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Revenue Management in Resour
e Ex
hange SellerAllian
esSo Yeon Chun *S
hool of Industrial and Systems Engineering, Georgia Institute of Te
hnology, s
hun�isye.gate
h.eduAnton J. Kleywegt yS
hool of Industrial and Systems Engineering, Georgia Institute of Te
hnology, anton�isye.gate
h.eduAlexander Shapiro zS
hool of Industrial and Systems Engineering, Georgia Institute of Te
hnology, ashapiro�isye.gate
h.eduThe purpose of this paper is to obtain insight into 
onditions under whi
h a resour
e ex
hange allian
e
an provide greater pro�t than the setting without an allian
e, and to propose a model to design a resour
eex
hange allian
e. We �rst 
onsider a setting in whi
h 
ustomers want a 
ombined produ
t assembled fromprodu
ts sold by di�erent sellers. We show that without an allian
e the sellers will tend to pri
e theirprodu
ts too high and sell too little, thereby foregoing potential pro�t, espe
ially when 
apa
ity is large.This provides an e
onomi
 motivation for interest in allian
es, be
ause the hope may be that some of theforegone pro�t may be 
aptured under an allian
e. We then 
onsider a resour
e ex
hange allian
e, in
ludingthe e�e
t of the allian
e on 
ompetition among allian
e members. We show that the foregone pro�t mayindeed be 
aptured under su
h an allian
e. The problem of determining the optimal amounts of resour
esto ex
hange is formulated as a sto
hasti
 mathemati
al program with equilibrium 
onstraints. We showhow to determine whether there exists a unique equilibrium after resour
e ex
hange, how to 
ompute theequilibrium, and how to 
ompute the optimal resour
e ex
hange.Key words : allian
e, resour
e ex
hange, pri
ing, revenue management, sto
hasti
 mathemati
alprogramming with equilibrium 
onstraints, non-
ooperative game
1. Introdu
tionAn important way in whi
h 
arriers su
h as airlines and o
ean 
arriers 
ollaborate is throughthe formation of allian
es. For example, in an airline allian
e ea
h allian
e member (marketingmember) 
an sell ti
kets for 
ights operated by another allian
e member (operating member) and�Resear
h of this author was supported by the NSF awards CMMI-0700161 and DMS-0914785.yResear
h of this author was supported by the NSF awards ITR/DMI-0427446 and CMMI-0700161.zResear
h of this author was supported by the NSF award DMS-0914785.1



2the marketing member 
an put its own 
ode on the 
ight. That enables airlines to sell ti
kets foritineraries that in
lude 
ights operated by multiple airlines, thereby dramati
ally in
reasing thenumber of itinerary produ
ts that ea
h airline 
an sell.Another example of a widely used 
arrier allian
e is the type of allian
e that o
ean 
ontainer 
ar-riers enter into when they introdu
e new joint servi
es. A \servi
e" is a 
y
le (also 
alled a \loop"or a \rotation") of voyages that repeat a

ording to a regular s
hedule, typi
ally with weekly depar-tures at ea
h port in
luded in the 
y
le. Suppose the 
y
le is ports A,B,C,D,E,A. A set of ships isdedi
ated to the servi
e, with ea
h ship visiting the ports in the sequen
e A,B,C,D,E,A,B,. . . . Too�er weekly departures at ea
h port in
luded in the 
y
le, the headway between su

essive shipstraversing the 
y
le must be one week. Thus, if it takes a ship n weeks to 
omplete one 
y
le,then n ships are needed to o�er the servi
e with weekly departures at ea
h port in the 
y
le. Formany servi
es that visit ports in Asia and North Ameri
a, and servi
es that visit ports in Asiaand Europe, it takes a ship approximately 6 weeks to 
omplete one 
y
le, and thus 6 ships areneeded to o�er the servi
e. Taking into a

ount that a large 
ontainer ship 
an 
ost several hundredmillion US dollars (and the trend is towards even larger 
ontainer ships, be
ause larger 
ontainerships tend to have signi�
antly lower per unit operating 
osts), it be
omes 
lear that for even thelarge 
arriers it would require an enormous investment to introdu
e a new servi
e. A solution isfor several 
arriers to enter into an allian
e to o�er a new servi
e. Many servi
es that visit ports inAsia and North Ameri
a, and servi
es that visit ports in Asia and Europe, are o�ered by allian
esbetween two 
arriers. Ea
h 
arrier in the allian
e provides one or more ships to be used for theservi
e. The 
apa
ity on ea
h ship is then allo
ated to all the allian
e members, often in propor-tion to the 
apa
ity that the allian
e member 
ontributed to the servi
e. For example, if 
arrier 1
ontributes 2 ships and 
arrier 2 
ontributes 4 ships to the servi
e, and all the ships in the servi
ehave the same 
apa
ity, then 
arrier 1 
an use 1=3 of ea
h ship's 
apa
ity, and 
arrier 2 
an use2=3 of ea
h ship's 
apa
ity. That way, ea
h 
arrier in the allian
e 
an o�er weekly departures atea
h port in the servi
e even though it did not have enough ships by itself to do so.



3Va
ation pa
kages provide another example of seller allian
es enabling the sale of produ
ts
ombined from the resour
es of several sellers. For example, a va
ation pa
kage may 
onsist ofairline ti
kets for 2 people, a hotel room for 4 nights, and 
ar rental for 5 days. The resour
esused to provide the 
ombined produ
t are provided by 3 sellers: the airline, the hotel, and the 
arrental 
ompany. Computers and peripherals provide another example of produ
ts 
ombined fromthe resour
es of several sellers. There are many similar examples.The examples above illustrate that allian
es are or 
an be important in various industries, andthat allian
es 
an be stru
tured in many di�erent ways. The detail rules of an allian
e are 
learlyimportant for both the stability of the allian
e, as well as the well-being of ea
h member of theallian
e. Boyd (1998) and Vinod (2005) dis
uss the basi
 allian
e types in the airline industry.The major distinguishing fa
tors between di�erent allian
e stru
tures involve the 
ontrol of theinventory of the resour
es and the pri
ing of the produ
ts that allian
e members o�er for sale.For example, in a so-
alled \free-sell" airline allian
e, the allian
e members agree in advan
e ofthe selling season on the transfer pri
es at whi
h operating members will sell 
apa
ity on 
ightsto marketing members. However, under free-sell, during the selling season the operating membersstill 
ontrol the availability of all the 
apa
ity on the 
ights operated by them, even if the 
ightsare in
luded in the 
ode-share agreement. Both legal and operational reasons prevent airlines inallian
es from merging their revenue management systems (Barla and Constantatos 2006).Another type of allian
e stru
ture is a so-
alled \resour
e ex
hange" or \hard blo
k" allian
e,in whi
h the sellers ex
hange resour
es (for example, seat spa
e on various 
ights or 
ontainer
apa
ity on various voyages, and possibly money). After the ex
hange, ea
h seller 
an 
ontrol there
eived resour
es as though they are the owner of the resour
es. Resour
e ex
hange allian
es aremore 
ommon among o
ean 
arriers than airlines. An example of a resour
e ex
hange allian
ebetween o
ean 
arriers was given above. As an example of a resour
e ex
hange allian
e betweenairlines, airline 1 may re
eive 15 seats on 
ight A operated by airline 2, and airline 2 may re
eive10 seats on 
ight B operated by airline 1 as well as $2000. After the ex
hange, airline 1 
ontrolsthe revenue management for the 15 seats on 
ight A that it re
eived from airline 2, as well as



4for the remaining seats on the 
ights that it operates, and similarly, airline 2 
ontrols the revenuemanagement for the 10 seats on 
ight B that it re
eived from airline 1, as well as for the remainingseats on the 
ights that it operates.Sin
e the 
ontrol of transfer pri
es by free-sell allian
es may 
ause suspi
ions of pri
e 
ollusion,resour
e ex
hange allian
es have a potential bene�t over free-sell allian
es regarding 
ompetitionand anti-trust regulation. However, we should mention that the stru
ture of 
arrier allian
es variesfrom allian
e to allian
e, and no 
arrier allian
e is stru
tured as simply as the stylisti
 
ases offree-sell allian
es or resour
e ex
hange allian
es.After formation of an allian
e the allian
e members 
ompete to sell substitute produ
ts. In thatway, allian
es in
rease 
ompetition (more spe
i�
ally, allian
es in
rease horizontal 
ompetition).Currently, airline revenue management systems do not take into a

ount the e�e
t of allian
es onthe 
ompetition they are fa
ing. For example, airline revenue management systems treat seats thatthey give to another airline in a resour
e ex
hange allian
e as sales (Vinod 2005), instead of as anin
rease in the resour
es available to the other airline for use in selling 
ompeting produ
ts.In this paper we fo
us on resour
e ex
hange allian
es. We propose an allian
e design modelthat takes into a

ount how the allian
e members 
ompete after the resour
e ex
hange by sellingsubstitutable (and also 
omplementary) produ
ts. It will be shown that a resour
e ex
hange allian
e
an in
rease both pro�ts and 
onsumer surplus at the same time that it in
reases horizontal
ompetition.First we provide an e
onomi
 motivation for interest in resour
e ex
hange allian
es. Spe
i�
ally,in Se
tion 3 we 
onsider a model with two sellers, ea
h of whom sells one type of resour
e. Customersare interested in a produ
t that requires both resour
e types. First we 
onsider the 
ase without anallian
e, in whi
h ea
h seller sets the pri
e for its resour
e, and 
ustomers buy resour
es from bothsellers to obtain the desired produ
t. Then we 
ompare the equilibrium pri
es, quantities, pro�ts,and 
onsumer surpluses without an allian
e with the pri
es, quantities, pro�ts, and 
onsumersurpluses that would result from perfe
t 
oordination. It is shown that the equilibrium pri
eswithout an allian
e are higher than the pri
es under perfe
t 
oordination, and the equilibrium



5quantities without an allian
e are lower than the quantities under perfe
t 
oordination. Intuitivelythis happens be
ause without an allian
e ea
h seller is impli
itly attempting to gather a largershare of the total revenue. This e�e
t is espe
ially pronoun
ed if the 
apa
ity is large, and it resultsin both the total pro�t and the 
onsumer surplus being smaller without an allian
e than underperfe
t 
oordination.Se
ond we 
onsider a resour
e ex
hange allian
e. We show that both the total pro�t and the
onsumer surplus of a resour
e ex
hange allian
e with ex
hange quantities 
hosen to maximize thetotal pro�t are always greater than the total pro�t and the 
onsumer surplus respe
tively withoutan allian
e (ex
ept if the 
apa
ity is small, in whi
h 
ase the equilibrium pri
es, quantities, pro�ts,and 
onsumer surpluses are the same for the settings with an allian
e, without an allian
e, andwith perfe
t 
oordination). In addition, we show that the equilibrium pri
es, quantities, pro�ts,and 
onsumer surpluses are equal for a resour
e ex
hange allian
e with ex
hange quantities 
hosento maximize the total pro�t and for perfe
t 
oordination, ex
ept when the sellers' produ
ts are
omplementary (whi
h would be unusual in a resour
e ex
hange allian
e) and the 
apa
ity is large.In Se
tion 4, we 
onsider models of no allian
e, perfe
t 
oordination, and a resour
e ex
hangeallian
e for the 
ase in whi
h ea
h seller has multiple resour
es. For resour
e ex
hange allian
es weformulate an optimization model to determine the amount of ea
h resour
e to be ex
hanged, takinginto a

ount the 
onsequen
es of the ex
hange on the subsequent 
ompetition among the allian
emembers. If one assumes that after the resour
es have been ex
hanged, ea
h allian
e member
hooses the pri
es of its produ
ts to maximize its own pro�t, and that this behavior of the allian
emembers leads to an equilibrium, then the problem 
an be formulated as a mathemati
al programwith equilibrium 
onstraints. An important question is whether, for ea
h resour
e ex
hange, thereexists an equilibrium and, if so, whether it is unique. In Se
tion 5 we show how to determine whethera unique equilibrium exists, and how to 
ompute it. A trust region algorithm is used to solve themathemati
al program with equilibrium 
onstraints. Illustrative numeri
al results are provided inSe
tion 6, and we 
ompare the results for the 
ases with no allian
e, perfe
t 
oordination, and aresour
e ex
hange allian
e.



62. Related LiteratureThere are broadly two streams of literature related to this paper | literature that study the impa
tof allian
es, su
h as the impa
t of airline allian
es on pri
ing, 
ompetition, and publi
 welfare; andliterature that address the design of allian
e agreements. The literature on allian
e design is sparserelative to the literature on the impa
t of allian
es. Also, most papers on allian
es have addressedeither o
ean shipping allian
es or airline allian
es.The literature on o
ean shipping allian
es have addressed questions su
h as network design underallian
es, 
hoi
e of resour
e ex
hange amounts, revenue sharing, or the stability of allian
es. Forexample, Midoro and Pitto (2000) investigated fa
tors whi
h a�e
t the stability of liner shippingallian
es, and Sla
k et al. (2002) empiri
ally examined the 
hanges in servi
es made by 
ontainershipping lines in response to the formation of allian
es. Song and Panayides (2002) analyzed twoexamples using 
ooperative game theory to investigate the rationale behind and de
ision-makingbehavior in liner shipping allian
es. Lu et al. (2010) studied a model of a resour
e ex
hange allian
ebetween two 
arriers to determine the resour
e ex
hange or pur
hase amount to maximize thepro�t of an individual allian
e member. Agarwal and Ergun (2010) 
onsidered a servi
e networkdesign problem in whi
h o
ean 
arriers share 
apa
ity on their ships. Their design problem doesnot take into a

ount that 
arriers will 
ompete when they share 
apa
ity on the same ships.The literature on airline allian
es have addressed questions su
h as the 
hoi
e of 
ights to in
ludein 
ode-share agreements, the 
hoi
e of transfer pri
es or proration rates in free-sell allian
es, thee�e
t of allian
es on booking limits and the number of seats sold, and the e�e
t of 
argo allian
eson the passenger market. For example, Brue
kner (2001) 
onsiders a model with two airlines, withand without an allian
e, and showed that for most parameter values, the allian
e de
reases theamount sold of the 
ommon interhub produ
t, and in
reases the amounts sold of all the otherprodu
ts, espe
ially the shared interline produ
ts. Sivakumar (2003) presented Code Share Opti-mizer, a tool built by United Airlines that 
onsiders the intera
tion between proration agreements,demand, fares, and market shares. O'Neal et al. (2007) built a 
ode-share 
ight pro�tability tool



7to automate the 
ode-share 
ight sele
tion pro
ess at Delta airlines. Abdelghany et al. (2009) alsopresented a model for airlines to determine a set of 
ights for a 
ode-share agreement. Zhang et al.(2004) examined the e�e
t of an air 
argo allian
e between two passenger airlines on the passen-ger market. Netessine and Shumsky (2005) 
onsider a model with multiple airlines, in whi
h ea
hairline has two fare 
lasses for ea
h 
ight, and ea
h airline 
hooses a booking limit for ea
h 
ight.The horizontal 
ompetition setting involves two airlines with one 
ight ea
h, in whi
h demandthat is not a

ommodated on the �rst 
hoi
e airline over
ows to the other airline. In the ver-ti
al 
ompetition setting 
onne
ting passengers travel on 
ights of more than one airline. Theequilibrium booking limits are 
ompared with the booking limits under perfe
t 
oordination. Thequestion of transfer pri
es that a
hieves perfe
t 
oordination is also investigated. These transferpri
es are fun
tions of the booking limits of both airlines, and also depends on the expe
tationsof fun
tions of random demand. Thus these 
oordinating transfer pri
es are not numbers deter-mined before the airlines make their booking limit de
isions. Wen and Hsu (2006) proposed amulti-obje
tive optimization model to determine 
ight frequen
ies on airline 
ode-share allian
enetworks. Barla and Constantatos (2006) 
onsider a market with three 
ompetitors, two of whi
hde
ide to 
ooperate where demand is un
ertain. Under a \strategi
 allian
e (SA)", the partners(a) jointly 
hoose 
apa
ity in order to maximize their total expe
ted pro�t, (b) share this 
apa
ityamong themselves based on the Nash bargaining out
ome, and (
) market their 
apa
ity sharesindependently after demand is revealed. They show that the pro�ts of the 
ooperating �rms isgreater under SA than under a full merger (in their model, a merger does not in
lude maintainingdi�erent brands), and thus SA is not ne
essarily a se
ond best solution that is justi�ed by regu-lations restri
ting airline mergers. Houghtalen et al. (2010) used the model in Agarwal and Ergun(2010) to 
hoose 
apa
ity ex
hange pri
es for air 
argo 
arriers. Their model also does not take intoa

ount that air 
argo 
arriers (and freight forwarders) will 
ompete when they ex
hange 
apa
ity.Wright et al. (2010) formulate a Markov-game model of two airlines under a free-sell allian
e.They �rst des
ribe 
entralized booking 
ontrol whi
h gives an upper-bound on the total revenue



8for the allian
e, and they �nd that no Markovian transfer-pri
ing s
heme with de
entralized book-ing 
ontrol 
an guarantee the same revenues as 
entralized booking 
ontrol. They examine stati
and dynami
 transfer-pri
ing s
hemes, and show that the performan
e of stati
 transfer-pri
ings
hemes depends on the homogeneity and stability of the relative values that ea
h airline pla
eson the inventory used in interline itineraries. They also 
on
lude that there is no one best dynami
proration s
heme.Hu et al. (2011) also study a model of a free-sell airline allian
e. Similar to our model, theirmodel is a two-stage model with the allian
e design de
ision in the �rst stage and operational sellingde
isions of individual airlines in the se
ond stage, formulated as a Nash equilibrium problem.Their allian
e design de
isions are stati
 proration rates, whereas our allian
e design de
isionsare stati
 resour
e ex
hange amounts. In their model the pri
es and proration rates are the sameirrespe
tive of whi
h airline sells the interline itinerary, whereas our model makes provision fordi�erent pri
es and demands for the same interline itinerary sold by di�erent marketing airlines.Their se
ond-stage de
isions are stati
 booking limits, whereas our se
ond-stage de
isions are stati
produ
t pri
es. The booking limits in their model are 
apa
ity allo
ations to di�erent itineraries,and not nested booking limits on the 
ight legs. The demand in both models may be random.However, in their model the demand for di�erent itineraries (and fare 
lasses) are assumed to beindependent, and also independent of the se
ond-stage de
isions (booking limits), whereas in ourmodel the demand for di�erent itineraries are allowed to be dependent, and to depend on these
ond-stage de
isions (pri
es). In both models existen
e and uniqueness of a Nash equilibrium inthe se
ond stage is somewhat problemati
 | for their model, a Nash equilibrium always exists,but is not unique, whereas for our model existen
e and uniqueness of a Nash equilibrium 
an beguaranteed in spe
ial 
ases (for example, when the demands for produ
ts are independent of thepri
es of other produ
ts), but not in general. For our model, existen
e and uniqueness of a Nashequilibrium 
an be veri�ed numeri
ally for a given demand model. In both papers, total pro�tsunder allian
es are 
ompared with total pro�ts under a 
entralized solution, and it is investigated



9when the pro�ts are equal. In our paper we 
ompare the 
onsumer surplus in addition to totalseller pro�ts.3. Two-Resour
e ModelConsider 2 sellers, indexed by �1 and 1. Ea
h seller produ
es one resour
e. Seller i produ
esresour
e i, and a maximum quantity bi of resour
e i 
an be 
onsumed. Seller i has a 
onstantmarginal 
ost of 
i per unit of resour
e i 
onsumed, and seller i 
hooses the pri
e ~yi + 
i per unitof resour
e i, that is, ~yi denotes the pri
e in ex
ess of the marginal 
ost 
i per unit of resour
e i.Customers want to 
onsume a produ
t that requires one unit of ea
h resour
e. (In this se
tion,there is no demand for a produ
t that 
onsists of only one resour
e.) Thus 
ustomers buy units ofa produ
t 
onsisting of one unit of ea
h resour
e and pay 
�1+ ~y�1+ 
1+ ~y1 per unit of produ
t.The demand d for produ
ts depends on the pri
es as follows:d = maxf0; ~�� ~�(~y�1+ ~y1)g (1)where ~� and ~� are positive 
onstants known to ea
h seller. Assume that ~�> 0, that is, demand ispositive if ea
h seller 
harges only its marginal 
ost. The detailed 
al
ulations for this se
tion aregiven in Appendix A.3.1. No Allian
eFirst 
onsider the 
ase with no allian
e, whi
h is modeled as a non-
ooperative game. Let bmin :=minfb�1; b1g. Thus, the number of produ
ts sold is given by minfbmin; maxf0; ~�� ~�(~y�1 + ~y1)gg,and the pro�t of seller i is given by~gi(~yi; ~y�i) := ~yiminfbmin; maxf0; ~�� ~�(~y�i + ~yi)ggIf bmin� ~�=3, then the equilibrium pri
es are given by~y�i = ~�3~� (2)



10the equilibrium demand is equal to~�� ~�(~y��1+ ~y�1) = ~�3 > 0 (3)the resulting pro�t of seller i is equal to~y�i minfbmin; maxf0; ~�� ~�(~y��i + ~y�i )gg = ~�29~� (4)and thus the total pro�t of both sellers together is equal to~y��1 h~�� ~�(~y��1+ ~y�1)i+ ~y�1 h~�� ~�(~y��1+ ~y�1)i = 2~�29~� (5)and the 
onsumer surplus is equal to12 � ~�~� � 2~�3~�� ~�3 = ~�218~� (6)If bmin� ~�=3, then all pairs of pri
es (~y�1; ~y1) on the line segment between (bmin=~�; [~��2bmin℄=~�)and ([~��2bmin℄=~�; bmin=~�) are equilibria. For all of these equilibrium pri
es the total pri
e is equalto (~�� bmin)=~�, the demand is equal to bmin, the resulting pro�t of seller i is equal to ~yibmin, andthus the total pro�t of both sellers together is equal to~y�1bmin+ ~y1bmin = ~�� bmin~� bmin (7)and the 
onsumer surplus is equal to12 � ~�~� � ~�� bmin~� � bmin = b2min2~� (8)3.2. Perfe
t CoordinationIn this se
tion we determine the maximum a
hievable total pro�t of the two sellers together, thatis, the total pro�t if the sellers would perfe
tly 
oordinate pri
ing.The total pro�t of the two sellers is given by~g(~y�1; ~y1) := [~y�1+ ~y1℄minfbmin; maxf0; ~�� ~�(~y�1+ ~y1)gg



11If bmin� ~�=2, then the optimal total pri
e is equal to�y�1+ �y1 = ~�2~� (9)Note that (2) and (9) show that ~y��1+ ~y�1 > �y�1+ �y1, that is, the total of the equilibrium pri
es isgreater than the optimal total pri
e. (These results are reminis
ent of the 
omparison of the 
aseswith and without verti
al integration by Spengler (1950); however, the setting here is di�erentbe
ause one seller does not buy a produ
t from another seller and add a mark-up before resellingit.) The 
orresponding demand is equal to~�� ~�(�y�1+ �y1) = ~�2 > ~�3 = ~�� ~�(~y��1+ ~y�1) (10)the total pro�t of both sellers together is equal to[�y�1+ �y1℄ h~�� ~�(�y�1+ �y1)i = ~�24~� (11)and the 
onsumer surplus is equal to12 � ~�~� � ~�2~�� ~�2 = ~�28~� (12)If bmin� ~�=2, then the optimal total pri
e is given by �y�1+ �y1 = (~�� bmin)=~�, with 
orrespond-ing demand equal to bmin. The total pro�t of both sellers together is equal to (�y�1+ �y1) bmin =(~�� bmin) bmin=~�, and the 
onsumer surplus is equal to h~�=~�� (~�� bmin)=~�i bmin=2= b2min=(2~�).Note that when 
apa
ity is small, bmin � ~�=3, the total pro�t of the setting with no allian
e
annot be in
reased by 
oordination, and the 
onsumer surplus is also the same for the two settings.When 
apa
ity is large, bmin� ~�=2, the relative amount by whi
h the total pro�t 
an be in
reasedis given by ~�24~� � 2~�29~�2~�29~� = 18and the relative amount by whi
h the 
onsumer surplus 
an be in
reased is given by~�28~� � ~�218~�~�218~� = 54



12When 
apa
ity is intermediate, ~�=3� bmin � ~�=2, then the relative amount by whi
h the totalpro�t 
an be in
reased is bounded by0 � ~��bmin~� bmin� 2~�29~�2~�29~� � 18and the relative amount by whi
h the 
onsumer surplus 
an be in
reased is bounded by0 � b2min2~� � ~�218~�~�218~� � 54This potential in
rease in pro�t is the major e
onomi
 motivation for sellers' interest in allian
es.The extent to whi
h this in
rease 
an be attained by an allian
e depends on the 
apa
ity and the
ustomer 
hoi
e behavior, in
luding the extent to whi
h the sellers 
an di�erentiate their produ
ts.In the next se
tion we 
onsider a resour
e ex
hange allian
e and investigate the e�e
t of both
apa
ity and produ
t di�erentiation on the total pro�t and the 
onsumer surplus with and withoutan allian
e.3.3. Resour
e Ex
hange Allian
eConsider a resour
e ex
hange allian
e involving the two sellers. Let xi 2 [0; bi℄ denote the amountof resour
e i that seller i makes available to seller �i, and let x := (x�1; x1). Then the number ofunits of the two-resour
e produ
t that seller i 
an sell is qi(x) := minfbi � xi; x�ig. Assume thatseller i pays seller �i an amount 
�i for ea
h unit of resour
e �i that seller i 
onsumes, so thatea
h seller has marginal 
ost equal to 
�1+ 
1 for the two-resour
e produ
t.Spe
i�
ally, a resour
e ex
hange allian
e with zero ex
hange of resour
es (x= 0) may be 
hosen,in whi
h 
ase the sellers sell only the separate resour
es as in the 
ase without an allian
e. Thus,in general, the total pro�t of an optimally designed resour
e ex
hange allian
e is no less thanthe total pro�t without an allian
e. We 
onsider the setting in whi
h ea
h allian
e member sellsonly the two-resour
e produ
t, and produ
ts 
onsisting of a single resour
e are not sold separately.Let yi denote the di�eren
e between the pri
e of seller i and the marginal 
ost 
�1 + 
1 for thetwo-resour
e produ
t.



13The demand di(yi; y�i) for the produ
t sold by seller i depends on the pri
es as follows:di(yi; y�i) = maxf0; ���yi + 
y�i)g (13)where � and � are positive 
onstants, and 
 2 (��;�). Here provision is made for brand distin
tionbetween the produ
ts sold by the sellers. The 
onstants are known to ea
h seller. To keep thenumber of parameters in this example small, the 
onstants �, �, and 
 are the same for bothsellers.Thus, the number of units of produ
t sold by seller i is given byminfqi(x); maxf0; ���yi + 
y�i)gg, and the pro�t of seller i is given bygi(x; yi; y�i) := yiminfqi(x); maxf0; ���yi + 
y�iggNext we establish a relation between ~� and ~�, and �, � and 
, to fa
ilitate 
omparison amongthe settings with no allian
e, with perfe
t 
oordination, and with an allian
e. Consider pri
es(~y�1; ~y1) in the no-allian
e setting, su
h that ~y�1+~y1 < ~�=~�. Suppose that the two allian
e members
harge the same pri
e y�1 = y1 = ~y�1 + ~y1 for the two-resour
e produ
ts. Then the total demandin the no-allian
e setting given by (1) is equal to ~�� ~�(~y�1 + ~y1) > 0, and the total demand inthe allian
e setting given by (13) is equal to 2(�� �y1 + 
y1) = 2� � 2(� � 
)(~y�1 + ~y1). Thusthe total demand in the two settings is the same if ~� = 2� and ~� = 2(� � 
). It is also shown inAppendix A.4 that a model of perfe
t 
oordination with demand given by (13) leads to the sameoptimal pri
es, demands, pro�ts, and 
onsumer surplus as the model in Se
tion 3.2 with demandgiven by (1) if ~�= 2� and ~� = 2(�� 
). Hen
e the results for the settings with no allian
e, withperfe
t 
oordination, and with an allian
e will be 
ompared using ~�= 2� and ~� = 2(�� 
).For the setting with an allian
e, for any given resour
e ex
hange x, let (y��1(x); y�1(x)) denotethe equilibrium pri
es of the two sellers for the two-resour
e produ
t (existen
e and uniqueness ofthe equilibrium are addressed in the detail 
al
ulations in Appendix A.3. The resulting pro�t ofseller i is given by gi(x; y�i (x); y��i(x)). The allian
e design problem is to 
hoose x2 [0; b�1℄� [0; b1℄to maximize f(x) := g�1(x; y��1(x); y�1(x))+ g1(x; y�1(x); y��1(x))



14Let x� denote an optimal resour
e ex
hange.A natural question is how the total pro�t f(x�) should be partitioned among the allian
e mem-bers. First, note that if money 
an be ex
hanged together with the other resour
es, then anypartition of the total pro�t 
an be a
hieved. In that 
ase the Nash bargaining solution is easy:ea
h allian
e member re
eives its pro�t in the setting without an allian
e plus half the di�eren
ebetween the maximum total pro�t f(x�) of the allian
e and the total pro�t without an allian
e.Table 1 and Figure 1 summarize the results for the settings with no allian
e, with perfe
t 
oordi-nation, and with an allian
e. The 
al
ulations are given in Appendix A. Here we just mention thatthere are three 
ases regarding 
apa
ity: (1) Capa
ity bmin is large enough so that both sellers 
anbe provided with suÆ
ient produ
t 
apa
ity qi(x) to make 
apa
ity not 
onstraining in equilibrium(bmin� 2��=(2��
)), (2) Capa
ity bmin is so small that the produ
t 
apa
ity qi(x) of both sellersmust be 
onstraining in equilibrium (bmin� ��(�+ 
)=(2�2� 
2)), and (3) Capa
ity bmin is smallenough that the produ
t 
apa
ity qi(x) of at least one seller must be 
onstraining in equilibrium,but large enough so that one seller 
an be provided with suÆ
ient produ
t 
apa
ity qi(x) to make
apa
ity not 
onstraining in equilibrium (��(� + 
)=(2�2 � 
2) � bmin � 2��=(2� � 
)). In addi-tion, there are two 
ases regarding the degree of produ
t di�erentiation: (1) 
 � 0, and (2) 
 � 0.Figure 2 shows a plot of the relative in
rease in total pro�t with an allian
e over no allian
e, thatis, (f(x�)� [~g�1(~y��1; ~y�1)+ ~g1(~y�1 ; ~y��1)℄)=[~g�1(~y��1; ~y�1)+ ~g1(~y�1 ; ~y��1)℄, as a fun
tion of bmin=� and 
=�.The �gure shows that the relative in
rease is largest when the 
apa
ity is large (bmin��) and theprodu
ts of the sellers are substitutes (
 � 0). Figure 3 shows a plot of the relative gap in totalpro�t between perfe
t 
oordination and an allian
e, that is, (~g(�y�1; �y1)� f(x�))=~g(�y�1; �y1), as afun
tion of bmin=� and 
=�. The �gure shows that the total pro�t under an allian
e equals the totalpro�t under perfe
t 
oordination, ex
ept when the 
apa
ity is large (bmin� 2�=3) and the produ
tsof the sellers are 
omplements (
 � 0). Figure 4 shows a plot of the relative in
rease in 
onsumersurplus with an allian
e over no allian
e, as a fun
tion of bmin=� and 
=�. The �gure shows that,similar to total pro�t, the relative in
rease is largest when the 
apa
ity is large (bmin� �) and theprodu
ts of the sellers are substitutes (
 � 0).
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17Table 1 Comparison of no allian
e, perfe
t 
oordination, and a resour
e ex
hange allian
e, in terms of pri
e,demand, total pro�t, and 
onsumer surplus, for a single produ
t with two resour
es.Region Capa
ity Cross-Pri
e Quantity No-Allian
e Perfe
t Coordination Allian
eCoeÆ
ient1 0� bmin� 2�3 
 2 (��;�) Total Pri
e 2��bmin2(��
) 2��bmin2(��
) 2��bmin2(��
)Total Demand bmin bmin bminTotal Pro�t (2��bmin)bmin2(��
) (2��bmin)bmin2(��
) (2��bmin)bmin2(��
)Consumer Surplus bmin24(��
) bmin24(��
) bmin24(��
)2 2�3 � bmin�minn�; 2��2��
o 
 2 (��;�) Total Pri
e 2�3(��
) 2��bmin2(��
) 2��bmin2(��
)Total Demand 2�3 bmin bminTotal Pro�t 4�29(��
) (2��bmin)bmin2(��
) (2��bmin)bmin2(��
)Consumer Surplus �29(��
) bmin24(��
) bmin24(��
)3 2��2��
 � bmin�� 
 2 (��;0℄ Total Pri
e 2�3(��
) 2��bmin2(��
) �2��
Total Demand 2�3 bmin 2��2��
Total Pro�t 4�29(��
) (2��bmin)bmin2(��
) 2�2�(2��
)2Consumer Surplus �29(��
) bmin24(��
) �2�2(��
)(2��
)24 �� bmin 
 2 (��;0℄ Total Pri
e 2�3(��
) �2(��
) �2��
Total Demand 2�3 � 2��2��
Total Pro�t 4�29(��
) �22(��
) 2�2�(2��
)2Consumer Surplus �29(��
) �24(��
) �2�2(��
)(2��
)25 �� bmin 
 2 [0; �) Total Pri
e 2�3(��
) �2(��
) �2(��
)Total Demand 2�3 � �Total Pro�t 4�29(��
) �22(��
) �22(��
)Consumer Surplus �29(��
) �24(��
) �24(��
)4. Multiple-Resour
e ModelIn this se
tion we present a model for a resour
e ex
hange allian
e with multiple resour
es. Inaddition to the allian
e model, we also present models for the settings with no allian
e and withperfe
t 
oordination to fa
ilitate 
omparisons.Consider 2 sellers, indexed by i=�1. (It 
an easily be seen from the results in Se
tion 4.3 how toextend the model and the solution method to a setting with more than 2 sellers, at the 
ost of more
ompli
ated notation.) Seller i produ
es ki resour
e types indexed by j = 1; : : : ; ki. For example,resour
e j may denote the 
ight of airline i s
heduled to depart from Atlanta to New York everyMonday at 8am. Initially, before any resour
e ex
hange, seller i has quantity bi;j of resour
e j, anda 
onstant marginal 
ost of 
i;j per unit of resour
e j 
onsumed.



184.1. Multiple-Resour
e Network ExampleIn this se
tion we provide an example with multiple resour
es to illustrate the models that will beformulated in later se
tions. An airline 
ight network is shown in Figure 5, and some 
ight dataare given in Table 2. In this network, airport 1 is a 
onne
tion hub for both airlines. Ea
h airlineoperates 4 
ights. For example, 
ight 5, taking pla
e from airport 1 to airport 4, is operated byairline 1, and has a 
apa
ity of 300 seats. The set of produ
ts that 
an be sold by ea
h airline isdi�erent in the 
ase with no allian
e and the 
ase with an allian
e. Table 3 shows the produ
tsand the 
orresponding itineraries (here simply spe
i�ed by the origin-destination pair) whi
h 
ouldbe o�ered by the two airlines. The 
olumn labeled \Airline" spe
i�es whi
h airlines 
an sell ea
hprodu
t in the 
ase with no allian
e and the 
ase with an allian
e. For example, in the 
ase withno allian
e, produ
t 7 
an be sold by airline 1 only, and in the 
ase with an allian
e, produ
t 7
an be sold by both airlines (A denotes both airlines under allian
e). Produ
t 17, involving travelfrom airport 3 to airport 4 via airport 1, 
an only be sold in the 
ase with an allian
e, and in that
ase it 
an be sold by both airlines. However, note that there is demand for travel from airport 3to airport 4 both in the 
ase with no allian
e and in the 
ase with an allian
e. In the 
ase withno allian
e, all demand for travel from airport 3 to airport 4 is satis�ed by buying two separateti
kets; a ti
ket from airline -1 for travel from airport 3 to airport 1 and a ti
ket from airline 1 fortravel from airport 1 to airport 4. In the 
ase with an allian
e, demand for travel from airport 3to airport 4 
an be satis�ed in four di�erent ways: (1) by buying a ti
ket from airline -1 for travelfrom airport 3 to airport 1 and a ti
ket from airline 1 for travel from airport 1 to airport 4, or (2)by buying a ti
ket from airline 1 for travel from airport 3 to airport 1 and a ti
ket from airline -1for travel from airport 1 to airport 4, or (3) by buying a ti
ket for travel from airport 3 to airport 4via airport 1 from airline -1, or (4) by buying a ti
ket for travel from airport 3 to airport 4 viaairport 1 from airline 1. In the 
ase with an allian
e, the 
hoi
es exer
ised by the buyers, and thusthe resulting aggregate demand, depend on the pri
es of the airlines for the di�erent produ
ts. Inthis paper we 
onsider linear models of aggregate demand, as spe
i�ed in more detail later.
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Figure 5 Multiple-resour
e network example
Flight number Airline Departure Arrival Capa
ity1 -1 1 2 3002 -1 2 1 3003 -1 1 3 3004 -1 3 1 3005 1 1 4 3006 1 4 1 3007 1 1 5 3008 1 5 1 300Table 2 Flight informationTable 3 Produ
t information for network example.Produ
t Airline Origin Destination Produ
t Airline Origin Destination1 -1 or A 1 2 11 1 or A 4 52 -1 or A 2 1 12 1 or A 5 43 -1 or A 1 3 13 A only 2 44 -1 or A 3 1 14 A only 4 25 -1 or A 2 3 15 A only 2 56 -1 or A 3 2 16 A only 5 27 1 or A 1 4 17 A only 3 48 1 or A 4 1 18 A only 4 39 1 or A 1 5 19 A only 3 510 1 or A 5 1 20 A only 5 34.2. Resour
e Ex
hange Allian
e ModelIn this se
tion we introdu
e a model of a resour
e ex
hange allian
e involving multiple resour
es.After resour
e ex
hange, seller i may have some of ea
h resour
e supplied by seller �i, as well assome of ea
h resour
e supplied by itself. Index the union of the resour
es by j = 1; : : : ; k, wherek= k�1+k1. Let bi = (bi;1; : : : ; bi;k) denote the initial endowment of seller i of ea
h resour
e (bi;j =0if resour
e j is supplied by seller �i). Let xj denote the amount of resour
e j that seller 1 makesavailable to seller�1. For example, x= (�110;�120;�100;�150;140;170;130;160) for the networkin Se
tion 4.1 means that airline �1 gives 110 seats on 
ight 1 to airline 1, airline 1 gives 140 seatson 
ight 5 to airline �1, et
.After resour
e ex
hange, seller i 
an sell mi produ
ts, indexed by `= 1; : : : ;mi. In the examplein Table 3, mi = 20 for i=�1. Let yi;` denote the pri
e of seller i for produ
t ` in ex
ess of themarginal 
ost of the produ
t, and di;` denote the demand for produ
t ` of seller i. Consider thefollowing linear demand model:di;` = � miX̀0=1Ei;`;`0yi;`0 +m�iX̀0=1B�i;`;`0y�i;`0 +Ci;` (14)



20where Ei;`;`0 denotes the rate of 
hange of the demand for produ
t ` of seller i with respe
t to thepri
e of produ
t `0 of the same seller i, and B�i;`;`0 denotes the rate of 
hange of the demand forprodu
t ` of seller i with respe
t to the pri
e of produ
t `0 of the other seller �i. Using matrixnotation, di =�Eiyi+B�iy�i+Ci, where di; yi;Ci 2 Rmi , Ei 2 Rmi�mi , Bi 2 Rm�i�mi , and attentionis restri
ted to values of (y�1; y1) su
h that di � 0 for i = �1. Let Ai 2 Rk�mi be the \networkmatrix", i.e., Ai;j;` denotes the amount of resour
e j 
onsumed by ea
h unit of produ
t ` sold byseller i.Next we introdu
e the two-stage allian
e design problem. Given a �rst stage resour
e ex
hangede
ision x2 Rk , at the se
ond stage ea
h seller i wants to solve the following optimization problem:maxyi;di2Rmi+ yTi dis:t: Aidi � bi� ixdi = �Eiyi+B�iy�i+Ci � 0 (15)We are interested in the Nash equilibrium de�ned by the two optimization problems (15) for i=�1.A sto
hasti
 version of the allian
e design problem is as follows. At the �rst stage, when x is
hosen, elements of matri
es Ei and Bi, and ve
tors Ci, are random. However, the network matri
esAi are deterministi
. Let � := (E�1;E1;B�1;B1;C�1;C1) denote the random data ve
tor. In the�rst stage the expe
ted value with respe
t to the distribution of � of an obje
tive (spe
i�ed below)is optimized. Also, note that the Nash equilibrium asso
iated with the se
ond stage depends onthe realization of �.Let Qi := Ei +ETi 2 Rmi�mi denote the symmetri
 version of Ei. We assume that matri
es Ei,and hen
e Qi, are positive de�nite. Let Im denote the m�m identity matrix, 0m denotes the zerove
tor in Rm , and 0m;n denotes the zero matrix in Rm�n . Then the optimization problem (15) 
anbe written as follows: minyi2Rmi+ 12yTi Qiyi� yTi B�iy�i�CTi yis:t: Wi (Eiyi�B�iy�i) � �i + iMix: (16)where Wi := � Ai�Imi � ; �i := Wi ~Ci+ ��bi0mi � ; Mi := � Ik0mi;k � :



21A point (y��1(x); y�1(x)) is a solution of the equilibrium problem if y�1(x) is an optimal solution ofproblem (16) for i= 1 when y�1 = y��1(x), and also y��1(x) is an optimal solution of problem (16)for i=�1 when y1 = y�1(x). Note that (y��1(x); y�1(x)) also depends on �, but the dependen
e is notshown in the notation. (The above problem is 
alled a generalized Nash equilibrium problem sin
ethe feasible set of problem (16) depends on y�i.) Let Vi(x; �), i=�1, denote the optimal obje
tivevalues of problem (16) at the equilibrium point given data �, i.e.,Vi(x; �) := 12y�i (x)TQiy�i (x)� y�i (x)TB�iy��i(x)�CTi y�i (x) (17)Note that these fun
tions are well de�ned only if the equilibrium point (y��1(x); y�1(x)) exists andis unique. We will dis
uss existen
e and uniqueness of the equilibrium point in Se
tion 4.3.At the �rst stage, we 
onsider designs of the resour
e ex
hange allian
e that aim to maximizethe total pro�t of the sellers. Let b = b1 � b�1 2 Rk . Note that bj > 0 if resour
e j is suppliedby seller 1 and bj < 0 if resour
e j is supplied by seller �1. Let lj and uj be lower and upperbounds, respe
tively, su
h that bj lj � 0 and bjuj � 0, that is, lj , uj , and bj have the same sign, andjlj j � juj j � jbj j. Then the �rst stage problem is as follows:maxx2Rk �f(x) := E�V�1(x; �)+V1(x; �)�	s:t: bjxj � 0 8 j = 1; : : : ; kjlj j � jxj j � juj j 8 j = 1; : : : ; k (18)As mentioned, the expe
tation in (18) is with respe
t to a spe
i�ed probability distribution of thedata ve
tor �. In parti
ular, if a single value for � is 
onsidered in the �rst stage, then problem (18)is deterministi
 and the expe
tation operator 
an be removed.4.3. Existen
e and Uniqueness of Nash EquilibriumRe
all that the matri
es Qi are positive de�nite, and hen
e problem (16) is a 
onvex quadrati
programming problem. The �rst order (KKT) ne
essary and suÆ
ient optimality 
onditions forproblem (16) are Qiyi�B�iy�i�Ci�ETi W Ti �i = 0Wi (Eiyi�B�iy�i)� �i� iMix � 0�i � 0�Ti [Wi (Eiyi�B�iy�i)� �i� iMix℄ = 0 (19)



22where �i denotes the ve
tor of Lagrange multipliers asso
iated with the inequality 
onstraintsin (16).The optimality 
onditions (19) 
an be written as a variational inequality. A widely used approa
hto establish existen
e and uniqueness of a solution to the optimality 
onditions, and thus existen
eand uniqueness of a Nash equilibrium, is to exploit monotoni
ity of the variational inequality.However, in this 
ase the variational inequality is not monotone, and thus a di�erent approa
h isrequired.Consider the optimization problemminy�1;y1;��1;�1 Pi=�1�Ti [Wi (Eiyi�B�iy�i)� �i� iMix℄s:t: Qiyi�B�iy�i�Ci�ETi W Ti �i = 0; i=�1Wi (Eiyi�B�iy�i)� �i� iMix � 0; i=�1�i � 0; i=�1 (20)Note that the obje
tive value of problem (20) is nonnegative at all feasible points, and(y��1; y�1 ; ���1; ��1) is a solution of the optimality 
onditions (19) if and only if its obje
tive value inproblem (20) is zero, in whi
h 
ase it is an optimal solution of problem (20). It follows from the�rst equation of (19) that �TiWi = yTi QiE�1i � yT�iBT�iE�1i �CTi E�1iAfter substitution of this into the obje
tive, problem (20) be
omesminy�1;y1;��1;�1 Pi=�1 �yTi QiE�1i � yT�iBT�iE�1i �CTi E�1i � (Eiyi�B�iy�i)��Ti (�i + iMix)s:t: Qiyi�B�iy�i�Ci�ETi W Ti �i = 0; i=�1Wi (Eiyi�B�iy�i)� �i� iMix � 0; i=�1�i � 0; i=�1 (21)Note that the obje
tive fun
tion of problem (21) is quadrati
 with its quadrati
 term(yT�1; yT1 )	(yT�1; yT1 )T, where	 := �Q�1+BT�1E�11 B�1 �B�1�Q�1E�1�1B1�B1�Q1E�11 B�1 Q1+BT1E�1�1B1 � (22)Note that problem (21) is a 
onvex quadrati
 program if and only if the matrix 	, or equivalentlythe symmetri
 matrix 	+	T, is positive semide�nite.



23Theorem 1. Suppose that the problem (21) is feasible and that the matrix 	, de�ned in (22), ispositive de�nite. Then problem (21) has an optimal solution (y��1; y�1 ; ���1; ��1) with (y��1; y�1) beingunique. Moreover, if the optimal obje
tive value of problem (21) is zero, then (y��1; y�1) is the uniqueNash equilibrium.The proof is given in Appendix B.Note that a similar approa
h 
an be used if there are more than two sellers. In su
h a 
asemore than two sets of optimality 
onditions of the form (19) will be involved, and in the quadrati
program (21) the index i will take on more than two values.Hen
e, the question of existen
e and uniqueness of the Nash equilibrium 
an be answered withthe following steps: (1) veri�
ation that the matrix 	 (or the symmetri
 matrix 	+	T) is positivede�nite, (2) solution of the 
onvex quadrati
 program (21) if 	 is positive de�nite, and (3) veri�
a-tion that the optimal obje
tive value is zero. Note that if 	 is positive de�nite, then the quadrati
program (21) 
an be solved eÆ
iently and hen
e existen
e and uniqueness of the equilibrium point
an easily be veri�ed numeri
ally. Some simple ne
essary 
onditions and suÆ
ient 
onditions for	 to be positive de�nite 
an be identi�ed, but it seems diÆ
ult to give simple 
onditions that areboth ne
essary and suÆ
ient for 	 to be positive de�nite. A ne
essary 
ondition for 	 to be posi-tive de�nite is that its blo
k diagonal matri
es Q�1+BT�1E�11 B�1 and Q1+BT1E�1�1B1 be positivede�nite. Note that these matri
es are indeed positive de�nite be
ause E�1 and E1 are positivede�nite. Also, note that if B�1 and B1 are null matri
es, then matrix 	 is the blo
k diagonalmatrix diag(Q�1;Q1), and hen
e 	 is positive de�nite be
ause Q�1 and Q1 are positive de�nite.More general, if matri
es Ei are \signi�
antly bigger" than Bi, then one may expe
t matrix 	 tobe positive de�nite. Intuitively, if the demand for a seller's produ
t depends more strongly on thepri
es of that seller (and espe
ially the pri
e of that produ
t) than the pri
es of the other seller,then one may expe
t matrix 	 to be positive de�nite. Another instru
tive example is the following.Example 1. Suppose that the produ
ts of the two sellers are dire
t substitutes for ea
h other,that is, for ea
h produ
t of seller i there is a produ
t of seller �i that is a 
lose substitute. This



24allows the possibility that seller �i may not be able to sell the substitute produ
t be
ause it doesnot have the resour
es to do so. It seems that in the appli
ations of interest, the set of produ
ts 
analways be 
hosen so that this property holds. Hen
e, the matri
es Bi are squared, i.e., m�1 =m1.Suppose that the matri
es Ei and Bi, i=�1, are diagonal. Then Qi =Ei and	 = �E�1+B2�1E�11 �B�1�B1�B�1�B1 E1+B21E�1�1 � :Sin
e matri
es Ei are positive de�nite it follows that E1 + B21E�1�1 is positive de�nite, and thusit follows by the S
hur 
omplement 
ondition for positive de�niteness that 	 is positive de�niteif and only if the matrix E�1 +B2�1E�11 � (B�1 +B1)2(E1 +B21E�1�1)�1 is positive de�nite. Sin
ematri
es Ei and Bi are diagonal, this matrix is positive de�nite if and only if the matrix(E�1+B2�1E�11 )(E1+B21E�1�1)� (B�1+B1)2 = E�1E1+B2�1B21E�1�1E�11 � 2B�1B1is positive de�nite. In turn this matrix is positive de�nite if and only if the matrixE2�1E21 +B2�1B21 � 2E�1E1B�1B1 = (E�1E1�B�1B1)2is positive de�nite. Note that the last matrix is always positive semide�nite and is positive de�niteif and only if matrix E�1E1�B�1B1 does not have any zero diagonal elements.4.4. No Allian
e ModelIn this se
tion, we present a model for the setting with no allian
e. This model will be used to
ompare the pro�t under no allian
e with the pro�t under an allian
e and the pro�t under perfe
t
oordination. First we des
ribe the demand model for the setting with no allian
e.Under an allian
e, there are a total of m distin
t produ
ts. Some of the produ
ts may be o�eredby only one seller, and some of the produ
ts may be o�ered by both sellers. In the example inTable 3, m = 20 and ea
h of the 20 produ
ts is o�ered by both sellers in an allian
e. These mprodu
ts 
an be partitioned into three subsets: sets Li, for i=�1, of produ
ts whi
h 
an be o�eredby seller i with and without an allian
e, and set L0 of produ
ts whi
h 
ould be o�ered only under



25an allian
e. For the example in Table 3, L�1 
ontains produ
ts 1 to 6, L1 
ontains produ
ts 7 to 12,and L0 
ontains produ
ts 13 to 20.As before, let ~yi;` denote the pri
e of seller i for produ
t ` 2 Li. Suppose that the resultingdemand for produ
t `2Li is given by~di;` = �X`02Li ~Ei;`;`0 ~yi;`0 + X`02L�i ~B�i;`;`0 ~y�i;`0 + ~Ci;` (23)Using matrix notation, ~di = � ~Ei~yi + ~B�i~y�i + ~Ci, where ~di; ~yi; ~Ci 2 RjLi j, ~Ei 2 RjLi j�jLij, ~Bi 2RjL�i j�jLij, and attention is restri
ted to values of (~y�1; ~y1) su
h that ~di � 0 for i=�1. Let ~Ai;j;`denote the amount of resour
e j 
onsumed by ea
h unit of produ
t ` 2 Li, and let ~Ai 2 Rki�jLijdenote the network matrix.Similar to the example with two resour
es in Se
tion 3, the parameters E;B;C in demandmodel (14) and the parameters ~E; ~B; ~C in demand model (23) should be related in a parti
ular wayto fa
ilitate a fair 
omparison of the pri
es, demands, total pro�t, and 
onsumer surplus betweenthe settings with and without an allian
e. The derivation of the relation is given in Appendix C.The setting with no allian
e is formulated as a non-
ooperative game in whi
h ea
h seller i wantsto solve the optimization problemmax~yi; ~di2RjLij+ ~yTi ~dis:t: ~Ai ~di � bi~di = � ~Ei~yi + ~B�i~y�i+ ~Ci � 0 (24)The no allian
e out
ome is the Nash equilibrium de�ned by the two optimization problems (24)for i=�1, as long as it exists and is unique. The Nash equilibrium is 
omputed using the sameapproa
h des
ribed in Se
tion 4.3.4.5. Perfe
t Coordination ModelThe models with and without an allian
e presented above are 
ompared with a perfe
t 
oordinationmodel, given in this se
tion. The perfe
t 
oordination model 
onsiders a setting in whi
h the sellers
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oordinate pri
ing to maximize the sum of the sellers' pro�ts, as given by the following optimizationproblem: max(y�1;y1)2Rm�1�Rm1 Pi=�1yTi (�Eiyi+B�iy�i+Ci)s:t: Pi=�1Ai (�Eiyi+B�iy�i+Ci) � b�1+ b1�Eiyi+B�iy�i+Ci � 0 ; i=�1 (25)5. Solution Approa
hIn this se
tion, we present a solution method for the multiple-resour
e model des
ribed in Se
tion 4.Re
all that we solve the problem (21) to solve the se
ond-stage Nash equilibrium problem, andthat problem (21) 
an be solved eÆ
iently if the matrix 	 de�ned in (22) is positive de�nite. Next
onsider the �rst stage problem (18). Re
all that the expe
tation in (18) is taken with respe
t tothe probability distribution of the random data ve
tor �. We assume that we 
an sample from thatdistribution by using Monte Carlo sampling te
hniques and hen
e generate an independent andidenti
ally distributed sample �1; : : : ; �N . Next we approximate the expe
tation with the sampleaverage and 
onstru
t the following Sample Average Approximation (SAA) problem:maxx2Rk nf̂N(x) := PNn=1 �V�1(x; �n)+V1(x; �n)�os:t: bjxj � 0 8 j = 1; : : : ; kjlj j � jxj j � juj j 8 j = 1; : : : ; k (26)Theoreti
al properties of the SAA approa
h have been studied extensively (e.g., Shapiro et al.2009). Under mild 
onditions, the optimal obje
tive value and optimal solution of the SAA prob-lem (26) 
onverge exponentially fast to the optimal obje
tive value and optimal solution of theproblem (18) (
f., Shapiro and Xu 2008). The �rst-stage problem may not be 
onvex, and thus itmay be hard to solve problem (26) to optimality. For that reason, we may only ensure 
onvergen
eto a stationary point of the problem (18). Nevertheless, in our numeri
al experiments, typi
allysolutions seem to be stable and insensitive to the 
hoi
e of starting point.In order to solve the SAA problem (26) numeri
ally, we need to 
ompute derivatives rxVi(x; �n)of the �rst-stage obje
tive fun
tions Vi at a feasible point x and sample point �n. Consider afeasible point x, and assume that 	 is positive de�nite and that the se
ond-stage problem hasan equilibrium point (y��1(x); y�1(x)) (the equilibrium depends on �n as well, but the dependen
e



27is not shown in the notation). Let (y��1(x); y�1(x); ���1(x); ��1(x)) be a solution of the system (19)of �rst order optimality 
onditions (and thus (y��1(x); y�1(x); ���1(x); ��1(x)) is also a solution ofthe quadrati
 programming problem (20)). Note that, sin
e 	 is positive de�nite, it holds that(y��1(x); y�1(x)) is unique and is a 
ontinuous fun
tion of x (e.g., Bonnans and Shapiro 2000).Re
all that Lagrange multipliers 
orresponding to ina
tive 
onstraints are zeros. LetIi(yi; y�i; x) := �j 2 f1; : : : ; k+mig : [Wi (Eiyi�B�iy�i)� �i� iMix℄j = 0	denote the index set of a
tive 
onstraints of the problem (16). It is said that the stri
t 
omplemen-tarity 
ondition holds at an equilibrium point (y��1(x); y�1(x)) if among the 
orresponding Lagrangemultiplier ve
tors �i, there exists at least one su
h that [�i℄j > 0 for all j 2 Ii(y�i (x); y��i(x); x), fori=�1, i.e., there are Lagrange multipliers 
orresponding to the a
tive 
onstraints that are positive.Now, suppose that the stri
t 
omplementarity 
ondition holds at (y��1(x); y�1(x)), with [��i (x)℄j > 0for all j 2 Ii(y�i (x); y��i(x); x), for i = �1. Then for small perturbations dx of x, the a
tive 
on-straints remain a
tive and the ina
tive 
onstraints remain ina
tive. Therefore, by linearizing theoptimality 
onditions (19) at (y��1(x); y�1(x); ���1(x); ��1(x)), the following system of m�1+m1+2klinear equations in m�1+m1+2k unknowns (dy�1; dy1; d��1; d�1) is obtained:Qidyi�B�idy�i�ETi W Ti d�i = 0; i=�1[Wi (Eidyi�B�idy�i)� iMidx℄j = 0; j 2 Ii(y�i (x); y��i(x); x); i=�1[d�i℄j = 0; j 62 Ii(y�i (x); y��i(x); x); i=�1 (27)Suppose that the linear system (27) is nonsingular. Then for any dx suÆ
iently small, the sys-tem (27) has a unique solution, and by the Impli
it Fun
tion Theorem, the solution of (27)gives the di�erential of (y��1(x); y�1(x); ���1(x); ��1(x)) at x. More spe
i�
ally, the system (27)
an be written in the form S(dy�1; dy1; d��1; d�1) = T dx, where S 2 R(m�1+m1+2k)�(m�1+m1+2k)and T 2 R(m�1+m1+2k)�k. If S is nonsingular, then (dy�1; dy1; d��1; d�1) = S�1T dx, and thusr(y��1(x); y�1(x); ���1(x); ��1(x))= S�1T . It follows from (17) thatrxVi(x; �) = ry�i (x)TQiy�i (x)�ry�i (x)TB�iy��i(x)�ry��i(x)TBT�iy�i (x)�ry�i (x)TCi (28)r2xxVi(x; �) = ry�i (x)TQiry�i (x)�ry�i (x)TB�iry��i(x)�ry��i(x)TBT�iry�i (x) (29)
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an be 
al
ulated easily.The analysis above shows that suÆ
ient 
onditions for di�erentiability of Vi with respe
t to xat (x; �) are the stri
t 
omplementarity 
ondition and nondegenera
y of the system (27). These
onditions are not ne
essary | for example, ifMi = 0 for i=�1, then Vi(x; �) is 
onstant and hen
edi�erentiable with respe
t to x. Also, the expe
tation operator often smooths nondi�erentiablefun
tions. For example, if rxVi(x; �) exists for almost every � and a mild boundedness 
onditionholds, then E [Vi (x; �)℄ is di�erentiable at x and rxE [Vi (x; �)℄ = E [rxVi(x; �)℄ (e.g., Shapiro et al.2009, Theorem 7.44).The derivatives in (28) and (29) are used to solve SAA problems (26) with a trust-region method.Numeri
al results are given in Se
tion 6.6. Numeri
al ExamplesIn this se
tion, we present numeri
al results to 
ompare pro�ts in settings with an allian
e, noallian
e, and perfe
t 
oordination, for the multiple-resour
e models des
ribed in Se
tions 4. Wepresent results for the network example given in Se
tion 4.1. We �rst present the results for thedeterministi
 
ase with known demand fun
tions in Se
tion 6.1, and then present results for thesto
hasti
 
ase with random demand fun
tions in Se
tion 6.2.6.1. Deterministi
 ExamplesWe �rst des
ribe how the input data Ei, Bi, and Ci for the numeri
al examples were 
hosen. Forthe example network, m�1 =m1 = 20, and thus Ei;Bi 2 R20�20 and Ci 2 R20 for i=�1. For ea
hinstan
e, a spe
i�
 ratio r1 2 [0;1) is 
hosen su
h that jB�i;`;`0 j= r1jEi;`;`0 j. Thus, r1 is similar tothe ratio 
=� of the two-resour
e example in Se
tion 3.3, and represents the level of di�erentiationbetween the sellers' produ
ts. For all instan
es, it was veri�ed that the resulting matrix 	 de�nedin (22) was positive de�nite.For the no allian
e setting, we used the transformations in Appendix C to obtain ~Ei, ~Bi, and ~Ci.In addition, we investigated the e�e
t of a di�eren
e in produ
t attra
tiveness between the settingswith and without an allian
e. As mentioned, in a setting without an allian
e, a buyer may have to



29buy produ
ts from multiple sellers and 
ombine them to obtain the produ
t desired by the buyer.Under an allian
e a seller may o�er the 
ombined produ
t to the buyer, making it more 
onvenientfor the buyer to obtain the produ
t (\one-stop shopping"). There may be additional ways in whi
han allian
e in
reases demand. For example, with an airline allian
e, the 
oordination of 
onne
ting
ight s
hedules to redu
e lay-over time or missed 
onne
tions, rebooking in 
ase of missed 
on-ne
tions, and 
oordination of baggage handling, may further enhan
e the 
ombined produ
t underan allian
e. This might in
rease the potential demand level under an allian
e 
ompared to thatunder no allian
e. Motivated by these observations, we solved some instan
es in whi
h the demandsunder no allian
e is obtained using the transformations in Appendix C, but with a redu
tion in thedemand for produ
ts assembled from more than one seller by a fa
tor of r2 2 (0;1℄ (in the notationof that se
tion, the part of the demand for produ
ts in Li derived from the demand for produ
tsin L0;�1 [L0;1 was redu
ed by a fa
tor of r2).The two-stage allian
e design problem (18) was solved using a trust region algorithm. At ea
hiteration, given the 
urrent value of the resour
e ex
hange ve
tor x, the 
onvex quadrati
 pro-gram (20) was solved. It was veri�ed that the optimal obje
tive value of (20) was zero, that is, thesolution of (20) gave a solution of the se
ond stage equilibrium problem (15) for i=�1. It was alsoveri�ed that the stri
t 
omplimentary 
ondition held and that the system (27) was nonsingular.Next the derivatives of the obje
tive fun
tion of (18) with respe
t to x 
ould be 
omputed, andthe trust region algorithm 
ould exe
ute the next iteration.As mentioned, the obje
tive fun
tion of (18) may not be 
onvex. To address the 
on
ern ofpotential multiple lo
al optima, for ea
h instan
e we used 50 di�erent starting points x0 for the �rstiteration. For ea
h instan
e, all 50 starting points lead to similar �nal solutions and �nal obje
tivevalues.For the no allian
e model, the se
ond-stage equilibrium problem had to be solved only on
e forea
h instan
e. For the perfe
t 
oordination model, the 
onvex quadrati
 optimization problem (25)also had to be solved only on
e for ea
h instan
e.



30Table 4 Comparison of total pro�t for a resour
e ex
hange allian
e, no allian
e, and perfe
t 
oordination, fordi�erent levels of produ
t di�erentiation.Deterministi
 Model r1 = 0:2 r1 = 0:5 r1 = 0:8Total Relative Total Relative Total Relative(r2 = 1) Revenue in
rease (%) Revenue in
rease (%) Revenue in
rease (%)No allian
e 318060.00 322790.00 326980.00Perfe
t Coordination 343430.00 7.98 343340.00 6.37 343300.00 4.99Allian
e 343235.54 7.92 341615.26 5.83 336386.89 2.88Table 5 Comparison of maximum a
hievable total revenue under di�erent 
onvenien
e levelDeterministi
 Model r2 = 0:2 (High) r2 = 0:6 r2 = 1 (No Di�eren
e)Total Relative Total Relative Total Relative(r1 =0:5) Revenue in
rease (%) Revenue in
rease (%) Revenue in
rease (%)No allian
e 311590.00 318450.00 322790.00Perfe
t Coordination 343340.00 10.19 343340.00 7.82 343340.00 6.37Allian
e 341615.26 9.64 318450.00 7.27 341615.26 5.83Table 4 presents the total pro�ts under di�erent levels of produ
t di�erentiation representedby di�erent values of r1 for r2 = 1 and with diagonal matri
es Ei and Bi. The largest in
rease inpro�ts relative to the no allian
e setting was obtained under high levels of produ
t di�erentiation.For example, when r1 =0:2, an allian
e in
reases the pro�t of the no allian
e setting by 7.92%, andperfe
t 
oordination in
reases the pro�t by 7.98%. Even under a low level of produ
t di�erentiation(r1 = 0:8), an allian
e still in
reases the pro�t by 2.88%, and perfe
t 
oordination in
reases thepro�t by 4.99%. Similar results were obtained with non-diagonal matri
es.We also 
ompared pro�ts for di�erent values of r2. Table 5 
ompares the total pro�ts underdi�erent levels of 
onvenien
e represented by di�erent values of r2 for r1 = 0:5 and with diagonalmatri
es Ei and Bi. As expe
ted, the relative in
rease in pro�t is larger for smaller values of r2.6.2. Sto
hasti
 ExamplesIn this se
tion, we present results for the sto
hasti
 model (that is, the �rst stage problem (18)with expe
tation in the obje
tive) presented in Se
tion 4. The random data Ei, Bi, and Ci followeda multivariate normal distribution with means as des
ribed in Se
tion 6.1, standard deviationsproportional to the means, and 
orrelation 
oeÆ
ients of 0.6.We generated and solved SAA problems with di�erent sample sizes N = 20;40; : : : ;500. At ea
hiteration of the �rst-stage problem, the se
ond-stage problem was solved for ea
h of the N sample



31Table 6 Optimal solution under di�erent sample sizes for the sto
hasti
 
asen iter objopt kgk xopt20 41 -340950.08 1.08E-04 144.41 154.96 139.45 148.01 -150.07 -158.56 -139.32 -152.32100 39 -340886.90 3.53E-05 144.35 154.93 139.36 147.87 -150.27 -158.53 -139.27 -152.48300 43 -340933.57 3.25E-05 144.67 155.34 139.76 148.27 -149.94 -158.16 -138.82 -152.14500 41 -341329.49 8.62E-05 144.61 155.32 139.73 148.23 -149.95 -158.20 -138.86 -152.18a n: sample sizeb iter: number of iterations when algorithm stopped
 objopt: obje
tive fun
tion value at the optimal solutiond kgk: gradient norm at the optimal solutione xopt: optimal solutionpoints �n. Then, for ea
h of the N sample points �n, the derivatives of Vi(x; �n) were 
omputed asgiven in (28) and (29). The averages of these derivatives over the N sample points then gave thederivatives of the �rst-stage obje
tive of the SAA problem (26).Finally, after a resour
e ex
hange x was 
hosen by solving a SAA problem, we 
ompared thetotal pro�ts in the allian
e, no allian
e, and perfe
t 
oordination settings with an independent andidenti
ally distributed sample of 1000 sample points, independent of the samples used in the SAAproblem. Table 6 reports the number of iterations of the trust region algorithm until termination,the resour
e ex
hange solution xopt at termination, the obje
tive value (objopt) of the SAA problemat xopt, and the gradient norm (kgk) of the SAA obje
tive fun
tion at xopt, for di�erent samplesizes N , for the network example in Se
tion 4.1. As far as we know, these are the �rst sto
hasti
mathemati
al programs with equilibrium 
onstraints motivated by an appli
ation that have beensolved.Figure 6 presents a histogram of the pairwise di�eren
e in total pro�t between an allian
eand no allian
e, using a sample of 1000 sample points, independent of the samples used in theSAA problem. The total pro�t under an allian
e was larger for all 1000 sample points, with theper
entage in
rease varying from 5:24% to 6:31%.6.3. Robustness With Respe
t To Resour
e Ex
hangeSo far, we have 
ompared the total pro�t under an allian
e with the total pro�t under no allian
eafter 
omputing the optimal ex
hange. An important question is how robust the improvement intotal pro�t is with respe
t to 
hoi
e of resour
e ex
hange. In this se
tion we present a simple



32Figure 6 Histogram of the pairwise di�eren
e in total pro�t between an allian
e and no allian
e, using a sampleof 1000 sample points.
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example to 
ast some light on the question.Suppose that airline �1 operates a 
ight with 
apa
ity 300 from A to B, and airline 1 operates a
ight with 
apa
ity 300 from B to C. After resour
e ex
hange, ea
h airline 
an o�er three produ
ts:itineraries from A to B, from B to C, and from A via B to C. Figure 7(a) shows the per
entagein
rease in total pro�t of the allian
e relative to no allian
e, as a fun
tion of the number of seatsthat airline 1 (airline �1) makes available to airline �1 (airline 1) shown on the x-axis (y-axis).Figure 7(b) shows a histogram of the per
entage in
rease in total pro�t of the allian
e relative to noallian
e for 770 di�erent resour
e ex
hanges. As shown, the per
entage in
rease ranges from -4.78%to 3.77%, the allian
e pro�t is larger than the no allian
e pro�t for 68% of the ex
hanges, andthe average per
entage in
rease is 0.75%. Thus, an allian
e with an ex
hange that is not 
arefully
hosen 
ould be worse than no allian
e, but the improvement of an allian
e over no allian
e seemsquite robust with respe
t to deviations from the optimal ex
hange.7. Con
lusionIn this paper we presented an e
onomi
 motivation for interest in allian
es, by showing that withoutan allian
e sellers will tend to pri
e their produ
ts too high and sell too little, thereby foregoingpotential pro�t, espe
ially if the 
apa
ity is large. We showed that under a resour
e ex
hangeallian
e, some of the foregone pro�t 
an be 
aptured. In fa
t, in the two-resour
e example, the
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Resouce amount from airline 2 to 1
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(a) Per
entage in
rease in total pro�t of the allian
erelative to no allian
e, as a fun
tion of the resour
eex
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Relative Revenue (%)(b) Histogram of per
entage in
rease in total pro�tof the allian
e relative to no allian
e for 770 di�erentresour
e ex
hanges.Figure 7 Robustness of in
rease in total pro�t of the allian
e relative to no allian
e with respe
t to resour
eex
hange.allian
e attained the same total pro�t as perfe
t 
oordination, ex
ept when 
apa
ity is large andthe produ
ts of the sellers are 
omplements.We formulated the problem of determining the optimal amounts of resour
es to ex
hange asa mathemati
al program with equilibrium 
onstraints, taking the 
ompetition into a

ount thatresults from allian
e members selling similar produ
ts. In general, mathemati
al programs withequilibrium 
onstraints are hard to solve, espe
ially in the sto
hasti
 
ase with random problemparameters. We used a trust region algorithm to sear
h for an optimal ex
hange, and used it tosolve example problems.Many resear
h questions regarding allian
es remain. In this paper we 
onsider one type ofallian
e, namely resour
e ex
hange allian
es. Su
h allian
es are attra
tive be
ause they do notrequire 
ompli
ated 
oordination after the resour
e ex
hange has taken pla
e, and be
ause su
hallian
es should not have anti-trust problems, sin
e they enhan
e 
ompetition instead of redu
ing
ompetition. However, there are many other potential allian
e stru
tures of interest that remainto be analyzed and 
ompared in greater detail.The problem of optimal revenue management under an allian
e is very 
hallenging, and has not



34re
eived mu
h attention in the literature. This paper does not address operational level revenuemanagement under an allian
e | the purpose of this paper is to obtain insight into 
onditionsunder whi
h a resour
e ex
hange allian
e 
an provide greater pro�t than the setting without anallian
e, and to propose a model and a method to 
ompute good resour
e ex
hange amounts. Thusthe problem of optimal revenue management under an allian
e remains to be addressed.
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37Appendix A: Derivation of Results for Two-Resour
e ModelAppendix A.1: No Allian
eFirst 
onsider the 
ase in whi
h bmin � ~� � ~�(~y�1 + ~y1) > 0 (it is shown later for whi
h inputparameter values this 
ondition holds). In this 
ase the pro�t fun
tion of seller i is given by~gi(~yi; ~y�i) = ~yi h~�� ~�(~y�i + ~yi)iThen the best response fun
tion of seller i is given byBi(~y�i) = ~�� ~�~y�i2~�Solving the system ~yi = ~�� ~�~y�i2~�for i=�1, the equilibrium (~y��1; ~y�1) is obtained, where~y�i = ~�3~� > 0The demand at the equilibrium pri
es (~y��1; ~y�1) is equal to~�� ~�(~y��1+ ~y�1) = ~�3 > 0 (30)Therefore, if bmin � ~�=3, then the equilibrium pri
es are given by (2), the equilibrium demand isgiven by (3), the resulting pro�t of seller i is given by (4), and thus the total pro�t of both sellerstogether is given by (5) and the 
onsumer surplus is given by (6).Next, 
onsider the 
ase in whi
h bmin� ~�=3. Note that in this 
ase ~�� 3bmin> bmin.Case (1): First, 
onsider any pair of pri
es (~y�1; ~y1) su
h that ~y�1+ ~y1 < (~�� bmin)=~�. In Figure 8,this 
orresponds to (a). Then ~�� ~�(~y�1+ ~y1)> bmin> 0, and thus the pro�t of seller i is given by~gi(~yi; ~y�i) = ~yibminThus, if ~y�1+ ~y1 < (~�� bmin)=~�, then the pro�t of seller i is in
reasing in ~yi, and hen
e su
h a pairof pri
es (~y�1; ~y1) 
annot be an equilibrium.
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(a) Case 1: ~y�1+ ~y1 < (~�� bmin)=~�. (b) Case 2: ~y�1 + ~y1 � ~�=~�.

(
) Case 3.1: ~�=~� > ~y�1+~y1 > (~��bmin)=~� and ~y�1+2~y1 > ~�=~�. (d) Case 3.2: ~�=~� > ~y�1 + ~y1 > (~� � bmin)=~� and2~y�1+ ~y1 > ~�=~�.

(e) Case 4: ~y�1+~y1 = (~��bmin)=~� and (~y�1 < bmin=~�or ~y1 < bmin=~�). (f) Case 5: The line segment between (bmin=~�; ~�=~��2bmin=~�) and (~�=~�� 2bmin=~�; bmin=~�).Figure 8 Di�erent regions of the pair of pri
es (~y�1; ~y1) 
orresponding to di�erent 
ases.



39Case (2): Next, 
onsider any pair of pri
es (~y�1; ~y1) su
h that ~y�1 + ~y1 � ~�=~�. In Figure 8, this
orresponds to (b). Then the demand and pro�t of ea
h seller is zero.Case (3.1): Next, 
onsider any pair of pri
es (~y�1; ~y1) su
h that ~�=~� > ~y�1+ ~y1> (~�� bmin)=~� and~y�1 + 2~y1 > ~�=~�. In Figure 8, this 
orresponds to (
). Then 0< ~�� ~�(~y�1 + ~y1)< bmin, and thusthe pro�t of seller i is given by ~gi(~yi; ~y�i) = ~yi h~�� ~�(~y�i + ~yi)iNote that �~g1(~y1; ~y�1)=�~y1 = ~�� ~�~y�1� 2~�~y1 < 0Thus, if ~�=~� > ~y�1+ ~y1> (~�� bmin)=~� and ~y�1+2~y1 > ~�=~�, then the pro�t of seller 1 is de
reasingin ~y1, and hen
e su
h a pair of pri
es (~y�1; ~y1) 
annot be an equilibrium.Case (3.2): Next, 
onsider any pair of pri
es (~y�1; ~y1) su
h that ~�=~� > ~y�1+ ~y1> (~�� bmin)=~� and2~y�1+ ~y1 > ~�=~�. In Figure 8, this 
orresponds to (d). It follows similarly to Case 3.1 that the pro�tof seller �1 is de
reasing in ~y�1, and hen
e su
h a pair of pri
es (~y�1; ~y1) 
annot be an equilibrium.Case (4.1): Next, 
onsider any pair of pri
es (~y�1; ~y1) su
h that ~y�1 + ~y1 = (~�� bmin)=~� and 0�~y�1 < bmin=~�. Note that ~�� ~�(~y�1 + ~y1) = bmin, and thus the 
orresponding pro�t of seller �1 isgiven by ~g�1(~y�1; ~y1) = ~y�1bminNext, 
onsider ŷ�1 := �~�=~�� ~y1�=2. First, note that~y1 � ~y�1+ ~y1 = ~�� bmin~� < ~�~�) ~�� ~�~y12 > 0, ~�� ~� ~�=~�� ~y12 + ~y1! > 0, ~�� ~� (ŷ�1+ ~y1) > 0Also, note that ~y�1 < bmin=~�



40 , ~y�1+(~�� bmin)=~� < ~�=~�, 2~y�1+ ~y1 < ~�=~�, ~y�1 < ~�=~�� ~y12 = ŷ�1and thus ~�� ~� (ŷ�1+ ~y1)< ~�� ~� (~y�1+ ~y1) = bmin. Thus the 
orresponding pro�t of seller �1 isgiven by ~g�1(ŷ�1; ~y1) = ŷ�1 h~�� ~� (ŷ�1+ ~y1)iNext, note that~y�1 < bmin=~�) �bmin� ~�~y�1�2 > 0, b2min+2bmin ~�~y�1+ ~�2~y2�1 > 4bmin ~�~y�1, �bmin+ ~�~y�1�2 > 4~�~y�1bmin,  bmin=~�+ ~y�12 ! bmin+ ~�~y�12 ! > ~y�1bmin, 0� ~�=~���~�=~�� bmin=~�� ~y�1�2 1A0� ~�� ~� �~�=~�� bmin=~�� ~y�1�2 1A > ~y�1bmin,  ~�=~�� ~y12 ! ~�� ~�~y12 ! > ~y�1bmin,  ~�=~�� ~y12 !0�~�� ~� �~�=~�� ~y1�2 � ~�~y11A > ~y�1bmin, ŷ�1 �~�� ~�ŷ�1� ~�~y1� > ~y�1bmin, ~g�1(ŷ�1; ~y1) > ~g�1(~y�1; ~y1)Thus su
h a pair of pri
es (~y�1; ~y1) 
annot be an equilibrium.Case (4.2): Next, 
onsider any pair of pri
es (~y�1; ~y1) su
h that ~y�1+~y1 = (~��bmin)=~� and 0� ~y1 <bmin=~�. Consider ŷ1 := �~�=~�� ~y�1�=2. It follows similarly to Case 4.1 that ~g1(ŷ1; ~y�1)> ~g1(~y1; ~y�1)and thus su
h a pair of pri
es (~y�1; ~y1) 
annot be an equilibrium. In Figure 8, Case (4.1) andCase (4.2) 
orrespond to (e).



41Case (5): The only remaining pairs of pri
es to 
he
k are pairs (~y�1; ~y1) on the line segment between(bmin=~�; ~�=~� � 2bmin=~�) and (~�=~� � 2bmin=~�; bmin=~�). In Figure 8, this 
orresponds to the linesegment on (f). Consider any pair of pri
es (~y�1; ~y1) = (1� 
)(bmin=~�; ~�=~� � 2bmin=~�) + 
(~�=~� �2bmin=~�; bmin=~�) for 
 2 [0;1℄. It follows from bmin � ~�=3 that 0 < bmin=~� � ~�=~� � 2bmin=~�, andthus ~yi > 0. Note that ~y�1 + ~y1 = (1� 
)(~�=~� � bmin=~�) + 
(~�=~� � bmin=~�) = (~� � bmin)=~�, that~y�1 +2~y1 = (1� 
)(2~�=~�� 3bmin=~�) + 
 ~�=~� � ~�=~�, where the inequality follows from bmin � ~�=3,and similarly 2~y�1+ ~y1 � ~�=~�. Then, for any ŷ1 < ~y1, it holds that ~y�1+ ŷ1 < (~��bmin)=~�, and thusit follows from Case (a) that ~g1(ŷ1; ~y�1)< ~g1(~y1; ~y�1). Also, for any ŷ1 > ~y1, it holds that ~y�1+ ŷ1 >(~�� bmin)=~� and ~y�1+2ŷ1 > ~�=~�, and thus it follows from Case (
) that ~g1(ŷ1; ~y�1)< ~g1(~y1; ~y�1).Hen
e, given ~y�1, ~y1 is the best response for seller 1. Similarly, given ~y1, ~y�1 is the best responsefor seller �1.Therefore, if bmin � ~�=3, then all pairs of pri
es (~y�1; ~y1) on the line segment between(bmin=~�; ~�=~� � 2bmin=~�) and (~�=~� � 2bmin=~�; bmin=~�) are equilibria. For all of these equilibriumpri
es total pri
e is equal to (~��bmin)=~�, the demand is equal to bmin, the resulting pro�t of seller iis equal to ~yibmin, and thus the total pro�t of both sellers together is given by (7) and the 
onsumersurplus is given by (8).Appendix A.2: Perfe
t CoordinationIn this se
tion we determine the maximum a
hievable total pro�t of the two sellers together, thatis, the total pro�t if the sellers would perfe
tly 
oordinate pri
ing.The total pro�t of the two sellers is given by~g(~y�1; ~y1) := (~y�1+ ~y1)minfbmin; maxf0; ~�� ~�(~y�1+ ~y1)ggFirst 
onsider the 
ase in whi
h bmin � ~�� ~�(~y�1+ ~y1)> 0. In this 
ase the total pro�t of the twosellers is given by ~g(~y�1; ~y1) := (~y�1+ ~y1)h~�� ~�(~y�1+ ~y1)i



42The optimal total pri
e �y�1+ �y1 that maximizes the total pro�t is given by�y�1+ �y1 = ~�2~� > 0The demand at the optimal total pri
e �y�1+ �y1 is equal to~�� ~�(�y�1+ �y1) = ~�2 > ~�3 = ~�� ~�(~y��1+ ~y�1) (31)Therefore, if bmin� ~�=2, then the optimal total pri
e is given by (9), the 
orresponding demand isgiven by (10), the total pro�t of both sellers together is given by (11), and the 
onsumer surplusis given by (12).Next, 
onsider the 
ase in whi
h bmin� ~�=2. In this 
ase the optimal total pri
e is given by~y�1+ ~y1 = ~�� bmin~� > 0with 
orresponding demand equal to bmin. The total pro�t of both sellers together is equal to(~y�1+ ~y1) bmin = ~�� bmin~� bminand the 
onsumer surplus is equal to12 � ~�~� � ~�� bmin~� � bmin = b2min2~�Appendix A.3: Resour
e Ex
hange Allian
eFor given values of b�1 and b1, the feasible set S1 of two-resour
e produ
ts that 
an be sold bythe two sellers is given by S1 := f(q�1(x); q1(x)) : xi 2 [0; bi℄; i=�1g. Next we show that this setS1 is equal to S2 := f(q�1; q1) 2 [0; bmin℄2 : q�1+ q1 � bming. First, 
onsider any (q�1(x); q1(x))2 S1with 
orresponding (x�1; x1)2 [0; b�1℄� [0; b1℄. Without loss of generality, suppose that b�1 = bmin.Then q�1(x)+ q1(x) =minfb�1� x�1; x1g+minfb1 � x1; x�1g � b�1� x�1 + x�1 = b�1 = bmin, andthus (q�1(x); q1(x)) 2 S2. Next, 
onsider any (q�1; q1) 2 S2. Choose xi = q�i for i=�1. Note thatxi 2 [0; bi℄ sin
e q�i 2 [0; bmin℄. Also, xi = q�i � bmin� qi = bmin� x�i � b�i� x�i, and thus q�i(x) =minfb�i�x�i; xig= xi = q�i. Thus (q�1; q1)2 S1, and hen
e S1 = S2. Hen
e, the �rst-stage de
isionvariables may be 
onsidered to be the resour
e ex
hange quantities x= (x�1; x1)2 [0; b�1℄� [0; b1℄,or equivalently the 
apa
ities q= (q�1; q1)2 S2 of two-resour
e produ
ts after ex
hange.



43Case 1. First 
onsider the 
ase in whi
h qi >���yi+
y�i > 0 for i=�1 (it is 
onsidered laterfor whi
h input parameter values and values of q and y this 
ondition holds). In this 
ase the pro�tfun
tion of ea
h seller i is given bygi(yi; y�i) = yi [���yi + 
y�i℄Then the best response fun
tion of ea
h seller i is given byBi(y�i) = �+ 
y�i2�Solving the system yi = �+ 
y�i2�for i=�1, the equilibrium (y��1; y�1) is obtained, wherey�i = �2�� 
 > 0 (32)Note that the equilibrium pri
es are greater than the marginal 
ost 
�1 + 
1 of the two-resour
eprodu
t. The demand at the equilibrium pri
es (y��1; y�1) is equal to���y�i + 
y��i = ��2�� 
 > 0 (33)The resulting pro�t of ea
h seller is equal toy�i minfqi; maxf0; ���y�i + 
y��igg = �2�(2�� 
)2 (34)and thus the total pro�t of both sellers together is equal to2 �2�(2�� 
)2 (35)Therefore, if qi ���=(2��
) for i=�1, then the equilibrium pri
es are given by (32), the equilib-rium demand is given by (33), the resulting pro�t of ea
h seller is given by (34), and thus the totalpro�t of both sellers together is given by (35). Note that qi � ��=(2��
) for i=�1 requires thatbmin� 2��=(2��
). Thus the results above hold if bmin� 2��=(2��
) and the resour
e ex
hange
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0Figure 9 Di�erent 
ases of 
apa
ity bmin for a resour
e ex
hange allian
e.x is 
hosen su
h that qi ���=(2��
) for i=�1. In Figure 9, the line ABCD shows pairs (q�1; q1)su
h that q�1+ q1 = bmin> 2��=(2�� 
), obtained with resour
e ex
hange x= (x�1; x1) su
h thatxi = q�i = bmin� qi = bmin� x�i � b�i� x�i. Thus, for the given value of bmin > 2��=(2�� 
), theset of points (q�1; q1) su
h that qi � ��=(2� � 
) for i = �1 and q�1 + q1 � bmin 
orresponds totriangle BCI. All 
orresponding resour
e ex
hanges x lead to sales of two-resour
e produ
ts of��=(2�� 
) by ea
h seller, 
orresponding to point I, and provide total pro�t of 2�2�=(2�� 
)2.Case 2. Next, 
onsider the 
ase in whi
h 0� q�i ����y�i+
yi and qi >���yi+
y�i > 0 (asbefore, it is 
onsidered later for whi
h input parameter values and values of q and y this 
onditionholds). In this 
ase the pro�t fun
tion of seller �i is given by



45g�i(y�i; yi) = y�iq�iand the pro�t fun
tion of seller i is given bygi(yi; y�i) = yi [���yi + 
y�i℄Then the best response fun
tion of seller �i is given byB�i(yi) = maxfy�i : q�i ����y�i + 
yig = �+ 
yi� q�i�and the best response fun
tion of seller i is given byBi(y�i) = �+ 
y�i2�Solving the system y�i = �+ 
yi� q�i�yi = �+ 
y�i2�the solution (y��1; y�1) is obtained, wherey��i = 2��+�
 � 2�q�i2�2� 
2y�i = ��+�
� 
q�i2�2� 
2 (36)(It is 
he
ked later under what 
onditions y��i; y�i > 0 and (y��i; y�i ) is the unique equilibrium.) Thedemands at the pri
es (y��i; y�i ) are equal tod�i(y��i; y�i ) = ���y��i + 
y�i = q�i (37)di(y�i ; y��i) = ���y�i + 
y��i = ��(�+ 
)��
q�i2�2� 
2 (38)Re
all that we are 
onsidering the 
ase in whi
h q�i ����y�i+
yi and qi >���yi+
y�i. Notethat q�i = ���y��i + 
y�i . Also note that qi >���y�i + 
y��i if and only if qi >��(�+ 
)=(2�2�
2)��
q�i=(2�2�
2). Examples of the line qi =��(�+
)=(2�2�
2)��
q�i=(2�2�
2) are givenin Figure 9 by line LFI for i= 1 and by line MGI for i=�1. It 
an be veri�ed that the inter
ept



46satis�es ��(�+ 
)=(2�2� 
2)2 (0;2��=(2�� 
)). The slope of the lines are negative if 
 > 0 andpositive if 
 < 0. Note that if q�i = ��=(2�� 
), then ��(�+ 
)=(2�2� 
2)� �
q�i=(2�2� 
2) =��=(2��
), and thus in all 
ases the lines go through I = (��=(2��
); ��=(2��
)). In Figure 9,if bmin> 2��=(2��
), su
h as in the 
ase in whi
h the line ABCD shows pairs (q�1; q1) su
h thatq�1+ q1 = bmin, then the set of points (q�1; q1) su
h that 0� q�1 � �� �y��1+ 
y�1 , q1 >�� �y�1 +
y��1, and q�1+ q1 � bmin, 
orresponds to quadrilateral ABIL. (Note that q�1� ��=(2��
), sin
eit has already been shown that q�1>���y��1+ 
y�1 in triangle BCI.) Similarly, the set of points(q�1; q1) su
h that 0� q1� ���y�1+
y��1, q�1 >���y��1+
y�1 , and q�1+q1 � bmin, 
orresponds toquadrilateral DCIM (note that q1 ���=(2��
)). If ��(�+
)=(2�2�
2)< bmin� 2��=(2��
),su
h as in the 
ase in whi
h the line EFGH shows pairs (q�1; q1) su
h that q�1+q1 = bmin, then theset of points (q�1; q1) su
h that 0� q�1 ����y��1+ 
y�1 , q1 >���y�1 + 
y��1, and q�1+ q1 � bmin,
orresponds to triangle EFL, and the set of points (q�1; q1) su
h that 0 � q1 � �� �y�1 + 
y��1,q�1 > �� �y��1 + 
y�1 , and q�1 + q1 � bmin, 
orresponds to triangle HGM . It is veri�ed in Case 3that, if bmin���(�+ 
)=(2�2� 
2), then qi � ���y�i + 
y��i for i=�1.Next we verify that, if q�i ���=(2��
), then the pri
es y��i; y�i given in (36) satisfy y��i; y�i > 0,that is, the pri
es are greater than the marginal 
ost 
�1+
1 of the two-resour
e produ
t. First notethat the denominator in the expressions for y��i and y�i is positive. Next 
onsider the numerator inthe expression for y��i. Note that 2�2 < 4�2� 
2 = (2�+ 
)(2�� 
), ��2�� 
 < 2��+�
2�Thus, if q�i � ��=(2�� 
), then q�i < 2��+�
2�, 0 < 2��+�
� 2�q�i, 0 < 2��+�
� 2�q�i2�2� 
2 = y��i



47Next 
onsider the numerator in the expression for y�i . If 
 � 0, then �(�+
)�
q�i > 0 (re
all that
 2 (��;�)), and thus y�i = ��+�
� 
q�i2�2� 
2 > 0Next, 
onsider the 
ase with 
 > 0. Note that��2�� 
 < ��
 < ��+�

Thus, if q�i � ��=(2�� 
), then q�i < ��+�

, 0 < ��+�
� 
q�i, 0 < ��+�
� 
q�i2�2� 
2 = y�iNext we verify that, if q�i � ��=(2� � 
) and qi > ��(� + 
)=(2�2 � 
2)� �
q�i=(2�2 � 
2),then (y��i; y�i ) given in (36) is the unique equilibrium. First, re
all that Bi(y�i) = (�+ 
y�i)=(2�)is the unique best response for seller i if the 
apa
ity qi of seller i is not 
onstraining. Note that ifseller �i 
hooses pri
e y��i and qi >��(�+ 
)=(2�2� 
2)��
q�i=(2�2� 
2), then the 
apa
ity qiof seller i is not 
onstraining, and thus y�i given in (36) is the unique best response for seller i toy��i. Next we verify that y��i given in (36) is the unique best response for seller �i to y�i . Given y�i ,the pro�t of seller �i is given byg�i(y�i; y�i ) = y�iminfq�i; maxf0; ���y�i+ 
y�i gg= 8><>: y�iq�i if y�i � �+
y�i �q�i�y�i (���y�i+ 
y�i ) if �+
y�i �q�i� � y�i � �+
y�i�0 if y�i � �+
y�i�Thus g�i(y�i; y�i ) is a nonde
reasing linear fun
tion of y�i if y�i � (�+ 
y�i � q�i)=�. If (�+ 
y�i �q�i)=� < y�i < (�+ 
y�i )=�, then g�i(y�i; y�i ) is a 
on
ave quadrati
 fun
tion of y�i, withg0�i(y�i; y�i ) = �2�y�i+�+ 
y�i< �2 (�+ 
y�i � q�i)+�+ 
y�i



48 = ��� 
y�i +2q�i= ��� 
��+�
� 
q�i2�2� 
2 +2q�i= �2��2���
+(4�2� 
2)q�i2�2� 
2Note that �2��2���
+(4�2� 
2)q�i2�2� 
2 � 0, �2��2���
+(4�2� 
2)q�i � 0, ���(2�+ 
)+ (2�� 
)(2�+ 
)q�i � 0, ���+(2�� 
)q�i � 0, q�i � ��2�� 
Hen
e, if q�i � ��=(2� � 
), then g0�i(y�i; y�i ) < 0 for all y�i 2 ((�+ 
y�i � q�i)=�; (�+ 
y�i )=�).Hen
e, the unique best response for seller �i to y�i is B�i(y�i ) = (�+ 
y�i � q�i)=�. Therefore, ifq�i ���=(2��
) and qi >��(�+
)=(2�2�
2)��
q�i=(2�2�
2), then (y��i; y�i ) given in (36) isthe unique equilibrium.The resulting pro�t of ea
h seller is equal tog�i(y��i; y�i ) = y��iq�i= � (2�+ 
)q�i� 2�q2�i2�2� 
2gi(y�i ; y��i) = y�i ����y�i + 
y��i�= ���+�
� 
q�i2�2� 
2 ���� (�+ 
)��
q�i2�2� 
2 �= �2� (�+ 
)2� 2��
 (�+ 
) q�i +�
2q2�i(2�2� 
2)2 (39)and thus the total pro�t of both sellers together is equal toG(q�i) = � (2�+ 
) q�i� 2�q2�i2�2� 
2 + �2� (�+ 
)2� 2��
 (�+ 
) q�i +�
2q2�i(2�2� 
2)2= � (2�+ 
) (2�2� 
2)q�i� 2� (2�2� 
2)q2�i +�2� (�+ 
)2� 2��
 (�+ 
) q�i +�
2q2�i(2�2� 
2)2



49= �2� (�+ 
)2 +� (4�3� 4�
2� 
3) q�i�� (4�2� 3
2)q2�i(2�2� 
2)2 (40)Therefore, if q�i � ��=(2�� 
) and qi >��(�+ 
)=(2�2� 
2)� �
q�i=(2�2� 
2), then the equi-librium pri
es are given by (36), the equilibrium demand is given by (38), the resulting pro�t ofea
h seller is given by (39), and thus the total pro�t of both sellers together is given by (40).Case 3. Next 
onsider the 
ase in whi
h 0� qi � �� �yi + 
y�i for i = �1. (It will be shownthat this 
ase holds if and only if 0� qi � ��(�+ 
)=(2�2� 
2)� �
q�i=(2�2� 
2) for i=�1. InFigure 9 this 
ase 
orresponds to two-resour
e produ
t 
apa
ities (q�1; q1) in region 0LIM . Thusthe entire region f(q�1; q1) : qi � 0; i=�1g is 
overed by Cases 1{3.) In this 
ase the pro�t fun
tionof ea
h seller i is given by gi(yi; y�i) = yiqiThen the best response fun
tion of ea
h seller i is given byBi(y�i) = maxfyi : qi ����yi + 
y�ig = �+ 
y�i� qi�Solving the system yi = �+ 
y�i� qi�for i=�1, the equilibrium (y��1; y�1) is obtained, wherey�i = �(�+ 
)��qi� 
q�i�2� 
2 (41)(It is 
he
ked later under what 
onditions y�i > 0 and (y��1; y�1) is the unique equilibrium.) Thedemand of seller i at the pri
es (y��1; y�1) is equal to���y�i + 
y��i = qi > 0 (42)Next we verify that, if qi ���(�+
)=(2�2�
2)��
q�i=(2�2�
2) for i=�1, then the pri
es y�igiven in (41) satisfy y�i > 0 for i=�1, that is, the pri
es are greater than the marginal 
ost 
�1+ 
1of the two-resour
e produ
t. Note that qi � ��(� + 
)=(2�2 � 
2)� �
q�i=(2�2 � 
2) for i = �1implies that q�1 + q1 � 2��=(2� � 
). For a given pair (q�1; q1) su
h that qi � ��(� + 
)=(2�2�
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2)��
q�i=(2�2� 
2) for i=�1, 
onsider the line with slope �1 through the point (q�1; q1). Forexample, in Figure 9, EFGH is su
h a line, with points (q�1; q1) on line segment FG satisfyingqi ���(�+
)=(2�2�
2)��
q�i=(2�2�
2) for i=�1; and JK is also su
h a line, with all points(q�1; q1) on line segment JK satisfying qi � ��(� + 
)=(2�2� 
2)� �
q�i=(2�2� 
2) for i=�1.We show that the pri
es y�i given by (41) 
orresponding to all points (q�1; q1) on line segment FGsatisfy y�i > 0. It follows that the pri
es y�i given by (41) 
orresponding to all points (q�1; q1) online segment JK also satisfy y�i > 0. The 
oordinates of point F are ([(2�2�
2)(q�1+q1)���(�+
)℄=(2�2��
�
2); [��(�+
)��
(q�1+q1)℄=(2�2��
�
2)) and the 
oordinates of point G are([��(� + 
)� �
(q�1 + q1)℄=(2�2� �
 � 
2); [(2�2 � 
2)(q�1 + q1)� ��(� + 
)℄=(2�2� �
 � 
2)).Consider the pri
es y�i given in (41). Note thaty�i = �(�+ 
)��qi� 
q�i�2� 
2 > 0, �(�+ 
)��qi� 
q�i > 0, �qi + 
(q�i + qi� qi) < �(�+ 
), (�� 
)qi + 
(q�i + qi) < �(�+ 
) (43)If (q�1; q1) is on line segment FG, thenqi � ��(�+ 
)��
(q�1+ q1)2�2��
� 
2, (�� 
)qi + 
(q�i + qi) � (�� 
)��(�+ 
)��
(q�1+ q1)2�2��
� 
2 + 
(q�i + qi)= ��3���
2 +�2
(q�1+ q1)� 
3(q�i + qi)2�2��
� 
2= ��(�2� 
2)+ (�2� 
2)
(q�1+ q1)2�2��
� 
2= (�� 
)(�+ 
)[��+ 
(q�1+ q1)℄(�� 
)(2�+ 
)= (�+ 
)[��+ 
(q�1+ q1)℄2�+ 
 (44)Next, by separately 
onsidering the 
ases 
 � 0 and 
 � 0, we show that [��+
(q�1+q1)℄=(2�+
)<�, then it follows from (44) that (�� 
)qi + 
(q�i + qi)<�(�+ 
), and hen
e it follows from (43)



51that y�i > 0.First, suppose that 
 � 0. Note that � 
 < �, � < 2�+ 
, ��2�+ 
 < �) ��+ 
(q�1+ q1)2�+ 
 < � (45)The last step follows sin
e 
 � 0 and q�1+ q1 � 0. It follows from (43), (44) and (45) that, if 
 � 0,then y�i > 0.Next, suppose that 
 � 0. Note that 
 < �, � < 2�� 
, ��(2�� 
+2
)(2�� 
)(2�+ 
) < �, ��+ 2��
2��
2�+ 
 < �) ��+ 
(q�1+ q1)2�+ 
 < � (46)The last step follows sin
e 
 � 0 and q�1+ q1 � 2��=(2�� 
). It follows from (43), (44) and (46)that, if 
 � 0, then y�i > 0.Next we verify that, if qi � ��(� + 
)=(2�2� 
2)� �
q�i=(2�2� 
2) for i =�1, then (y��1; y�1)given in (41) is the unique equilibrium. We verify that y�i given in (41) is the unique best responsefor seller i to y��i. Given y��i, the pro�t of seller i is given bygi(yi; y��i) = yimin�qi; maxf0; ���yi+ 
y��ig	= 8>><>>: yiqi if yi � �+
y��i�qi�yi ����yi+ 
y��i� if �+
y��i�qi� � yi � �+
y��i�0 if yi � �+
y��i�



52Thus gi(yi; y��i) is a nonde
reasing linear fun
tion of yi if yi � (�+
y��i�qi)=�. If (�+
y��i�qi)=� <yi < (�+ 
y��i)=�, then gi(yi; y��i) is a 
on
ave quadrati
 fun
tion of yi, withg0i(yi; y��i) = �2�yi +�+ 
y��i< �2 ��+ 
y��i� qi�+�+ 
y��i= ��� 
y��i +2qi= ��� 
�(�+ 
)��q�i� 
qi�2� 
2 +2qi= ���2���
+�
q�i +(2�2� 
2)qi�2� 
2If (q�1; q1) is on line segment FG, thenqi � ��(�+ 
)��
(q�i + qi)2�2��
� 
2, 0 � ���2���
+�
(q�i + qi)+ (2�2��
� 
2)qi= ���2���
+�
q�i +(2�2� 
2)qi, 0 � ���2���
+�
q�i +(2�2� 
2)qi�2� 
2, g0i(yi; y��i) < 0Hen
e, if (q�1; q1) is on line segment FG, then g0i(yi; y��i)< 0 for all yi 2 ((�+ 
y��i � qi)=�; (�+
y��i)=�). Hen
e, the unique best response for seller i to y��i is Bi(y��i) = (�+
y��i�qi)=�. It followsin the same way that if (q�1; q1) is on line segment JK, then the unique best response for seller ito y��i is Bi(y��i) = (�+
y��i� qi)=�. Therefore, if qi � ��(�+
)=(2�2�
2)��
q�i=(2�2�
2) fori=�1, then (y��1; y�1) given in (41) is the unique equilibrium.The resulting pro�t of ea
h seller i is equal toy�i minfqi; maxf0; ���y�i + 
y��igg = �(�+ 
)qi��q2i � 
q�iqi�2� 
2 (47)and thus the total pro�t of both sellers together is equal to�(�+ 
)(q�1+ q1)��(q2�1+ q21)� 2
q�1q1�2� 
2 (48)



53Therefore, if qi � ��(�+ 
)=(2�2� 
2)� �
q�i=(2�2� 
2) for i=�1, then the equilibrium pri
esare given by (41), the equilibrium demand is given by (42), the resulting pro�t of ea
h seller isgiven by (47), and thus the total pro�t of both sellers together is given by (48).Next we determine the value of (q�1; q1) that maximizes the total pro�t of both sellers togetherunder Case 3. First we �x the value of q�1+ q1 at some value q� bmin, and 
hoose q1 to maximizethe total pro�t subje
t to q�1+ q1 = q. Thereafter we 
hoose q to maximize the total pro�t subje
tto q� bmin. It follows from (48) that the total pro�t is equal to�(�+ 
)(q�1+ q1)��(q2�1+ q21)� 2
q�1q1�2� 
2 = �(�+ 
)(q�1+ q1)��(q2�1+2q�1q1+ q21)+ 2�q�1q1� 2
q�1q1�2� 
2= �(�+ 
)q��q2+2(�� 
)(q� q1)q1�2� 
2= �(�+ 
)q��q2+2(�� 
)qq1� 2(�� 
)q21�2� 
2Let H1(q1) := �(�+ 
)q��q2+2(�� 
)qq1� 2(�� 
)q21�2� 
2Note that H1 is a 
on
ave quadrati
 fun
tion that is maximized at q�1 = q=2, and the 
orrespondingvalue of q�1 is also q��1 = q=2. Re
all that (48) applies if qi ���(�+
)=(2�2�
2)��
q�i=(2�2�
2)for i=�1. Note that q�i � ��(�+ 
)2�2� 
2 � �
2�2� 
2 q��i for i=�1, q2 � ��(�+ 
)2�2� 
2 � �
2�2� 
2 q2, q � 2��2�� 
Next we 
hoose q to maximize the total pro�t subje
t to q� bmin and q� 2��=(2�� 
). LetH2(q) := H1(q=2)= �(�+ 
)q��q2+2(�� 
)q2=2� 2(�� 
)q2=4�2� 
2= 2�(�+ 
)q� (�+ 
)q22(�� 
)(�+ 
)= 2�q� q22(�� 
)
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2β2
− γ2

2αβ

2β − γ

≈ 0.618Figure 10 Di�erent 
ases of the 
apa
ity ratio bmin=� and the pri
e 
oeÆ
ient ratio 
=�.Note that H2 is a 
on
ave quadrati
 fun
tion and H 02(q�) = 0, q� = �. Also note that q� = � �2��=(2��
) if and only if 
 � 0. Let amin :=minf�; bmin;2��=(2��
)g. Then the value of (q�1; q1)that maximizes the total pro�t and that satis�es qi ���(�+ 
)=(2�2� 
2)��
q�i=(2�2� 
2) fori=�1, is q��1 = q�1 = amin=2. The 
orresponding total pro�t is H2(amin) = (2��amin)amin=[2(��
)℄.This 
on
ludes Case 3.Optimal ex
hange. Next, we 
ompare the pro�ts under Cases 1, 2, and 3, and determine thevalue of (q�1; q1), that is, the value of the ex
hange x= (x�1; x1), that maximizes the total pro�tof both sellers together. Di�erent 
ases hold, depending on the 
apa
ity ratio bmin=� and the pri
e
oeÆ
ient ratio 
=� (re
all that 
=� 2 (�1;1)). The di�erent 
ases are depi
ted in Figure 10.Case A (small 
apa
ity). bmin=�� [1+ 
=�℄=[2� (
=�)2℄, that is, bmin� ��(�+ 
)=(2�2� 
2):In Figure 9, line JK shows an example of pairs (q�1; q1) su
h that q�1+q1 = bmin for a given valueof bmin<��(�+
)=(2�2�
2), and triangle 0JK shows pairs (q�1; q1)� 0 su
h that q�1+q1 � bmin.In this 
ase, the 
apa
ity bmin is so small that all feasible values of (q�1; q1) 
orrespond to Case 3.Re
all that ��(�+ 
)=(2�2� 
2)2 (0;2��=(2�� 
)).



55Case A1. 
=� � 0 and bmin=�� [1+
=�℄=[2�(
=�)2℄, that is, 
 � 0 and bmin���(�+
)=(2�2�
2):Re
all that 2��=(2��
)�� if and only if 
 � 0. Sin
e bmin���(�+
)=(2�2�
2)< 2��=(2��
)��, it follows that bmin =minf�; bmin;2��=(2��
)g, and thus the value of (q�1; q1) that maxi-mizes the total pro�t is q��1 = q�1 = bmin=2, and the maximum total pro�t is (2��bmin)bmin=[2(��
)℄.The resulting equilibrium pri
e of ea
h seller, given by (41), is y�i = (2�� bmin)=[2(��
)℄, and theresulting equilibrium demand of ea
h seller, given by (42), is equal to q�i = bmin=2.Case A2. 
=� � 0 and bmin=�� [1+
=�℄=[2�(
=�)2℄, that is, 
 � 0 and bmin���(�+
)=(2�2�
2):In this 
ase, bmin � ��(� + 
)=(2�2 � 
2) < 2��=(2� � 
) and � � 2��=(2� � 
). If ��(� +
)=(2�2� 
2)� �, then bmin � � and thus bmin =minf�; bmin;2��=(2�� 
)g, the value of (q�1; q1)that maximizes the total pro�t is q��1 = q�1 = bmin=2, and the maximum total pro�t is (2� �bmin)bmin=[2(� � 
)℄. The resulting equilibrium pri
e of ea
h seller, given by (41), is y�i = (2��bmin)=[2(� � 
)℄, and the resulting equilibrium demand of ea
h seller, given by (42), is equal toq�i = bmin=2. Note that ��(�+ 
)=(2�2� 
2)� � if and only if 
=� � (p5� 1)=2 = 1='= '� 1�0:618, where ' denotes the golden ratio. If 
=� > (p5�1)=2 (and thus �<��(�+
)=(2�2�
2)),then there are two possibilities. If bmin � �, then as before, q��1 = q�1 = bmin=2, the equilibriumpri
e of ea
h seller is y�i = (2�� bmin)=[2(�� 
)℄, the equilibrium demand of ea
h seller is equal toq�i = bmin=2, and the maximum total pro�t is (2�� bmin)bmin=[2(��
)℄. Otherwise, if �< bmin, thenq��1 = q�1 = �=2, the resulting equilibrium pri
e of ea
h seller, given by (41), is y�i =�=[2(��
)℄, theresulting equilibrium demand of ea
h seller, given by (42), is equal to q�i = �=2, and the maximumtotal pro�t is (2�� �)�=[2(� � 
)℄ = �2=[2(� � 
)℄. Note that in this 
ase the optimal resour
eex
hange x� is su
h that q��1+ q�1 = �< bmin, that is, some 
apa
ity is not used.Case B (intermediate 
apa
ity). [1 + 
=�℄=[2� (
=�)2℄� bmin=�� 2=(2� 
=�), that is, ��(�+
)=(2�2� 
2)� bmin� 2��=(2�� 
):In Figure 9, line EFGH shows an example of pairs (q�1; q1) su
h that q�1+ q1 = bmin for a givenvalue of bmin 2 (��(� + 
)=(2�2� 
2); 2��=(2�� 
)), and triangle 0EH shows pairs (q�1; q1)� 0



56su
h that q�1 + q1 � bmin. In this 
ase with intermediate 
apa
ity bmin, there are feasible valuesof (q�1; q1) 
orresponding to Case 3, for example in pentagon 0LFGM in Figure 9, and there arefeasible values of (q�1; q1) 
orresponding to Case 2, for example in triangles EFL and GHM inFigure 9.Consider any two pairs (q�1; q1) and (q0�1; q01) in triangle EFL su
h that q�1 = q0�1. It followsfrom (36), (38), (39), and (40) that the equilibrium pri
es, the equilibrium demand, the pro�t ofea
h seller, and thus the total pro�t of both sellers together are the same for (q�1; q1) and (q0�1; q01).Therefore, for any point (q�1; q1) in triangle EFL, there is a point (q�1; ��(� + 
)=(2�2� 
2)��
q�1=(2�2� 
2)) on the boundary LF between triangle EFL and pentagon 0LFGM with thesame total pro�t as at point (q�1; q1). Next, we show that the total pro�t as a fun
tion of (q�1; q1)is 
ontinuous on the boundary between triangle EFL and pentagon 0LFGM . Re
all from (48)that the total pro�t at a point (q�1; q1) in pentagon 0LFGM is equal to�(�+ 
) (q�1+ q1)�� �q2�1+ q21�� 2
q�1q1�2� 
2Spe
i�
ally, at the boundary point (q�1; ��(�+
)=(2�2�
2)��
q�1=(2�2�
2)) the total pro�tis equal to�(�+ 
)�q�1+ ��(�+
)��
q�12�2�
2 ����q2�1+ h��(�+
)��
q�12�2�
2 i2�� 2
q�1 ��(�+
)��
q�12�2�
2�2� 
2
= 8>><>>: [�2�(�+ 
)2 (2�2� 
2)��2�3(�+ 
)2℄+ h�(�+ 
) (2�2� 
2)2���
(�+ 
) (2�2� 
2)+ 2��3
(�+ 
)� 2��
(�+ 
) (2�2� 
2)i q�1+ h�� (2�2� 
2)2��3
2+2�
2 (2�2� 
2)i q2�1 9>>=>>;(2�2� 
2)2 (�2� 
2)= 8<: �2� (2�2� 
2��2) (�+ 
)2+� (4�4� 4�2
2+ 
4� 2�3
+�
3+2�3
� 4�3
+2�
3) (�+ 
)q�1�� (4�4� 4�2
2+ 
4+�2
2� 4�2
2+2
4)q2�1 9=;(2�2� 
2)2 (�2� 
2)= 8<: �2� (�2� 
2) (�+ 
)2+� (4�4� 4�3
� 4�2
2+3�
3+ 
4) (�+ 
)q�1�� (4�4� 7�2
2+3
4)q2�1 9=;(2�2� 
2)2 (�2� 
2)
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= 8<: �2� (�� 
) (�+ 
)3+� (4�3� 4�
2� 
3) (�� 
) (�+ 
)q�1�� (4�2� 3
2) (�� 
) (�+ 
)q2�1 9=;(2�2� 
2)2 (�� 
) (�+ 
)= �2�(�+ 
)2+� (4�3� 4�
2� 
3)q�1�� (4�2� 3
2)q2�1(2�2� 
2)2whi
h is the same as the total pro�t given by (40) for point (q�1; ��(� + 
)=(2�2 � 
2) ��
q�1=(2�2� 
2)) in triangle EFL. Thus the total pro�t as a fun
tion of (q�1; q1) is 
ontinuouson the boundary between triangle EFL and pentagon 0LFGM . The same observation applies tothe total pro�t as a fun
tion of (q�1; q1) in triangle GHM . Hen
e, in Case B with intermediate
apa
ity, it is suÆ
ient to optimize (q�1; q1) over pentagon 0LFGM only, that is, it is suÆ
ient torestri
t attention to feasible values of (q�1; q1) 
orresponding to Case 3. The rest of Case B followsin the same way as for Case A with small 
apa
ity.Case B1. 
=� � 0 and [1+ 
=�℄=[2� (
=�)2℄� bmin=�� 2=(2� 
=�), that is, 
 � 0 and ��(�+
)=(2�2� 
2)� bmin� 2��=(2�� 
):Consider the optimal value of (q�1; q1) in pentagon 0LFGM . Sin
e bmin � 2��=(2� � 
) � �,it follows that bmin = minf�; bmin;2��=(2� � 
)g, and thus the value of (q�1; q1) in pentagon0LFGM that maximizes the total pro�t is q��1 = q�1 = bmin=2, and the maximum total pro�t is(2��bmin)bmin=[2(��
)℄. The resulting equilibrium pri
e of ea
h seller is y�i = (2��bmin)=[2(��
)℄,and the resulting equilibrium demand of ea
h seller is equal to q�i = bmin=2.Case B2. 
=� � 0 and [1+ 
=�℄=[2� (
=�)2℄� bmin=�� 2=(2� 
=�), that is, 
 � 0 and ��(�+
)=(2�2� 
2)� bmin� 2��=(2�� 
):If 
=� � (p5� 1)=2 (and thus �� ��(�+ 
)=(2�2� 
2)), then �=minf�; bmin;2��=(2�� 
)g,the value of (q�1; q1) that maximizes the total pro�t is q��1 = q�1 = �=2, and the maximum totalpro�t is (2���)�=[2(�� 
)℄ = �2=[2(�� 
)℄. The resulting equilibrium pri
e of ea
h seller, givenby (41), is y�i = �=[2(��
)℄, and the resulting equilibrium demand of ea
h seller, given by (42), isequal to q�i = �=2. In this 
ase the optimal resour
e ex
hange x� is su
h that q��1+ q�1 = �� bmin,that is, some 
apa
ity is not used. If 
=� < (p5 � 1)=2 (and thus � > ��(� + 
)=(2�2 � 
2)),



58then there are two possibilities. If �� bmin, then as before, q��1 = q�1 = �=2, the equilibrium pri
eof ea
h seller is y�i = �=[2(� � 
)℄, the equilibrium demand of ea
h seller is equal to q�i = �=2,and the maximum total pro�t is �2=[2(�� 
)℄. Otherwise, if bmin � �, then q��1 = q�1 = bmin=2, theequilibrium pri
e of ea
h seller is y�i = (2�� bmin)=[2(��
)℄, the equilibrium demand of ea
h selleris equal to q�i = bmin=2, and the maximum total pro�t is (2�� bmin)bmin=[2(�� 
)℄.Case C (large 
apa
ity). bmin=�� 2=(2� 
=�), that is, bmin� 2��=(2�� 
):In Figure 9, line ABCD shows an example of pairs (q�1; q1) su
h that q�1+ q1 = bmin for a givenvalue of bmin� 2��=(2�� 
), and triangle 0AD shows pairs (q�1; q1)� 0 su
h that q�1+ q1 � bmin.In this 
ase with large 
apa
ity bmin, there are feasible values of (q�1; q1) in quadrilateral 0LIM inFigure 9 
orresponding to Case 3, there are feasible values of (q�1; q1) 
orresponding to Case 2, forexample in quadrilaterals ABIL and DCIM in Figure 9, and there are feasible values of (q�1; q1)
orresponding to Case 1, for example in triangle BCI in Figure 9.For any point (q�1; q1) in ABIL, there is a point (q�1; ��(�+
)=(2�2�
2)��
q�1=(2�2�
2))on the boundary IL between ABIL and 0LIM with the same total pro�t as at point (q�1; q1).It was shown under Case B that the total pro�t as a fun
tion of (q�1; q1) is 
ontinuous on theboundary. The same observation applies to the total pro�t as a fun
tion of (q�1; q1) in DCIM .Hen
e, in Case C with large 
apa
ity, it is suÆ
ient to optimize (q�1; q1) over quadrilateral 0LIMand triangle BCI only, that is, it is suÆ
ient to restri
t attention to feasible values of (q�1; q1)
orresponding to Case 3 and Case 1.Case C1. 
=� � 0 and bmin=�� 2=(2� 
=�), that is, 
 � 0 and bmin� 2��=(2�� 
):Sin
e 2��=(2� � 
) � � and bmin � 2��=(2� � 
), it follows that 2��=(2� � 
) =minf�; bmin;2��=(2� � 
)g, and thus the value of (q�1; q1) that maximizes the total pro�t over0LIM is given by q��1 = q�1 = ��=(2� � 
) represented by point I, and the 
orresponding totalpro�t is (2�� 2��=(2�� 
))2��=(2�� 
)=[2(�� 
)℄ = 2�2�=(2�� 
)2. Also, as shown in Case 1,all values of (q�1; q1) in triangle BCI have the same total pro�t of 2�2�=(2��
)2. Thus, any point(q�1; q1) in triangle BCI represents an optimal resour
e ex
hange for Case C1. For all su
h optimalresour
e ex
hanges, the resulting equilibrium pri
e of ea
h seller, given by both (32) and (41), is



59y�i = �=(2��
), and the resulting equilibrium demand of ea
h seller, given by both (33) and (42),is equal to ��=(2�� 
).Case C2. 
=� � 0 and bmin=�� 2=(2� 
=�), that is, 
 � 0 and bmin� 2��=(2�� 
):Sin
e bmin� 2��=(2��
)��, it follows that �=minf�; bmin;2��=(2��
)g, and thus the valueof (q�1; q1) that maximizes the total pro�t over 0LIM is q��1 = q�1 = �=2, and the 
orrespondingtotal pro�t is (2���)�=[2(��
)℄ = �2=[2(��
)℄. Also, all values of (q�1; q1) in triangle BCI havethe same total pro�t of 2�2�=(2�� 
)2. Note that4�2� 4�
+ 
2 � 4�2� 4�
) (2�� 
)2 � 4�(�� 
)) �22(�� 
) � 2�2�(2�� 
)2Thus the optimal point for Case C2 is q��1 = q�1 = �=2, and the maximum total pro�t is �2=[2(��
)℄.The resulting equilibrium pri
e of ea
h seller, given by (41), is y�i = �=[2(��
)℄, and the resultingequilibrium demand of ea
h seller, given by (42), is equal to q�i =�=2.Inspe
tion of the results above for the settings with no allian
e, perfe
t 
oordination, and aresour
e ex
hange allian
e reveal that the results 
an be summarized by 5 
ases, as in Table 1.Consumer surplus. To 
al
ulate the 
onsumer surplus asso
iated with demand model (13), it isinstru
tive to start with a utility model that leads to demand model (13). Consider a representative
onsumer who 
onsumes z�1 units of the produ
t sold by seller �1 and z1 units of the produ
t soldby seller 1. Suppose that the resulting utility is given by U(z�1; z1) := a�1z�1+ a1z1� b�1z2�1=2�b1z21=2�
z�1z1 with b�1; b1; b�1b1�
2 > 0. Given a pri
e pi for the produ
t sold by ea
h seller i, the
onsumer 
hooses quantities (z�1; z1) to maximize the 
onsumer surplus U(z�1; z1)�p�1z�1�p1z1.It follows that the 
hosen quantities satisfyzi = aib�i� a�i
b�1b1� 
2 � b�ib�1b1� 
2 pi + 
b�1b1� 
2p�iThis utility model leads to the demand model (13) if �= (aib�i�a�i
)=(b�1b1�
2), � = bi=(b�1b1�
2), and 
 = 
=(b�1b1�
2) for i=�1, that is, if ai = �=(��
), bi = �=(�2�
2), and 
= 
=(�2�
2)for i=�1.



60In regions 1 and 2 in Table 1, the resulting 
onsumer surplus is given byU(bmin=2; bmin=2)� 2�� bmin2(�� 
) bmin2 � 2�� bmin2(�� 
) bmin2 = b2min4(�� 
)In regions 3 and 4, the resulting 
onsumer surplus is given byU(��=(2�� 
); ��=(2�� 
))� �2�� 
 ��2�� 
 � �2�� 
 ��2�� 
 = �2�2(�� 
)(2�� 
)2In region 5, the resulting 
onsumer surplus is given byU(�=2; �=2)� �2(�� 
) �2 � �2(�� 
) �2 = �24(�� 
)Thus, in region 1 all three settings have the same 
onsumer surplus. In region 2, the 
onsumersurplus under perfe
t 
oordination and under the allian
e are the same, and as shown in Se
tion 3.2,both are larger than the 
onsumer surplus under no allian
e. To 
ompare the 
onsumer surplusunder the allian
e and under no allian
e in regions 3 and 4, note that�29(�� 
) � �2�2(�� 
)(2�� 
)2, �4�
+ 
2 � 5�2whi
h holds sin
e 
 2 (��;�), and thus in regions 3 and 4 the 
onsumer surplus under the allian
eis greater than the 
onsumer surplus under no allian
e. To 
ompare the 
onsumer surplus underthe allian
e and under perfe
t 
oordination in region 3, note thatb2min4(�� 
) � �2�2(�� 
)(2�� 
)2, bmin � 2��2�� 
and thus in region 3 the 
onsumer surplus under perfe
t 
oordination is greater than the 
onsumersurplus under the allian
e. To 
ompare the 
onsumer surplus under the allian
e and under perfe
t
oordination in region 4, note that �24(�� 
) � �2�2(�� 
)(2�� 
)2



61, (2�� 
)2 � 4�2whi
h holds sin
e 
 � 0 in region 4, and thus in region 4 the 
onsumer surplus under perfe
t
oordination is greater than the 
onsumer surplus under the allian
e. Finally, in region 5 the
onsumer surplus under perfe
t 
oordination and under the allian
e are the same, and both arelarger than the 
onsumer surplus under no allian
e by a fa
tor of 9=4. Note that, similar to totalpro�t, the 
onsumer surplus under perfe
t 
oordination and under the allian
e are the same ex
eptwhen 
apa
ity is large (bmin� 2��=(2�� 
)) and the sellers' produ
ts are 
omplements (
 � 0).Appendix A.4: Perfe
t Coordination with Produ
t Di�erentiationThe model of perfe
t 
oordination introdu
ed in Se
tion 3.2 (with details given in Se
tion 7) wasbased on a model of demand d for the two-resour
e produ
t given by d=maxf0; ~�� ~�(~y�1+ ~y1)g,and the model of an allian
e introdu
ed in Se
tion 3.3 (with details given in Se
tion 7) was basedon a model of demand di(yi; y�i) for the two-resour
e produ
t of seller i given by di(yi; y�i) =maxf0; �� �yi + 
y�ig, where ~�= 2�+2(�� 
)(
�1+ 
1) and ~� = 2(�� 
). Thus, the model ofperfe
t 
oordination in Se
tion 3.2 does not make provision for di�erent brands of the two-resour
eprodu
t, but the model of an allian
e in Se
tion 3.3 makes provision for di�erent brands of the two-resour
e produ
t. In this se
tion we 
onsider a model of perfe
t 
oordination that makes provisionfor di�erent brands of the two-resour
e produ
t.The demand di(yi; y�i) for the brand i produ
t sold is given as follows:di(yi; y�i) = ���yi + 
y�iwhere as before yi denotes the ex
ess of the pri
e of the brand i produ
t over the marginal 
ost
�1+ 
1, and we 
onsider only values of (y�1; y1) su
h that ���yi + 
y�i � 0 for i=�1.First 
onsider the 
ase in whi
h the 
apa
ity is not 
onstraining (it is determined later whatamount of 
apa
ity is suÆ
ient for this 
ondition to hold). In this 
ase, the total pro�t is given byg(y�1; y1) := y�1d�1(y�1; y1)+ y1d1(y1; y�1) = �(y�1+ y1)��(y2�1+ y21)+ 2
y�1y1



62Note that rg(y�1; y1) = ��� 2�y�1+2
y1�� 2�y1+2
y�1 �r2g(y�1; y1) = ��2� 2
2
 �2� �and thus r2g(y�1; y1) is negative de�nite (� > 0, �2� 
2 > 0), and hen
e g is a 
on
ave quadrati
fun
tion. Therefore, the pri
es that maximize the total pro�t are given byy��1 = y�1 = �2(�� 
) ; (49)and the 
orresponding total demand at the optimal pri
es is equal to �. Thus, if bmin��, then thetotal pro�t of the two sellers under perfe
t 
oordination is given by �22(��
) . Note that the optimalpri
es, demand, pro�t, and 
onsumer surplus are the same as for perfe
t 
oordination in Se
tion 3.2when bmin� �.Next 
onsider the 
ase in whi
h bmin < �. First we 
onsider pri
e points (y�1; y1) su
h thatd�1(y�1; y1)+d1(y1; y�1)� bmin, and then we 
onsider pri
e points (y�1; y1) su
h that d�1(y�1; y1)+d1(y1; y�1)� bmin. It follows from the results above for g that the point (�y�1; �y1) that maximizes gsubje
t to the 
onstraint d�1(y�1; y1)+ d1(y1; y�1)� bmin satis�es d�1(�y�1; �y1)+ d1(�y1; �y�1) = bmin,that is, 2�� (�� 
)(�y�1+ �y1) = bmin. Letg1(y1) := g ([2�� bmin℄=[�� 
℄� y1; y1)= �2�� bmin�� 
 �� (2�� bmin)2(�� 
)2 +2(�+ 
)�2�� bmin�� 
 � y1�y1Note that g1 is a 
on
ave quadrati
 fun
tion with maximum at �y1 = (2�� bmin)=[2(� � 
)℄ (andthus �y�1 = �y1 = (2�� bmin)=[2(�� 
)℄).Next 
onsider pri
e points (y�1; y1) su
h that d�1(y�1; y1)+d1(y1; y�1)� bmin, that is, 2�� (��
)(y�1+y1)� bmin. The model should spe
ify how 
apa
ity bmin is to be allo
ated between the twobrands if d�1(y�1; y1)+ d1(y1; y�1)> bmin. There are various ways to allo
ate 
onstrained 
apa
ity.Here we present one su
h way, the equal rationing rule, in detail, and then we point out other ways



63that lead to the same results. Under the equal rationing rule, if d�1(y�1; y1) + d1(y1; y�1)> bmin,then the same fra
tion � of the demands di(yi; y�i) for the di�erent brands is satis�ed, where� = bmind�1(y�1; y1)+ d1(y1; y�1) = bmin2�� (�� 
)(y�1+ y1)Then, the total pro�t is given byg2(y�1; y1) = �y�1(���y�1+ 
y1)+�y1(���y1+ 
y�1)= bmin�(y�1+ y1)��(y�1+ y1)2+2(�+ 
)y�1y12�� (�� 
)(y�1+ y1)Let y := y�1+ y1, and letg3(y; y1) := g2(y� y1; y1)= bmin�y��y2+2(�+ 
)yy1� 2(�+ 
)y212�� (�� 
)yRe
all that, in this 
ase, 2�� (� � 
)(y�1 + y1) � bmin, and thus y � (2�� bmin)=(� � 
). First,
onsider any �xed value of y 2 [0; (2��bmin)=(��
)℄, and maximize g3(y; �) with respe
t to y1. Notethat g3(y; �) is a 
on
ave quadrati
 fun
tion with maximum at ŷ1 = y=2 (and thus ŷ�1 = ŷ1 = y=2).Next, let g4(y) := g2(y=2; y=2)= bmin2 2�y+ 
y2��y22�� (�� 
)y= bmin2 yNote that the maximum of g4 over y 2 [0; (2�� bmin)=(��
)℄ is attained at y= (2�� bmin)=(��
),and thus ŷ�1 = ŷ1 = (2�� bmin)=[2(�� 
)℄. Therefore, if bmin<�, then the optimal pri
es arey��1 = y�1 = �y�1 = �y1 = ŷ�1 = ŷ1 = 2�� bmin2(�� 
) (50)with 
orresponding total demand equal to bmin. Thus, the total pro�t under perfe
t 
oordinationis equal to (2�� bmin)bmin=[2(�� 
)℄. Note that the optimal pri
es, demand, pro�t and 
onsumersurplus are also the same as for perfe
t 
oordination in Se
tion 3.2 when bmin� �.



64Other rationing rules also lead to the same results. For example, suppose that the demand forbrand �1 is satis�ed �rst and then the remaining 
apa
ity, if any, is used for brand 1. In this 
ase,the total pro�t is given byg5(y�1; y1) = y�1minfbmin; ���y�1+
y1g+y1minfmaxf0; bmin�(���y�1+
y1)g; ���y1+
y�1gFor this rationing rule the optimal pri
es are same as in (50).Appendix B: Proof of Theorem 1Theorem 1 Suppose that the problem (21) is feasible and that the matrix 	, de�ned in (22), ispositive de�nite. Then problem (21) has an optimal solution (y��1; y�1 ; ���1; ��1) with (y��1; y�1) beingunique. Moreover, if the optimal obje
tive value of problem (21) is zero, then (y��1; y�1) is the uniqueNash equilibrium.Proof. The obje
tive value of problem (21) is bounded below by zero. It is known that a quadrati
program with a bounded obje
tive value has an optimal solution. To establish uniqueness, 
onsiderthe problem min(x;y)2X �f(x; y) := xTQx+ aTx+ bTy	 (51)where X �Rn1 �Rn2 is a 
onvex set and Q is an n1�n1 positive de�nite matrix. Let (x�1; y�1) and(x�2; y�2) be two optimal solutions of (51). Consider the fun
tion �(t) := f(tx�1+(1� t)x�2; ty�1 +(1�t)y�2). Note that � is a quadrati
 fun
tion, �(t) = �t2 + �t+ 
, where � = (x�1 � x�2)TQ(x�1 � x�2).Note that �� 0 sin
e Q is positive de�nite, and thus � is 
onvex. Convexity of X and optimalityof (x�1; y�1) and (x�2; y�2) implies that �(t) � �(0) = �(1) for all t 2 [0;1℄. Moreover, 
onvexity of �implies that �(t)� �(0) = �(1) for all t2 [0;1℄. Hen
e �(t) = �(0) = �(1) for all t 2 [0;1℄, and thus�=0. Sin
e Q is positive de�nite it follows that x�1 = x�2. Finally, if the optimal obje
tive value ofproblem (21), and hen
e of problem (20), is zero, then (y��1; y�1 ; ���1; ��1) satis�es the ne
essary andsuÆ
ient optimality 
onditions (19), and thus (y��1; y�1) is the Nash equilibrium.



65Appendix C: Details of Demand Transformation for No Allian
e ModelThe parameters E;B;C in demand model (14) and the parameters ~E; ~B; ~C in demand model (23)should be related in a parti
ular way to fa
ilitate a fair 
omparison of the pri
es, demands, totalpro�t, and 
onsumer surplus between the settings with and without an allian
e. In this se
tion wederive the relation.The relation between the demand models with and without an allian
e is based on the assumptionthat the overall demand level for ea
h produ
t is the same with and without an allian
e. Re
allthat Li denotes the set of produ
ts whi
h 
an be o�ered by seller i with and without an allian
e,for i=�1, and L0 denotes the set of produ
ts whi
h 
ould be o�ered only under an allian
e. Inaddition, let L0;i � L0 denote the set of produ
ts in L0 that 
an be o�ered by seller i under anallian
e, and let Li;�i �Li denote the set of produ
ts in Li that 
an be o�ered by seller �i under anallian
e, but not without an allian
e. Thus, for the setting with an allian
e the number of demandequations (and pri
es) for ea
h seller i is mi = jLij+ jL0;ij+ jL�i;ij, and for the setting without anallian
e the number of demand equations (and pri
es) for ea
h seller i is only jLij.The following example is used to explain the derivation of the relation between the demandmodels. Seller �1 produ
es resour
e A, and seller 1 produ
es resour
es B and C. With an allian
e,the following produ
ts are o�ered by ea
h seller: Produ
t A using 1 unit of resour
e A ea
h,produ
t B using 1 unit of resour
e B ea
h, produ
t C using 1 unit of resour
e C ea
h, produ
t BCusing 1 unit of resour
e B and 1 unit of resour
e C ea
h, and produ
t A2BC using 2 units ofresour
e A, 1 unit of resour
e B, and 1 unit of resour
e C ea
h. Without an allian
e, produ
t A iso�ered by seller �1 only and seller �1 
aptures all the demand for produ
t A, and produ
ts B, C,and BC are o�ered by seller 1 only and seller 1 
aptures all the demand for produ
tsB, C, and BC.Produ
t A2BC is not o�ered by either seller, but there still is the same demand for produ
t A2BC;buyers buy ea
h unit of produ
t A2BC by buying 2 units of produ
t A from seller �1, and 1 unitof produ
t BC from seller 1. As shown later, the demands for produ
ts A and BC derived fromthe demand for produ
t A2BC is added to the respe
tive demands for produ
ts A and BC by



66themselves. Note that this derivation assumes that buyers buy ea
h unit of produ
t A2BC bybuying 1 unit of produ
t BC from seller 1 instead of buying 1 unit of produ
t B and 1 unit ofprodu
t C separately from the same seller. This assumption may be questionable if the pri
e ofbuying produ
ts B and C separately is less than the pri
e of produ
t BC. In the numeri
al work,we veri�ed that the pri
es of multiple resour
e produ
ts o�ered by a seller were less than the sumof the pri
es of any produ
ts that 
ould be bought separately to make up the multiple resour
eprodu
t. Thus, in this example, L�1 = fAg, L1 = fB;C;BCg, L0;�1 = fA2BCg, L0;1 = fA2BCg,L�1;1 = fAg, and L1;�1 = fB;C;BCg. With an allian
e, the demand for ea
h produ
t is givenby (14):di;A = �Ei;A;Ayi;A�Ei;A;Byi;B �Ei;A;Cyi;C �Ei;A;BCyi;BC �Ei;A;A2BCyi;A2BC+B�i;A;Ay�i;A+B�i;A;By�i;B +B�i;A;Cy�i;C +B�i;A;BCy�i;BC +B�i;A;A2BCy�i;A2BC +Ci;Adi;B = �Ei;B;Ayi;A�Ei;B;Byi;B �Ei;B;Cyi;C �Ei;B;BCyi;BC �Ei;B;A2BCyi;A2BC+B�i;B;Ay�i;A+B�i;B;By�i;B +B�i;B;Cy�i;C +B�i;B;BCy�i;BC +B�i;B;A2BCy�i;A2BC +Ci;Bdi;C = �Ei;C;Ayi;A�Ei;C;Byi;B �Ei;C;Cyi;C �Ei;C;BCyi;BC �Ei;C;A2BCyi;A2BC+B�i;C;Ay�i;A+B�i;C;By�i;B +B�i;C;Cy�i;C +B�i;C;BCy�i;BC +B�i;C;A2BCy�i;A2BC +Ci;Cdi;BC = �Ei;BC;Ayi;A�Ei;BC;Byi;B �Ei;BC;Cyi;C �Ei;BC;BCyi;BC �Ei;BC;A2BCyi;A2BC+B�i;BC;Ay�i;A+B�i;BC;By�i;B +B�i;BC;Cy�i;C +B�i;BC;BCy�i;BC+B�i;BC;A2BCy�i;A2BC +Ci;BCdi;A2BC = �Ei;A2BC;Ayi;A�Ei;A2BC;Byi;B �Ei;A2BC;Cyi;C �Ei;A2BC;BCyi;BC �Ei;A2BC;A2BCyi;A2BC+B�i;A2BC;Ay�i;A+B�i;A2BC;By�i;B +B�i;A2BC;Cy�i;C +B�i;A2BC;BCy�i;BC+B�i;A2BC;A2BCy�i;A2BC +Ci;A2BCTo use these observations and the demand fun
tions given by (14) for the allian
e setting toderive the demand fun
tions for the produ
ts with no allian
e, �rst note that the demands in (14)depend on jL0;�1j+ jL0;1j+ jL�1j+ jL1j+ jL�1;1j+ jL1;�1j pri
es yi;`, but the demands in (23) depend



67on only jL�1j+ jL1j pri
es. Thus, to derive the demands of the produ
ts with no allian
e (as afun
tion of the jL�1j+ jL1j pri
es ~y with no allian
e), it remains to determine appropriate valuesto substitute into (14) for the jL0;�1j+ jL0;1j+ jL�1j+ jL1j+ jL�1;1j+ jL1;�1j pri
es y given thepri
es ~y. First, 
onsider the easy 
ase: if a produ
t ` is o�ered by the same seller i in both thesetting with an allian
e and the setting without an allian
e, that is, `2Li, then simply substitutepri
e ~yi;` for yi;` in the demand model (14). Thus, in the example above, ~y�1;A, ~y1;B, ~y1;C, and ~y1;BCare substituted for y�1;A, y1;B, y1;C , and y1;BC respe
tively. Next, if a produ
t ` o�ered by a seller iin the allian
e setting is not o�ered by any seller in the no allian
e setting, that is, `2L0;i, but it
an be assembled in the no allian
e setting by buying a�1 units of produ
t `�1 from seller �1 anda1 units of produ
t `1 from seller 1, then substitute pri
e a�1~y�1;`�1 +a1~y1;`1 for yi;` in the demandmodel (14). Thus, in the example above, 2~y�1;A + ~y1;BC is substituted for y�1;A2BC and y1;A2BC .Next, if a produ
t ` o�ered by a seller i in the allian
e setting is not o�ered by seller i in the noallian
e setting, but it is o�ered by seller �i in the no allian
e setting, that is, ` 2L�i;i), then we
hoose the pri
e yi;` in the demand model (14) so that together with the other pri
es yi0;`0 , i0 =�1,`0 2 Li0 [L0;i0 , already determined as des
ribed above, will equate di;` to zero. Note that if thereare n su
h produ
ts, then n linear equations are obtained by equating the n linear expressions fordi;` to zero, and under reasonable 
onditions these equations 
an be solved for the n desired valuesof yi;`. Thus, for the example above, the system of equations�E1;A;Ay1;A�E1;A;B~y1;B �E1;A;C~y1;C �E1;A;BC ~y1;BC �E1;A;A2BC(2~y�1;A+ ~y1;BC)+B�1;A;A~y�1;A+B�1;A;By�1;B +B�1;A;Cy�1;C +B�1;A;BCy�1;BC +B�1;A;A2BC(2~y�1;A+ ~y1;BC)+C1;A= 0�E�1;B;A~y�1;A�E�1;B;By�1;B �E�1;B;Cy�1;C �E�1;B;BCy�1;BC �E�1;B;A2BC(2~y�1;A+ ~y1;BC)+B1;B;Ay1;A+B1;B;B ~y1;B +B1;B;C ~y1;C +B1;B;BC ~y1;BC +B1;B;A2BC(2~y�1;A+ ~y1;BC)+C�1;B= 0�E�1;C;A~y�1;A�E�1;C;By�1;B �E�1;C;Cy�1;C �E�1;C;BCy�1;BC �E�1;C;A2BC(2~y�1;A+ ~y1;BC)



68 +B1;C;Ay1;A+B1;C;B ~y1;B+B1;C;C ~y1;C +B1;C;BC ~y1;BC +B1;C;A2BC(2~y�1;A+ ~y1;BC)+C�1;C= 0�E�1;BC;A~y�1;A�E�1;BC;By�1;B �E�1;BC;Cy�1;C �E�1;BC;BCy�1;BC �E�1;BC;A2BC(2~y�1;A+ ~y1;BC)+B1;BC;Ay1;A+B1;BC;B ~y1;B+B1;BC;C ~y1;C +B1;BC;BC ~y1;BC +B1;BC;A2BC(2~y�1;A+ ~y1;BC)+C�1;BC= 0is solved for y1;A, y�1;B, y�1;C , and y�1;BC as linear fun
tions of ~y�1;A, ~y1;B, ~y1;C , and ~y1;BC. Supposethe solution isy1;A = b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C~y1;C + b1;A;1;BC ~y1;BC + b1;A;0y�1;B = b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0y�1;C = b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0y�1;BC = b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0Now we are ready to use the observations above and the demand fun
tions given by (14) for theallian
e setting to derive the demand fun
tions for the produ
ts with no allian
e. For the exampleabove, we obtain the following demand fun
tions:~d�1;A = �E�1;A;A~y�1;A�E�1;A;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C ~y1;C + b�1;B;1;BC ~y1;BC + b�1;B;0)�E�1;A;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)�E�1;A;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)�E�1;A;A2BC(2~y�1;A+ ~y1;BC)+B1;A;A(b1;A;�1;A~y�1;A+ b1;A;1;B ~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)+B1;A;B~y1;B +B1;A;C ~y1;C +B1;A;BC ~y1;BC +B1;A;A2BC(2~y�1;A+ ~y1;BC)+C�1;A+2 ��E�1;A2BC;A~y�1;A�E�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B+ b�1;B;1;C ~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)�E�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B+ b�1;C;1;C ~y1;C + b�1;C;1;BC~y1;BC + b�1;C;0)



69�E�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B+ b�1;BC;1;C ~y1;C + b�1;BC;1;BC~y1;BC + b�1;BC;0)�E�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)+B1;A2BC;B~y1;B+B1;A2BC;C ~y1;C +B1;A2BC;BC ~y1;BC +B1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C�1;A2BC�E1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C~y1;C + b1;A;1;BC~y1;BC + b1;A;0)�E1;A2BC;B ~y1;B �E1;A2BC;C ~y1;C �E1;A2BC;BC ~y1;BC �E1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B�1;A2BC;A~y�1;A+B�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)+B�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C1;A2BC�~d1;B = �E1;B;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)�E1;B;B~y1;B �E1;B;C ~y1;C �E1;B;BC ~y1;BC �E1;B;A2BC(2~y�1;A+ ~y1;BC)+B�1;B;A~y�1;A+B�1;B;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)+B�1;B;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;B;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;B;A2BC(2~y�1;A+ ~y1;BC)+C1;B~d1;C = �E1;C;A(b1;A;�1;A~y�1;A+ b1;A;1;B ~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)�E1;C;B~y1;B �E1;C;C ~y1;C �E1;C;BC ~y1;BC�E1;C;A2BC(2~y�1;A+ ~y1;BC)+B�1;C;A~y�1;A+B�1;C;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C ~y1;C + b�1;B;1;BC ~y1;BC + b�1;B;0)+B�1;C;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B ~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;C;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;C;A2BC(2~y�1;A+ ~y1;BC)+C1;C



70~d1;BC = �E1;BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B ~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)�E1;BC;B~y1;B �E1;BC;C ~y1;C +B1;BC;BC ~y1;BC�E1;BC;A2BC(2~y�1;A+ ~y1;BC)+B�1;BC;A~y�1;A+B�1;BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C ~y1;C + b�1;B;1;BC ~y1;BC + b�1;B;0)+B�1;BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B ~y1;B + b�1;C;1;C ~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C ~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;BC;A2BC(2~y�1;A+ ~y1;BC)+C1;BC �E�1;A2BC;A~y�1;A�E�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)�E�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B+ b�1;C;1;C ~y1;C + b�1;C;1;BC~y1;BC + b�1;C;0)�E�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B+ b�1;BC;1;C ~y1;C + b�1;BC;1;BC~y1;BC + b�1;BC;0)�E�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C ~y1;C + b1;A;1;BC ~y1;BC + b1;A;0)+B1;A2BC;B~y1;B+B1;A2BC;C ~y1;C +B1;A2BC;BC ~y1;BC+B1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C�1;A2BC�E1;A2BC;A(b1;A;�1;A~y�1;A+ b1;A;1;B~y1;B + b1;A;1;C~y1;C + b1;A;1;BC~y1;BC + b1;A;0)�E1;A2BC;B ~y1;B �E1;A2BC;C ~y1;C �E1;A2BC;BC ~y1;BC�E1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+B�1;A2BC;A~y�1;A+B�1;A2BC;B(b�1;B;�1;A~y�1;A+ b�1;B;1;B~y1;B + b�1;B;1;C~y1;C + b�1;B;1;BC~y1;BC + b�1;B;0)+B�1;A2BC;C(b�1;C;�1;A~y�1;A+ b�1;C;1;B~y1;B + b�1;C;1;C~y1;C + b�1;C;1;BC ~y1;BC + b�1;C;0)+B�1;A2BC;BC(b�1;BC;�1;A~y�1;A+ b�1;BC;1;B~y1;B + b�1;BC;1;C~y1;C + b�1;BC;1;BC ~y1;BC + b�1;BC;0)+B�1;A2BC;A2BC(2~y�1;A+ ~y1;BC)+C1;A2BCThus, the demand model given by (23) is obtained for the setting with no allian
e. For the exampleabove, the parameters ~E; ~B; ~C are given by E;B;C as follows:~E�1;A;A = E�1;A;A+E�1;A;Bb�1;B;�1;A+E�1;A;Cb�1;C;�1;A+E�1;A;BCb�1;BC;�1;A+2E�1;A;A2BC



71�B1;A;Ab1;A;�1;A� 2B1;A;A2BC +2(E�1;A2BC;A+E�1;A2BC;Bb�1;B;�1;A+E�1;A2BC;Cb�1;C;�1;A+E�1;A2BC;BCb�1;BC;�1;A+2E�1;A2BC;A2BC �B1;A2BC;Ab1;A;�1;A�2B1;A2BC;A2BC +E1;A2BC;Ab1;A;�1;A+2E1;A2BC;A2BC �B�1;A2BC;A�B�1;A2BC;Bb�1;B;�1;A�B�1;A2BC;Cb�1;C;�1;A�B�1;A2BC;BCb�1;BC;�1;A� 2B�1;A2BC;A2BC)~E1;B;B = E1;B;Ab1;A;1;B+E1;B;B �B�1;B;Bb�1;B;1;B�B�1;B;Cb�1;C;1;B�B�1;B;BCb�1;BC;1;B~E1;B;C = E1;B;Ab1;A;1;C +E1;B;C �B�1;B;Bb�1;B;1;C �B�1;B;Cb�1;C;1;C �B�1;B;BCb�1;BC;1;C~E1;B;BC = E1;B;Ab1;A;1;BC +E1;B;BC �B�1;B;Bb�1;B;1;BC �B�1;B;Cb�1;C;1;BC �B�1;B;BCb�1;BC;1;BC~E1;C;B = E1;C;Ab1;A;1;B +E1;C;B �B�1;C;Bb�1;B;1;B �B�1;C;Cb�1;C;1;B �B�1;C;BCb�1;BC;1;B~E1;C;C = E1;C;Ab1;A;1;C +E1;C;C �B�1;C;Bb�1;C;1;C �B�1;C;Cb�1;C;1;C �B�1;C;BCb�1;BC;1;C~E1;C;BC = E1;C;Ab1;A;1;BC +E1;C;BC �B�1;C;Bb�1;B;1;BC �B�1;C;Cb�1;C;1;BC �B�1;C;BCb�1;BC;1;BC~E1;BC;B = E1;BC;Ab1;A;1;B +E1;BC;B �B�1;BC;Bb�1;B;1;B �B�1;BC;Cb�1;BC;1;B �B�1;BC;BCb�1;BC;1;B+E�1;A2BC;Bb�1;B;1;B +E�1;A2BC;Cb�1;C;1;B+E�1;A2BC;BCb�1;BC;1;B �B1;A2BC;Ab1;A;1;B �B1;A2BC;B+E1;A2BC;Ab1;A;1;B +E1;A2BC;B �B�1;A2BC;Bb�1;B;1;B �B�1;A2BC;Cb�1;C;1;B �B�1;A2BC;BCb�1;BC;1;B~E1;BC;C = E1;BC;Ab1;A;1;C +E1;BC;C �B�1;BC;Bb�1;B;1;C �B�1;BC;Cb�1;BC;1;C �B�1;BC;BCb�1;BC;1;C+E�1;A2BC;Bb�1;B;1;C +E�1;A2BC;Cb�1;C;1;C +E�1;A2BC;BCb�1;BC;1;C �B1;A2BC;Ab1;A;1;C �B1;A2BC;C+E1;A2BC;Ab1;A;1;C +E1;A2BC;C �B�1;A2BC;Bb�1;B;1;C �B�1;A2BC;Cb�1;C;1;C �B�1;A2BC;BCb�1;BC;1;C~E1;BC;BC = E1;BC;Ab1;A;1;BC �B1;BC;BC +E1;BC;A2BC�B�1;BC;Bb�1;B;1;BC �B�1;BC;Cb�1;BC;1;BC �B�1;BC;BCb�1;BC;1;BC �B�1;BC;A2BC+E�1;A2BC;Bb�1;B;1;BC +E�1;A2BC;Cb�1;C;1;BC +E�1;A2BC;BCb�1;BC;1;BC +E�1;A2BC;A2BC�B1;A2BC;Ab1;A;1;BC �B1;A2BC;BC �B1;A2BC;A2BC+E1;A2BC;Ab1;A;1;BC +E1;A2BC;BC +E1;A2BC;A2BC�B�1;A2BC;Bb�1;B;1;BC �B�1;A2BC;Cb�1;C;1;BC �B�1;A2BC;BCb�1;BC;1;BC �B�1;A2BC;A2BC~B�1;B;A = �E1;B;Ab1;A;�1;A� 2E1;B;A2BC +B�1;B;A+B�1;B;Bb�1;B;�1;A+B�1;B;Cb�1;C;�1;A+B�1;B;BCb�1;BC;�1;A+2B�1;B;A2BC



72~B�1;C;A = �E1;C;Ab1;A;�1;A� 2E1;C;A2BC +B�1;C;A�B�1;C;Bb�1;B;�1;A+B�1;C;Cb�1;C;�1;A+B�1;C;BCb�1;BC;�1;A+2B�1;C;A2BC~B�1;BC;A = �E1;BC;Ab1;A;�1;A� 2E1;BC;A2BC+B�1;BC;Bb�1;B;�1;A+B�1;BC;Cb�1;C;�1;A+B�1;BC;BCb�1;BC;�1;A+2B�1;BC;A2BC �E�1;A2BC;A�E�1;A2BC;Bb�1;B;�1;A�E�1;A2BC;Cb�1;C;�1;A�E�1;A2BC;BCb�1;BC;�1;A� 2E�1;A2BC;A2BC+B1;A2BC;Ab1;A;�1;A+2B1;A2BC;A2BC �E1;A2BC;Ab1;A;�1;A� 2E1;A2BC;A2BC+B�1;A2BC;Bb�1;B;�1;A+B�1;A2BC;Cb�1;C;�1;A+B�1;A2BC;BCb�1;BC;�1;A+2B�1;A2BC;A2BC~B1;A;B = �E1;A;Bb�1;B;1;B �E�1;A;Cb�1;C;1;B�E�1;A;BCb�1;BC;1;B +B1;A;Ab1;A;1;B+B1;A;B�2(E�1;A2BC;Bb�1;B;1;B �E�1;A2BC;Cb�1;C;1;B �E�1;A2BC;BCb�1;BC;1;B+B1;A2BC;Ab1;A;1;B +B1;A2BC;B �E1;A2BC;Ab1;A;1;B �E1;A2BC;B+B�1;A2BC;Bb�1;B;1;B +B�1;A2BC;Cb�1;C;1;B +B�1;A2BC;BCb�1;BC;1;B)~B1;A;C = �E1;A;Bb�1;B;1;C �E�1;A;Cb�1;C;1;C �E�1;A;BCb�1;BC;1;C +B1;A;Ab1;A;1;C +B1;A;C�2(E�1;A2BC;Bb�1;B;1;C �E�1;A2BC;Cb�1;C;1;C �E�1;A2BC;BCb�1;BC;1;C+B1;A2BC;Ab1;A;1;C +B1;A2BC;C �E1;A2BC;Ab1;A;1;C �E1;A2BC;C+B�1;A2BC;Bb�1;B;1;C +B�1;A2BC;Cb�1;C;1;C +B�1;A2BC;BCb�1;BC;1;C)~B1;A;BC = �E1;A;Bb�1;B;1;BC �E�1;A;Cb�1;C;1;BC �E�1;A;BCb�1;BC;1;BC �E�1;A;A2BC+B1;A;Ab1;A;1;BC +B1;A;BC +B1;A;A2BC�2(E�1;A2BC;Bb�1;B;1;BC �E�1;A2BC;Cb�1;C;1;BC �E�1;A2BC;BCb�1;BC;1;BC �E�1;A2BC;A2BC+B1;A2BC;Ab1;A;1;BC +B1;A2BC;BC +B1;A2BC;A2BC �E1;A2BC;Ab1;A;1;BC �E1;A2BC;BC �E1;A2BC;A2BC+B�1;A2BC;Bb�1;B;1;BC +B�1;A2BC;Cb�1;C;1;BC +B�1;A2BC;BCb�1;BC;1;BC +B�1;A2BC;A2BC)~C�1;A = C�1;A+2(C�1;A2BC +C1;A2BC)~C1;B = C1;B~C1;C = C1;C~C1;BC = C1;BC +C�1;A2BC +C1;A2BC
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To state the relation between parameters E;B;C in demand model (14) and the parameters~E; ~B; ~C in demand model (23) in general, we �rst develop the notation needed for a 
on
ise rep-resentation. Let the rows and 
olumns of matrix Ei be grouped so that the �rst group of rowsand 
olumns 
orrespond to produ
ts in Li, the se
ond group of rows and 
olumns 
orrespond toprodu
ts in L0;i, and the third group of rows and 
olumns 
orrespond to produ
ts in L�i;i. Hen
eEi 
an be partitioned into submatri
es as follows:Li L0;i L�i;iEi = 24 Ei;i Ei;0;i Ei;�i;iE0;i;i E0;i;0;i E0;i;�i;iE�i;i;i E�i;i;0;i E�i;i;�i;i 35 LiL0;iL�i;iThis grouping of the rows and 
olumns of Ei implies that the rows and 
olumns of di, yi, Bi, andCi are similarly grouped:L�i L0;�i Li;�iB�i = 24 Bi;�i Bi;0;�i Bi;i;�iB0;i;�i B0;i;0;�i B0;i;i;�iB�i;i;�i B�i;i;0;�i B�i;i;i;�i 35 LiL0;iL�i;i ; yi = 24 yi;iyi;0;iyi;�i;i 35 ; Ci = 24 Ci;iCi;0;iCi;�i;i 35 ; di = 24 di;idi;0;idi;�i;i 35Note that given the pri
es ~y in the no allian
e setting, the pri
es for the same produ
ts in theallian
e setting are yi;i = ~yi 2RjLi j. Let Ri;i0 ;`;`0 denote the number of units of produ
t `0 2Li0 usedto assemble one unit of produ
t ` 2 L0;i. Then, given the pri
es ~y in the no allian
e setting, thepri
e paid to assemble one unit of produ
t `2L0;i in the no allian
e setting isXi0=�1 X`02Li0 Ri;i0;`;`0 ~yi0;`0Let Ri;i0 2RjL0;i j�jLi0 j denote the matrix with entry Ri;i0;`;`0 in the row 
orresponding to `2L0;i andthe 
olumn 
orresponding to `0 2Li0 . Then, given the pri
es ~y in the no allian
e setting, the pri
espaid to assemble ea
h unit of produ
t in L0;i is given byyi;0;i = Xi0=�1Ri;i0 ~yi0



74Next, 
onsider the demand for produ
ts in L�i;i.di;�i;i = �E�i;i;iyi;i�E�i;i;0;iyi;0;i�E�i;i;�i;iyi;�i;i +B�i;i;�iy�i;�i +B�i;i;0;�iy�i;0;�i+B�i;i;i;�iy�i;i;�i+Ci;�i;i= �E�i;i;i~yi�E�i;i;0;i Xi0=�1Ri;i0 ~yi0 �E�i;i;�i;iyi;�i;i+B�i;i;�i~y�i +B�i;i;0;�i Xi0=�1R�i;i0 ~yi0 +B�i;i;i;�iy�i;i;�i +Ci;�i;iThen, given the pri
es ~y in the no allian
e setting, the value of (y�1;1;�1; y1;�1;1) is 
hosen to set(d�1;1;�1; d1;�1;1) = 0. The system of equations (d�1;1;�1; d1;�1;1) = 0 
an be written as �Dy�+F ~y+C� = 0, wherey� := � y�1;1;�1y1;�1;1 � ; ~y := � ~y�1~y1 � ; C� := �C�1;1;�1C1;�1;1 � ; D := � E1;�1;1;�1 �B1;�1;�1;1�B�1;1;1;�1 E�1;1;�1;1 �F := ��E1;�1;�1�E1;�1;0;�1R�1;�1+B1;�1;0;1R1;�1 �E1;�1;0;�1R�1;1+B1;�1;1+B1;�1;0;1R1;1�E�1;1;0;1R1;�1+B�1;1;�1+B�1;1;0;�1R�1;�1 �E�1;1;1�E�1;1;0;1R1;1+B�1;1;0;�1R�1;1 �Under reasonable 
onditions D is nonsingular (more spe
i�
ally, positive de�nite), and then theunique solution is y� =D�1F ~y+D�1C�. LetL1;�1 L�1;1 L�1 L1D�1 = �D�1�1;�1 D�1�1;1D�11;�1 D�11;1 � L1;�1L�1;1 ; F = �F�1;�1 F�1;1F1;�1 F1;1 � L1;�1L�1;1Thenyi;�i;i = (D�1i;�iF�i;i+D�1i;i Fi;i)~yi+(D�1i;�iF�i;�i+D�1i;i Fi;�i)~y�i+(D�1i;�iC�i;i;�i +D�1i;i Ci;�i;i)= Xi0=�1 Xi00=�1D�1i;i00Fi00;i0 ~yi0 +D�1i;i0Ci0;�i0;i0!Next, the demand model (14) is used to derive the demand for ea
h produ
t `2Li that is o�eredin the no allian
e setting:di;` = 24�X`02LiEi;`;`0yi;i;`0 � X`02L0;iEi;`;`0yi;0;i;`0 � X`02L�i;iEi;`;`0yi;�i;i;`0+ X`02L�iB�i;`;`0y�i;�i;`0 + X`02L0;�iB�i;`;`0y�i;0;�i;`0 + X`02Li;�iB�i;`;`0y�i;i;�i;`0 +Ci;`35+ Xi0=�124 X`02L0;i0 Ri0;i;`0;`0�� X`002Li0Ei0 ;`0;`00yi0;i0;`00 � X`002L0;i0 Ei0;`0;`00yi0;0;i0;`00 � X`002L�i0;i0 Ei0;`0;`00yi0;�i0;i0;`00



75+ X`002L�i0 B�i0;`0;`00y�i0;�i0;`00 + X`002L0;�i0 B�i0;`0;`00y�i0;0;�i0;`00 + X`002Li0;�i0 B�i0;`0;`00y�i0;i0;�i0;`00 +Ci0;`01A35The �rst term in bra
kets above 
orresponds to the demand for produ
t ` 2 Li by itself, and these
ond term in bra
kets 
orresponds to the demand for produ
t ` to assemble produ
ts `0 2 L0;i0 ,i0 =�1. In terms of matrix notation, the demands for the produ
ts in Li that are o�ered in the noallian
e setting is given bydi;i = [�Ei;iyi;i�Ei;0;iyi;0;i�Ei;�i;iyi;�i;i +Bi;�iy�i;�i +Bi;0;�iy�i;0;�i +Bi;i;�iy�i;i;�i +Ci;i℄+ Xi0=�1 �RTi0;i (�E0;i0;i0yi0;i0 �E0;i0;0;i0yi0;0;i0 �E0;i0;�i0;i0yi0;�i0;i0+B0;i0;�i0y�i0;�i0 +B0;i0;0;�i0y�i0;0;�i0 +B0;i0;i0;�i0y�i0;i0;�i0 +Ci0;0;i0)℄Next, repla
e yi;i, yi;0;i, and yi;�i;i with the expressions in terms of ~y derived above. Then thedemands ~di for the produ
ts in Li in the no allian
e setting as a fun
tion of the pri
es ~y in the noallian
e setting are obtained, as follows:~di = "�Ei;i~yi�Ei;0;i Xi0=�1Ri;i0 ~yi0 �Ei;�i;i Xi0=�1 Xi00=�1D�1i;i00Fi00;i0 ~yi0 +D�1i;i0Ci0;�i0;i0!+Bi;�i~y�i +Bi;0;�i Xi0=�1R�i;i0 ~yi0 +Bi;i;�i Xi0=�1 Xi00=�1D�1�i;i00Fi00;i0 ~yi0 +D�1�i;i0Ci0;�i0;i0!+Ci;i#+ Xi0=�1"RTi0 ;i �E0;i0;i0 ~yi0 �E0;i0;0;i0 Xi00=�1Ri0;i00 ~yi00 �E0;i0;�i0;i0 Xi00=�1 Xi000=�1D�1i0;i000Fi000;i00 ~yi00 +D�1i0;i00Ci00;�i00;i00!+B0;i0;�i0 ~y�i0 +B0;i0;0;�i0 Xi00=�1R�i0;i00 ~yi00+B0;i0;i0;�i0 Xi00=�1 Xi000=�1D�1�i0;i000Fi000;i00 ~yi00 +D�1�i0;i00Ci00;�i00;i00!+Ci0;0;i0!#Note that the demands ~di above are 
onsistent with the demand model (23), for the followingparameter values:~Ei = Ei;i +Ei;0;iRi;i +Ei;�i;i Xi0=�1D�1i;i0Fi0;i�Bi;0;�iR�i;i�Bi;i;�i Xi0=�1D�1�i;i0Fi0;i+RTi;iE0;i;i�RT�i;iB0;�i;i+ Xi0=�1RTi0;i E0;i0;0;i0Ri0;i +E0;i0;�i0;i0 Xi00=�1D�1i0;i00Fi00;i�B0;i0;0;�i0R�i0;i�B0;i0;i0;�i0 Xi00=�1D�1�i0;i00Fi00;i!



76~B�i = �Ei;0;iRi;�i�Ei;�i;i Xi0=�1D�1i;i0Fi0;�i+Bi;�i+Bi;0;�iR�i;�i+Bi;i;�i Xi0=�1D�1�i;i0Fi0;�i�RT�i;iE0;�i;�i+RTi;iB0;i;�i+ Xi0=�1RTi0;i �E0;i0;0;i0Ri0;�i�E0;i0;�i0;i0 Xi00=�1D�1i0;i00Fi00;�i+B0;i0;0;�i0R�i0;�i+B0;i0;i0;�i0 Xi00=�1D�1�i0;i00Fi00;�i!~Ci = �Ei;�i;i Xi0=�1D�1i;i0Ci0;�i0;i0 +Bi;i;�i Xi0=�1D�1�i;i0Ci0;�i0;i0 +Ci;i+ Xi0=�1RTi0;i �E0;i0;�i0;i0 Xi00=�1D�1i0;i00Ci00;�i00;i00 +B0;i0;i0;�i0 Xi00=�1D�1�i0;i00Ci00;�i00;i00 +Ci0;0;i0!
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