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Abstract— The stochastic nature of wind alters the unit com-
mitment and dispatch problem. By accounting for this uncer-
tainty when scheduling the system, more robust schedules are
produced, which should, on average, reduce expected costs.
In this paper, the effects of stochastic wind and load on the
unit commitment and dispatch of power systems with high
levels of wind power are examined. By comparing the costs,
planned operation and performance of the schedules produced,
it is shown that stochastic optimization results in less costly,
of the order of 0.25%, and better performing schedules than
deterministic optimization. The impact of planning the system
more frequently to account for updated wind and load forecasts
is then examined. More frequent planning means more up to
date forecasts are used, which reduces the need for reserve and
increases performance of the schedules. It is shown that mid merit
and peaking units and the interconnection are the most affected
parts of the system where uncertainty of wind is concerned.

Index Terms— power generation dispatch, power system eco-
nomics, stochastic systems, wind power generation

I. INTRODUCTION

IN recent years, there has been a dramatic increase in

the amount of wind power installed around the world,

with further plans to increase the installed wind capacity in

many countries, e.g. Denmark, Germany, Spain, Ireland [1],

Great Britain [2], and many US states [3]. This increase in

installed wind capacity leads to various challenges for the

operation of the power system, from frequency control issues

[4], to planning of the transmission system [5]. One of the

major challenges associated with wind energy is the way it

impacts unit commitment. With low amounts of wind, unit

commitment can be treated as a deterministic problem, as in

[6]. However, large amounts of installed wind power add a

significant stochastic element to the planning of the system.

This is due to the uncertainty associated with wind power

forecasts [7]. As wind cannot be forecast to a high degree of

accuracy, extra reserve needs to be carried, in addition to the

reserve already carried to cater for unit outages and demand

forecast error, as shown in [8] and [9].

By explicitly taking into account the stochastic nature of

wind in the unit commitment algorithm, more robust schedules
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will be produced. Stochastic optimization has been used for

unit commitment problems before, as in [10] and [11]. In [10],

a long term security-constrained stochastic unit commitment

(SCUC) model is described, which models unit and transmis-

sion line outages, as well as load forecasting inaccuracies.

In [11], a method was developed to solve unit commitment

problems when demand is not known with certainty. This

approach uses multiple scenarios for demand. Both of these

approaches show the benefits of using stochastic methods to

solve the unit commitment problem. However, wind power

as a stochastic input is not examined. Stochastic security

with wind generation is examined in [12], which formulates

a market-clearing problem capable of accounting for wind

power. However, the concept of ‘rolling’ over one year,

explained later, is not examined in [12], while the system

examined is small compared to the real system examined here.

The WILMAR project [13] developed a stochastic scheduling

tool to examine the impact of the variability of wind in energy

markets. The system is rescheduled as more precise wind and

load forecasts are made available, giving a ‘rolling planning’

type of operation. Because more robust schedules are provided

to cater for stochastic wind and load, the total expected costs of

operating the system are lower than if a deterministic approach

was used.

This paper examines several aspects of unit commitment

that need to be considered when there are large amounts of

wind on the system. Firstly, the benefits of using stochastic,

instead of deterministic optimization to account for the un-

certainty of wind in unit commitment are examined. Sched-

ules produced with deterministic optimization are compared

with stochastic results. These are also compared with results

where perfect forecasting of wind and load is assumed. Initial

analysis for the benefit of stochastic optimization with large

wind penetration was carried out in [14], [15]. The model

used is updated for this paper and a more comprehensive and

complete analysis is carried out. The second issue examined

is the impact of modelling the uncertainty of wind in different

timescales. More realistic amounts of uncertainty are included

in the optimization by scheduling the system more frequently.

The impact of modelling more of the uncertainty is examined.

This shows the impact that more frequent rolling, using

updated wind and load forecasts, has on the scheduling of

power systems.

The methodology used is explained in detail in Section II.

The test system used is outlined in Section III. The results

are examined in Section IV, in terms of costs, the operation

of units, interconnectors and performance of the schedules.



Section V draws conclusions from the results.

II. METHODOLOGY

A. Model Used

The WILMAR model was originally used to study wind

variability in the Nordic system, as described in [16]. This

was then adapted to examine the Irish system as part of the

All Island Grid Study [17]. What follows is a summary of the

description of this updated model.

The main functionality of the WILMAR model is in two

parts - the Scenario Tree Tool (STT) and the Scheduling

Model. The STT is used to generate the scenarios that are used

as inputs in the scheduling model. Possible future wind and

load are represented by scenario trees, as shown in Fig. 1. The

STT also produces time series for the forced unit outages. Each

branch of the scenario tree corresponds to a different forecast

of wind and load, as well as probability of occurrence. The

required wind and load scenarios are generated by Monte-

Carlo simulations of the wind and load forecast error, based

on an Auto-Regressive Moving Average model describing the

wind speed forecast error. State of the art wind forecasting is

assumed here. The high number of possible scenarios produced

is then reduced using a scenario reduction approach, similar to

[18]. Primary reserve, which is the reserve needed in shorter

timescales, is estimated based on the largest in-feed to the

system and the forecasted wind power production using results

from [9]. Replacement reserve demand, which is the demand

for reserve over longer timescales, is calculated based on

the expected wind and load forecast error, with a different

replacement reserve target for each scenario. More detailed

information about the Scenario Tree Tool can be found in [19]

and [17].

The scheduling model used here is a mixed integer, stochas-

tic optimization model [20]. This is a more advanced model

compared to that described in [13] and [16], which did not

use mixed integer programming. However, the concepts that

were used in that work remain the same. A mathematical

formulation of the problem is given in the Appendix. It should

be noted that this is the same as in [17], and contains much of

the same formulae as found in [16]. This work is concerned

with using these existing models to examine methods of

dealing with uncertainty and the impact of uncertainty on unit

commitment. The objective function being minimized, given

in Equation A.1, is the expected cost of the system over the

optimization period, covering all of the scenarios, Fig. 1. This

covers fuel costs, carbon costs and startup costs. This is subject

to constraints on units, such as startup time, minimum up and

down times (Equations A.7 to A.9), ramping rates (Equation

A.6), and minimum and maximum generation (Equation A.10,

as well as interconnection constraints and losses, spinning

and replacement reserve targets (Equations A.4 and A.5), and

penalties for not being able to meet load or reserve targets.

The scheduling model has foresight of the scheduled outages

of units, but not the forced outages produced in the STT.

The objective function, the balancing equations and constraints

and further explanation can be found in the Appendix. The

Generic Algebraic Modelling System (GAMS) was used to

Fig. 1. Rolling planning with scenario trees

solve the unit commitment problem using the Mixed Integer

Programming feature of the optimization software Cplex.

More details about solve times and precision used are given

in section IV.

Rolling planning is shown in Fig. 1, in the case of rolling

every three hours. Starting at noon, the system is scheduled

over 36 hours until the end of the next day. Subsequent

planning periods take into account this day-ahead schedule,

which is described in Equation A.2. Schedules are updated

to take into account changes in wind, load and available units

from one planning period to the next. This happens in the intra-

day balancing as described in Equation A.3, whereby units are

up and down regulated in relation to the day-ahead schedule.

The commitment of the units, on or off, can also be changed

intra-day. When rolling forward, the state of the units at the

end of the first stage of the previous optimization period are

used as the starting state of the next optimization period, i.e. if

rolling is done every three hours, the state of a unit (on or off

and how long it has been on or off for) at the end of hour three

is used as the starting state for the next optimization. After

rolling forward, the system is then planned until midnight of

the following day, so that the system is optimized 8 times over

a 24 hour period. The planning period therefore gets shorter in

each planning loop until noon of the following day when the

period becomes 36 hours again. The forecasts in the first stage,

which is three hours long in Fig. 1, are assumed to be perfect,



representing ‘here-and-now’ decisions, as can be seen by the

fact that only one scenario is forecasted. This is due to the fact

that a decision needs to be made about the exact operation of

units in the first stage, as it represents realized values of wind

and load - i.e. the actual operation of the system. The other

two stages can be optimized using a ‘wait-and-see’ approach,

where there is a chance to change the schedule for this period

in later optimizations.

B. Cases Examined

Three different modes of optimization were examined -

perfect, stochastic and deterministic. For each of these modes,

solutions were found for three different rolling frequencies,

meaning nine different cases were examined using the test

system, which is described in the next section.

1) Effect of frequency of rolling: As a perfect forecast is

assumed in the first stage of the scenario tree for all cases,

the costs in this stage of the optimization are, on average,

underestimated compared to the real costs that would be ob-

served. Only the cost of uncertainty in later stages is modelled

in the deterministic and stochastic modes described below.

By shortening this first stage, more of the total uncertainty

of wind will be included in the planning of the schedules,

which will increase the cost of the planned schedules to more

realistic levels. However, as this means more of the costs due

to the uncertainty are minimized in the unit commitment, this

would reduce costs when actually operating the system - this

cannot be shown here, as only planned schedules are modelled.

This has important implications for interpretation of results

which will be highlighted later in Section IV D. Planning the

system more frequently has the effect of shortening this first

stage, as the length of the ‘here-and-now’ decisions shorten.

It also has the effect of reducing the demand for replacement

reserve on the system. Fig. 2 shows the change in replacement

reserve versus frequency of commitment. As the first stage is

shortened, the average demand for replacement reserve would

decrease, as more frequent updating means more accurate

forecasts are used and less replacement reserve is needed. To

examine the effect that frequency of commitment and inclusion

of more realistic uncertainty has, three different frequencies of

commitment were examined for each mode(one, three or six

hours).

2) Modes of Optimization: Three different modes of opti-

mization were examined. Each used mixed integer optimiza-

tion.

• The perfect mode is used as the base case against which

the other two modes are compared. Here, it is assumed

that the wind and load can be perfectly forecasted.

Therefore, each stage contains only one scenario, and this

is the one that will be realized. Rolling planning is still

carried out, so that the results are consistent with the

other modes. Forced outages still occur, as they do in the

other modes, and therefore rolling planning is needed to

adjust the schedule in the next rolling planning period

after forced outages occur. No extra reserve is carried to

cater for wind and load forecast errors. However, reserve

is carried for the forced outage of the largest online unit.

• The stochastic mode uses the full scenario tree as ex-

plained earlier. Spinning reserve margins are kept so that

all forecasted scenarios of wind and load are covered.

By rolling more frequently, more of the uncertainty of

wind and load is modelled. The first stage is still assumed

to have perfect foresight, but multiple scenarios are

modelled for later stages. Replacement reserve is carried

to cover each scenario. The optimization is carried out

over multiple possible scenarios, taking into account the

probability of each occurring, so that the lowest expected

cost solution is found.

• The deterministic mode has one scenario in each stage, as

in the perfect mode. As with the stochastic and perfect

modes described earlier, it assumes perfect foresight in

the first stage. However, for the second and third stage,

what is described as the ‘wait-and-see’ stage earlier,

there is only one scenario, as opposed to the multiple

scenarios given in the scenario tree. This is found by

taking the expected value of wind and load from the

stochastic scenario tree. By multiplying the probability of

a scenario occurring by the wind forecast in the scenario,

and then adding all scenarios together, the expected value

of wind is found. This will be different from the wind

and load that will be realized, which is what makes the

deterministic mode different from the perfect mode. To

cater for this error, additional spinning and replacement

reserve is carried, as described in the stochastic mode

section. This deterministic solution is again carried out

using rolling planning. The more frequently the system

is planned, the more often the forecasts are updated,

and therefore it would be expected that more accurate

forecasts are used.

III. TEST SYSTEM

To analyze the impact of large amounts of wind power

on different aspects of unit commitment, a test system was

examined. A possible plant mix for the Irish system in 2020

was chosen. The plant mix of this test system is based on one

of the portfolios (portfolio 5) of the All Island Grid Study

[21], derived using portfolio optimization method described

in [22]. The All Island Grid Study was carried out to analyze

the development of renewable energy on the Irish grid, and

multiple possible portfolios were produced, with varying levels

of installed wind power and conventional technologies. The

particular portfolio has 6000MW of installed wind power

capacity, producing 18.4TWh of wind energy over the year

(which corresponds to approximately 34.3% of total energy

demand - renewable energy makes up 42% of total energy

demand in the portfolio chosen, due to tidal, hydro and base

renewables). The total installed conventional capacity on the

system is approximately 8300MW, including hydro units and

base loaded renewables. This is made up of the units described

in Table I, which groups multiple units according to fuel type.

Note that two types of gas plant are included - mid merit gas,

i.e. Open Cycle Gas Turbines (OCGT) and Aeroderivative Gas

Turbines (ADGT), and base-loaded gas, i.e. Combined Cycle

Gas Turbines (CCGT). Inflexible mid merit plant here refers



TABLE I

TYPES OF UNIT IN PLANT PORTFOLIO USED IN STUDY

Type of unit No Capacity (MW) Fuel (e/GJ)

Base-loaded Gas 12 4114 5.91

Mid merit Gas, Peaking 19 1646 6.46

Coal 5 1257 1.75

Inflexible Mid Merit 3 345 3.71

Base RE 1 306 2.78

Hydro 1 216 -

Pumped Storage 4 292 -

Tidal - 200 -

Wind Power - 6000 -

TABLE II

START-UP TIME FOR CONVENTIONAL UNITS USED

Type of unit Start-up time (hrs)

Mid merit Gas and Peaking < 1

Inflexible Mid Merit 1-4

Base-loaded Gas 1-4

Coal 1-5

to the peat plant on the system - these use an indigenous fuel

source classified as a type of brown coal [23]. Peaking units,

which use distillate, are shown here with mid merit gas due

to the fact that both are similarly flexible, when considered on

an hourly time resolution. Table I also shows the fuel prices

used for the various conventional plants, to give an indication

of where that type of unit is on the merit order of the system.

The price given in the table for the gas units is an average of

the different prices used in the model for each month of the

year, as given in [17].

Table II shows the start-up time for the various types of

conventional plant on the system. This can vary for each fuel

type because of different characteristics for different plant

with the same fuel. Here, flexible units are defined as those

that can come online in less than one hour. It can be seen

that the inflexible mid merit plant cannot start in less than

one hour, and therefore are classified as not flexible, as are

base loaded gas and coal units. Data for wind, load and unit

characteristics is taken from [24], and used with the STT to

produce scenario trees for the scheduling model. The system

modelled has a peak demand of 9600MW and a minimum de-

mand of 3500MW in 2020. Interconnection to Great Britain is

assumed to be 1000MW. The Great Britain electricity system

is modelled by grouping together similar units in blocks, so

there are large blocks for nuclear, coal, CCGT, etc, with wind

providing approximately 12% of electricity demand. Wind and

load is assumed to be perfectly forecast in Great Britain.

The interconnector is operated on a day ahead basis only, i.e,

import or export is fixed at noon every day for the following

day, and cannot be altered intra-day, i.e. when the system rolls

forward, the exchange scheduled on the interconnector can not

be changed. The average replacement reserve for the system

is shown in Fig. 2 for varying frequencies of rolling. This was

calculated based on the percentile of total forecast error which

most closely matches the current demand for replacement

reserves on the Irish system, which was found to be 90%.

Fig. 2. Average replacement reserve versus frequency of commitment based
on 90th percentile of wind and load forecast error

IV. RESULTS AND DISCUSSION

The cases simulated are examined to identify and quantify

the benefits of stochastic optimization and the effect of the

frequency of commitment on systems with significant pene-

tration of wind power. Firstly, the operation of the system -

that is the production by units, the starting of units, and the

operation of the interconnector is examined. The performance

of the schedules, i.e. the ability to meet demand and reserve

targets, is also analyzed. Finally, the impact that the change

of system operation has on costs is examined.

The model was run for a year of demand and wind data, pro-

duced by the STT. Due to the stochastic methods applied, the

solution time proved prohibitively long using high precision.

The Cplex mixed integer solver was used with a computer with

an Intel Core Duo 1.83MhZ processor with 1GB of RAM. The

model took approximately eight days to solve the stochastic

case with hourly rolling for one year of data and a duality

gap of 1%. This was the case which took the longest time to

solve, as it had to solve 8772 stochastic optimizations (one

for each hour in the year 2020, a leap year, except the first

12 hours of January 1). The shortest case to solve, which was

the case with the perfect foresight mode and rolling every

six hours, took approximately three hours to solve on the

same computer at the same duality gap. The results for one

week at this precision were compared to a case where the

duality gap used was 0.1%, which took significantly longer to

solve than one week with a duality gap of 1%. It was found

that the total costs obtained were within 0.02% of each other,

with operation of the system very similar for both precisions,

e.g. number of starts and production of units was similar.

Therefore, it was decided to use the lower precision (1%) for

the multiple yearly runs. This precision would mean that with

realistic value of Lost Load (VOLL), there would be hours

where load and reserve targets may not be met. Therefore, in

the model, the VOLL was chosen to be extremely large - e300

000/MWh for demand not met, spinning reserve is valued at

e200 000/MWh, and replacement reserve at e10 000/MWh.

The stochastic model with three hour rolling planning in the 36

hour planning loop covering 36 hours had 179 000 constraints



and 167 000 variables of which 16 000 were integer variables.

This is the same number as that used in the model in [17]. The

addition of integer variables is the major difference between

the model used here and in [17] and that used in [16]. The

number of constraints here is the same as in [17].

A. Impact on unit operation

The operation of the system changes depending on the way

the uncertainty is treated. As much of the uncertainty of wind

occurs hour to hour, most of the changes would be expected

to occur with the flexible mid merit gas and peaking units.

1) Mode of optimization: The percentage change in pro-

duction by unit type can be seen in Fig. 3 for stochastic

and deterministic modes compared to the perfect forecast-

ing mode. Mid merit gas and peaking units are used more

in both of the cases where wind is not forecast perfectly

compared to the perfect case, as expected. This is due to

the system having to respond to events different to those

forecast. Optimizing deterministically results in increase in

use of the more expensive mid merit gas and peaking units

compared to optimizing stochastically. This is expected due

to the fact that deterministic optimization would produce less

robust schedules, and have to call on these units more. It

should be noted that, when deterministically optimized every

hour, mid merit gas and peaking units still only provide

approximately 1.5% of total production. The interconnector

is used less in the cases where the wind is not perfectly

known day ahead, i.e. for the stochastic and deterministic

cases. When the interconnector is planned day ahead, the case

with perfect foresight needs less replacement reserve than the

cases with a forecast error. Therefore, when making the day

ahead plan, the cases with stochastic and perfect forecasting

would plan differently - more units would be needed online.

As these are already online to provide reserve, they will be

used instead of the interconnector. The stochastic schedule

makes more use of the interconnector than the deterministic

schedule. Compared to the average wind power (and load)

production scenario seen by the deterministic schedule, the low

wind power production scenarios in the stochastic schedule

increases production costs more than the scenarios with high

wind power production due to the convexity of the supply

curve. It is therefore optimal in the stochastic schedule to have

higher imports than in the deterministic schedule due to the

occurrence of low wind power production scenarios not seen

by the deterministic schedule.

Fig. 4 shows the change in number of starts for the different

modes of optimization compared to the perfect forecast case.

An increased number of start-ups increases the startup costs

- however, as it is total costs that are optimized, the optimal

approach decided by the Cplex software in some hours would

be to turn units on and off more frequently, thereby avoiding

costs incurred when units are online and consuming fuel. It can

be seen that including the forecast uncertainty causes all units

to startup more frequently, as shown for both deterministic

and stochastic cases when compared to the perfect case. It can

also be seen that deterministic optimization results in increased

starts compared to stochastic. This is due to the fact that less

Fig. 3. Percentage change in production compared to perfect forecasting
case for stochastic and deterministic cases (hourly rolling)

Fig. 4. Percentage change in startups compared to perfect forecasting case
for stochastic and deterministic cases (hourly rolling)

robust schedules mean more units will need to start to cater

for forecast errors. The only units that are started more in the

stochastic case are the inflexible mid merit units, which are

also producing more.

2) Frequency of rolling: Fig. 5 shows the effect that chang-

ing the frequency of rolling has on the production of the units

- the results shown are for the stochastic optimization. It can

be seen, firstly, that the change in base-loaded units is small,

showing that the impact of wind uncertainty on these units is

minimal. Inflexible mid-merit units are being used more as the

average replacement reserve targets increase, as these cannot

provide replacement reserve off-line in less than one hour, and

therefore need to be online. Mid-merit gas, which can provide

replacement reserve off-line in less than one hour, decreases its

production as uncertainty on the system decreases (i.e. going

from scheduling every one hour to six hours), as they are used

more to deal with uncertainty due to their quick start up times

and relatively low start up costs. Storage is used less as reserve

increases, showing that it is being kept off-line to provide this

reserve.

Fig. 6 shows the number of startups obtained from the

schedules for different frequencies of commitment. Firstly, it

can be seen that the total number of startups decreases as less

uncertainty is included in the model (i.e. going from one hour

to six hours). As can be seen from the similar trend of the

mid merit gas and peaking units and the total system curve,



Fig. 5. Percentage change in production compared to hourly rolling case for
stochastic optimization with varying frequencies of rolling

Fig. 6. Percentage change in startups compared to hourly rolling case for
stochastic optimization with varying frequency of rolling

mid merit gas and peaking units make up the bulk of extra

starts. These are the units that are generally started up most

often on any system, due to their flexibility and position on

the merit order. While the number of starts of inflexible mid-

merit units is seen to increase going from one hour to six

hours, these constitute a small percentage of the total number

of startups (404 out of a total of 6558 in the hourly rolling

case). However, Fig. 6, together with Fig. 5, show they are

on-line more when reserve increases.

B. Performance of schedules

This section examines the impact on performance of the

system, i.e. the ability of the schedules to meet demand,

spinning and replacement reserve. As the way the uncertainty

of wind is treated changes, i.e. whether deterministic or

stochastic optimization is used, the ability of the system to

meet load and reserve is affected. Better performing schedules

will meet demand and reserve requirements more often.

When scheduling the system, there may be hours when

the system cannot meet demand or reserve, due to lack of

available capacity plus wind and interconnection in that hour.

Fig. 7 compares the performance of the different modes of

optimization in meeting demand and reserve. The number of

hours demand cannot be met is seen to be equal regardless of

mode of optimization, with demand for one hour not being met

in every case. This shows the performance of this particular

Fig. 7. Number of hours demand and reserve requirements not met over
simulated year for different optimization modes, 1hr rolling. Note replacement
reserve is divided by 10

plant mix over this particular year, and is different from

measures such as Loss of Load Expectation, which are based

on probabilistic methods. This is for one realized wind and

load time series, and one set of forced outages - if another

time series was applied, a different performance might be

observed. However, it can be seen that the perfect forecast-

ing case performs best in meeting spinning and replacement

reserve targets, followed by the stochastic solutions, with the

deterministic solution performing worst, as expected.

Fig. 8. Number of hours demand and reserve requirements not met over
simulated year for different frequencies of rolling for stochastic mode. Note
replacement reserve is divided by 10

Fig. 8 shows the number of hours demand and reserve

requirements are not over the particular year simulated for

varying frequencies of commitment using the stochastic mode.

Again, it can be seen that the demand is not met once in every

case. The number of hours reserve requirements are not met

increases when moving from committing every hour to every

six hours. This would be expected, as the less often the system

is committed, the less chance there is to account for the hours

when there is the loss of a unit in the period from one planning

period to the next.

C. Impact on costs

Fig. 9 shows the change in costs for the three modes exam-

ined for different rolling frequencies. These are the planned

costs of both the island of Ireland and Great Britain. As wind



and load in Great Britain is assumed to be perfectly forecasted,

the only changes in the Great Britain system would be due to

different wind and load forecasts in Ireland. Therefore, change

in total costs is given as a percentage of Irish costs. The

total costs given here are production costs, and do not include

additional costs due to VOLL or Value of Lost Reserve, which

as stated earlier were made unrealistically high to ensure

demand is met when possible.

Fig. 9. Percentage change in costs compared to perfect forecasting case with
hourly rolling

Firstly, looking at the three different modes of optimization,

it can be seen that the least costly mode is if perfect forecasting

is assumed, as expected. This saves between 0.8% and 1.85%

of costs for Ireland, depending on the mode being compared

to and the frequency of rolling. However, as it assumes wind

and load can be perfectly forecast, it is not a realistic result.

By comparing the stochastic case with the deterministic case,

it can be seen that a saving of approximately 0.25% (one hour

rolling) to 0.9% (three hour rolling) can be made if the system

is optimized stochastically as opposed to deterministically. It

should be kept in mind that these two modes of optimization

use the same forecasts, and only differ in how they deal with

them - one mode optimizes over all forecasts, whereas the

other optimizes for the average expected value. This therefore

shows the value of the stochastic approach. Note that this

improvement in costs is different to the result obtained in

[14] of 0.6%, and is due to the more accurate method of

modelling provision of replacement reserve. Here, units can

provide replacement reserve off-line if they have a start-up

time less than one hour, whereas in [14] it is assumed all

replacement reserve is provided by online units, which is not

as accurate a method of modelling replacement reserves.

The deterministic case does not change significantly in Fig.

9 as frequency of commitment changes - this is due to the fact

that similar schedules will be produced as the deterministic

optimization is carried out for one expected value of wind and

load only. There is a slight increase in cost, due to increase in

reserve demand as commitment frequency decreases. The costs

for the perfect case can be seen to change slightly with varying

frequencies of commitment. As wind and load is perfectly

known in this case, it is only the change in the way unplanned

unit outages are dealt with that causes this change in costs.

In the stochastic case, the changes can be seen to be

different from what might be expected, with a minimum at

approximately three hours, and increasing as the frequency

gets higher and lower from this point. This illustrates the fact

that two different factors are accounting for the changes as

the rolling planning frequency is changed. The first factor

is due to the additional replacement reserve that is needed

as the planning is carried out less frequently. Fig. 2 shows

that, as the frequency of rolling decreases, the average demand

for replacement reserve grows, as wind cannot be forecast as

accurately at longer time horizons. This increase in reserve

demand when rolling less often would be expected to cause

an increase in system costs as more production capacity has to

be reserved to provide replacement reserves. The other factor

which influences the results is due to a modelling assumption.

This is explained in more detail in the next section.

D. Modelling assumption and impact on results

There is a modelling assumption that means care must be

taken when interpreting the results shown in Fig. 9. This

assumption, which is explained in Sections II-A, is that the

first stage of the scenario tree is assumed to have a perfect

forecast. When the frequency of rolling changes, the length of

this first stage changes - as it shortens, more of the uncertainty

of wind can be accounted for. This increases the planned up-

regulation and down-regulation of power plants when rolling

more often as the length of the first stage, with perfect wind

and load foresight, is reduced. This means mid merit gas and

peaking units are used more, as shown in Fig. 5.

To isolate the effect of this assumption on results, the model

was changed so that all units could carry replacement reserve

off-line, no matter how long they take to start up. Therefore,

the extra replacement reserve demand needed as the system is

committed less often does not have an effect on the results.

In reality this would not be true for this system, as it assumes

short start up times for all units, but the effect of increasing

the amount of the uncertainty included in the model can be

isolated and its impact examined. The yearly simulation was

re-run and the results obtained can be seen in Fig. 10. Here,

the modelled costs can be seen to increase as the frequency

of commitment increases towards hourly commitment in the

stochastic case. This is as expected, as more of the uncertainty

of wind is being modelled.

The results in Fig. 9 need to be interpreted in light of the

characteristics illustrated in Figs. 2 and 10. It can be concluded

from these that the changes in system costs in the model when

changing the frequency of rolling planning are due to the

two factors described previously. The first factor, the increase

in demand for replacement reserve when rolling less often,

dominates the change in costs when going from three hour

rolling to six hour rolling. This is something that would be

seen when operating a real power system. On the other hand,

the increase in up- and down - regulation dominates the change

in costs when going from three hour rolling to one hour rolling.

This is a more realistic representation of the operation of a real

power system, as more of the uncertainty is modelled. An

additional cost would be seen in actual operation which is not

modelled here, due to the fact that there would be uncertainty

in the first stage. This unmodelled cost would be reduced as

rolling is done more frequently in the model.



In conclusion, Fig. 9 illustrates that it is better to operate the

system rolling every three hours compared to every six hours.

This would be expected as more up to date information is

being used in the optimisation, and more replacement reserve

would be needed when rolling less often, so this result would

be seen in operation. However, increasing the rolling planning

frequency shortens the perfect foresight stage, making the

model more realistic as described above. Therefore, it cannot

be concluded from Fig. 9 that it is better to roll every three

hours compared to every hour, as the change is due to a

modelling issue. It would be expected that the opposite is true

but the modelling limitations do not allow this conclusion to

be drawn.

Fig. 10. Percentage change in costs versus frequency of rolling when only
taking into account the effect of modelling more of the uncertainty (i.e. all
units can provide reserve offline) for the stochastic case. Compared to base
case of perfect forecasting with hourly rolling

V. CONCLUSIONS

This paper examined the impact of the stochastic nature

of wind on planning and dispatch of a system. Examining

the modes of optimization, it is shown that stochastic mode

result in better performing and less costly schedules than

deterministic optimization when the uncertainty of wind is

taken into account. Mid merit and peaking plant are used less,

and interconnection used more. More frequent scheduling of

the system means wind and load forecasts are being updated

more often and more of the uncertainty of wind is captured in

the model. This means more of the costs due to uncertainty

will be minimized, leading to more optimal results and better

performing schedules.

APPENDIX

FORMULATION OF UNIT COMMITMENT PROBLEM

The formulation given below corresponds to the model

presented in [17], which is based on work described in [16].

A. Nomenclature

1) Indices:

DET Deterministic region

DISPATCH Dispatchable units

F Fuel

FAST Units that can start in less than one hour

i,I Unit group

r,R Region

s,S Scenario

START Units with start up fuel consumption

STOCH Stochastic region

STOR Units with pumped storage

t,T Time

USEFUEL Unit using fuel

2) Parameters:

CAPACITY Maximum capacity of unit

BIDWIND Day ahead bid For wind

d Demand

DETWIND Deterministic wind

EMISSION Rate of emission

END Endtime of optimization period

INITUP Number of hours unit must be initially online

due to its minimum uptime constraint

k Probability of scenario

L Infeasibility Penalty

LOAD Penalty for loss of load

NODE Another node belonging to same stage

OUTAGE Loss of power due to forced outage

PERIOD Length of optimization period

PRICE Fuel price

RAMPUP Maximum ramp up rate

REALIZED Realized demand

REP Penalty for not meeting replacement reserve

REPDEM Replacement reserve demand

SPIN Penalty for not meeting spinning reserve

SPINDEM Spinning reserve demand

STARTRAMP Maximum start up ramping rate

TAX Emission tax

UPTIME Minimum up time of unit

WIND Realized wind

XLOSS Transmission loss

3) Variables:

CONS Fuel consumed

DAYAHEAD Day ahead power

OBJ Objective function

ONLINE Integer on/off for unit

P Power output

Q Unit pumping

QDAY Day ahead demand not met

QINTRA Intra day demand not met

QREP Replacement reserve not met

QSPIN Spinning reserve not met

REPOFF Replacement reserve provision offline unit

REPON Replacement reserve from online unit

SPINRES Spinning reserve provided by unit

U Relaxation variable

V Decision variable - on or off

WINDCUR Curtailed wind

WINDRES Wind curtailed for reserve

+, - Up, Down regulation



B. Objective function

The objective function being minimized is shown in (A.1).

The first part of (A.1) is the operating fuel cost, the second is

the start up fuel cost (if a unit starts in that hour). The third

line means that if a unit is online at the end of the day, the

start-up costs for it are subtracted from the objective function

- this is to ensure that there are still units online at the end of

the optimization period. The decision variable is given in the

first three lines, showing whether a unit is online or offline.

The fourth line is the costs due to emissions, while the last

four lines describe the additional cost incurred due to penalties

for not being able to meet load targets or reserve targets.

Vobj =
∑

i∈IUSEF UEL

∑

s∈S

∑

t∈T

kSFCONS
i,r,s,t FPRICE

f,r,t V ONLINE
i,t

+
∑

i∈IST ART

∑

s∈S

∑

t∈T

kSFSTART
i,r,s,t FPRICE

f,r,t V ONLINE
i,t

−
∑

i∈IST ART

∑

s∈S

kSFSTART
i,r,s,TEND

FPRICE
f,r,TEND

V ONLINE
i,TEND

+
∑

i∈IUSEF UEL

∑

s∈S

∑

t∈T

kSFCONS
i,r,s,t FTAX

f,r FEMISSION
f

+
∑

s∈S

∑

t∈T

kSLLOAD(UQINTRA,+
r,s,t + U

QINTRA,−
r,s,t )

+
∑

t∈T

kSLLOAD(UQDAY,+
r,t + U

QDAY,−
r,t )

+
∑

s∈S

∑

t∈T

kSLSPINU
QSPIN,−
r,s,t

+
∑

s∈S

∑

t∈T

kSLREP U
QREP,−
r,s,t

(A.1)

C. Day-Ahead Balancing Equation

The day ahead balancing equation, Eqn. A.2, is done at

12:00 on every day for the next 36 hours. It uses deterministic

values for wind and load to set day ahead prices (based

on marginal unit consuming fuel), plan the operation of the

interconnector, and plan expected unit commitment.

∑

i∈IDISP AT CH

PDAY AHEAD
i,r,t + iTIDAL

r,t + iRUNRIV ER
r,t

+ iDETWIND
rDET ,t + iBIDWIND

rST OCH ,t

+ (1 − XLOSS)PTRANS
r̄,r,t

= (UQDAY,+
r,t − U

QDAY,−
r,t ) + dDET

rDET ,t + dBID
rST OCH ,t

+ PTRANS
r,r̄,t

(A.2)

D. Intra-Day Balancing Equation

The intra day balancing equation, Eqn. A.3, is done every

planning period, for all scenarios. The interconnector between

regions is fixed, so is not used to balance the load and

generation. There is also the ability to relax the constraint

for balancing the intra-day equation - however, this incurs a

penalty as shown in the objective function, A.1. When pumped

storage is generating, it is included as a dispatchable unit,

while when generating it is added to demand - this is included

in the optimization so that it is pumping and generating at the

optimal times.

∑

i∈IDISP AT CH

(P+

i,r,s,t − P−

i,r,s,t) − PWINDCUR
rST OCH ,s,t − V WINDRES

rST OCH ,t

= U
QINTRA,+
r,s,t − U

QINTRA,−
r,s,t + iBIDWIND

rST OCH ,t

+ iOUTAGE
rST OCH ,t − iWIND

rST OCH ,s,t + dREALISED
rST OCH ,s,t − dBID

rST OCH ,t

(A.3)

E. Spinning Reserve Inequality

The spinning reserve is based on the largest online unit

plus a target based on the amount of wind forecast in each

hour. When the pumped storage is pumping, it contributes to

spinning reserve.

∑

i∈IDISP AT CH

V SPINRES
rST OC ,s,t +

∑

i∈IST OR

Qi,r,s,t + V WINDRES
rST OCH ,t

≥ U
QSPINRES
r,s,t + iSPINDEM

r,s,t

(A.4)

F. Replacement Reserve Inequality

Only units with start-up times less than one hour can provide

replacement reserve offline. Online units can also provide this

reserve if they have the spare capacity over and above the

capacity used for generation and spinning reserve.

∑

i∈IDISP AT CH

V REPON
r,s,t +

∑

i∈IF AST

V REPOFF
r,s,t

≥ U
QREPRES
r,s,t + iREPDEM

r,s,t

− MAX(0, iBIDWIND
rST OCH ,t − iWIND

rST OCH ,s,t − dBID
rST OC ,t

+ dREALISED
rST OCH ,s,t − POUTAGE

rST OCH ,tST AGE1
)

(A.5)

G. Constraints on unit operation in model

There are constraints on the operation of units on the

system. These include start-up time, minimum up and down

time, maximum and minimum power output and ramping rates

being obeyed.

Equation A.6 ensures that ramping rates of a unit are

obeyed. This states that the power output form a unit in one

period cannot be greater than the power output in the previous

period plus the maximum ramping rate of that unit, if the unit

is online. A similar equation constrains the ramping down rate.

PDAY AHEAD
i,r,t + P+

i,r,s,t − P−

i,r,s,t

− (PDAY AHEAD
i,r,t

−1
+ P+

i,r,s,t
−1

− P−

i,r,s,t
−1

)

+ V REPON
r,s,t

≤ V ONLINE
i,r,s,t V RAMPUP

(A.6)



Equations A.7 to A.9 give expressions for the minimum

uptime of units. They are stochastic versions of equations

given in [25]. Similar constraints are given for minimum down

time. Equation A.7 is related to the initial status of the units

- i.e. the initial number of periods the unit must be online.

Equation A.8 is used for the subsequent periods to satisfy

the minimum up time constraint during all the possible sets

of consecutive periods. Equation A.9 ensures that if the unit

starts up it stays online in the remaining timespan.

INITUP∑

t=1

(1 − V ONLINE
i,r,s,t ) = 0,∀i ∈ I

(A.7)

t+UPTIMEi−1∑

n=t

V ONLINE
i,r,s (n)

≥ UPTIMEi(V
ONLINE
r,s,t − V ONLINE

r,s,t−1 )

i∀I,∀t = INITUPi + 1...TPERIOD

− UPTIMEi + 1,∀s ∈ S

(A.8)

TP ERIOD∑

n=t

[V ONLINE
i,r,s (n)

− (V ONLINE
r,s,t − V ONLINE

r,s,t−1 )] ≥ 0

i∀I,∀t = TPERIOD − UPTIMEi + 2...T,

∀s ∈ S

(A.9)

Equation A.10 describes the constraint on maximum avail-

able capacity for each unit - a similar equation constrains the

minimum available capacity

PDAY AHEAD
i,r,t + P+

i,r,s,t − P−

i,r,s,t

+ V SPINRESi, r, s, t + V REPON
i,r,s,t

≤ PCAPACITY
i ∗ V ONLINE

(A.10)
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