ﬂ~) and ((Sz/ﬂ~ — 2bmin/ﬁ~, bmin/B). In Figure 8, this corresponds to the line
segment on (f). Consider any pair of prices (§_1,%1) = (1 — ) (bmin/B, &/B — 2bmin/B) + (&) —
2buin/ B, buin/B) for v € [0,1]. It follows from by, < @/3 that 0 < byw/B < &/ — 2bmin/B, and
thus §; > 0. Note that §-1 + 51 = (1 = 7)(@/B — buin/B) +7(&/B — buin/B) = (& = buin) /B, that
J_1 4279, =(1— 7)(2&//5’ — 3bmin//5’) + fyo?//;’ > 07/3, where the inequality follows from by, < &/3,
and similarly 27, 4+, > &/f. Then, for any §, < §i, it holds that §_;, +i; < (& — bui)/S, and thus
it follows from Case (a) that g1 (41,9-1) < 91(91,9—1). Also, for any ¢, > ¢, it holds that g_, + g, >
(a— bmin)/B and y_; + 2¢; > 07//5’, and thus it follows from Case (c) that 1 (91,9-1) < §1(91,9_1)-
Hence, given §_,, §; is the best response for seller 1. Similarly, given ¢;, §_; is the best response
for seller —1.

Therefore, if by, < @/3, then all pairs of prices (§_;,9;) on the line segment between
(buin/ B, /B — 2bmin/B) and (&) — 2bmin/ B, buin/B) are equilibria. For all of these equilibrium
prices total price is equal to (& — bmin )/, the demand is equal t0 byi,, the resulting profit of seller i

is equal to g;b,i, and thus the total profit of both sellers together is given by (7) and the consumer

surplus is given by (8).

Appendix A.2: Perfect Coordination
In this section we determine the maximum achievable total profit of the two sellers together, that
is, the total profit if the sellers would perfectly coordinate pricing.

The total profit of the two sellers is given by

9@, 51) = (o + G1) min{buin, max{0, & — B(j_1 +7:)}}

First consider the case in which by, > & — B(?J—l + ;) > 0. In this case the total profit of the two

sellers is given by

GG 1) = Ga+m) |- BE i)
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The optimal total price y_; +¢; that maximizes the total profit is given by

_ _ a
Y_1 + Yy = —= > 0
2
The demand at the optimal total price y_; + ¢, is equal to
= a— B, +3) (31)

5‘—5(?7—1'1'51) = >

|
w|

Therefore, if b, > &/2, then the optimal total price is given by (9), the corresponding demand is
given by (10), the total profit of both sellers together is given by (11), and the consumer surplus
is given by (12).

Next, consider the case in which by, < &/2. In this case the optimal total price is given by
Y1+ = - min > 0
with corresponding demand equal to b,,;,. The total profit of both sellers together is equal to

bmin

a — by
(5—1 + gl) bmin ¢
p

and the consumer surplus is equal to

RS P
2l B 177 2
Appendix A.3: Resource Exchange Alliance

For given values of b_; and b, the feasible set S; of two-resource products that can be sold by
the two sellers is given by S; :={(¢_1(x),q(z)) : z; € [0,b;], 7= £1}. Next we show that this set
S, is equal t0 Sy :={(q_1,q1) €[0,bmin]® : ¢-1 + ¢ < buin }- First, consider any (¢ ,(z),q.(z)) € S)
with corresponding (z_;,z;) € [0,b_] x [0,b;]. Without loss of generality, suppose that b_; = by;,.
Then ¢_y(z) + ¢ (z) =min{b_ —x_y, z;} + min{b;, —zy, v, } <b_y —z_1 +x_1 =b_; = by, and
thus (¢_i(x),q:(z)) € Ss. Next, consider any (g_1,q;) € Ss. Choose z; = q_; for i = £1. Note that
z; € [0,b;] since q_; € [0, byin]. Also, z; =q_; < bmin — ¢; = bmin —z_; <b_; —x_;, and thus ¢_;(z) =
min{b ;—xz ;, z;} =x; =q_;. Thus (¢_1,q,) € S1, and hence S; = S,. Hence, the first-stage decision

variables may be considered to be the resource exchange quantities z = (z_;,z;) €[0,b_,] x [0, b,],

or equivalently the capacities g = (q_1,q;) € S, of two-resource products after exchange.
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Case 1. First consider the case in which ¢; > a — By; +yy ; > 0 for i = &1 (it is considered later
for which input parameter values and values of ¢ and y this condition holds). In this case the profit

function of each seller ¢ is given by

9:(Yiy—i) = yiloo—Byi+vy—]

Then the best response function of each seller 7 is given by

a+YY—i
Bi(y—) = —55— 3
Solving the system
 aty
Yi = 28

for i = +£1, the equilibrium (y* ;,y7) is obtained, where

v = > 0 (32)

Note that the equilibrium prices are greater than the marginal cost ¢_; + ¢; of the two-resource

product. The demand at the equilibrium prices (y*,y7) is equal to

* * aﬁ
a—Py; +yyl; = 26—~ > 0 (33)

The resulting profit of each seller is equal to

. . . o’p
y; min{g;, max{0, o — By; +yyZ;}} = @F—) (34)
and thus the total profit of both sellers together is equal to
o?f
22— (35)
(28 —7)?

Therefore, if ¢; > af/(28 —y) for i = £1, then the equilibrium prices are given by (32), the equilib-
rium demand is given by (33), the resulting profit of each seller is given by (34), and thus the total
profit of both sellers together is given by (35). Note that ¢; > af/(25 — ) for i = +1 requires that

buin > 2 /(2 — ). Thus the results above hold if b,,;, > 2a8/(28 — ) and the resource exchange
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q1

af(B+ )

202 — A2

af
28—~

af aB(B+7)

28—~ 23277
Figure 9 Different cases of capacity bmin for a resource exchange alliance.

z is chosen such that ¢; > af/(2f — ) for i = £1. In Figure 9, the line ABC D shows pairs (q_1,q;)
such that ¢ ; + ¢; = by > 2a/(26 —7y), obtained with resource exchange x = (x_,z;) such that
ZTi =q—; = bmin — ¢ = byin —T_; <b_; —x_;. Thus, for the given value of by, > 2a5/(28 — ), the
set of points (¢_1,q;) such that ¢; > af/(26 —~) for i = £1 and ¢ ; + ¢; < by, corresponds to
triangle BC'I. All corresponding resource exchanges x lead to sales of two-resource products of
af /(26 —y) by each seller, corresponding to point I, and provide total profit of 2a28/(25 — ).
Case 2. Next, consider the case in which 0 <g¢q ; <a—fy_;+~vy; and ¢; > a— Py; +yy_; >0 (as
before, it is considered later for which input parameter values and values of ¢ and y this condition

holds). In this case the profit function of seller —i is given by
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in(yfia yz) = Y-iq—;

and the profit function of seller 7 is given by

9i(yi,y—i) = yila—Pyi+yy_i

Then the best response function of seller —i is given by

B_i(y;)) = max{y_;:q;<a—PBy_i+yy} = %
and the best response function of seller 7 is given by
Bi(y-:) = %
Solving the system
Y= O+ VY — g
a+ ’Yyﬁi
Yi = T
the solution (y*,,y;) is obtained, where
o= 208+ ay —2pq-;
B 26% =
+ay—7q-;
v = (36)

(It is checked later under what conditions y*;,y* > 0 and (y*;,y;) is the unique equilibrium.) The

demands at the prices (y*,,y;) are equal to

d_i(y~,y) = =Py, +vy; = q (37)

af(B+vy) = Byq i
252 _ ,-)/2

di(yi,y*;) = a—By; +yy*, (38)

Recall that we are considering the case in which ¢ ; <o —fBy_; +vyy; and ¢; > a— pBy; +vy_;. Note
that ¢ ; = a — By*, +yyr. Also note that ¢; > o — Sy} + vy~ if and only if ¢; > afS(8+7)/(26% —
7?) = Bvq-i/ (2% —7°). Examples of the line ¢; = «f(8+7)/(28° —*) — Bvq i/ (2 — ) are given

in Figure 9 by line LF'I for i =1 and by line M GI for : = —1. It can be verified that the intercept
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satisfies afB (8 +7)/(28% —v*) € (0,2a8/(28 —)). The slope of the lines are negative if v > 0 and
positive if v < 0. Note that if ¢_; = af/(28 — ), then aB(B+7)/(26% —v*) — Byq_i/ (2% —v*) =
af /(2 —1y), and thus in all cases the lines go through I = (af/(28—7), af/(28—7)). In Figure 9,
if buin > 2a8/(26 — ), such as in the case in which the line ABC'D shows pairs (¢_;, ¢;) such that
g1+ ¢ = by, then the set of points (q_1,q,) such that 0<q | <a—pBy*, +7y;, ¢ > a— By} +
vy* 1, and g1 +q; < by, corresponds to quadrilateral ABIL. (Note that ¢ ; < af/(28—1y), since
it has already been shown that ¢_, > a — fy*, +yy} in triangle BCI.) Similarly, the set of points
(¢_1,q1) such that 0 < ¢, <a—By;+vy*,, ¢ 1 >a—Ly* +7y;, and ¢ 1 + ¢ < by, corresponds to
quadrilateral DCTM (note that ¢ < aB/(26—7)). If af(B+7)/(28% —7?*) < bumin < 2a6/(28 —7),
such as in the case in which the line EFGH shows pairs (¢_1,¢;) such that g ; +¢; = by, then the
set of points (¢_1,¢;) such that 0 <q ; <a—py*, +yy;, ¢ > a— By} +vy*,, and ¢ 1 + ¢; < bin,
corresponds to triangle EFF L, and the set of points (¢_;,q;) such that 0 < ¢, < a— By; + vy*,,
g1 >a— Py +vyy5, and ¢ 1 + ¢ < by, corresponds to triangle HGM. 1t is verified in Case 3
that, if by, <aB(B+7)/(28* —+?), then ¢; < a — By; +yy*, for i = +1.

Next we verify that, if ¢ ; <«af/(28 —7), then the prices y*,,y* given in (36) satisfy y*,,y* >0,
that is, the prices are greater than the marginal cost ¢_; 4+ ¢; of the two-resource product. First note
that the denominator in the expressions for y*, and y; is positive. Next consider the numerator in

the expression for y*,;. Note that

267 < 4p*—v* = (2B+7)(26—7)

af < 208 + ary
28—~ 2p

54

Thus, if ¢ ; < af/(28 —7), then
2
o< Pty
2p
& 0 <208+ ay—20q_;

2 —28q_;
< 2eftoy—2pg -

< 0
22 — 2
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Next consider the numerator in the expression for y;. If v <0, then (S +v) —yg_; > 0 (recall that

YE (_/875))7 and thus

. aff+ay—vyq
yl 2,82 _ 72

Next, consider the case with v > 0. Note that

af < ap < af +ay
28—~ Y Y
Thus, if ¢ ; < af/(2 —7), then
o, < Pro

& 0<af+ay—yq-;

< 0

aftoy—vg-i
< = Y
2/32 _ ,),2

Next we verify that, if ¢_; < af/(28 —v) and ¢; > af(B +7)/(26° —°) — Bya_i/(28% — 7*),
then (y*,,y;) given in (36) is the unique equilibrium. First, recall that B;(y_;) = (¢ +yy_;)/(25)
is the unique best response for seller 7 if the capacity ¢; of seller ¢ is not constraining. Note that if
seller —i chooses price y*, and ¢; > af(B+7)/(26% —v*) — Byq_i/(28% —¥*), then the capacity ¢;
of seller 7 is not constraining, and thus y! given in (36) is the unique best response for seller i to
y* .. Next we verify that y*, given in (36) is the unique best response for seller —i to y;. Given y;,

the profit of seller —¢ is given by

9-i(y—i,y;) = y_;min{qg_;, max{0, a — By_; +yy; } }

Y—iq—i if Yy-i < %*_qﬂ
= q Y-ila=By_i+yy;) if % SY-i < M%

0 iy >t

Thus g ;(y_;,y) is a nondecreasing linear function of y_; if y_; < (a+~yy: —q_;)/B. If (a+vyy; —

q.)/B<y_i<(a+~yy:)/B, then g ;(y_;,y;) is a concave quadratic function of y_;, with

9 (i y]) = —2By_i+ a+yy;

< =2(a+yy; —q) at+yy;



48

= —a—y; +2q;

aff +ay—yq
=—a—7 2F— 7 +2q_;
20 —afy+ (4% —7?)q-

252 _72

Note that

—2af” — afy+ (467 —7°)
252 _ 72

& 20 —apfy+ 4 —7")gi <0

q—i <0

& —afB2B8+7)+(28-7)(28+7)q i <0
& —af+(28—7)g-i <0

aff
& g, <
== 28—~

Hence, if ¢ ; < /(26 — ), then ¢ ;(y_;,y7) <0 for all y; € ((a +yy; —q-4)/B, ( +7y7)/B)-
Hence, the unique best response for seller —i to y> is B_;(y}) = (o + vy — q_;)/B. Therefore, if
¢ < aB/(2B—7) and ¢; > aB(B+7)/ (26 —7*) — Bya-i/ (287 —7?), then (yZ;,y;) given in (36) is
the unique equilibrium.

The resulting profit of each seller is equal to

9V Hy) =yl

o (26+7)q-;i —28¢°;
252 _ 72

9:(yu) =y (= By} +7y7,)
_ (0‘/3'1'057_7‘]—1') (aﬂ(5+7) —Bvq_z)

2/32 _ T),2 2/32 _ 72
_ BB+~ 208y (BHY) ¢ i+ Y,
(262 = )"

and thus the total profit of both sellers together is equal to

o) = LBV i —28a% | BB H)" 208y (B+7) g+ Fr'e,
—i 2,82 _,Y2 (2132 _72)2
a(2847) (282 =72 q_i —28 (282 —7*) %, + o*B(B+7)" —2aBy (B+7) ¢_i + B’
(282 —v?)°
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_ BB+ (4 =48y =) i = B4 = 39)) ¢ (40)

(262 —~2)°

Therefore, if ¢_; < af /(28 —7) and ¢; > aB(B +7)/(28* —=7*) — By4-i/(26% — 7*), then the equi-

librium prices are given by (36), the equilibrium demand is given by (38), the resulting profit of
each seller is given by (39), and thus the total profit of both sellers together is given by (40).
Case 3. Next consider the case in which 0 < ¢; < a— By; +yy_; for i = £1. (It will be shown
that this case holds if and only if 0 <¢; < af(B+7v)/(26% —v*) — Byq_i/(26* —+?*) for i ==+1. In
Figure 9 this case corresponds to two-resource product capacities (¢_1,¢q;) in region OLIM. Thus
the entire region {(q¢_1,q1) : ¢; >0, i ==£1} is covered by Cases 1-3.) In this case the profit function

of each seller 7 is given by
9i(Yiy—i) = Y

Then the best response function of each seller 7 is given by

O+YY—i — ¢
Bi(y:) = max{y: g <a—Pfyi+yy} = — 5
Solving the system
g = OTW-ima
' p
for i = £1, the equilibrium (y*,,y;) is obtained, where
] a(f+7) = B —7q-i

(It is checked later under what conditions y > 0 and (y*,,y;) is the unique equilibrium.) The

demand of seller i at the prices (y*,,y;) is equal to

a—By; +vy ;= ¢ > 0 (42)

Next we verify that, if ¢; < aB(8+7)/(28% =) — Byq_i/(28% —~?) for i = £1, then the prices y;
given in (41) satisfy y; > 0 for ¢ = £1, that is, the prices are greater than the marginal cost ¢_; +¢;
of the two-resource product. Note that ¢; < aB(8+7)/(28% —v*) — Byq /(2% —?) for i = +1

implies that ¢ ; + ¢, <2a8/(28 — ). For a given pair (q_,q,) such that ¢; < af(8+7)/(26% —
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v?) = Byq_i/(28% —~?) for i = £1, consider the line with slope —1 through the point (¢_1,¢;). For
example, in Figure 9, EFGH is such a line, with points (¢_;,¢;) on line segment F'G satisfying
¢ <aB(B+7)/(26%—~%) — Byq_i/(28* —+?) for i = £1; and JK is also such a line, with all points
(g_1,q1) on line segment JK satisfying ¢; < af(8+7)/(28% —v*) — Byq_i/ (2% —+?) for i = 1.
We show that the prices y; given by (41) corresponding to all points (¢_i,¢;) on line segment F'G
satisfy y* > 0. It follows that the prices y; given by (41) corresponding to all points (¢ _1,q;) on
line segment JK also satisfy y > 0. The coordinates of point F' are ([(26% —7*)(¢_1+q) —af(B+
I/ (2B° = By —=7?), [aB(B+7) — By(q-1+ @1)]/(28° — By —~?)) and the coordinates of point G are

([aB(B+7) = By(g—1 + @)1/ (26° = By = 7*), [(2B87 = v*) (g1 + @1) — aB(B + )]/ (267 = By —7*))-

Consider the prices y; given in (41). Note that

PR o e el i L S
g 52_,-)/2

& alf+vy)—PBg—v9:>0

e Pei+v(gmita—a) < a(f+7)

& B-—7a+v(gita) <alB+7) (43)

If (¢_1,q1) is on line segment F'G, then

aB(B+v)—By(g1+q)

o= 2062 — By — 7
& B-7at+y(g-ita) < (B-7) Sel ;51)__5ﬂ77£q721 t) + (=i + @)
_ o —aBy + By(g + @) = (g-i + @)
267 =Py —7?
_ BB =)+ (B2 =g + @)
2p% — By —*

(B=7)(B+7)af+v(q-1+aq)]
(B—=7)(28+)
(BB +y(g-1 +q1)]
B 28+~ (44)

Next, by separately considering the cases vy < 0 and v > 0, we show that [af+v(¢_1 +¢1)]/(26+7) <

«, then it follows from (44) that (8 —v)¢; +v(q—i + ¢:;) < a(f + ), and hence it follows from (43)
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that y; > 0.

First, suppose that v < 0. Note that

-7 <B

& B <28+

aff
28+ <«
aB+y(g-1 +a)
36+ <a (45)

The last step follows since vy <0 and ¢_; +¢; > 0. It follows from (43), (44) and (45) that, if v <0,
then y; > 0.

Next, suppose that v > 0. Note that

y<pB

& f<28—y

aB(26 —7+2y)
(28—=7)(28+7)
of + 352
28+
af+vy(q-1 +q)
28+~

<o

<« (46)

The last step follows since v >0 and ¢, + ¢; < 2a/(28 — ). It follows from (43), (44) and (46)
that, if v >0, then y; > 0.

Next we verify that, if ¢; < af(8+7)/(28% —v*) — Byq_i/(28% —~?) for i = £1, then (y*,,y])
given in (41) is the unique equilibrium. We verify that y; given in (41) is the unique best response

for seller ¢ to y*,. Given y*,, the profit of seller ¢ is given by

9:(yi,y*;) = yimin {g;, max{0, o — By; +yy*,;} }

Yiqi if Yi < W
* e at :ii 1 o+ :z
=9 yi (@ —Byi+y7,) lf% Sy < %
0 if y; > =i

- B
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Thus g;(y;,y* ;) is a nondecreasing linear function of y; if y; < (a+~yy*, —q;)/B- I (a+vyy*;,—q:) /B <

y; < (a+yy*,;)/B, then g;(y;,y*,;) is a concave quadratic function of y;, with

9: (Vi y™;) = =28y +a+yy";

< =2(a+yyt — @) Fat+yyt,

= —a—7yyl; +2¢
a(B+7) —Bai— 1%
=—a—vy T + 2g;
52 _,),2
 —af? —afy+Bygi + (287 = )g
- 52 _,),2

If (¢_1,q,) is on line segment F'G, then

, aB(B+v) — By(g—i +a)
- 282 — By —?
& 0> —af®—afy+Byle-i+ @)+ (26° =By =)

= —af’ —afy+ By + (287 =)
—af? —afy+ Byg_i + (287 — )
— 52 _,-)/2

& giyiy ;) <0

Hence, if (g_1,q1) is on line segment F'G, then ¢i(y;,y*;) <0 for all y; € ((a +vy*;, — ¢:)/0, (a+
vy*.)/B). Hence, the unique best response for seller i to y*; is B;(y*,) = (a+vyy*; —q;)/ 5. It follows
in the same way that if (¢_,,q;) is on line segment JK, then the unique best response for seller ¢
to y*; is Bi(y*;) = (a+yy~; — ¢;)/B. Therefore, if ¢; < af(B+7)/(28° —v*) — Bya-i/ (28* —?) for
i= =1, then (y*,,y7) given in (41) is the unique equilibrium.

The resulting profit of each seller ¢ is equal to

. . \ a(B+7)0 — BG — V4%
i minda, max(0, 0y +yyy = CCEVEPE (47)

and thus the total profit of both sellers together is equal to

a(B+7)(g-1+ @) — B+ @) —2vq1q
52 _,-)/2
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Therefore, if ¢; < af(B+7)/(26% — %) — Bvq_i/(28* —+?) for i = %1, then the equilibrium prices

are given by (41), the equilibrium demand is given by (42), the resulting profit of each seller is
given by (47), and thus the total profit of both sellers together is given by (48).

Next we determine the value of (¢_;,q;) that maximizes the total profit of both sellers together
under Case 3. First we fix the value of ¢q_; 4+ ¢; at some value ¢ < b,;,, and choose ¢; to maximize

the total profit subject to ¢_; + ¢; = ¢q. Thereafter we choose ¢ to maximize the total profit subject

t0 ¢ < byin. It follows from (48) that the total profit is equal to

a(B+7) g1+ @) =B+ @) — 271

_aB+)(gataq) - Bla?, +2q1q1 +¢) +2B9_1q1 — 27q1q
52 _,),2 52 _,),2
_aB+7)e=B¢+2(8-1)la—a)n
52 _,-)/2
_ B+ B¢ +28-)qn —2B—v)4i
52 _72
Let
Hyq) = SB+2a=Pe+2B—7)eq =208~ )i

52_,-)/2

Note that H, is a concave quadratic function that is maximized at g; = ¢/2, and the corresponding

value of ¢_; is also ¢* | = ¢/2. Recall that (48) appliesif ¢; < af(B8+7)/(28% —v*) —Bvq_:/(28% —+?)
for 1 = +£1. Note that

. _ ap(B+y) By . .
7 < Y L for i =+£1
o %S aB(B+7) By g

262 — 42 _2132_725
2ap
= <
1= 95—

Next we choose ¢ to maximize the total profit subject to ¢ < b,,;, and ¢ <2af/(28 — 7). Let

H,(q) = Hi(q/2)

_ aB47)q— B +2(8—7)¢?/2-2(B—7)¢*/4
52 _,),2
_ 20(B+7)g— (B¢
208 =7)(B+7)
2aq — ¢*

2(8—7)
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Figure 10 Different cases of the capacity ratio bmin/c and the price coefficient ratio v/g3.

Note that H, is a concave quadratic function and H)(¢*) =0 < ¢* = «. Also note that ¢* = a <
2a/(2p —7) if and only if v > 0. Let ay,;, := min{c, by, 26/(28 —) }. Then the value of (¢_1,¢1)
that maximizes the total profit and that satisfies ¢; < aB(8+7)/(28% —v*) — Byq_i/ (2% —~?) for
i==1,18 ¢* | = ¢f = amin/2. The corresponding total profit is Hy(amin) = (20t — @in) @min/[2(6 — )]
This concludes Case 3.

Optimal exchange. Next, we compare the profits under Cases 1, 2, and 3, and determine the
value of (¢_1,q), that is, the value of the exchange x = (z_;,;), that maximizes the total profit
of both sellers together. Different cases hold, depending on the capacity ratio b,/ and the price
coefficient ratio y/f (recall that v/f € (—1,1)). The different cases are depicted in Figure 10.

Case A (small capacity). bpin/a <[14+7/B]/[2— (7v/B)?], that is, buin < af(B+7)/(26% —¥*):

In Figure 9, line JK shows an example of pairs (¢_;, ¢;) such that ¢_; + ¢, = by, for a given value
of bin < aB(B+7)/(28% —~*), and triangle 0J K shows pairs (¢_;,q;) > 0 such that ¢_; +¢; < byp.

In this case, the capacity by, is so small that all feasible values of (¢_;,¢q;) correspond to Case 3.

Recall that af(8+7)/(268% —~?) € (0,2a8/(26 —7)).
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Case A1. v/ <0 and by, /a < [1+v/8]/[2—(v/B)?], that is, v <0 and by, < aB(B+7)/(28*—
7%):

Recall that 2a8/(28 —~) < a if and only if y < 0. Since by < aB(B+7)/(28% —7*) < 2a8/(28 —
v) < @, it follows that by, = min{a, byin, 2a8/(26 — )}, and thus the value of (¢_;,¢;) that maxi-
mizes the total profit is ¢* | = ¢} = byin/2, and the maximum total profit is (2cc— by ) buin /[2(8 —7)]-
The resulting equilibrium price of each seller, given by (41), is ¥ = (2c¢ — byin) /[2(8 —7)], and the
resulting equilibrium demand of each seller, given by (42), is equal to ¢ = b, /2.

Case A2, 7/8 > 0 and b /e < [1+7/B]/[2— (1/B)?], that s, 7> 0 and by, < aB(B+7)/ (26—
7):

In this case, bnin < af(6 +7)/(267 —7*) < 2a6/(26 — ) and a < 2aB/(28 — 7). If af(B +
v)/(26% —4*) < a, then by, < a and thus by, = min{«, by, 2a8/(28 — )}, the value of (¢_1,q1)
that maximizes the total profit is ¢*; = ¢} = buin/2, and the maximum total profit is (2a0 —
bmin)bmin/[2(8 — 7)]. The resulting equilibrium price of each seller, given by (41), is y; = (2« —
buin)/[2(8 —77)], and the resulting equilibrium demand of each seller, given by (42), is equal to
@ = bumin/2. Note that aB(B+7)/(28? —7?) <aif and only if y/B< (VE—1)/2=1/p=p— 1=~
0.618, where ¢ denotes the golden ratio. If v/ > (v/5—1)/2 (and thus a < af(8+7)/(26% —~?)),
then there are two possibilities. If by, < @, then as before, ¢* | = ¢f = buin/2, the equilibrium
price of each seller is y; = (2t — byin) /[2(8 — )], the equilibrium demand of each seller is equal to
¢} = bpin/2, and the maximum total profit is (2c — byin)bumin/[2(8 —7)]. Otherwise, if & < by, then
q*, =q; = /2, the resulting equilibrium price of each seller, given by (41), is y; = «/[2(8 —)], the
resulting equilibrium demand of each seller, given by (42), is equal to ¢f = «/2, and the maximum
total profit is (2a — a)a/[2(8 —v)] = &?/[2(8 — 7)]. Note that in this case the optimal resource
exchange z* is such that ¢*; + ¢ = o < by, that is, some capacity is not used.

Case B (intermediate capacity). [1+v/B]/[2 = (v/B)?] < bmin/a < 2/(2—v/B), that is, af(B +
)/ (262 = 7*) < bin < 208/(28 —7):

In Figure 9, line EFGH shows an example of pairs (¢_y,q;) such that q_; + ¢, = by, for a given

value of by, € (afB(B+7)/(268% —7?), 2a8/(28 — 7)), and triangle 0EH shows pairs (¢ 1,q,) >0
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such that ¢_; + ¢; < by In this case with intermediate capacity b,;,, there are feasible values
of (q_1,q:) corresponding to Case 3, for example in pentagon 0LFGM in Figure 9, and there are
feasible values of (q_;,¢q;) corresponding to Case 2, for example in triangles EFL and GHM in
Figure 9.

Cousider any two pairs (¢_1,q;) and (¢',,q;) in triangle EFL such that ¢ ; = ¢’ ,. It follows
from (36), (38), (39), and (40) that the equilibrium prices, the equilibrium demand, the profit of
each seller, and thus the total profit of both sellers together are the same for (¢_1,¢,) and (¢’ 1, ¢})-
Therefore, for any point (¢ _;,q) in triangle EF L, there is a point (¢, aB8(8+7)/(28% —v*) —
Byq_1/(26* —+?)) on the boundary LF between triangle EFL and pentagon 0OLFGM with the
same total profit as at point (¢_;,q;). Next, we show that the total profit as a function of (¢_;,¢;)
is continuous on the boundary between triangle £FF' L and pentagon 0LF'GM. Recall from (48)

that the total profit at a point (¢_;,¢;) in pentagon OLFGM is equal to

a(f+7) (g1 +q)—pB (931 + 'J%) —2vq1q1
52— 42

Specifically, at the boundary point (¢q_;, a8(8+7)/(26% —~*) — Byq_1/(26* —~?)) the total profit

is equal to

) (004 2os) - (i 4 [20 30 ) g e
p?—n*
[®B(B+7)* (28° —7*) = ?B*(B+1)?]
+ [a(ﬁ +7) (282 =7 — apy(B+7) (282 —7*) + 2087 (B+7) — 2aB7(B+7) (282 — 1) | ¢
+ =828 =) = By + 287 (28° = )| a2

(282 —72)” (B2 —72)
B2 =B (B+7)’
+a (46 —46°7 + 7 = 26%y + BY° + 2%y — 483y + 287°) (B+7)q
—B (4B —4B*Y + 41 + B2y — 4% + 294) ¢34
(282 —2)” (B2 —72)
@?B(p* =) (B+7)?
+a (4B — 4%y — 4By + 387 +4") (B+7)q-1
—B 4B =Ty +3v4) %,
(282 —~2)* (B2 —7?)
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B (B—7)(B+7)°
+a(46° = 4By =¥°) (B =) (B+7)q-1
—B(46° - 372‘) (B—=7) (B+7)%,

(26° =7*)" (B=7) (B+7)
_ BB+ + (487 =467y = ") g — B(4F" = 37%) ¢,
(287 —72)°

which is the same as the total profit given by (40) for point (¢_i, aB(8 + v)/(26% — ¥*) —
Byq-1/(26* —~?)) in triangle EFL. Thus the total profit as a function of (¢_;,q;) is continuous
on the boundary between triangle FF L and pentagon 0LFGM. The same observation applies to
the total profit as a function of (¢_;,q;) in triangle GHM. Hence, in Case B with intermediate
capacity, it is sufficient to optimize (¢_;,¢q;) over pentagon 0LFGM only, that is, it is sufficient to
restrict attention to feasible values of (¢_i, ¢;) corresponding to Case 3. The rest of Case B follows
in the same way as for Case A with small capacity.

Case BI. 7/8 <0 and [1+/B)/[2 — (v/B)?] < busmfor < 2/(2—/B). that is, v < 0 and aB(5 +
)/ (28% =7*) < buin < 208/(28 —7):

Cousider the optimal value of (¢_;,q,) in pentagon O0LFGM. Since b, < 2a8/(28 — ) < a,
it follows that by, = min{«, byin,2a8/(26 — v)}, and thus the value of (¢_1,q1) in pentagon
O0LFGM that maximizes the total profit is ¢*; = ¢f = byin/2, and the maximum total profit is
(2 = biyin ) bmin /[2(8 —y)]. The resulting equilibrium price of each seller is y = (2ac—byin) /[2(8 —7)],
and the resulting equilibrium demand of each seller is equal to ¢; = by, /2.

Case B2 7/8>0 and [1+/B)/[2 — (v/8)?] < busm/or < 2/(2—7/B). that is, > 0 and af(5 +
Y)/(28% =7*) < buin < 208/(28 —7):

If v/8 > (v/5—1)/2 (and thus o < aB(8+7)/(26% —7?)), then a = min{ca, by, 2a8/(26 — )},
the value of (¢_;,¢:) that maximizes the total profit is ¢*, = ¢f = a/2, and the maximum total
profit is (2a — a)a/[2(8 —v)] = &?/[2(8 — 7)]. The resulting equilibrium price of each seller, given
by (41), is y; = «/[2(8 — )], and the resulting equilibrium demand of each seller, given by (42), is
equal to ¢ = /2. In this case the optimal resource exchange z* is such that ¢* |, + ¢f = @ < byin,

that is, some capacity is not used. If v/8 < (v/5 —1)/2 (and thus a > aB(B +7)/(28% — 7?)),
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then there are two possibilities. If « < b,;,, then as before, ¢* ; = ¢ = «/2, the equilibrium price
of each seller is y; = a/[2(f — )], the equilibrium demand of each seller is equal to ¢f = a/2,
and the maximum total profit is a?/[2(8 — v)]. Otherwise, if by, < a, then ¢* | = ¢} = byin/2, the
equilibrium price of each seller is y; = (2a — buin) /[2(8 — 7)], the equilibrium demand of each seller
is equal to ¢ = byn/2, and the maximum total profit is (2 — byin) bmin/[2(8 — )]

Case C (large capacity). byin/a>2/(2—y/p), that is, by, > 2a8/(26 —7):

In Figure 9, line ABC'D shows an example of pairs (¢_;,¢q;) such that ¢ ; + ¢, = by, for a given
value of b, > 2a6/(28 —y), and triangle 0AD shows pairs (¢_;,q;) > 0 such that ¢ ; +¢; < byy.
In this case with large capacity by,;,, there are feasible values of (¢_;,q;) in quadrilateral 0LI M in
Figure 9 corresponding to Case 3, there are feasible values of (¢_;,q;) corresponding to Case 2, for
example in quadrilaterals ABIL and DCIM in Figure 9, and there are feasible values of (¢_;,¢q;)
corresponding to Case 1, for example in triangle BCT in Figure 9.

For any point (¢_,,q;) in ABIL, there is a point (q_1, aB(8+7)/(28% —v*) — Byq_1/ (287 —4*))
on the boundary IL between ABIL and 0LIM with the same total profit as at point (¢ _1,q).
It was shown under Case B that the total profit as a function of (¢ _1,q;) is continuous on the
boundary. The same observation applies to the total profit as a function of (¢_;,q,) in DCIM.
Hence, in Case C with large capacity, it is sufficient to optimize (¢_;,q;) over quadrilateral 0LIM
and triangle BCT only, that is, it is sufficient to restrict attention to feasible values of (¢_i,¢q;)
corresponding to Case 3 and Case 1.

Case C1. /B <0 and byin/a>2/(2—7y/B), that is, v <0 and by, > 2a5/(28 —7):

Since 2af/(28 — v) < a and by, > 2a8/(26 — 7), it follows that 2af/(28 — 7v) =
min{ e, byin, 2a8/(26 — v) }, and thus the value of (¢_;,q;) that maximizes the total profit over
OLIM is given by ¢*, = qf = /(28 — ) represented by point I, and the corresponding total
profit is (2a—2a8/(28 —v))2aB/(28 —v)/[2(8 —7)] =2a*B8/(28 — v)*. Also, as shown in Case 1,
all values of (¢_y, ¢ ) in triangle BCT have the same total profit of 2a?3/(28 —+v)*. Thus, any point
(g_1,q1) in triangle BCT represents an optimal resource exchange for Case C1. For all such optimal

resource exchanges, the resulting equilibrium price of each seller, given by both (32) and (41), is
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yr =a/(28 —7), and the resulting equilibrium demand of each seller, given by both (33) and (42),
is equal to aff/(28 — 7).

Case C2. v/B >0 and by, /a>2/(2—/p), that is, v >0 and by, > 2a8/(26 —7):

Since by, > 2af/(26 —y) > a, it follows that o = min{«, by, 208/(28 —7) }, and thus the value
of (g_1,¢:) that maximizes the total profit over 0LIM is ¢* | = ¢f = /2, and the corresponding
total profit is (2a— a)a/[2(8—7)] = &*/[2(8 —7)]. Also, all values of (¢_;,q;) in triangle BCI have

the same total profit of 2a?/(2 —v)?. Note that

AB% — 4By +~° > 487 — 4By

= (2B—7)* > 4B8(B—7)
o? 20203
2(8—1) = (28 —7)?

Thus the optimal point for Case C2 is ¢* | = ¢f = /2, and the maximum total profit is o /[2(5 —7)]-

=

The resulting equilibrium price of each seller, given by (41), is y; = «/[2(8 — )], and the resulting
equilibrium demand of each seller, given by (42), is equal to ¢f = «/2.

Inspection of the results above for the settings with no alliance, perfect coordination, and a
resource exchange alliance reveal that the results can be summarized by 5 cases, as in Table 1.

Consumer surplus. To calculate the consumer surplus associated with demand model (13), it is
instructive to start with a utility model that leads to demand model (13). Consider a representative
consumer who consumes z_; units of the product sold by seller —1 and z; units of the product sold
by seller 1. Suppose that the resulting utility is given by U(z_1,21) :=a_12_1 + a1z1 —b_12%, /2 —
bi23/2—cz_1z with b_y,by,b_1b; —c* > 0. Given a price p; for the product sold by each seller i, the
consumer chooses quantities (z_;, z;) to maximize the consumer surplus U(z_;,21) —p_12 1 —p121.
It follows that the chosen quantities satisfy

aib_i —a_;c b—i + C
b_1b1 —c2 b_1b1 — Czpt b_1b1 — (32p_z

Zj

This utility model leads to the demand model (13) if @ = (a;b_; —a_;c)/(b_1by —*), B="1b;/(b_1b, —
c?),and y=c¢/(b_1by — ¢?) for i = +1, that is, if a; = a/(B—7), b; = B/(B* —~?), and ¢ =v/(5* —?)

for 7 = £1.
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In regions 1 and 2 in Table 1, the resulting consumer surplus is given by

200 — bmin bmin 200 — bmin bmin _ b2

min

26—7) 2 2(B-7) 2 4(B—)

U(bmin/Za bmin/2) -

In regions 3 and 4, the resulting consumer surplus is given by

« af « af o B2

R A L T R T R T T R (R T R

In region 5, the resulting consumer surplus is given by

Q o?
2

T 4(B—7)

(87 (87 (87

B-7)2 2(B—)

U(a/2,a/2)—2

Thus, in region 1 all three settings have the same consumer surplus. In region 2, the consumer
surplus under perfect coordination and under the alliance are the same, and as shown in Section 3.2,
both are larger than the consumer surplus under no alliance. To compare the consumer surplus

under the alliance and under no alliance in regions 3 and 4, note that
Oé2 S a2 52 ‘
9B—7) ~ (B—7)(28—7)?
& APy +y° <587

which holds since v € (—f, ), and thus in regions 3 and 4 the consumer surplus under the alliance
is greater than the consumer surplus under no alliance. To compare the consumer surplus under

the alliance and under perfect coordination in region 3, note that

br2nin a2/82
4B—7) — (B—=7)(28—7)?
2af3
bmin =
= > 25_7

and thus in region 3 the consumer surplus under perfect coordination is greater than the consumer
surplus under the alliance. To compare the consumer surplus under the alliance and under perfect

coordination in region 4, note that

012 0[2 52

16—~ B-12B—7"
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& (2B—)" 2 4p°

which holds since v < 0 in region 4, and thus in region 4 the consumer surplus under perfect
coordination is greater than the consumer surplus under the alliance. Finally, in region 5 the
consumer surplus under perfect coordination and under the alliance are the same, and both are
larger than the consumer surplus under no alliance by a factor of 9/4. Note that, similar to total
profit, the consumer surplus under perfect coordination and under the alliance are the same except

when capacity is large (bmin > 2a8/(28 —)) and the sellers’ products are complements (y < 0).

Appendix A.4: Perfect Coordination with Product Differentiation

The model of perfect coordination introduced in Section 3.2 (with details given in Section 7) was
based on a model of demand d for the two-resource product given by d =max{0, & —B(§_1 + 1)},
and the model of an alliance introduced in Section 3.3 (with details given in Section 7) was based
on a model of demand d;(y;,y_;) for the two-resource product of seller 7 given by d;(y;,y_;) =
max{0, o — fy; + yy_;}, where @ =2a +2(f —y)(c_1 + ¢;) and B =2(B8—7). Thus, the model of
perfect coordination in Section 3.2 does not make provision for different brands of the two-resource
product, but the model of an alliance in Section 3.3 makes provision for different brands of the two-
resource product. In this section we consider a model of perfect coordination that makes provision
for different brands of the two-resource product.

The demand d;(y;,y_;) for the brand 7 product sold is given as follows:

di(yiry—i) = a—PByi+7y—

where as before y; denotes the excess of the price of the brand ¢ product over the marginal cost
¢_1 + ¢, and we consider only values of (y_;,y;) such that o — fy; +yy_; >0 for i = £1.
First consider the case in which the capacity is not constraining (it is determined later what

amount of capacity is sufficient for this condition to hold). In this case, the total profit is given by

9-1,91) = yad i (y-1,y1) +udi(y,y-1) = oy +y) —BEE +yi)+2yy
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Note that

a—2By1 +2yy_q

Vig(y_1,y1) = [_Q?Yﬁ _2;%]

—2By_1+2
Vg(y—1,y1) — |:Oé 5?4 1 7%]

and thus V2?g(y_1,y;) is negative definite (8> 0, 82 —y* > 0), and hence g is a concave quadratic

function. Therefore, the prices that maximize the total profit are given by

* _ * — a
Y, = Y 2(5_7)7 (49)

and the corresponding total demand at the optimal prices is equal to a. Thus, if b,;, > «, then the
total profit of the two sellers under perfect coordination is given by 2(5—;) Note that the optimal
prices, demand, profit, and consumer surplus are the same as for perfect coordination in Section 3.2
when b,;, > «.

Next consider the case in which b,;, < a. First we consider price points (y_i,y;) such that
d_1(y_1,91) +di(y1,Y_1) < bmin, and then we consider price points (y_1,y;) such that d_;(y_1,41) +
dy(y1,Y_1) > bmin- It follows from the results above for g that the point (§_;,7;) that maximizes g
subject to the constraint d_;(y_1,y1) +dy(y1,y_1) < bpin satisfies d_(§_1,91) +d1(F1,9-1) = bumin,

that is, 2a— (8 —7)(§_1 + 1) = buin. Let

91(y1) = g (20 = bwin] /[B =] = y1,11)

_ 200 — bmin - (20( - bmin)2 9 <20[ - bmin - )
g B G +2(8+7) Tpo, U)u

Note that g; is a concave quadratic function with maximum at ¢, = (2a — by;,)/[2(8 —v)] (and
thus §_, =91 = (2 — bmin) /[2(8 —7)])-

Next consider price points (y_;,y:) such that d_;(y_1,y1) + di(y1,¥_1) > buin, that is, 2a — (8 —
Y)(Y_1+ Y1) > bumin- The model should specify how capacity by, is to be allocated between the two
brands if d_y(y_1,y1) +di(y1,Y_1) > bumin- There are various ways to allocate constrained capacity.

Here we present one such way, the equal rationing rule, in detail, and then we point out other ways
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that lead to the same results. Under the equal rationing rule, if d_;(y_1,v1) +d1(y1,Y-1) > bumin,

then the same fraction A of the demands d;(y;,y_;) for the different brands is satisfied, where

bumi b
A — min — min
d_1(y—1,11) +di(y1,9y-1) 20— (B =) (y-1 +v1)

Then, the total profit is given by

92(y—1,11) = My_1 (= By_1 +yy1) + Ay (o = Byr +yy-1)

aly_r+y1) = Bly—1+u)> +2(6+7)y_1m
20— (B =) (y-1 +v1)

= bmin
Let y:=y_1 + 11, and let

95(Y,y1) == 92(y — y1,y1)

_ W= By 28 +7)yy — 2B+ 7)yi
- 20— (B—7)y

Recall that, in this case, 2a — (8 — ) (y—1 + Y1) > bmin, and thus y < (2a — byin) /(B — 7). First,
consider any fixed value of y € [0, (2ac— b,in) /(8 — )], and maximize g;(y, -) with respect to y;. Note
that gs(y, ) is a concave quadratic function with maximum at ¢, =y/2 (and thus § ; =4, =y/2).

Next, let

94(y) == 92(y/2,y/2)

i 20y +yy* = By
2 2a—(B—7)y
bmin

2

2

Note that the maximum of g, over y € [0, (2 — byin) /(8 —y)] is attained at y = (200 — byin) /(B —7),

and thus §_; =91 = (2a — byin) /[2(8 — 7)]. Therefore, if by, < @, then the optimal prices are

* * - R R ZOé—bmin
y_1=y1=y71=y1=y71=y1=m (50)

with corresponding total demand equal to b,,;,. Thus, the total profit under perfect coordination
is equal to (2t — byin ) biin/[2(8 — 77)]. Note that the optimal prices, demand, profit and consumer

surplus are also the same as for perfect coordination in Section 3.2 when b,;, < a.
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Other rationing rules also lead to the same results. For example, suppose that the demand for
brand —1 is satisfied first and then the remaining capacity, if any, is used for brand 1. In this case,

the total profit is given by

95(y—1,91) = y—1min{bui,, @—By_1 +yy1 } +y1 min{max{0, b, — (—By_1+yy1) }, a—Byr +7y_1}

For this rationing rule the optimal prices are same as in (50).

Appendix B: Proof of Theorem 1

Theorem 1 Suppose that the problem (21) is feasible and that the matriz ¥, defined in (22), is
positive definite. Then problem (21) has an optimal solution (y*,,y;, A", ;) with (y*,,y;) being
unique. Moreover, if the optimal objective value of problem (21) is zero, then (y*,,y}) is the unique
Nash equilibrium.

Proof. The objective value of problem (21) is bounded below by zero. It is known that a quadratic
program with a bounded objective value has an optimal solution. To establish uniqueness, consider

the problem

min {f(z,y):=2"Qz+a'z+b"y} (51)

(z,y)eX

where X CR™ x R"2 is a convex set and () is an n; X n; positive definite matrix. Let (z7,y}) and
(x3,y5) be two optimal solutions of (51). Consider the function ¢(t) := f(tz7 + (1 —t)z5, ty; + (1 —
t)y3). Note that ¢ is a quadratic function, ¢(t) = at® + Bt + v, where a = (2] — 23)'Q(z] — z3).
Note that a > 0 since Q is positive definite, and thus ¢ is convex. Convexity of X and optimality
of (z},y;) and (z3,y;) implies that ¢(¢) > ¢(0) = ¢(1) for all t € [0,1]. Moreover, convexity of ¢
implies that ¢(t) < ¢(0) = ¢(1) for all ¢t € [0,1]. Hence ¢(t) = ¢(0) = ¢(1) for all t € [0,1], and thus
a=0. Since @ is positive definite it follows that ] = 3. Finally, if the optimal objective value of
problem (21), and hence of problem (20), is zero, then (y*,,yr, A* |, A]) satisfies the necessary and

sufficient optimality conditions (19), and thus (y*,,y;) is the Nash equilibrium. g
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Appendix C: Details of Demand Transformation for No Alliance Model

The parameters E, B, C in demand model (14) and the parameters E, B,C in demand model (23)
should be related in a particular way to facilitate a fair comparison of the prices, demands, total
profit, and consumer surplus between the settings with and without an alliance. In this section we
derive the relation.

The relation between the demand models with and without an alliance is based on the assumption
that the overall demand level for each product is the same with and without an alliance. Recall
that L; denotes the set of products which can be offered by seller ¢+ with and without an alliance,
for 1 = £1, and Ly denotes the set of products which could be offered only under an alliance. In
addition, let L,; C L, denote the set of products in L, that can be offered by seller ¢ under an
alliance, and let L; _; C L; denote the set of products in L; that can be offered by seller —i under an
alliance, but not without an alliance. Thus, for the setting with an alliance the number of demand
equations (and prices) for each seller ¢ is m; = |L;| + |Lo ;| + |L_;;|, and for the setting without an
alliance the number of demand equations (and prices) for each seller i is only |L;]|.

The following example is used to explain the derivation of the relation between the demand
models. Seller —1 produces resource A, and seller 1 produces resources B and C. With an alliance,
the following products are offered by each seller: Product A using 1 unit of resource A each,
product B using 1 unit of resource B each, product C using 1 unit of resource C' each, product BC
using 1 unit of resource B and 1 unit of resource C' each, and product A?BC using 2 units of
resource A, 1 unit of resource B, and 1 unit of resource C' each. Without an alliance, product A is
offered by seller —1 only and seller —1 captures all the demand for product A, and products B, C,
and B(C' are offered by seller 1 only and seller 1 captures all the demand for products B, C, and BC.
Product A2BC is not offered by either seller, but there still is the same demand for product A>BC;
buyers buy each unit of product A2 BC by buying 2 units of product A from seller —1, and 1 unit
of product BC from seller 1. As shown later, the demands for products A and BC' derived from

the demand for product A?BC is added to the respective demands for products A and BC by
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themselves. Note that this derivation assumes that buyers buy each unit of product A>BC by
buying 1 unit of product BC from seller 1 instead of buying 1 unit of product B and 1 unit of
product C separately from the same seller. This assumption may be questionable if the price of
buying products B and C separately is less than the price of product BC'. In the numerical work,
we verified that the prices of multiple resource products offered by a seller were less than the sum
of the prices of any products that could be bought separately to make up the multiple resource
product. Thus, in this example, L_; = {A}, L, = {B,C,BC}, Ly _, = {A*BC}, L,, = {A*BC},

L ,,={A}, and L, , ={B,C,BC}. With an alliance, the demand for each product is given

by (14):
di,A = — L A AYiA — Ei,A,Byi,B - Ei,A,C’yi,C’ - Ei,A,chi,Bc - Ei,A,A2chi,A2Bc
+B_jaaY—ia+B_iaBY—iB+ B_jacy-ic+B_iaBcy-ic+B_iaapcy-iszpc+Cia
di,B = —E@B,Ayi,A - Ez}B,Byi,B - Ei,B7Cyi7C - Ei,B7BCyi,BC - Ei,B,A2chi,A2BC
+B_;BaY—ia+B_iBBY—in+B_ipcy-ic+B_ippcY—isc+B_;papcy-iszec+Cin
di,C = —Ljc,AYi,A — Ei,C,Byi,B - Ei,C,Cyi,C - Ei7C7BCyi,BC - Ei,C,AzBCyi,AZBC
+B_ic,ay—ia+B_icYy—i+B_iccy—ic+B_icscY-ic+B_icapcy-iszpe+ Cic
di,BC = — L BC,AYiA — Ei,BC’,Byi,B - Ei,Bc,cyi,c - Ei,Bc,chi,Bc - Ei,BC7A2BCyi7A2BC
+B_; Bc,aY—ia+B_; Bc,BY—i,B + B_iBc,cY—ic + B_i Bc,BCY—i BC
+B_; pc,a2pcY—iazpc + Ci e
di,A2BC = — Ly A2BC,AYi,A — Ei,A2BC’,Byi7B - Ei,A2BC,Cyi7C - Ei,A2BC’,BCyi,BC - Ei,A2BC’,A2BC’yi,A2BC

+B_; a2pc,aY—ia+ B_; a2peBY—i,p + B_; a2pc.cY—ic + B_;i a2Bc,BcY—i,BC
+B_; a2pc,a2BcY—ia2Bc + Ci a2pc
To use these observations and the demand functions given by (14) for the alliance setting to

derive the demand functions for the products with no alliance, first note that the demands in (14)

depend on |Lg, 1|+ |Lo1|+|L_1| 4+ |L1|+|L_1 1|+ |L1,—1| prices y; ;, but the demands in (23) depend
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on only |L |+ |L;| prices. Thus, to derive the demands of the products with no alliance (as a
function of the |[L_;|+ |L;| prices § with no alliance), it remains to determine appropriate values
to substitute into (14) for the |Lo _1|+ |Lo1| + |L—1| + |L1| + |L-1 1| + |L1,—1| prices y given the
prices g. First, consider the easy case: if a product £ is offered by the same seller ¢ in both the
setting with an alliance and the setting without an alliance, that is, £ € L;, then simply substitute
price §;  for y; , in the demand model (14). Thus, in the example above, § 1 4, 91,5, U1.c, and U1 sc
are substituted for y_, 4, y1 B, ¥1,c, and y; pc respectively. Next, if a product £ offered by a seller ¢
in the alliance setting is not offered by any seller in the no alliance setting, that is, £ € Ly ;, but it
can be assembled in the no alliance setting by buying a_; units of product ¢_; from seller —1 and
a, units of product ¢; from seller 1, then substitute price a_,y_1 ;_, +a191 ¢, for y; , in the demand
model (14). Thus, in the example above, 2§_1 4 + 91 pc is substituted for y | 42pc and y; s2pc-
Next, if a product £ offered by a seller ¢ in the alliance setting is not offered by seller ¢ in the no
alliance setting, but it is offered by seller —i in the no alliance setting, that is, /€ L_; ;), then we
choose the price y; , in the demand model (14) so that together with the other prices yy », i’ = %1,
V'€ Ly ULy, already determined as described above, will equate d;, to zero. Note that if there
are n such products, then n linear equations are obtained by equating the n linear expressions for
d; ¢ to zero, and under reasonable conditions these equations can be solved for the n desired values

of y; .. Thus, for the example above, the system of equations

_E17A7Ay17A - El,A,ByLB - E17A7Cy1,0 - ELABC?JLBC - E17A7A2BC’(2y71,A + yl,BC)

+B_1 aa¥-1,4a+B_1,aY-1.8+B_1,acy-1,c+B_1,aBcY-1,8c + B 1 4 4280(20-1,4+ G1,80) +Cia

—E—1,B,A§—1,A - E—l,B,By—l,B - E—1,B,cy—1,c - E—l,B,ch—l,BC - Efl,B7A2BC(2g—1,A + 231,30)

+B1,5,ay1,a+ B1 s, + Bi,p,cii,c + Bipsci,pe + B g azpc(20-1,4+01,8c) +Co1

_E717C7Ay717A - Efl,C,BnyB - E717C70y71,0 - E717C7BC?J717BC - E—17C7A2BC(2y71,A + yl,BC)
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+B1,c,ay1,4 + Bic.st,B + Biccth,c + Bioset,pe +Bioazpo(20-1,4 +T1,80) +Co1 o

=0

_E—l,BC,Ag—LA - E—l,BC,By—l,B - E—1,Bc,cy—1,c - E—l,Bc,ch—LBc - E—1,BC,A2BC(237—1,A + 171,30)
+Bi1 Bc,ay1,4 + Bi se,BY1,B + Bi,Bo,c1,c + Bi,po,pcl1,Be + Bl,BC’,A2BC’(2g—1,A +91,8¢) +C_1 BC
=0

is solved for y; 4, Y_1,B, Y-1,c, and y_; pc as linear functions of y_ 4, U1 B, ¥1,¢, and y; pc. Suppose

the solution is

Yi,4 = b1 a,—1,4U-1,4 +b1,41,801,8+b1,a1,cY1,c+b1,41,BcY1,Bc 01,40
Y18 ="b_1p-1,409-1,4+b_1p1.801,8+b_1,B1,c01,c+b_1B1,BcU1,BC b 1,80
Y_1,c =b_1c_1,49-1,4+b_1.01,8Y1,8+b_1c1,001,c+b_1c1,B0V1,Bc+b 1,00
Y_1,80c = b_1,Bo,—1,40-1,4+b_1,801,BY1,B+b_1,BC1,cT,c+b_1,BC1,BCYL,BC D 1,BCO
Now we are ready to use the observations above and the demand functions given by (14) for the

alliance setting to derive the demand functions for the products with no alliance. For the example

above, we obtain the following demand functions:

J_l,A = —FE 3 aa0-14—FE_1450b-185-1,40-1,4+b_151 8018 +b_1.81.c01,c+b-181,8Bc01,8¢c+b-180)
—FE_ac(boio—1,49-1,4+b_1,c1,801,8+b_1,c1,c01,c+b_1,01,8B001,B0 +b_1,00)
—E_1 a,8c(b-1,B0,-1,49-1,4+b_1 Bc1,BY1,B +b-1,BCa,c,c +b-1,8c1,BCY1,BC +b-1,BC0)
—E_y pa20(29-1,4+91,80)
-I-B1,A,A(b1,A,_1,A17—1,A + bl,A,l,Bgl,B + bl,A,l,Cgl,C + bl,A,l,BC?JLBC + bl:A:O)
+B1,4,8%1,8 + Bi,a,cth,c + Bi,apcti,po + Biaazpc(2§-1,4 +91,80¢) + C_i 4
+2[-E_, w2pc.a¥-1,
—E 1 a2pep(b-1,8,-1,40-1,4+b_1 518018 +b_181cl,c+b_1 81 Bc0,BC+b_1B0)

—FE | a2poc(borc1,40-1,4+b_101,801,8 +b_1,01,c0,c +b_1,01,8c01,B0 +b0_1,00)
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—E_ a2pope(b-1,80,-1,49-1,4+b_1,501,891,8 + 01,501,001, +b-1,Bo1 BB +b-1,800)
—E_; a2pc,a2p0(20-1,4+91,8C)

+B; a2pc.a(bia,—1,49-1,4+b1,a1,801,8+b1,a1,001,0 +b1,a1,80T1,80 + b1,a0)

+By a2pc,sU,8 + B azpe.cio+ Biazpe,seipe + By azpeazpe(29-1,4 +91,80) + C1 a2pc
—E) a2pc,a(bia—1,47-1,4 +01,41,801,8 +b1,a1,001,¢ +b1,a1,8001,8¢ +b1,a0)

_El,A2BC7Bg1,B — ElyAchycgh,c - El,A2BC,BCg1,BC - El,A2BC,A2BC(2g—1,A + ?JLBC)

+B_1 42B0,4Y-1,4

+B_; azpep(b1,8,-1,40-1,4+b_1,8.1,8%1,8 +b_181,c01,c +b_1B1,Bc01,B0 +b_1,8)0)

+B_; azpec(bo1,0-1,49-1,4 +b0_1,c1,801,8 +b1,c1,c01,0 +b_1,01,B0T1,B0 +b_1,00)

+B_) a2pe,pe(b18e, 1,40 1,4+ b 1Bo1 BB +b 1801000t b 1oL BCYLBC + b 1 BCO)

+B_1 a2pc,a2pc (21,4 +91,8¢) + Cl,AZBC]

= —Fipa(bi,a—1,40-1,4+b1a1,801,8+b1a1,c01,c+b1a1 B0 ,Bo+b1,40)

—FE\ 580,58 — E1Bc,c —Ei B et Bc —Ei  a2pc (21,4 + §1,8C)

+B_1 g aY-1,a+B_155(b-1,8,-1,40-1,4+b_1,81,891,8+b_181,cV1,c +b_1,81,8B01,BC +b_1.B0)
+B_ 1 5c(bo10-1,40-1,4+b_1.01,801,8+b_1.c1,c01,c+b_1,c1,8001,80 +b_1,00)

+B_1 5ec(b_1,80,-1,40-1,4+b_1,801,801,8+b_1801,c01,c+b_1,8c1,B0T1,B0+b_1B0C0)

+B | g a2pc(29-1,4+ ,8c) +Ci

= —Fica(bia_1,49-1,4+ b1, 41,8018 +b1,a1,cU1,c+bi,a1,BcY1,B0+ b1 a0)

—FEi c8Y1,8 — Evc,0t,c — Fic.BoY,BC

—FE) ¢ a250(2J-1,4+ T1,8¢) + B_1,c,a0-1,4

+B 1 cp(b_1,8-1,40-1,4+b_11,80%,8+b_1,81.0c01,c+b_181,8c01,80+b_1,B0)

+B_ 1 co(bor,c1,49-1,4+b_101,801,8+b_101,c01,c+b_1.01,8001,B0+b_1,00)

+B_1 cpc(bo1,o,—1,40-1,4+ b1 8c1,801,8+b_1,8c1,c0h,c +b_1,801,BcU1,BC +b_1,BC))

+B ) coa2pc(2§-1,4 +91,8c) +Cic
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Jl,BC = —FEipealbia—1,40-1,4+b1a1,801,8+b1,a1,c01,0+b1,41,8B001,80+b1,40)
—F\ e, ,B — F1 Bo,cti,c + Bise,cli,BC
—FE\ go.azpc(29-1,4 +T1,8c) + B_1,Bc,a¥-1,4
+B_1ge,p(bo1,B,-1,40-1,4+b_181,801,8+b_181,c01,c+b_1,81,80U1,B0+b_180)
+B_1 gec(boi,c—1,409-1,4+b_1.01.801,8 +b_1.c1.001,c+b-1,c1,8B¢01,B0 +b_1.00)
+B_1 ge,pe(b-1,80,-1,40-1,4+b_1,8c1,801,8 +b_1,801,c01,c+b_1801,B0T1,B0+b_1B0C0)
+B | poazpc(29-1,4+01,8c) +Crec —E | a2pc.a¥-1,4
—E—1,A2BC,B(5—1,3,—1,,43]—1,,4 +b_181,801,8+b_1.81,cY1,c+b_181,BcU1,Bc +b_1B,)
—FE_ a2poc(bor,c-1,40-1,4+b_1,01,801,8 +b_1,01,c0,c +b_1,c1,Bc01,B0 +b_1,00)
—FE | a2popo(boipo,—1,49-1,4+b_18c1,801,B+b_1,801,cV1,c +b_1,B01,BCcT1,BC +b_1,BC)0)
—E_i a2pc,a2B0(29-1,4+ 91,8C)
+B; a2pca(bia,—1,47-1,4+b1,a1,801,8+b1,a1,001,0 +b1,a1,80T1,80 + b1,a0)
+B1 a2pc,sY1,8B T Bi a2pe,c1,c + Biazpe,soyi,Bo
+By a2pc,a2po(20-1,4+1,80) + C_1 a2Bc
—FE, a2poa(bi,a,—1,40-1,4+b1,a1,801.8+b1a1.001,c+ b1 a1,B001,B0+b1,40)
—FEy a2pe,sYr,B — By a2po,cU1,c — Er a2Be,BoY1,BO
—FE) a2poazpe(29-1,4 +01,8c) + By a2Bc.aT-1,4
+B71,A2BC,B(b—l,B,—l,Ag—l,A +b_181.801B+b-1B1.cV1.c+b_181,BcY1Bc+b-1B0)
+B_; azpoc(bo1,0-1,49-1,4 +b0_1,ca,801,8 +b1,c1,c01,0 +b_1,01,8B0T1,80 +b_1,00)
+B | a2popo(b-1,Be,—1,40-1,4+b_1,8c1,B01,B +b_1BCc1.cU1,c +b_1,BC1,BcU1,Bc +b_1,BCo)
+B_1 a2pc,a2pc (29-1,4 +T1,8¢) + C1 a2pc

Thus, the demand model given by (23) is obtained for the setting with no alliance. For the example

above, the parameters F, B,C are given by E, B,C as follows:

Esaa=E aa+E 1 a8bipaatE 1 acbac1,a+E 1 acbiBo—1,4+2E 1 4 a25c
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EN‘LB,B
E\pc
El,B,Bc
B\ o
ELQC
El,C,BC

E\ Be,

=By aabi,a,—1,4 — 2By 4 a2pc +2(E_1 a2pe,a+E_1 a2pe,sb-18,-1,4

+E_1 azpocborc—1,.4+E_1 a2pc peb_1,B0,—1,4 T 2E_1 a2pc,a2Bc — Bi a2Bc,abi,a,-1,4
—2B; s2pc.azpe + By azpoabia 1,4+ 2E) q2pcazpe — Bo1 a2pc.a

—B | a2pepbo1,-1,4—B 1 a2o.cbo1,0,-1,4 — By a2pe.pebo1,Be,—1,4 — 2B 1 a2pcoazpe)
E\ g abi a1+ EiBe—B_188b_181,8—B_1B0b-1,01,8—B_1BBCcb-1,BC1,B

E\ B abiai,c+Eipc—B_iBb_1B1,0—B_1Bcb-1,01,0c—B_1,BBcb-1,B01,C

E\ B abi,a1,Bc+ BB Bc — B_18b_1B1,B0 —B_1,B0b-1,01,B0 — B_1,B,BCb-1,BC1,BC
Eicabiarg+Eicp—B 1cb181,8—B_1c0cb_1,01,8—B_1,c,80b_1,80c1.8

Ey coabiarc+Ervceo—B_icpbicic—B_iccboici,c—B_iccboipeac

Ey ¢ abi ag,e+Ey oo — B_1,0,8b-1,81,8c —B_1,c,cb_1,01,80 — B_1,0,8cb_1,BC,1,BC

E\ Bo,abi,ag,+ B e, — B_1,pe,Bb-1,81,8— B_1,Bc,cb-1,B0,1,B — B_1,BC,BCb-1,BC1,B
+E 1 s2popbo1B1,BtE 1 a2pc.cbor,c1,8+E 1 a250.800-1,B01,8— B1 a2pc,abi,41,8— B1 a2pc.B

+F) a2pc,abians+ By a2pop — Boi a2pe Bb-1,81,8 — B_1 a2pc.cb-1,c,1,B — B_1,42B0,Bcb-1,BC,1,B

E\ o, = Eipc,abiaqic+ By pec— B_1,Bo,b-1,81,c — B-1,B0,cb-1,B01,0c — B-1,BC,BCb-1,BC 1,0

+E_y a2pc,pb-1,B1,c + E_1 a2pc,cb-1,ch,0 + E_1 a2pe,eb-1,801,c — Biazpe,abiay,c — Biazpec

+E a2pc,abian,c+ By a2poc — By a2pe,b-1,81,c — B_1, a2Bc,cb-1,01,0 — B_1 a2Bc,Bcb-1,B01,C

E\ po,pc = By po,abi,a,Be — Bipe,se + By po azpe

—B_1 Bc,Bb-1,B,1,8B0 — B_1,BC,cb-1,BC1,BC — B_1,BC,BCb-1,BC1,BC — B_1 BC,A2BC

+E 1 a2popb-1,B1,Bc + E_1 a2pc.cbv,01,B0 +E_1 a250,800-1,B01,Bc + E_1 2504280
—Bi a2pc,abi,a1,B0 — Bi a2pe e — Bi a2Bc,a2BC

+E; a2pc,abiag,Be + By a2pe e + B a2pc,a2Be

_B—l,AQBC’,BbfLB,LBC - B—l,AzBC’,C’bfLCQl,BC - B—l,AzBC,BC’bfl,BCJ,BC - B—l,A2BC,A2BC
—FE1 pabia—1,4—2E, g s2pc +B_1 A

+B_188b_1,B,—1,a+B_1Bcb1c-1,4a+B_1BBcb_1,B0,-1,4+2B_| g a25c



72

B_ica=—FEicabia_1,4—2F ¢ a2pc+DB_1,c,a
—B_i ¢,Bb_1,B,—1,4+B_1ccb_1,c—1,4+B_1¢cBcb_1,B0,—1,4 +2B_1 ¢ a2pc
B—l,BC,A = _ELBC’,Abl,A,—LA - 2E1,BC’,A2BC

+B_1,Bo,Bb-1,B,—1,4+ B_1.Bo,cb_1,0,—-1,4+ B_1 Be,Bcb-1,B0,—1,4 + 2B_1 e a2pc — F_1 a2Bc,4
_E—17A2BC’,Bb717B,717A - E—l,A2BC,Cb717C771,A - E—l,A2BC’,BCb717BC,717A - 2E—1,A2BC,A2BC
+B1 a2pc,abia,—1,4 2By a2pc,azpe — B azpo,abia,—1,4 — 2B a2pc azBe
+B 1 a2pepb-1.8-1,4+ B 1 a2pccb1,c,—1,4+B_1 a2pcpcb-1.B0,-1,4+2B_ | a2pc a2pc

Bl,A,B =—Fyapbapis—FE 1acb1c18—E 1 aBcb 1oy +Biraabiais+DBias
—2(E_y a2po,pbo1,1.8—E 1 a2po,cbo1,01,8— FE_1 a20,8cb-1,801,8
+B1 a2pc,abian,B + Biazpe,s — i azpe,abian,e — Fiazpes
+B_; a2pc.sb-1,8,1,8+B_1 a2p0.0b-1,c1,8+ B_1 a2pc.pcb-1,8¢,1,8)

Bl,A,C = —Ey aBb_1B1,c—FE_1,4cb-1,c1,0 —FE_1 aBcb-1,Bci,c+ Biaabiai,c+ Biac
_2(E—1,A2BC,3571,B71,C - E—l,A2BC,Cb—1,C,17C - E—17A2BC,BC’bfl7BC,17C
+B1 a2pc,abi an,c + Bioazpo,c — B azpe,abiag,c — By azpec
+B_ a2pepb-1,81,c + By azpecb-1.c1,c+ By a2pepcb-1,Bo0,0)

Bl,A,BO = —Fi ab_1 81,80 —E_1,4cb_1,c1,80 —E_1,a8cb-1.B01,80 —E_1 4 a28c

+By,4,4b1, 41,80 + Bi,a,Bc + B aa2Bc
—2(E_y a2po,sb-1,81,8c —E_1 a2po,cb_1,ci,80 — E 1 a2po.peb-1,8o1,8c — E_1 a2pc,a2Be
+Bi a2pc,abi an,Be + Biazpe e + Biazpe,azee — i oazpe,abia,Be — By azpese — v a2pe,azpe
+B_; a2pc.sb-1,8,1,8c + B_1 a2pe.cb_1,c1,8c + B_1 a2o,scb-1,8c1,8¢ + B_1 250 42BC)

Co1,4a=C_14+2(C_1 a2p5c +C) a25c)

C'1 B — Cl,B
01 c = C'1 e}

)

Cipc = Cipc+C | s2p5c+C) a2pc
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To state the relation between parameters F, B,C in demand model (14) and the parameters
E‘, B , C in demand model (23) in general, we first develop the notation needed for a concise rep-
resentation. Let the rows and columns of matrix F; be grouped so that the first group of rows
and columns correspond to products in L;, the second group of rows and columns correspond to
products in Ly ;, and the third group of rows and columns correspond to products in L_; ;. Hence
E; can be partitioned into submatrices as follows:

Li Lo; L i
Eii Eio iy L;
Ei= | Eoii Eoioi Eoi-ii Ly ;
E_iii E_iioi E_ii—ii L_;;
This grouping of the rows and columns of E; implies that the rows and columns of d;, y;, B;, and

C; are similarly grouped:

L., Lo_; L;_;

B;_; Bio-i Bii_i L; Yii Cii
B_;=| Boi—i Boio—i Bo,i-—i Loi » wi= |Yioi|, Ci=|Cioil|, di=|di:
B_ii_iB_iio—i B_iii_i L_;; Yi,—ii i—iyi

Note that given the prices ¢ in the no alliance setting, the prices for the same products in the
alliance setting are y; ; = y; € RIZil, Let R; i ¢, denote the number of units of product ¢' € Ly used
to assemble one unit of product ¢ € Ly ;. Then, given the prices y in the no alliance setting, the
price paid to assemble one unit of product £ € Ly ; in the no alliance setting is

Y Riveeiie

=410l
Let R; v € R'Zo.ilxILil denote the matrix with entry R; ;7 4 ¢ in the row corresponding to £ € Ly ; and
the column corresponding to ¢' € Ly. Then, given the prices ¢ in the no alliance setting, the prices
paid to assemble each unit of product in Ly ; is given by

Yio,i = ZRi,i’gi’

i'=+1
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Next, consider the demand for products in L_, ;.

i—ii = —E_ i Vii—E_ii0:Yi0i—F_ii—iiVi—iit+B_ii—iY—i—i+B_iio—iY—io—i+B_iii—iV—ii—i+Ci_ii
= _E—i,i,iyi - E—z’,z’,o,z’ E Ri,i’yi’ - E—i,i,—i,iyi,—i,i
—+1

+B_ii,—iY-i+B_iio—i E R_iwyi +B_iii,—iY—ii,—i T Ci—ii

=41
Then, given the prices ¢ in the no alliance setting, the value of (y_; 1 _1,%1,-1,1) is chosen to set
(d_11,1,dy,1,1)=0. The system of equations (d_,1, 1,d;,_1,1) =0 can be written as —Dy_ + Fg+
C_ =0, where
y—l 1,—-1 ~ g—l C—l 1,—-1 El -1,1,—-1 _Bl -1,-1,1
_ = " , = |7 , C_ = " , D :=
4 [ Y1,—11 ] 4 [ hn ] [ Ci-11 ] |:_B—1 1,1,—1 E_11,-11

IREES]

Fo— —E, 1 1—E _109R 1 1+B 1011 —Ei_10 1R 11+By _11+DB1 10111
—FE_ 1001 +B_i1 1 +B_101 R0 —E_ 10— FE_ 100 +Boii0 1R

Under reasonable conditions D is nonsingular (more specifically, positive definite), and then the

unique solution is y_ = D 'Fy+ D *C_. Let

Ly L, L, Ly
Dl — D:i—1 ng Ll,—l F = F—l,—l F—1,1 L1,_1
= | 1 =
D1,—1 D1,1 L_,, Fy Fi, L i,

Then

Yi—ii = (D LF_; i+ Di_,ilFi,i)gi + (Di_,iz’F—i,—i + Di_,ilFi,—i)g—i + (D 1,C i+ Di_j i)

i,—1 i,—1
_ -1 ~ -1
=2 (Z DFy+DC>
=41 \i''==+1

Next, the demand model (14) is used to derive the demand for each product ¢ € L; that is offered

in the no alliance setting:

dz’,e: —E Ez’,é,é’yi,z’,é’_ E Ez’,é,é’yi,o,i,é’_ E Ez’,e,e’yi,—i,i,e'

{'eL; (’ELO,Z' Z’EL_i,i

+ E B_ioy—i—ie + E B_i0y—io0,—ie + E B_;i o 0y—ii—ie +Cis

el _; f’ELO,,i e,eLi’,i

-|— E E Ril7i7el7( — E Ei’,@’,@”yi’,i’,f” — E Ei’,@’,@”yi’,o,i’,(” — E Ei’,f’,f”yi’,—i’,i’,f”

i =41 KIELO il e”ELi/ KHELO il f”GL_i/ -

1
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—|— E B7i17(/7(//y7i/77i/7(// —|— E B7i17€/7(//y7i/7077117[// —|— E Bfi’,f’,l”yfiﬂi’,fi’,l” —|— Cilll

el _y 'eLy _y OeLy g

The first term in brackets above corresponds to the demand for product ¢ € L; by itself, and the
second term in brackets corresponds to the demand for product ¢ to assemble products ¢' € Ly y,
1" = =£1. In terms of matrix notation, the demands for the products in L; that are offered in the no

alliance setting is given by

dii = [—Eiiyii — Eio.iYi0,i — Ei—iili—ii+ Bi—iy—i—i+ Bio,—iY—i0,—i + Bii—iy—ii—i+ Ciil

)

+ E i (=Eoi iyir it — Eo i 0,5Yir 0,0 — Eoit—i it Yir,— it it
=41

+Bo,it —iY—it —it + Boir0,—irY—it 0,~it + Bo,ir it —yY—it it —ir + Cir 0.17)]
Next, replace vy, ¥io4, and y; _;; with the expressions in terms of § derived above. Then the
demands d; for the products in I; in the no alliance setting as a function of the prices g in the no
alliance setting are obtained, as follows:

zzyz_ 4,0,8 Z Rzz’yz’ - z,—i,i Z <Z D; lHFz” z’yz’+Dlzlloz’ —i’,i’)

=1 \i''==+1

Ji:

+B;, iy-i+ Bio, Z R_; o9y + Big, i Z ( Z D:;qui’hi’?Ji' +Di17ilci’7i’7i’> +Ci;

i'==%1 i'=+£1 \i''=%£1
D

i'==+1

i=+1 i=£1 \i"=%1

+DBoit,—irY—ir + Boit o, —i E R_jt iy

i'==1

E : E : -1 ~ -1
_l_BO,i’,i’,—i’ ( D—i’,i,,, Fl'///J'//yiH —l‘ D—i,,i” Cl'll7_ill7l'll> —l‘ Ci’,O,z”) ]

#=£1 \i"==%1
Note that the demands d; above are consistent with the demand model (23), for the following
parameter values:
E;=FEii+FioRii+FBi_i; Y DiiFri—Bio_iR_i;—Biy_; » DIl,Fy,

i'==+1 i'==+1
RT E RT B
1,870,251 —1,i20,— 14,1

T -1
+ E Ry ; <E0,i’,07i’Ri’,i+E07i’7i’,i’ E D Fin i — Boyro,—it Ry i — Boir it —it E DZ l/ o Fir

i'=+1 i"=+1 i"'=+1

T ~ § ~ E : § : -1 ~ -1
Rz’,i <_E0,i’,i’yz" — EO,i’,O,l" Rz”,i”yi” — EO,i’,—l",z" < Di’,i”’ Fi”’,i” Y + Di’,i” Ci”,—i”,i”

)

)
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~ B 1 -1
B_,=-FE R _;—FE _;; E Dm»/ Fy +DB;, _;+Bo_iR_;_i+DB;;_; E D,M/Fi'ﬁi
i'=+1 i'=+1

T T
—R; Eo—i-it+R;;Boi—i

T ~1 -1
+ E Ry .| —Eoio0Ri i —Eow i E D Fyr —i+ Bowo,—i Ry, i+ Boy o~ E D=5 iy Fir
=41 =41 =41
. . .
Ci=—FE;i i, E D Cy—itir + Bii —i E D=y C vy + Ciy
i =+1 i =+1

E T E -1 E —1
+ Ri’,i _E07i,77i,,i’ Di,7i” Ci”,fi”,i” + BOJ’J”*Z’, D*i”i” Ci”77i”7i” + Ci’,07i,

i'==1 i'==1 i'==1
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