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1. Introduction

Multidimensional panel data sets are becoming more readily available, and used
to study phenomena like international trade and/or capital flow between countries
or regions, the trading volume across several products and stores over time (three
panel dimensions), or the air passenger numbers between multiple hubs deserved
by different airlines (four panel dimensions). Over the years several, mostly fixed
effects, specifications have been worked out to take into account the specific three
(or higher) dimensional nature and heterogeneity of these kinds of data sets. In this
paper in Section 2 we present the different fixed effects formulations introduced in
the literature to deal with three-dimensional panels and derive the proper Within?
transformations for each model. In Section 3 we first have a closer look at a problem
typical for such data sets, that is the lack of self-flow observations. Then we also
analyze the properties of the Within estimators in an unbalanced data setting. In
Section 4 we investigate how the different Within estimators behave in the case of a
dynamic specification, generalizing the seminal results of Nickell [1981], and finally,

we draw some conclusions in Section 5.

2. Models with Different Types of Heterogeneity and the Within Trans-

formation

In three-dimensional panel data sets the dependent variable of a model is observed
along three indices such as y;j¢, @ = 1,...,N1, 5 =1,...,No, and t = 1,...,T. As
in economic flows such as trade, capital (FDI), etc., there is some kind of reciprocity,
we assume to start with, that Ny = Ny = N. Implicitly we also assume that the
set of individuals in the observation set ¢ and j are the same. Then we relax this
assumption later on. The main question is how to formalize the individual and time
heterogeneity, in our case the fixed effects. Different forms of heterogeneity yield
naturally different models. In theory any fixed effects three-dimensional panel data
model can directly be estimated, say for example, by least squares (LS). This involves
the explicit incorporation in the model of the fixed effects through dummy variables
(see for example formulation (13) later on). The resulting estimator is usually called
Least Squares Dummy Variable (LSDV) estimator. However, it is well known that the
first moment of the LS estimators is invariant to linear transformations, as long as the

2 'We must notice here, for those who are familiar with the usual panel data terminology,
that in a higher dimensional setup the within and between groups variation of the data
is somewhat arbitrary, and so the distinction between Within and Between estimators
would make our narrative unnecessarily complex. Therefore in this paper all estimators
using a kind of projection are called Within estimators.



transformed explanatory variables and disturbance terms remain uncorrelated. So if
we could transform the model, that is all variables of the model, in such a way that
the transformation wipes out the fixed effects, and then estimate this transformed
model by least squares, we would get parameter estimates with similar first moment
properties (unbiasedness) as those from the estimation of the original untransformed
model. This would be simpler as the fixed effects then need not to be estimated
or explicitly incorporated into the model. We must emphasize, however, that these
transformations are usually not unique in our context. The resulting different Within
estimators (for the same model), although have the same bias/unbiasedness, may not
give numerically the same parameter estimates. This comes from the fact that the
different Within transformations represent different projection in the (i, j, t) space, so
the corresponding Within estimators may in fact use different subsets of the three-
dimensional data space. Due to the Gauss-Markov theorem, there is always an optimal
Within estimator, excatly the one which is based on the transformations generated
by the appropriate LSDV estimator. Why to bother then, and not always use the
LSDV estimator directly? First, because when the data becomes larger, the explicit
estimation of the fixed effects is quite difficult, or even practically impossible, so
the use of Within estimators can be quite useful. Then, we may also exploit the
different projections and the resulting various Within estimators to deal with some
data generated problems.

The first attempt the properly extend the standard fixed effects panel data
model (see for example Baltagi [1995] or Balestra and Krishnakumar [2008]) to a
multidimensional setup was proposed by Matyas [1997]. The specification of the
model is

yijt:ﬁ’xijt-l—ai-l—’yj-i-)\t-l—eijt 1=1,....N j57=1,....N, t=1,...,T, (1)

where the «, v and A parameters are time and country specific fixed effects, the x
variables are the usual covariates, 5 (K x 1) the focus structural parameters and ¢ is
the idiosyncratic disturbance term.

The simplest Within transformation for this model is
(ijt — Yij — Y + ) (2)

where

Yij = 1/szijt
t
Y = 1/N2zzyijt
(]
y= 1/N2Tzzzyijt
it
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However, the optimal Within transformation (which actually gives numerically the
same parameter estimates as the direct estimation of model (1), that is the LSDV
estimator) is in fact

(Yijt — Ui — Yj — Ut + 29) (3)

Ui = 1/(NT>ZZyijt
7 = V(NT)Y > i

i

where

Another model has been proposed by Egger and Pfanffermayr [2003] which takes
into account bilateral interaction effects. The model specification is

Yijt = B xije + vij + Eijt (4)

where the +;; are the bilateral specific fixed effects (this approach can easily be
extended to account for multilateral effects). The simplest (and optimal) Within
transformation which clears the fixed effects now is

(yije — Uij) where gy =1/T Y yij (5)
t

It can be seen that the use of the Within estimator here, and even more so for the
models discussed later, is highly recommended as direct estimation of the model by
LS would involve the estimation of (N x V) parameters which is no very practical for
larger N. For model (11) this would even be practically impossible.

A variant of model (4) often used in empirical studies is
Yijt = B'xije + Yij + M + it (6)

As model (1) is in fact a special case of this model (6), transformation (2) can be
used to clear the fixed effects. While transformation (2) leads to the optimal Within
estimator for model (6), its is clear why it is not optimal for model (1): it “over-
clears” the fixed effects, as it does not take into account the parameter restrictions
vij = oy + ;. It is worth noticing that models (4) and (6) are in fact straight panel
data models where the individuals are now the (ij) pairs.

Baltagi et al. [2003], Baldwin and Taglioni [2006] and Baier and Bergstrand
[2007] suggested several other forms of fixed effects. A simpler model is

Yijt = ﬁ'l‘ijt + Q¢ + €ijt (7)
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The Within transformation which clears the fixed effects is
(Yijt — Yj¢) where g = 1/NZ Yijt
Another variant of this model is
Yijt = B'Tij + i + i (8)
Here the Within transformation which clears the fixed effects is

(Yije — Gie) where  Fix =1/N Y yijs
J

The most frequently used variation of this model is
Yijt = B'Tiji + g + g + i 9)

The required Within transformation here is
Wijt = VN yije = 1N DY gije + /N> D i)
i j i

or in short
(Yije — Yjt — Uit + Yt) (10)
Let us notice here that transformation (10) clears the fixed effects for model (1) as

well, but of course the resulting Within estimator is not optimal. The model which
encompasses all above effects is

Yijt = ﬁ/l‘ijt + Yig + Qi+ 0t T+ Eijt (11)

By applying suitable restrictions to model (11) we can obtain the models discussed
above. The Within transformation for this model is

yzyt_l/TZyzgt_l/NZymt_1/Nzyzgt+1/NQZZyzgt
+1/(NT) ZZmerl/ (NT) ZZyUt—l/ (N?T) ZZZyUt

or in a shorter form

(Yijt — Yij — Yjt — Uit + U +Yj + Ui — )
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We can write up these Within transformations in a more compact matrix form
using Davis’ [2002] and Hornok’s [2011] approach. Model (11) in matrix form is

y=XB+ Diy+ Daa+ Dsavy + ¢ (13)

where y, (N2 x 1) is the vector of the dependent variable, X, (N?T x K) is the matrix of
explanatory variables, 7, a and «, are the vectors of fixed effects with size (N2T'x N?),
(N2T x NT) and (N2T x NT) respectively,

Di=1In2®1l;, Dy=In®INRIp and D3 =Iny® InT

[ is the vector of ones and I is the identity matrix with the appropriate size in the
index. Let D = (D1, D2, D3), Qp = D(D'D)™'D’ and Pp = I — Qp. Using Davis’
[2002] method it can be shown that Pp = P; — Q2 — Q3 where

P =(In—JN)®InT

Q2= Iy —JN)® Iy ® I

Qs =(In—JN)® (N —JIN)® Jr
- 1

- 1
JN_NJ’ JT_TJ

and J is the matrix of ones with its size in the index. Collecting all these terms we

get
Pp=[In—Jn)®(In—JN)® Ir — Jr)]

= In2r — (Jn ®@ Inop) — (IN @ IN @ Ir) — (In2 @ Jr)
+ (IN ® jNT) + (jN ®RIn® J_T> + (sz ®IT) — J_NzT

The typical element of Pp gives the transformation (12). By appropriate restrictions
on the parameters of (13) we get back the previously analysed Within transformations.

Now transforming model (13) with transformation (12) leads to

PDy:PDXﬁ-i-PDDl’)/-i-PDDQa/-i-PDDgO!*+PD€
M~ = S~—— S~—— S~—— ~~

Yp X, =0 =0 =0 £p

and the corresponding (optimal) Within estimator is

/BW = (X;;Xp)_lXpyp



3. Some Data Problems

As these multidimensional panel data models are frequently used to deal with flow
types of data like trade, capital movements (FDI), etc., it is important to have a
closer look at the case when, by nature, we do not observe self flow. This means that
from the (ijt) indexes we do not have observations for the dependent variable of the
model when ¢ = j for any ¢. This is the first step to relax our initial assumption that
N1 = Ny = N and that the observation sets ¢ and j are equivalent.

For most of the previously introduced models this is not a problem, the Within
transformations work as they are meant to and eliminate the fixed effects. However,
this is not the case unfortunately for models (1) (transformation (3)), (9) and (11).
Let us have a closer look at the difficulty. For model (1) and transformation (3),
instead of canceled out fixed effects, we end up with the following remaining fixed

effects
1 1 N
= q; — N-DT- T o
o =i~ yopr W-UTe— w37 Z «
1=1; 1]
1 N p N
— N -1 i N-1DT -
N(N—l);( ) +N(N—1)T;( )T+
N N N
1 1 1 1
= q; az_iN_ Z ,aZ+NZaZ_NaJ NN —1) Z .ozl
i=1; i#£j i=1 i=1; i#£j
1 N 1
Y= T- N -1T
1 N p N
— N -1 N -1T
N(N—l),z( >73+N(N—1)TZ( T
7j=1 =1
N N N
1 1 1 1
_%_N—l Z VJ_'YJ‘*‘NZ'YJ' N% N(N—l) Z Vj
J=1; j#i Jj=1 J=1; j#i

t=1 t=1
1 2 d
- NN D N(N—l)At+N(N_1>T;N(N—1) A =
1 & 1 & 2 — —
_At—ftz_:)\t—f;&—)\ﬂrf;)\t—o



So clearly this Within estimator now is biased. The bias is of course eliminated if we
add the (ii) observations back to the above bias formulae, and also, quite intuitively,
when N — oco. On the other hand, luckily, transformation (2) as seen earlier, although
not optimal, leads to an unbiased Within estimator for model (1) and remains so even
in the lack of self flow data.

Now let us continue with model (9). After the Within transformation (10),
instead of canceled out fixed effects we end up with the following remaining fixed

effects
Y= 1 N 1 N -1 3 1)
a“—-au—‘ﬁfzjj 2: (Mt—'Rf:j( - )au'% 2: — Dag
1=1;1#£7 =1
1 N
= TNN-D) Z ‘akt‘i‘ v it
k=1;k#j
and
N
. 1 1
’th:’th—ﬁ(N 1)~ Jt_i Z ’Ygt+ 1)Z(N—1>’th
J=13#1 j=1

z 1144

As long as the o* and v* parameters are not zero, the Within estimators will be
biased. Similarly for model (11), the remaining fixed effects are

N
. 1 1
’Yij = Yij — TT “Yij — Z Yij — — 1 Z Yij
=157y J=15#4
1 al 1 ol
ij T 7
+N(N—1)Z . Vit N 2 T
=1 j=1;j7i i=1;i7#]
1 N 1 N N
T; Tv;; =0
N7 2. T N(N—l)TZ.Z Yid
J=15#1 1=1 j=1;5%#



1 N T T 1 N
" NN 1T P DL N(N —1) D ot o
i=13i#£j t=1 t= i=1;i#]
and, finally

T N

. - 1 - 1 - 1 .

Xje = Xt — Z At T N1 (N —1)aq N_1 ‘ Qjit
t=1 J=Lj#i

J=Lj#i t=1 j=li=1
] N T 1 L 1 N 1
= Z Zd]t—i——Zdlt— Z 65]15“1‘ dzt
N(N B 1)T j=Llj#i t=1 NT t=1 N(N N ) J=Lj#1 N

where in order to avoid confusion with the two similar « fixed effects a;; is now
denoted by &;¢. It can be seen, as expected, these remaining fixed effects are indeed
wiped out when 7 type observations are present in the data. When N — oo the
remaining effects go to zero, which implies that the bias of the Within estimators go
to zero as well.

We can go further along the above lines and see what going to happen if the
observation sets ¢ and j are different. Say, for example, if we are modeling the export
activity of the European Union countries (i set) towards the OECD countries (j set).
Intuitively enough, for all the model considered above the Within estimators are

unbiased, even in finite samples.

Like in the case of the usual panel data sets, just more frequently, one may be
faced with the situation when the data at hand is unbalanced. In our framework of
analysis this means that for all the previously studied models, in general t =1, ..., T;;,
>i>.;Tij = T and Tj; is often not equal to Ty ;. For models (4), (7), (8) and



(9) the unbalanced nature of the data does not cause any problems, the Within
transformations can be used, and have exactly the same properties, as in the balanced

case. However, for models (1) and (11) we are facing trouble.

In the case of model (1) and transformation (2) we get for the fixed effects the
following terms (let us remember: this in fact is the optimal transformation for model

(6))

Tij

1 T;; 1 N i
e S ai— o S Na+ Z
: ) Tmtz—;a/ NQZX—; ’ Zz 12] IEJ 1= 1;;a

N

et gy (o)
=—=) o+ = a; -y Tij
Ni:l Ti:l j=1 !
1 N N
2 0 (N T =T
i=1 j=1

1 i
”;% N2321 N Zivﬂ ?[1Tm;ng;%

] L N
= —NZ’YJ-FTZ (%"Zﬂ‘j)
i=1 i=1 i—1
| X N
= WZ%"(NZTM'_T
=1 i=1

and
Tij
th N2At+; ZZ)\t
t=1 i=1 j=1 t=1
1 Ti; 1 Ti;
:)\t_—z)\t_)\t+ ZZZ)\t
Tij = T 1j=1t=1
1 Ty, 1 Tij;
S S S )30
W og=1 i=1 j=1t=1

These terms clearly do not add up to zero in general, so the Within transformation
does not clear the fixed effects, as a result this Within estimator will be biased. (It
can easily checked that the above af, 77 and A} terms add up to zero when Vi, j
T;; = T.) As (2) is the optimal Within estimator for model (6), this is bad news
for the estimation of that model. We, unfortunately, get very similar results for
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transformation (3) as well. The good news is, on the other hand, as seen earlier, that
for model (1) transformation (10) clears the fixed effects, and although not optimal in

this case, it does not depend on time, so in fact the corresponding Within estimator
is still unbiased in this case.

Unfortunately, no such luck in the case of model (11) and transformation (12).
The remaining fixed effects are now

PY’L.] ’L Z’ylj N Z’y’b] N Z’y’b] N2 ZZ’)/ZJ

=1 j=1
Tij Tij Tij
Vij Vij Vij

1 N
:’}/ij_fyij_ﬁglyij Z’yzg N2 ;;723 ZZ lT Z’VU 7,]+

1y j=1
b Y Ty - 3 Ty
j=1

1j j=1 i:l j=1
1
_N ZVU Z’yzg N2 Z ZVU Z ZVUTU‘F
i=1 i=1 j=1 i=1 ZJ i=1
i Vi Lij
Z] 11723‘721 ] 1] ;; LV}

T;; N
1 1
*
Oéit:Oéit——E Oéz‘t——E Qi — == E Qit + —75 E E Qi+
T;; N N2
Y og=1 =1 i=1 j=1
Ty

iy | NN
fV1sz ;;O& Zjv1ng;t lo‘lt f;;t 1Ozzt
ZZ ITZJ i=1t=1 ZJZITU ;;%t TZZZ_:O%

g ) 3y
=TT it T — N it — 7 i
” ;at Zz 1Twz 1 t=1 ZJ_1T”Z_:2_:C“ TZZX_:OH
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1 T 1 N
t= =1

=1 j=1
sz ng N NTZJ
SHLEES ) IR D 3T TZZ e
iy Z T
=1 "1 =1 t=1 =171 j=1t=1 =1j=11t=1

Tij

= Ot — 7 ! Zajt Za3t+ Za3t+ Zza3t+
T” i=1 Zz AT R
Ti; T
T ZZ it — ZZZ%

Tij

Zgl”gltl 1131151

oy iy 1 oy
B T ) YRR S S DITRED 5 3 o
Z3151 Zzlwzltl E]lljgltl i=1 j=1t=1

These terms clearly do not cancel out in general, as a result the corresponding Within
estimator is biased. Unfortunately, the increase of N does not deal with the problem,
so the bias remains even when N — oco. It can easily be checked, however, that in
the balanced case, i.e., when each T}; = T'/N? the fixed effects drop out indeed from
the above formulations.

4. Dynamic Models

In the case of dynamic autoregressive models, the use of which is unavoidable if the
data generating process has partial adjustment or some kind of memory, the Within
estimators in a usual panel data framework are biased. In this section we generalize
the well known panel data result to this higher dimensional setup. We derive the
finite sample bias for each of the models introduced in Section 2.

In order to show the problem, let us start with the simple linear dynamic model
with bilateral interaction effects, that is model (4)

Yijt = PYijt—1 + Vij + Eijt (14)
With backward substitution we get

1—pt :
it = P'yio + T + > Preiin (15)
k=0
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and

1— pt—l t—1
-1 k
Yijt—1 = pt Yijo + ﬁ%’j + kZ_O,O Eijt—1—k

What needs to be checked is the correlation between the right hand side variables
of model (14) after applying the appropriate Within transformation, that is the
correlation between (y;jt—1 — ¥ij—1) where giji—1 = 1/T) ", yije—1 and (g1 — &ij)
where &;; = 1/T )", €;;. This amounts to check the correlations (y;ji—1£i;), (Yij—1€ijt)
and (g;j—1€;;j) because (y;;1—1€;5;) are uncorrelated. These correlations are obviously
not zero, not even in the semi-asymptotic case when N — oo, as we are facing the
so called Nickell-type bias (Nickell [1981]). This may be the case for all other Within

transformations as well.

Model (14) can of course be expanded to have exogenous explanatory variable as
well

Yijt = PYiji—1 + T8 + Yij + it (16)

Let us turn now to the derivation of the finite sample bias and denote in general
any of the above Within transformations by #¢-qans. Using this notation we can derive
the general form of the bias using Nickell-type calculations. Starting from the simple
first order autoregressive model (14) introduced above we get

(yijt - ytrans) — p(yijt—l - ytrans—l) + (gijt - étrans) (17)

Using OLS to estimate p, we get

~ Zf\il Zjvzl (yijt—l - gtrans—l) ’ (yijt - gtrans)
t= N N -
Zi:l Zj:l (yijt—l - ytrans—1)2

(18)

ks

So the bias is

Ziv:l Z;\]zl (Yiji—1 — Ytrans—1) * (P(Yiji—1 — Ytrans—1) + (€ijt — 5mms))]
25\21 Zj\; (Yijt—1 — Ytrans—1)*
P Zi\]zl Z;\]:l (Yije—1 — Utrans—1)° 2?:1 Zjvzl (Yijt—1 — Ytrans—1)(€ije — 6_tmns)]
Zf\; Zj-v:l (Yijt—1 — Utrans—1)> Zf\; Zj-v:l (Yijt—1 — Utrans—1)>
Ziv:l Z;\]zl (Yijt—1 — Ytrans—1) (€ijt — Etrans) B A,
25\21 Zj\; (Yijt—1 — Ytrans—1)* ~/T B,

E[ﬁt]:E[

_|_

(19)
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Continuing with model (14) and using now the appropriate (5) Within transfor-

mation we get

(Yijt — Uij) = p(Wiji—1 — Yij—1) + (€ije — Eij)

For the numerator A; from above we get

Elyiji-18ij] = E

] (1T '
Elgig—rei] = E (T ZZPk%t—l—k) - (jt)

T t—1

_ _ 1
Elgij&y]=FE [(f Z Zpkgijt—l—k

t=1 k=0

And for the denominator By

t—1
E[?Jizjt—ﬂ =E (Z pkf‘:ijt—l—k
k=0

Elyijt—1Yij—1] = E

Elyiji—1€ij¢] =0

t—1

t=1 k=0

k=0

t—1 ;I

k
E P €ijt—1—k> : <T E 5ijt>
k=0 t=1

) (%)

)
<§ p%iﬂ_l_k> ‘ (%ii

( B 2/)(1 o /)T) 2pT+2 . pZ(T—I—l) . /)2)

1 — p?

where




and

2 20(1 — T 2T—|—2_ 2(T+1) _ 2
pr_ _ O L2 —p )Jr p p p
(1 —p) T(1-p?) 1—p?

It can be seen that these results are very similar to the original Nickell results,
and the bias is persistent even in the semi-asymptotic case when N — oo.

Let us turn now our attention to model (1). In this case the Within transforma-
tion (2) leads to

(Yijt —Yij — Yt +9) = p- Yijt—1 — Yij—1 — Ye—1 + Y1) + (€ijt — Eij — €4 + ©)

After lengthy derivations (see the Appendix) we get for the finite sample bias

1-N2\ 1 1-pt7! 1-N2\ 1 1-pT"" N2-1) 1 g«
<N2>T i T\~ )t T (T ) A

E[ﬁ_p]: _ 2t
(N;];l), 11_ppzz _B*+O*
where L—p" ' p+(t=1p"* —tp
oo 1)
l1—p (1—=p)
N2_1 2 1— t 1— T—t 1 T
B*:Q : i O¢ : P +p P _pt—i—l_ +p
N TA1—p%) \1—0p 1—0p 1-p
and

2 2 T T+2 _ 2(T+1) _ 2
o - (N -1 oz ,_ 2( p)+2p p p
Nz ) T(1—p)? T(1-p?) 1—p?

It is worth noticing that in the semi-asymptotic case as N — oo we get back the bias
derived above for model (14).

As seen earlier, the optimal Within transformation for model (2) is in fact (3)
(Yijt — Ui — Uj — G + 29)

For this Within estimator the bias is (see the derivation in the Appendix)

2 _ 1 _ 2 _ x
pipe gy G F T 50 5 4
( —1) 11pp2 4 B** 4 O**
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where

and

o 2N — 4 o2 ) 20(1 — pT) . 9pT+2 = p2(T+1) _ 52
S\ N2 T(1-p)? T(1—p?) 1— p?

It can be seen as N — oo the bias goes to zero, so this estimator is semi-asymptotically
unbiased (unlike the previous one).

Let us now continue with models (7) and (8) which can be considered as the
same models from this point of view

Yijt = PYijt—1 + Qe + Eqjt
With the Within transformation we get
| XN
Yijt — Uit = 0 (Yije—1 — Yje—1) + (e — N Z i) + (€t — Ejt),
i=1
~ Naji
where

1 1 1 &
Yjt = N ';yijt Yjt—1 = N ';yijt—l Ejt = N ;&'jt.

Following the derivation presented in details in the Appendix the bias for Model (7)
is in fact zero, so this Within estimator is unbiased.

Let us carry on with model (9). Using the Within transformation we get
(Yijt — Uit — Uit + ) = pWijt—1 — Yjt—1 — Yit—1 + Ge—1) + (€ijt — Ej¢ — Eit + &)

The finite sample bias now is (see the Appendix for details), as above, zero, so again,
this Within estimator is unbiased.

And finally, let us turn to model (11)

Yijt = PYije—1 + Vij + Qir + Qe + €45t

16



The Within transformation gives
(Yige — Yij — Ujt — Yit + e + Y5 + Yi — )
so we get

(Yije — Uij — Uje — Yie +Je + U5 + ¥ — ) =
=p - Wijt—1 — Yij—1 — Yjt—1 — Yit—1 + Ye—1 + Yj—1 + Yi—1 — Y—1)+

+ (gijt —€ij —E€jt — €t +Et +E;+ & — &)
And for the finite sample bias of this model we get

—(N—1)2 1 1— t—1 —(N—1)2 1 1— T—t "
( N2 )'T' 1[ip +< N2 )'T' lp—p +A

E[ﬁ_p]: <(N—1)2> 1—p2t

+ B* +C*

N2 1—p2

where

(S (e

B* — (_2<N_ 1)2) o2 (1_Pt i 1—p't 1+/)T)
= — p — p . —
1—p 1—0p 1—0p

and

1\2 2 T T+2 _ 2(T+1) _ 2
C*:<(N 21) ) o; 2<1_2p(1 p2)+2p - p)
N T(1-p) T(1-p?) 1—p

It is clear that if N goes to infinity and T is finite, then we get back the bias of
model (4).

5. Conclusion

In this paper we derived proper Within estimators for the most frequently used three
dimensional panel data models. We showed that these estimators are not unique,
but there is always an optimal one. We analyzed how these estimators behave in the
case of no-self-trade type data problems, unbalanced data and dynamic models. The
presented results can be used to guide applied researchers when dealing with such

large three dimensional data sets.
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Appendix

Finite sample bias derivations for the dynamic model.
Model (1)
In this case the Within transformation (2) leads to

(Yijt = Ui — Ut +9) = p - Wijt—1 — Yij—1 — Ye—1 + J—1) + (€ijt — &ij — & + €)
Components of the numerator of the bias are

Elyijt—1€ij¢] =0

~ Jg 1— pt—l
E[yijt—lgij] = Tﬁ
Elyiji—1&] =0
~ 0.2 1 _pt—l
Elyiji-1€] = N;Tﬁ
- 0’3 1— pT—t
Elyij—1gijt] = Tﬁ
L o? 1 1 1-p"
S N e =)
~ ~ 0.2 1 _pT—t
Elyij—18t] = N;T 1—p
L o2 1 1 1-pT
osrd = 5 (75 7 =)
Elyi—1€ij:) = 0
~ ~ 0.2 1— pt—l
Elyi-18i5] = N;Tfp
Elgi1&] =0
- - 0.2 1 _pt—l
Elgi12] = NgTﬁ
- 0'3 1— pT—t
Byl = for 75—,

o? 1 1 1-p7
Ely_16;;] = —= - - —. 7
el = Feg (1—/) T (1—/))2)

18



0.2 1— pT—t

N2T 1-—p
o2 1 1 1-p"
Elyg] = = T T e
NT \1—p T (1-p)
Considering the signs of the components, we get the following expected value for the
numerator
1—N2\ o2 1-p'~ + 1—N?\ o2 l—pT_t+
N2 T 1-—p N2 T 1—0p
N 1-N?\ o2 (1 1 1-p"
N2 T \1—-p (1—p)2

Components of the denominator are

Ely_1&] =

1—p
E[?J?jt—ﬂ =o2-

£ 1 _p2
o? 1—p' 1—pt L+p"
Elyijt—19ij—1] = 5 -
- 0.2 1— p2t
Elyiji—19i—1] = N—€2 T2
0‘2 1-— pt 1-— pT ¢ 1+ 14
Elysji 13- - < +p - )
[iji-19-1] = N2T(1—-p2) \1—p 1—-p -p
Bl =% (1 20=r) 2pT+2 P —
Yij—1] = T(1— p)2 T(1 - p?)
2 t T—t
o2 1—0p 1—0p ot
Elyij-1yi-1] = N2T(1_p)<1_p+p 1—0p P 1—p
E o? L2 =p") 2" - P 2
[y’Lj 1Y— 1] NQT(I . p> ( B T(l _p2> 1 _p2 )
2 2t
—2 _ 0-5 1 - 10
E[yt—l] - N2 ’ 1— p2
o? 1—p 1—p't L+p"
Eli € _ Ll
Bt = (12 2T T
Y_1l = N2T(1 — p)? T(1 - p?) 1—p2
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Thus the expected value of the denominator is

N2 -1 1— 2(t—1) N2 _1 2 1 — pt 1— T—t 1 T
( 2 )Uf' . 2 _2< 2 ) = 2 ( Py p—l —prt Rl
N 1—0p N T1—-p2) \1—p 1—0p 1—0p
N2 -1 Jg ) 2p(1 o pT> 2pT—|—2 o p2(T+1) o p2
( 2 )T(l—@?( TTa-p7) 1= )

The bias of this Within estimator for (1) is therefore the following:

1-N2\ 1 1-pt~? 1-N2\ 1 1-pT~¢ N2-1) 1 *
. (N?)T lip +<N2)T 1p—p ""(N?)W'A
E[p_p] = N2_1 1_p2t
(N2 ) 1—p2 - B*+C*
where - -
1—pt~ t—1 — tpt
A*:<T' Pt pt( >p2 p)
l1—p (1—=p)
B*—9 N2 -1 . o2 l—pt_'_pl—pT_t_ptH.l-l-pT
N2 T(1—-p2) \1—p 1—0p 1—0p
and

oo (NP1 o2 () 20(=pT) 2972 p2THD - p2
‘( 2 )T(l—p>2< o 1= )

Now for the same model (1) transformation (3) leads to the following terms. For

the numerator:
Elyijt—1€ij¢] =0
o2 1—pt~t

Elysje-18i] = Elyije—18] = on == P

Elyiji-18:] = 0

- 20.2 1— pt—l
Elyiji—12¢] = N;Tﬁ

o2 1—p

£

Elyi—1gijt] = Elgj—1€ijt] = NT 1-,

o L o2 1 1 1-,7
Elyi—1&] = E[yj—1&,] = NT (— . 7/))

o 52 11 1-,"
Blyi-18] = Blyj—1&i] = a7 - (1 —p T (1- p)2>
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0_2 1 _ pT—t

S

Elyi-1&t] = Elyj-18:] = NeT 11—,

- ) 202 1 1 1-p"
Ely;i—12¢] = E[y;j-12¢] = N2T (1 —p T W)

Elgi—1eije] =0
) ) B - O-g 1 _ pt—l
Elyi1&)] = E[yt_laj] = N2T 11— p
Elgi—1&] =0
20_2 1 _ pt—l

£

Blo2 = tpr 7=

202 1—pT—t

E2y_i€ijt] = NeT 1o P
- 202 1 1 1-p"
E2y_1&] = E2y_1&;] = N2T < T )

l—p T (1-p)?
202 1—pTt
E[2y_1&] = —= -
e Vo A g
402 1 1 1-p"
E[27_12 — 5 s
2512 = <1—p T (1—p>2)

And for the denominator
1— p2t
E[yljt—l] O¢ 1— p2
0.2 1_pt 1_pT—t 1+,0T
EWiit1Ui1] = Eliit_17i_1] = e 1
~ 0.2 1— p2t
Elyijt-19t—1] = N_€2 g
202 1—p 1—pl—t 1+ pT
E » 2% 5 _t41 .
Elg2,] = Elg?_,] = Clopr) 20T
=t -1 NT = NT(1-p)? 2) 1 — p2
o2
Flyg,_19:.-1| = Fly e

2p(1—p")  2pT2 = p2THD) — pQ)

- T(1—p?) 1—p?

- - 203
E[yi—12y—1] = [?JJ 129 1] NQT(l —p)2

T(1—p
1 S
P
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0.2 1— p2t

Elg;_) = N—ag T2
_ B 202 1—pt 1—pT_t 1 1-|-pT
Bl ,] = 4o? C2p(1=pT) | 2pTH2— pATHD —_ p2
N1 - p)? T(1-p?) 1—p?

Taking into account the sign and the frequency of the above elements the bias of this

Within estimator is

(252N . %f ) 1_1€tp—1 +(252Y) o2 1-p"t e

. 2 N2 T 1—
E[:O_p]_ al t £
where
g (BN=2Y 02 (1 1 1-p"
N? T \1—-p T (1-p)?
4 —4AN 2 1—pt 1— pf—t 1 T
B** — . Us 10 + p 10 o pt+1 . + p
N?Z T(A—p%) \1—0p 1—0p 1-p
and

IN — 4 03 X 2p(1 — pT> . 2pT+2 _p2(T—|—1) — p?
N2 ) T(1-p) T(1-p?) 1—p?

Models (7) and (8)
Let us continue with models (7) and (8) which can be considered as the same models
from this point of view

Yijt = PYijt—1 T At + Eijt

With the Within transformation we get

N

Yijt — Yjt = p - (Yije—1 — Yje—1) + (e — N D ) + (eije — &),
i=1
—_———
~ Najq
where
1 & 1 & 1 &
Yjt = N ';yijt Yjt—1 = N ';yijt—l Ejt = A ;&jt-

The components of the bias are the following

Elyijt—1€i5¢) = 0 since they are uncorrelated
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Elyji—1€ijt) = E

) _

1 N t—1
(N DIPIACT

Elyijt—1&jt] = F

Elyjt—1&jt] = E
i=1 k=0

The elements in the denominator are

t—1 2
1—p
E[?J?jt—ﬂ =FE (Z pk5ijt—k> = U? 1 2
k=0

t—1 1 t—1 1 1— pgt
Elyijt-1Yji-1] = E (Z pkgijt—k> (N : Zzpkf‘:zjt—k>] =N o2 1_ 2
k=0 i=1 k=0 p
2
N t—1
) 1 1 1—p%
E[yjz't—ﬂ =FE (N ) Z Pk&'jt—k) N2 "N - U?' 1— p2
i=1 k=0

So the bias for Model (7) is nil as the nominator of the bias is zero, and the

denominator finite.

Model (9)
Using the Within transformation we get

(Yijt — Ujt — Uit + ) = pWijt—1 — Yjt—1 — Yit—1 + Ge—1) + (€ije — Ejt — Eit + &)

As in the numerator of the bias all elements are zero, while the denominator is finite,

this Within estimator is obviously unbiased.

Model (11)
And finally, let us turn to model (11)

Yijt = PYije—1 + Vij + Qig + Qe + Eqje
The Within transformation gives

(Yijt — Yij — Uit — Yit + U +Y; + Ui — 1),

23



so we get

(Yijt —Vij —Yjt — Uit TG +Y; + 0 — §) =
=p - Wijt—1 — Yij—1 — Yjt—1 — Yit—1 + Ye—1 + Yj—1 + Yi—1 — Y—1)+

+ (€ijt — Eij — Ejt — Eie + & + & + & — &)

The expected value of the components are the following. For the numerator:

Elyiji—1€i:) =0

~ 0.2 1— pt—l
Elyiji-1€ij] = ?s 1, P
Elyijt—1€i) =0
Elyiji—185t) =0
Elyijt—18&) =0
- O.g 1— pt—l
E[yz‘jt—l&'] = NT : 11—
- O.g 1— pt—l
E[yijt_lg.j] = NT ' 1 o p
~ o2 1-pt7t
Elyiji—18] = N°T 1o,
i o2 1-pf—t
E[?Jz’j—lsz‘jt] = T : lfp

o o2 1 1 1-p"
Blyij—1&ij] = = - (— - = 7)

_ o2 1-pl—t
E[yi.j_lsjt] = NT ’ 1 _ p
~ ~ 0.2 1 pT—t
E[yij—lgit] = N‘} : 11—
0.2 1 T—t
Elyij—1&]) = — P

L o2 1 1 1-p"
E[yij—lgj]:ﬁ'<—__'7>
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o o2 1 1
Elgi—&l =57 (1 —p T
o 1 1
Blyij—1€] = 307 (1 —, T

=3
)

Elyit—1€ijt) = Elyji—1€ij¢) = 0

Elyit—1€ij] = Elyjt—1&i;] =

2

O¢

1— pt—l

NT

IL—p

Elyit—1€it] = E[yjt—1€j1) = 0

Elgit—18¢] = Elfjt—184] =0

Elyit—1&] = E[yjt-18] =0

Flja-s = Blpe-15] = e 112
Elgit—1&;] = Elgji—18i] = J\(ITET = 1__/):1
Elyir—1€] = Elyji—1€] = ]\(;ET ' 11_—/):1
Elyi—1€ijt] =0
Blirel = ot 2

Elyi—1€j:) =0

Elyi—1&i4] =0
Elgi1&] =0
0.2 1— pt—l
Elfi-18] = i -
[yt 16] N2T 1— P)
0.2 1— pt—l
Elji_18]] = —=— -
0.2 1 _pt—l
Elg_18] = —= -
[yt 16] N2T 1_[0
B - 0.? 1— pT—t
Elyi—1gijt] = Elgj—1€ijt] = NT 1-,
o? 1 1 1-p7
E_Z'_ _Z" :E_'_ _’L” :—(E. -
[y 1€ ]] [y] 18]] NT (1_/) T (1_,0)2
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0.2 1— pT—t

Elyi-1€it] = E[yj—1€j] = NgT T 1-p

Elyi—18;i] = Elyj—1cu] = ]\?ET . Ifz_t

Elyi—1&] = Elyj—16:] = ]\(;ST ' 11_1)1:5
CONSTRE VI A (S £

- o o2 1 1-p7
Elgi—1&;] = Elgj-1&] = 17 - (1 —, T W)
o2 11 1=,
Elyi—1€] = E[jj-18] = -5+ T
[Yi—12] [7j-1€] N2T (1_p T (1—/))2)

o2 1-plt

N2T 1—p

o o2 1 1 1-p"
Ely-_1€ij] ( — = )

Ely_icijt) =

- (=1 T
Elj_15;] = ;;T 1 - pr—t
Ely_1&i] = ]\?ET 1 Iiﬂ;}—t
Elj_1&)] = ]\?ET 1 lﬂ:

L o2 1 1 1-p7
Blge] (1—p_f'(1—p)2)

So the expected value of the numerator, considering the signs of the components

(—(N—D?)_oz,l—pt—1+<—<N—1>2) 0 1—pTt

is

N2 T 1—p N2 T 1-p +

() G )
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The components of the denominator are

~ N2T(1 — p)?

1— p2t
E[ylgjt—l] fd O‘? . 1 — IO2
J 0  (1=p' 1-p"t 4 14T
E[yijt_lyij_l]:T(l—PQ)(1—p+p 1-p 7 1—[))
_ U? 1—p%
Elyijt—1Uit—1] = N T2
_ o2 1-—p*
Elyijt—19ji—1] = N T2
_ Jg 1-— p2t
Elyijt—19—1] = NE T2
o2 (1—pt 1—/)T_t 1+,0T
Elyijt—19i—1] = = + ot )
[?Jgt 1Y 1] NT(l—p2) - p T p -
y oe 1—pt  1-p"" ) 14p"
E[yijt_lyj_l]:NT(l—Pz)(1—p+p -, 7 1=,
y of L—pt  1-p" " .y 14p"
E[yijt_ly_l]:NzT(l—pz)<1—p+p —p 7 T
E[Q2 ] — 0-7‘? 1— 2p(1 - pT> 2[)T+2 — pQ(T+1) _ p2
VT T(1 - p)? T(1—p?) 1—p?
02 1—pt 1—pT_t 1_|_pT
E _i‘_ _i _ fd € _ t+1 .

[yg 1Yit—1] NT(l—p2)<1_p+’0 T p —
Gii 17 o 1—p*  1-p" L LT
Floi—1ie1) = N1 — ) (1—/) A el A 1—/))
Jij—17 o; 1-pt  1-p"" 5 14p"
E[yij_lyt_l]:NQT(l—pQ)(1—p+p -, 7 1—/))
El§ij-1i-1] = o? L 2~ p") N 2pT+2 _ p2(T+1) _ ;2

1g—1Yi—1 NT(l _ ,0)2 T( _ p2) 1 — IO2
Elgij 10j1] = o L 2= pT)  2pTHE - D 2

P S R T T ) e
Eliii 1G] = o? 1 20(1 — pT)  2pT+2 — p2AT+L _ 2

[ylj—ly—l] — T(l — p2) + — IO2



_9 —2 _ g
Ely; 1] = E[yjt—l] TN 11— 02

Elyit—19jt—1] = N2 1,2

E[Qit—l?jt—l] = E[?jjt—l?jt—l] = N2 ) 1— ,02

_ _ o € —

Elgit-15i-1] = Elgje—17j-1] = NT(1—-p?) \1—=p T p 7 L—p
_ T

o o? 1—pt+ 1—,0Tt_pt+1_1+p

Blvagj] = B0l = g =y \ 7=, 771, 1—p
T

o o2 1—p+ 1—p _ L )
Byl = E9-) = opa = \7=, Y P75 1—p
p

g
E[yt—lgj—l] - NQT(l _ /)2)

E[Qt—lg—l] = N2T<1 o p2)
o2 (1 C2p(1-p") 2

T+2 _ p2(T-|—1) _ ,02)

_ _92 . €
Elgi 4] = Elg; ] = NT(L—p)? T(1 = p?) 1—p?
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o a2 L 2o(=ph)  2pTH2 = 2D — p )
E[yi—lyj—l] = N2T<1 - p)2 T(l _ p2 1-— ,02

T) 2pT+2 i p2(T+1) _
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Thus the expected value of the denominator after taking into account the signs

of the components is

(M) o2 ot

N2 1 — p?
LN DN ol 1—pt+p1—pT‘t_pt+1_1+pT N
N2 TA—p%) \1—0p 1—p 1—0p
(-2 of  (y_200=p") 2072 p2THD — p?
N? T(1-p)? T(1-p?) 1—p?

To sum up the bias we get for this model is

—(N—-1 2 1— t—1 —(N—1)2 1 1— T—t %
- <(N2)>_%_ lip +< kS )'T'lp—ip—’—A
Elp—p| = (N—1)2 1—p2t
< N2 )1—p2+B*+C*
where
o W=D oe (1 1 1-p"
N? T \1—-p T (1-p)?
g 2N ol 1—pt+p1—pT‘t_pt+1_1+pT
N2 T1—-p>) \1-p 1—0p 1—0p
and

O* = (N - 1)2 O‘? 1_ 2p(1 — pT> n QpT-l-Q _ p2(T+1) o p2
T —-p)p? T(1-p?) 1— 2
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