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In this paper we analyze the relationship between R&D spillovers and productivity. 

To this aim, we use data from 9th and 10th “Indagine sulle imprese manifatturiere” 

(IMM) surveys carried out by Capitalia. These two surveys, which cover the period 

2001)2006, contain both quantitative and qualitative information on a large sample of 

Italian firms. The main contribution of this paper is to stress the importance of 

replacing the traditional high)tech/low)tech industries with a classification more 

suitable to capture the nature of new technologies. Indeed, the industry data are 

summarised in a particular taxonomy, according to Pavitt methodology: Supplier 

dominated, Scale intensive, Specialized suppliers and Science based. This taxonomy 

accounts for differences in the knowledge intensity and innovative activities within 

sectors. The estimation method takes into account the endogeneity of regressors and 

simultaneity issue regarding firms’ decision to invest in R&D. The results provide 

evidence of higher productivity in R&D intensive industries and this can be 

interpreted as the signal of the relevance of spillover effects. 

 

��������:�Industry taxonomies, R&D, Productivity, Spillovers. 

���	��������������:�C23, D24, D62, O3. 
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This paper investigates the impact of Research and Development (R&D) spillovers 

on firms’ productivity performance using a large sample of manufacturing companies 

in Italy. Indeed, it is widely recognised that R&D capital stock affects both the 

productivity performance of the company that undertakes such activities and also the 

performance of other firms, through the spillover effect. According to Jaffe (1986), 

the idea is that the research effort of other firms may allow a given firm to achieve 

productivity with less research effort. The literature on R&D and productivity is very 

rich and collects both macro and micro evidence (Aldieri, 2011a). Empirical research 

confirms the presence of R&D spillovers, but the sign of the effect is not unique. 

Even though many studies find the impact of R&D spillovers to be positive and 

significant (Bernstein, 1988; Brandstetter, 1996; Raut, 1995), other studies find that 

spillover effects are not relevant or even negative (Antonelli, 1994; Gerosky, 1991; 

Wakelin, 2001). In particular, R&D externalities may be associated with competitive 

pressures which will translate into negative effects on firms’ performance (Kafouros 

and Buckley, 2008). As far as the way how the spillover stock can be constructed is 

concerned, there are different methodologies in the literature. Technological 

proximity as form of spillover has been introduced by Jaffe (1986), who considers a 

technological distance based on data for technology)based patent classes for the US. 

Goto and Suzuki (1989) use a similar measure based on R&D data for the electronics 

industry and explore the spillovers from this industry to the rest of the 

manufacturing sector. Geographical proximity is applied to show that UK firms 

locating their R&D activity in the US have higher spillover effects compared to firms 

that perform R&D in the UK (Griffith, Harrison and Van Reenen, 2006). Orlando 

(2004) investigates the two types of technology and geography R&D externalities in a 

unified framework. Also Aldieri and Cincera (2009) implement an empirical 

investigation to gauge the extent to which R&D spillover effects are intensified by 

both geographic and technological proximities between spillover generating and 

receiving firms, but they also control for the firm’s ability to identify, assimilate and 

absorb the external knowledge stock (absorptive capacity) in a unified framework. 

Following this line of research, Lychagin, Pinkse, Slade and Van Reenen (2010) 

assess the contributions to productivity of three sources of research and 

development spillovers: geographic, technology and product–market proximity. To 

do this, they construct a new measure of geographic proximity that is based on the 

distribution of a firm’s inventor locations rather than its headquarters, and they 

report both parametric and semiparametric estimates of their geographic–distance 

functions. They find that geographic and technological proximities matter, while the 

product)market one is less relevant. In order to construct the pool of spillover stock, 

it is possible to use the input)output weighting. Indeed, Kafouros and Buckley (2008) 

use input)output data on the use of intermediate goods to construct a technological 

proximity matrix. Finally, recent works show the usefulness of patent citations for 

exploring knowledge flows across regions, countries and technologies (Peri, 2005; 

Aldieri, 2011b). In this paper we investigate the spillover effects on productivity of 
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Italian manufacturing firms, by following a new procedure. As in O’Mahoni and 

Vecchi (2009), the industry data are summarised in a particular taxonomy, according 

to Pavitt methodology (1984): Supplier dominated, Scale intensive, Specialized 

suppliers and Science based (10th “Indagine sulle imprese manifatturiere italiane”, 

2008). This taxonomy accounts for differences in the knowledge intensity and 

innovative activities within sectors. In this way we replace the traditional high)

tech/low)tech industry split with a classification more suitable to gauge the nature of 

new technologies (von Tunzelmann and Acha, 2005). Furthermore, the literature 

considers the relevance of investing in R&D to improve own absorptive capacity. 

Another contribution of this paper is to evaluate also possible spillover effects 

among firms that do not report any R&D expenditure in their balance sheet. The 

idea is that the technological knowledge as a public good produces effects to all firms 

operating within a R&D)intensive group (Arrow, 1962; Nelson, 1959).  

The paper is organised as follows. Section 2 describes the features of the dataset and 

the industry taxonomy used for the analysis. Section 3 presents the empirical 

framework, which is the basis of the econometric analysis. Section 4 summarises the 

results and Section 5 points out suggestions for further research. 

 

!�"���	

We use data from the 9th and the 10th IMM surveys carried out by Capitalia. These 

two surveys cover the period 2001)2006 and consider both qualitative and 

quantitative information on a large sample of Italian manufacturing firms. After a 

cleaning procedure, based on deleting firms whose target variables are missing, we 

obtain a balanced sample of 3563 firms over 6 years (21378 observations). For each 

firm we consider value added, number of employees, the physical capital stock and 

the R&D expenditures. The monetary variables are transformed into constant prices 

by using national GDP price deflators1 with 2006 as the reference year.  

The R&D stock is constructed by using a perpetual inventory method (Griliches, 

1979). For each firm, the R&D stock at time t is defined by: 

( ) t1tt RKrd1Krd +∂−= −              [1] 

where ∂ represents the depreciation rate of R&D capital and � is the deflated 

amount of R&D expenditures. The initial value of ��� can be computed by using the 

following formula: 

( )∂+
=

g

R
Krd o

0             [2] 

                                                           
1
International Monetary Fund (IMF) GDP deflators. 
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where �� is the growth rate of � and it is assumed to be constant. In this study, we 

assume a depreciation rate of 15% and a growth rate of 5%, which are usually 

assumed in the literature (Hall and Mairesse, 1995; Aldieri, 2011a).  

According to the number of employees, the firms are distinguished into five classes: 

small firms (11)20 employees), small)medium firms (21)50), medium firms (51)250), 

medium)large firms (251)500) and large firms (more than 500 employees). According 

to Pavitt methodology (1984), we identify four patterns of firms: i) Supplier 

dominated, characterized by a low number of employees, belong to traditional 

technological sectors, such as food and textile. In this type of pattern, the source of 

innovative activity is external, relative to specialised suppliers; the customers are 

sensitive to the price variations, the instruments to protect innovations are relative to 

marketing. The main objective of the firms in this case is the reduction of production 

costs. ii) Scale intensive, characterised by highly specialised production processes, 

based on scale economy. They are mainly medium)large firms, where the source of 

innovative activity may be internal and external, the customers are sensitive to price 

variations and the innovations are protected by patents. Their main objective is the 

introduction of new production processes to get more efficiency. iii) Specialised 

suppliers, small)medium firms characterised by production of machinery for the 

firms of other sectors. The source of innovative activity comes from interactions 

with users sensitive to product features. The innovations are protected by patents 

and know)how on planning stage. Their main objective is the improvement of 

product quality. iv) Science based, medium)large firms characterised by high R&D)

intensive sectors. The source of innovative activity is the relation with Public 

Scientific Institutions and internal, relative to high investments in R&D. The 

customers are sensitive to price variations and product quality. The innovations are 

protected by more instruments and activities. Their main objective is the reduction of 

production costs and the improvement of product quality. Table 1 summaries the 

main features of firms patterns and Table 2 shows the distribution of firms, based on 

the two)digit ATECO industry level and Pavitt methodology (1984).  
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           “10th Indagine sulle imprese manifatturiere italiane” Corporate Report, December 2008, Unicredit Corporate Banking  

 

 

#����	!�	��������������	��	�����	��	�#��&	���	��
���	���%�������	

Two)digit ATECO                                        Pavitt                                         N. firms 

10 Food Supplier dominated 1 

11 Beverages Supplier dominated 1 

14 Textiles Supplier dominated 36 

15 Leather Supplier dominated 292 

17 Paper and Paper production Supplier dominated 253 

18 Printing Supplier dominated 105 

19 Petroleum Refineries & Product Supplier dominated 132 

20 Chemicals Supplier dominated 97 

21 Pharmaceuticals Scale intensive 103 

22 Rubber and plastic products Scale intensive 105 

23 Non)metallic Mineral Product Scale intensive 14 

24 Basic Metal Scale intensive 175 

25 Metal production Specialized suppliers 197 

26 Computers and electronics Scale intensive 245 

27 Non)electrical Machinery Scale intensive 146 

28 Electrical Machinery Supplier dominated 513 

29 Motor vehicles  Specialized suppliers 574 

30 Other transport Science based 17 

31 Furniture Specialized suppliers 137 

32 Other Manufacturing industries Science based 58 

33 Machinery upkeep Science based 95 

35 Gas and electricity Supplier dominated 38 

36 Water supply Supplier dominated 229 
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We split the sample into R&D performing firms and non)R&D performing firms. 

The first group collects the firms with positive R&D expenditures. There are 953 

R&D performing firms and 2610 non)R&D performing firms. As we may observe 

from Table 2, the sample is dominated by firms in Supplier dominated pattern (50%), 

characterized by traditional activity.  

Table 3 displays the distribution of R&D)performing and non)R&D performing 

firms by Pavitt methodology (1984) and the R&D intensity, computed as the ratio 

between R&D expenditures and the value added, for R&D)performing firms. 

#����	'�	
�����	������������	��	()"*����������	���	���*()"	����������	�����	

                                                           Pavitt                                         N. firms    R&D intensity 

R&D performing firms 

  
Supplier dominated 460 0.03 

  
Scale intensive 147 0.03 

  
Specialized suppliers 292 0.04 

  
Science based 54 0.09 

 

Non)R&D performing firms 

  
Supplier dominated 1313 

  
Scale intensive 536 

  
Specialized suppliers 653 

  
Science based 108 

 

  

'����������	+�������,	

As in O’Mahoni and Vecchi (2009), in order to investigate the relation between R&D 
capital stock and productivity for firm i at time t, we consider the following 
production function: 
 

)L,K(TFY ititit =    [3] 

 
where Y is the output, measured by the value added, K is the physical capital stock, L 
is labour and T is total factor productivity. Now we assume that T is a function of 
the knowledge stock accumulated within the firm (R&D capital stock) and other 
exogenous components: 
 

)E,Krd(ZT ititit =    [4] 

 
where Krd represents R&D capital stock, as defined also in [1], and E presents all 
other exogenous components that affect productivity. 
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The previous equations can be combined and expressed as a Cobb)Douglas 
production function: 
 

γβαλ
ititit

t
itit KrdLKEY =     [5] 

 
We can rewrite [5] in rates of growth by taking logs and first differencing to get: 
 

ititititiit krdlkay ε∆∆γ∆β∆α∆ ++++=   [6] 

 
where ∆εit is the rate of growth of total factor productivity. A simpler version of [6] is 
also estimated using the sample of firms that do not report any R&D expenditures, 
to pick out the effects of R&D spillovers on their productivity.  
 
As in O’Mahoni and Vecchi (2009), we use a two)step procedure. In the first step we 
estimate the production function [6]. In the second step, we use the residuals from 
the above estimation to investigate the presence of spillover effects. 
 
In the first step, equation [6] is estimated by means of three econometric models for 
panel data: Ordinary Least Squares in first)differences (OLS)FD), first difference 
(FD) and system (SYS) IV)GMM. OLS)FD estimates the model specified in (log) 
first)differences to remove the unobserved time)invariant firms fixed effects. 
However, OLS estimates produce biased and inconsistent results in the presence of 
endogeneity and simultaneity (Griliches, 1979). GMM)FD and GMM)SYS models 
allow controlling for firms’ permanent unobserved specific effects, and taking into 
account the possible endogeneity or simultaneity issue of the explanatory variables 
with the error term2. The system GMM (GMM)SYS) estimator combines the 
standard set of equations in first difference (GMM FD) with suitably lagged levels as 
instruments, with an additional set of equations in levels with suitably lagged first 
differences as instruments3. The validity of these additional instruments, which 
consist of first difference lagged values of the regressors, can be tested through 
difference Sargan over)identification tests. The GMM)SYS estimator can lead to 
considerable improvements in terms of efficiency as compared to the GMM)FD 
one4. Since the model is overidentified in the sense that there are more instruments 
than parameters to be estimated, the validity of the instruments can be tested by 
means of the Sargan test for overidentified restrictions. Considering the set of 
instruments used and the need to satisfy the orthogonality conditions, it helps to 
verify the null hypothesis of joint validity of the instruments. The Sargan test is χ2 
distributed under the null with (p ) k) degrees of freedom (where p is the number of 
instruments and k is the number of variables in the regression). 
 

The second step of our analysis tries to verify the presence of spillover effects across 
firms operating in similar technological areas. For this aim, we regress (by OLS) the 
residuals from the production function estimation on each industry taxonomy 

                                                           
2
See Griliches and Mairesse (1995) for a discussion. 

3
See Blundell and Bond (1998) for a discussion about the instruments available for the first)

differenced equations. 
4
This occurs when the lagged levels of the series are only weakly correlated with subsequent first 

differences, so that the instruments available for the first difference equations are weak. See Arellano 
and Bover (1995), Blundell and Bond (1998). 
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dummy variables (Supplier dominated, Scale intensive, Specialized suppliers and 
Science based).  
 
 
-�(������	
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We begin the empirical investigation with the estimation of production function [6] 
using the three estimators discussed in the previous section (OLS)FD, GMM)FD 
and GMM)SYS). The dependent variable is the rate of growth of output. Results are 
shown in the Table 4. All model specifications include time dummies, which capture 
the impact of factors that change over time but not over the cross)sectional 
dimension of the sample. The three estimators produce quite different coefficients 
values and this seems to display that the estimation method matters (Blundell and 
Bond, 2000). From GMM)SYS results, which are more consistent, we may observe 
that the effect of R&D capital stock is significant and positive. Table 4 presents also 
the Sargan test of overidentifying restrictions as well as tests for first order (AR(1)) 
and second order (AR(2)) serial correlation tests of first)differenced residuals. Results 
of AR(1) and AR(2) tests are consistent with the assumption of no serial correlation 
in the residuals in levels and Sargan tests does not reject the null hypothesis of valid 
instruments, indicating that the instruments are not correlated with the error term. 
 
 
#����	-�	+����	����.	����������	��������	����������	
                                                 OLS)FD                       GMM)FD                    GMM)SYS 

Labour 
  

0.36 (0.070)*** 0.34 (0.173)** 0.63 (0.119)*** 

Capital 
  

0.30 (0.069)*** 0.41 (0.186)** 0.16 (0.078)** 

R&D 
  

0.03 (0.026)* 0.05 (0.060) 0.07 (0.035)** 

         R2 

 
0.33 

     Sargan 
    

23.12 (0.283) 14.27 (0.284) 

AR(1) 
    

)3.78 (0.000) )3.82 (0.000) 

AR(2) 
    

)0.34 (0.731) )0.47 (0.636) 

 

 

 

 

        	
Note: Standard errors are reported in brackets next to the coefficient estimates. Sargan is the Sargan (1958) test of 
overidentifying restrictions. AR(1) and AR(2) are tests for first and second order serial correlation. ��������� are reported in 
brackets next to the Sargan and serial correlation tests. 
***,**,* Coefficient significant at 1%, 5%, 10% significance level. 
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In the Table 5 we estimate the spillover effect, which is derived from the regression 
of the rate of growth of total factor productivity on the industry taxonomy dummies. 
In particular, the rate of growth of total factor productivity is computed using the 
residuals from the production function estimation using the GMM)SYS.  
The results suggest a spillover effect of 17% among firms operating in the R&D 
intensive industry (Science based pattern).  
 
#����	/�	
�����	����.	�
��������	��	�%�	������
��	������	
Industry taxonomy dummies                                                        OLS 

 

Scale intensive 
   

0.13 (0.024)*** 

 

Specialized suppliers 
  

0.16 (0.018)*** 

 

Science based 
   

0.17 (0.036)*** 

         
Note: Standard errors are reported in brackets next to the coefficient estimates. 
*** Coefficient significant at 1% 
 
 

������
���������������
�������������
����� ��
����
�
Now we explore whether also firms that do not report R&D expenditures may 
benefit from operating in a R&D intensive environment. The results from the 
estimation of the production function and the spillover effect are shown in the Table 
6. As we may observe, the evidence of spillovers is not as strong as among R&D)
performing firms. However, also in this case the spillover effects are significant and 
positive. In particular, the results suggest a spillover effect of 14% among firms 
operating in the R&D intensive industry (Science based pattern). 
�

�
#����	0�	1��*����������	()"	������	+����	���	������	����	����������	
																																																																										First step: GMM)SYS     Second step: OLS 

 
Labour 

    
0.90 (0.055)*** 

  

 
Capital 

    
0.16 (0.037)*** 

  

          

 
Scale intensive 

     
0.04 (0.010)*** 

 
Specialized suppliers 

     
0.08 (0.010)*** 

 
Science based 

     
0.14 (0.020)*** 

          

 
Sargan 

    
18.98 (0.041) 

  

 
AR(1) 

    
4.18 (0.000) 

   

 
AR(2) 

    
1.75 (0.080) 

   	
Note: Standard errors are reported in brackets next to the coefficient estimates. Sargan is the Sargan (1958) test of 
overidentifying restrictions. AR(1) and AR(2) are tests for first and second order serial correlation. ��������� are reported in 
brackets next to the Sargan and serial correlation tests. 
*** Coefficient significant at 1% significance level. 
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/�"���������	���	����������	�����,�	
	
In this paper we analyze the relationship between R&D spillovers and productivity. 
To this aim, we use data from 9th and 10th “Indagine sulle imprese manifatturiere” 
(IMM) surveys carried out by Capitalia. These two surveys, which cover the period 
2001)2006, contain both quantitative and qualitative information on a large sample of 
Italian firms. The main contribution of this paper is to stress the importance of 
replacing the traditional high)tech/low)tech industries with a classification more 
suitable to capture the nature of new technologies. Indeed, the industry data are 
summarised in a particular taxonomy, according to Pavitt methodology: Supplier 
dominated, Scale intensive, Specialized suppliers and Science based. This taxonomy 
accounts for differences in the knowledge intensity and innovative activities within 
sectors. Furthermore, the literature considers the relevance of investing in R&D to 
improve own absorptive capacity. Another contribution of this paper is to evaluate 
also possible spillover effects among firms that do not report any R&D expenditure 
in their balance sheet. The idea is that the technological knowledge as a public good 
produces effects to all firms operating within a R&D)intensive group (Arrow, 1962; 
Nelson, 1959). As in O’Mahoni and Vecchi (2009), we use a two)step procedure. In 
the first step we estimate the production function. In the second step, we use the 
residuals from the above estimation to investigate the presence of spillover effects. 
In the first step, the production function is estimated by means of three econometric 
models for panel data: Ordinary Least Squares in first)differences (OLS)FD), first 
difference (FD) and system (SYS) IV)GMM. OLS)FD estimates the model specified 
in (log) first)differences to remove the unobserved time)invariant firms fixed effects. 
However, OLS estimates produce biased and inconsistent results in the presence of 
endogeneity and simultaneity (Griliches, 1979). GMM)FD and GMM)SYS models 
allow controlling for firms’ permanent unobserved specific effects, and taking into 
account the possible endogeneity or simultaneity issue of the explanatory variables 
with the error term. The three estimators produce quite different coefficients values 
and this seems to display that the estimation method matters (Blundell and Bond, 
2000). The second step of our analysis tries to verify the presence of spillover effects 
across firms operating in similar technological areas. We derive the spillover effect 
from the regression of the rate of growth of total factor productivity on the industry 
taxonomy dummies. In particular, the rate of growth of total factor productivity is 
computed using the residuals from the production function estimation using the 
GMM)SYS. The results suggest a spillover effect of 17% among firms operating in 
the R&D intensive industry (Science based pattern). Finally, we explore whether also 
firms that do not report R&D expenditures may benefit from operating in a R&D 
intensive environment. As we may observe from the results, the evidence of 
spillovers is not as strong as among R&D)performing firms. However, also in this 
case the spillover effects are significant and positive. In particular, the results suggest 
a spillover effect of 14% among firms operating in the R&D intensive industry 
(Science based pattern).  
The work could be extended to investigate the presence of other channels through 
which knowledge can spread across firms and industries, such as the mobility of 
skilled and unskilled workers. 
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