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Abstract 

The theorem of existence of the ruptures in the probability scale was proved in 2010. The ruptures can 

exist near the borders of finite intervals and of the probability scale. The theorem is used to analyze and 

to partially answer to the basic questions of insurance. The question is “To insure or not”.  

The aim of the research is to provide insurance by new variations of mathematical methods. Its 

importance consists in the better understanding of possible origins of insurance processes and factors, 

which influence them. Such understanding will help to manage these insurance processes. Its 

methodology is to reveal pure mathematical aspects of insurance processes and to analyze these aspects 

by pure mathematical methods, including application of the theorem. Its most significant result: when 

uncertainty increases, then taking the theorem into account may reverse insurant’s and insurer’s 

decisions to the opposite ones.  

The sketch of the theorem is given. It includes: the general lemma and the general theorem for finite 

intervals, the lemma and the theorem for the probability evaluation, the theorem for the probability.  

An example of the ruptures in the probability scale is presented.  

The question is analyzed from the points of view of insurant and insurer. The analysis is made purely 

mathematically for the uniform case of medium insurance value as in the automobile insurance. The 

analysis may be also relevant for time intervals between profitable and unprofitable periods of insurance 

cycle. 
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Introduction 

 

The theorem of existence of the ruptures in the 

probability scale was proved in (Harin, 2010-1). 

The theorem was applied to the modeling (Harin, 

2010-2) and to the theory of complex systems 

(Harin, 2010-3). The theorem is being detailed and 

refined (see, e.g., Harin, 2010-4).  

In this article the theorem is applied to the 

insurance.  

The methodology of the research is to reveal pure 

mathematical aspects of insurance processes and to 

analyze these aspects by pure mathematical 

methods, including application of the theorem. The 

conditions of the considered insurance process are 

narrowed to exclude all non-mathematical 

conditions and (as far as possible) boundary 

effects. Then a mathematical model of the 

considered processes is revealed. Then the 

mathematical model is analyzed by pure 

mathematical methods including application of the 

theorem.  

The article is organized as follows:  

In Section 1, the conditions of the questions are 

formulated, the simple calculations are performed 

and the answers of an insurant and insurer are 

given without taking the theorem into account.  

In Section 2, the theorem of existence of ruptures 

is sketched. The sketch includes: the general 

lemma and the general theorem for finite intervals, 

the lemma and the theorem for the probability 

evaluation, the theorem for the probability.  

In Section 3, an example of ruptures in probability 

scale is given.  

In Section 4, an application of the theorem to the 

question is given. Simple calculations show: at the 

considered conditions and at high level of 

uncertainty, taking the theorem into account may 

change the answers to the opposite ones.  

 

1. The basic questions of insurance 

 

1.1. Formulation of the question. Two points of 

view. The basic questions of insurance is “To 

insure or not”.  This question may be analyzed 

from two points of view.  

One of them is the point of view of insurant. He or 

she may take a standard form contract or leave it.  

The another point of view is that of insurer. The 

insurer may offer the standard form contract with 

common prices or raise prices in questionable line 

of insurance or walk away from this line when 

prices fall below a prudent premium.  

The question may be typical for time intervals 

between profitable and unprofitable (‘soft’ and 

‘hard’) periods of insurance cycle.  

1.2. Conditions. Let us consider following 

conditions of the discussed insurance process: 

1) Let us eliminate all the conditions except the 

mathematical ones. Let us eliminate psychological 

conditions and aspects such as in (Cutler et al, 

2008). Let us eliminate conditions such as 

comfort, heightened level of service etc.  

So, the first aim is to obtain pure mathematical 

conditions and pure mathematical problem.  

2) Let us eliminate boundary value conditions and 

problems as far as possible. Namely, suppose the 

insurance value is essentially less than the value of 

insurant’s spare cash.  



 
So, the second aim is to obtain uniform conditions 

(as far as possible).  

3) Let us consider an ideal case, when the profit 

and deductions in reserves are equal to zero. In this 

case, the difference between the insurance 

payments, fees and the insurance values, moneys 

includes only unavoidable insurance expences 

such as wage, amortisation, lease of office rooms, 

etc.  

As the result, we obtain only four conditions:  

• insurance money, value  V, 

• probability  p  of insurance event, insured 

accident  

• insurance payment, fee  F, 

• insurance expenses  E,  

1.3. Calculation. In the ideal case the insurance 

fee  F  includes  

EVpF += . 

In real cases it transforms to the inequality 

EVpF +≥ . 

It is obvious that an average insurant pays the 

additional insurance payment which equals to  E  

and is additional to the pure product of the 

insurance value  V  and the probability  p  of the 

insurance event.  

1.4. Answers. So, at pure mathematical, uniform 

conditions, average insurant’s answer should be 

negative. At the same conditions in the ideal case, 

insurer’s answer should be more positive than 

negative.  

In the real case, when the profit and deductions in 

reserves are not equal to zero and are sufficiently 

high, insurer’s answer should be positive.  

Note.  

For some insurants, the individual probability  

pindivid  of insurance event may be more than  p.   

In the case, when  

FVpindivid >  

insurant’s answer should be positive. In the case, 

when  

FEVpindivid >+  

insurer’s answer should be negative. However 

such cases are not the item of this article.  

 

2. Theorem of existence of ruptures in 

probability scale 

 

2.1. General lemma and theorem  

2.1.1. General preliminary notes. Suppose an 

interval  X=[A, B] :  0<(B-A)<∞.  Suppose a 

quantity  f(x) :  

1)  for  x<A  and  x>B,  the statement  f(x)≡0  is 

true and for  A≤x≤B  the statement  f(x)≥0  is true, 

and 

fCdxxf =∫
+∞

∞−

)( ,  where  ∞<< fC0 ; 

2)  the initial moment of the first order, the 

mathematical expectation exists  
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3)  for  n :  1<n<∞,  at least one central moment 

exists  
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The maximal possible value of a central moment 

may be estimated from its definition   
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More precise estimation of this value is provided 

(see, e.g., Harin, 2010-4) by the sum of modules of 

the central moments of the functions that are 

concentrated at the borders of the interval:  δ(x-

A)×(B-M)/(B-A)  and  δ(x-B)×(M-A)/(B-A)   
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It leads to the well-known maximum for  n=2  and  

Mmax=(B-A)/2   
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and, for  n=2k>>1,  - to the maximums at  

Mmax≈A+(B-A)/2n  and  Mmax≈B-(B-A)/2n  (see, 

e.g., Harin, 2010-4)  
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2.1.2. General lemma about tendency to zero 

for central moments. If, for  f(x),  defined in the 

section 2.1.1,  M≡E(X)  tends to  A  or to  B,  then, 

for  1<n<∞,  E(X-M)n  tends to  zero.   

The proof:  For  MA,   
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So, if  (B-A)  and  n  are finite and  MA  (that is  

(M-A)0),  then  E(X-M)n0.   

For  MB,  the proof is similar.   

The lemma has been proved.   

Note.  More precise (see, e.g., Harin, 2010-4) 

estimation may be obtained for central moments’ 

tendency to zero, e.g. for  MA   
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2.1.3.  General theorem of existence of ruptures 

for expectation. If there are:  f(x)  defined in the 

section 2.1.1,  n : 1<n<∞,  and  rdispers : |E(X-

M)n|≥rdispers>0,  then  rexpect>0  exists : 

A<(A+rexpect)≤E(X)≤(B-rexpect)<B.   

The proof:  From the lemma, for  MA,   
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For  MB,  the proof is similar.   

As long as (B-A),  n  and  rdispers  are finite and  

rdispers>0,  then  rexpect  is finite,  rexpect>0,  both  

(M-A)≥rexpect>0  and  (B-M)≥rexpect>0.   

The theorem has been proved.   

Note.  More precisely (see, e.g., Harin 2010-4) 
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So, if a finite  (n<∞)  central moment of a 

quantity, which is defined for a finite interval,  

cannot approach  0  closer, than by a nonzero value  

rdispers>0, then the expectation of the quantity also 

cannot approach a border of this interval closer, 

than by the nonzero value  rexpect>0. 

More general:  If a quantity is defined for a finite 

interval and a nonzero rupture  rdispers>0  exists 

between zero and the zone of possible values of a 

finite  (n<∞)  central moment of the quantity, then 



 
the nonzero ruptures  rexpect>0  also exist between a 

border of the interval and the zone of possible 

values of the expectation of this quantity.   

2.2. Theorem of existence of ruptures in 

probability scale 

2.2.1. Preliminary notes. For a series of tests of 

number  K,  including  K∞,  let the density  f(x)  

of a probability estimation, frequency  F :  

F≡M≡E(X),  has the characteristics defined in the 

section 2.1, in particular  f(x)  is defined for  [0, 1]  

and  Cf=1.   

2.2.2. Lemma about tendency to zero for central 

moments of density of probability evaluation. If 

a density  f(x)  is defined in the section 2.2.1, and 

either  E(X)0  or  E(X)1, then, for  1<n<∞,  

E(X-M)n0.   

The proof:  As long as the conditions of this 

lemma satisfy the conditions of the lemma of the 

section 2.1.2, then the statement of this lemma is 

as true as the statement of the lemma of the section 

2.1.2.   

The lemma has been proved.   

2.2.3.  Theorem of existence of ruptures for 

probability estimation. If:  a density  f(x)  is 

defined in the section 2.2.1, there are  n : 1<n<∞,  

and  rdispers>0 : E(X-M)n≥rdispers>0,  then, for the 

probability estimation, frequency  F≡M≡E(X),  

rexpect  exists such as  0<rexpect≤F≡M≡E(X)≤(1-

rexpect)<1.   

The proof:  As long as the conditions of this 

theorem satisfy the conditions of the theorem of 

the section 2.1.3, then the statement of this 

theorem is as true as the statement of the theorem 

of the section 2.1.3.   

The theorem has been proved.   

2.2.4.  Theorem of existence of ruptures in 

probability scale. If, for the interval  [0,1],  P  is 

defined such as, when the number  K  of tests tends 

to infinity, the probability estimation, frequency  F  

tends at that to  P,  that is  P=LimF,  nonzero 

ruptures  0<rexpect≤F≤(1-rexpect)<1  exist between 

the probability estimation and every border of the 

interval, then the same nonzero ruptures 

0<rexpect≤P≤(1-rexpect)<1 exist between P  and 

every border of the interval.   

The proof:  Consider the left boundary  0  of the 

segment  [0; 1].  The frequency  FK  is not less 

then  rmean.  Hence we obtain for  P   

meanmean
K

K
K

rrLimFLimP =≥=
∞→∞→

 

So  P≥rmean.   

Note this is true both for a monotonous 

convergence and a dominated convergence. The 

reason is the fixation of the minimal value by the 

conditions of the theorem.  

For the right boundary  1  the proof is similar to 

above one. So,  rexpect≤P≤(1-rexpect).   

The theorem has been proved.   

To what an extent a probability satisfies the 

conditions applied on  P,  to such an extent the 

theorem is true for the probability as well.   

The theorem may be formulated also for needs of 

practical applications:   

If, for the series of tests, when the number  K  of 

tests tends to infinity and a probability estimation, 

frequency  F  tends at that to a probability  P,  a 

rupture  rdispers>0  exists between  0  and the zone 

of possible values of dispersion  D  of the density  

f  of  the probability estimation  F, then the 

ruptures  rexpect>0  also exist near the borders of 

the probability scale.  The ruptures  rexpect>0  exist 



 
between the borders and both the zone of possible 

values of the probability estimation, frequency  F,  

and the zone of possible values of the probability  

P.   

 

 

3.  An example of ruptures in probability scale 

 

3.1. Conditions. The simplest example of such 

ruptures is the aiming firing at a target in the one-

dimensional approach:   

Let, at the precise aiming, some scattering of hits 

takes place due to, e.g., scattering of bullet 

dimensions (if the diameter of bullet is less than 

the diameter of barrel of gun, then the bullet will 

fly out the barrel not through the optical axis of the 

barrel, but through some beam of trajectories 

which are distributed around this axis).  

Let the dimension of the target is equal to  2L>0  

and, at the precise aiming, the uncertainty, the 

scattering of hits obeys the normal law with the 

dispersion  σ2.  Then the maximal probability  

Pin_Max  of hit in the target and the minimal 

probability  Pout_min=1-Pin_Max  of miss are equal to 

(see, e.g., Abramowitz and Stegun, 1972): 

3.2. Results. For  σ=0:   

Pin_Max=1  and  Pout_min=0,  that is, there are no 

ruptures in the probability scale for hits and 

misses, that is  rexpect=1-Pin_Max=Pout_min=0.   

For  L=3σ:   

0≤Pin≤Pin_Max=0,997<1  and, for  Pout,  

0<0,003=Pout_min≤Pout≤1.  For this case, the 

ruptures  rexpect  in the probability scale for hits in 

the target and misses are equal to  rexpect=0,003>0.   

For  L=2σ:   

0≤Pin≤Pin_Max=0,95<1  and, for  Pout,   

0<0,05=Pout_min≤Pout≤1.  For this case, the ruptures  

rexpect  in the probability scale for hits in the target 

and misses are equal to  rexpect=0,05>0.   

For  L=σ:   

0≤Pin≤Pin_Max=0,68<1  and, for  Pout,   

0<0,32=Pout_min≤Pout≤1.  For this case, the ruptures  

rexpect  in the probability scale for hits in the target 

and misses are equal to  rexpect=0,32>0.   

3.3. Conclusion. Thus: 

For zero  σ=0  -  there are no ruptures  (rexpect=0).   

For nonzero  σ>0:   

• the nonzero rupture  rexpect>0  appears 

between the zone of possible values of the 

probability of hit in the target  

0≤Pin≤Pin_Max=1-rexpect<1  and  1;   

• the same nonzero rupture  rexpect>0  appears 

between the zone of possible values of the 

probability of miss  

0<rexpect=Pout_min≤Pout≤1  and  0.   

Note, the dispersion of scattering of hits  σ2  may 

determine the dispersion  D  of the probability 

estimation of hits in the target and misses, but the 

dispersion  σ2  is not the same as the dispersion  D.  

Analogously, an uncertainty in a parameter or in 

some parameters may lead to nonzero dispersion 

of the density of a probability estimation in the 

insurance. This nonzero dispersion may lead to the 

ruptures in probability scale for insurance 

processes. 

 

4. An application of the theorem to the question 

 

So, in real circumstances, when a nonzero 

dispersion of the density of a probability 



 
estimation exists, the ruptures  rexpect  can exist in 

the probability scale near the borders of the scale, 

including the rupture  rexpect  near zero. This shifts 

the probability evaluation and the probability  p  

from zero to the middle of the probability scale. In 

any case, the probability  p  can not be less than 

the rupture  rexpect   

ectrp exp≥ .  

Two cases may be of interest: the first 

VpVrF ect ≤< exp ,  

and the second (which includes the first) 

EVpEVrF ect +≤+< exp .  

4.1. Insurant’s point of view. If  

ectVrF exp< ,  

then insurant’s answer should be positive.  

So, taking the theorem into account may change 

insurant’s answer to the opposite one.  

In other words, when uncertainty increases, then 

insurant’s answer becomes more positive. 

4.2. Insurer’s point of view. If  

EVrF ect +< exp ,  

then insurer’s answer should be negative.  

So, taking the theorem into account may change 

insurer’s answer to the opposite one.  

In other words, when uncertainty increases, then 

insurer’s answer becomes more negative. The 

insurer should raise prices in the questionable, 

highly uncertain line of insurance or walk away 

from this line (when prices fall below a prudent 

premium). 

4.3. Insurance cycles. The theorem may be also 

applied to insurance cycles. Uncertainties, that 

may play role, may have various types of nature. 

For example, they may be noises in the spectral 

analysis of insurance cycle (Venezian, 2006). They 

may be responses to fluctuations in the supply of 

property-liability insurance (Winter, 1991) etc. 

Note, the theorem (as it is) cannot be applied to 

unpredictable events such as the 11 September 

2001 attack.  

 

Conclusions 

 

The general conclusion of this article is to pay 

attention to uncertainties.  

Due to the theorem, when uncertainty increases, 

then the probability of insurance event may 

increase and the insurer should raise prices in the 

questionable, highly uncertain line of insurance or 

walk away from this line. This may be also 

relevant when one deal with the problems of 

insurance cycles.  

Further researches of the item, including both 

fundamental and applied researches, should be 

carried out to develop practical recommendations 

for the insurance industry.  
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