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Abstract 

This paper applies the Extreme-Value (EV) Generalised Pareto distribution to the 

extreme tails of the return distributions for the S&P500, FT100, DAX, Hang Seng, 

and Nikkei225 futures contracts. It then uses tail estimators from these contracts to 

estimate spectral risk measures, which are coherent risk measures that reflect a user’s 

risk-aversion function. It compares these to more familiar VaR and Expected Shortfall 

(ES) measures of risk, and also compares the precision and discusses the relative 

usefulness of each of these risk measures.  
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1 INTRODUCTION 

One of most important functions of a futures clearinghouse is to act as counterparty to 

all trades that take place within its exchanges. This ensures that individual traders do 

not have to concern themselves with credit risk exposures to other traders, because the 

clearinghouse assumes all such risk itself. However, it also means that the 

clearinghouse has to manage this risk, and perhaps the most important way it can do 

so is by setting margin requirements to protect itself against possible default by 

investors who suffer heavy losses. But how should clearinghouses set their margin 

requirements?  

 A good starting point is that investor defaults are due to large – that is to say, 

extreme – price movements that are best analysed using some form of Extreme-Value 

(EV) theory. A number of papers have followed this line of inquiry (e.g., Longin 

(1999, 2000) and Booth et al (1997)). Typically, extremes are modelled by applying a 

Generalized Pareto Distribution (GPD) to exceedences X  over a high threshold u.  

The application of the GPD is justified by theory that tells us that exceedances should 

follow a GPD in the asymptotic limit as the threshold gets bigger. Once the GDP 

curve is fitted to the data, it can then be extrapolated to give us estimates of any 

quantiles or tail probabilities we choose. Where we are primarily interested in the tails 

of the distribution in modeling margin requirements, the GPD is far superior to 

alternatives such as a normal (Gaussian) distribution (as in Figlewski (1984), which 

tends to under-estimate the heaviness of futures tail returns and is, in any case, 

inconsistent with any of the distributions that EV theory tells us to expect. Margin 

setting has also relied on historical distributions (see Edwards and Neftci (1988) and 

Warshawsky (1989)), but historical approaches are unable to provide very low 

probability estimates due to insufficient data.  Alternatively, time varying measures 

could be developed using, for example, GARCH type process (see Giannopoulos and 

Tunaru (2004 and Cotter (2001)), but would involve continuous updating of futures 

margins on a daily basis.   

 These previous studies applying EV theory or other statistical models, have 

only applied margin requirements as a quantile or VaR.  However, the VaR has been 

heavily criticised as a risk measure on the grounds that it does not satisfy the 

properties of coherence and, most particularly, because the VaR is not subadditive 
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(Artzner et al. 1999; Acerbi, 2004). The failure of VaR to be subadditive can then 

lead to strange and undesirable outcomes: in the present case, the use of the VaR to 

set margin requirements takes no account of the magnitude of possible losses 

exceeding VaR, and can therefore leave the clearinghouse heavily exposed to very 

high losses exceeding the VaR.
1
  

 This paper first contributes to the literature by using an alternative risk 

measure that could but has yet to be applied to margin setting, namely the Expected 

Shortfall (ES). The ES is the average of the worst α of losses, where α is the 

confidence level. This measure is closely related, but not identical to, the Tail 

Conditional Expectation, which is the probability-weighted average of losses 

exceeding VaR.
2
 Unlike the VaR, the ES is coherent (and hence subadditive as well) 

and so satisfies many of the properties we would desire a priori from a ‘respectable’ 

risk measure.
3
 The ES is (generally) bigger than the VaR and, more importantly, takes 

account of the magnitude of losses exceeding the VaR. These attractions suggest that 

the ES would provide a better basis for margin requirements than the VaR. However, 

both VaR and ES margin requirements would depend on the choice of a confidence 

level, and there is no a priori ‘obvious’ confidence level to choose. In addition, the use 

of VaR or ES to set clearinghouse margin requirements has the undesirable 

implication that the clearinghouse is either risk-loving or risk-neutral, and this sits 

uncomfortably with the common-sense notion that any clearinghouse should be risk-

averse.  

                                                
1
 One important consequence of using a non-subadditve risk measure like the VaR to set margin 

requirements is that investors might break up their accounts to reduce overall margin requirements, and 

in so doing leave the clearinghouse exposed to a hidden residual risk against which the clearinghouse 

has no effective collateral from its investors. This type of problem does not arise with subadditive risk 

measures such as the other ones considered in this paper.   

2
 For more on these risk measures and their distinguishing features, see Acerbi and Tasche (2001) or 

Acerbi (2004). We don’t consider the TCE further in this paper because it is equivalent to the ES where 

the density function is continuous, and where it differs from the ES, it is not coherent.  

3
 Loosely speaking, let X and Y represent any two portfolios’ P/Ls (or future values, or the portfolios 

themselves) over a given forecast horizon, and let (.)ρ  be a measure of risk. The risk measure (.)ρ  

is subadditive if it satisfies )()()( YXYX ρρρ +≤+ . Subadditivity is the most important criterion 

we would expect a ‘respectable’ risk measure to satisfy. It can be demonstrated that VaR is not 

subadditive unless we impose the empirically implausible requirement that returns are elliptically 

distributed. Given the importance of subadditivity, the VaR’s non-subadditivity makes it very 

difficult to regard the VaR as a ‘respectable’ measure of risk. 
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 This paper further adds to the literature on margin setting by providing risk 

measures that specifically incorporate an agent’s degree of risk aversion.  In theory, 

the clearinghouse should use a risk measure that takes account of the nature and 

extent of its risk aversion. Thus a clearinghouse that is more risk averse would have a 

higher estimated risk measure and impose a higher margin requirement, other things 

being equal. Such risk measures have recently been proposed by Acerbi (2002, 2004). 

These measures are known as spectral risk measures because they relate the risk 

measure directly to the user’s risk spectrum or risk-aversion function. ‘Well-behaved’ 

spectral risk measures are a subset of the family of coherent risk measures, and 

therefore have the attractions of coherent risk measures as well. One attractive type of 

spectral risk measure is based on an exponential risk aversion function. A nice feature 

of this type of spectral risk measure is that the extent of risk aversion depends on a 

single parameter γ : the lower is γ , the more risk-averse the user. In principle, once a 

clearinghouse chooses the value of γ  that reflects its own attitude to risk, it can then 

obtain an ‘optimal’ risk measure that directly reflects its risk aversion. So, whereas 

the VaR, previously applied in the literature, or even ES, are contingent on the choice 

of an arbitrary parameter, the confidence level, whose ‘best’ value cannot easily be 

determined, a spectral-coherent risk measure is contingent on a parameter whose 

‘best’ value can in principle be ascertained by the clearinghouse that uses it.  

 This paper provides a variety of alternative estimates of VaR, ES and spectral 

risk measures for each of 12 different types of contract, these being long and short 

positions in each of the S&P500, the FTSE100, the DAX, the Hang Seng, and the 

Nikkei225 indexes. It also compares these different estimates to each other. Bearing 

in mind that the value of any estimated risk measures depends crucially on their 

precision, the paper also examines alternative methods of estimating their precision. 

Our findings on that front suggest the (controversial) conclusion that (at least in this 

context) estimates of ES are generally a little more precise than estimates of VaR, 

whereas estimates of the spectral risk measures are somewhat less precise than 

estimates of either of the other two risk measures. The former finding is encouraging 

in that it helps strengthen the argument that risk practitioners should ‘upgrade’ their 

risk measures from the VaR to the ES; however, the latter finding is a little 
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disappointing in that it weakens a little the otherwise (to us compelling) argument that 

clearinghouses would do better still to upgrade to spectral risk measures.  

 This paper is organised as follows. Section 2 reviews the risk measures to be 

examined. Section 3 then reviews the extreme-value (EV) theory to be applied: the 

Peaks-Over-Threshold (POT) theory based on the Generalised Pareto distribution 

(GPD) applied to exceedances over a high threshold. Section 4 introduces the data and 

provides some preliminary data analysis on both long and short positions in five 

representative futures contracts. Section 5 then estimates VaR and ES, and section 6 

estimates the spectral risk measures. Each of these sections also examines the 

precision of these estimated risk measures. Section 7 discusses these results and 

compares the suitability of each type of risk measure for futures clearinghouse margin 

requirements. Section 8 concludes.  

 

2. MEASURES OF RISK   

We are interested in three main risk measures, the first two (VaR and ES) mainly for 

comparison, and the third (spectral or, more properly, extreme-value coherent 

spectral-exponential risk measures) because we believe these are superior in principle 

and potentially more useful for determining how clearinghouse margin requirements 

should be set.  

 Let X be a random loss variable (which gives losses a positive sign and profits 

a negative one) over a daily horizon period on a futures contract position (which 

might itself be long or short in the underlying index). If the confidence level is α , the 

VaR at this confidence level is: 

 

                                                         αα qVaR =      (1) 

 

where αq  is the relevant quantile of the loss distribution. We have already noted some 

of the problems with the VaR as a risk measure.
4
 Viewed as a function of the 

                                                
4
 There are also other problems. The VaR is not consistent with expected utility maximisation, except 

in the very unusual case where risk preferences are lexicographic (Grootveld and Hallerbach, 2004, p. 

33). More insight into the limitations of VaR comes from the perspective of the downside risk literature 

(see, e.g., Bawa (1975) and Fishburn (1977)). These papers suggest that we can think of downside risk 
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quantiles of the loss distribution, it is also useful to note here that the VaR places all 

its weight on a single quantile that corresponds to a chosen confidence level, and it 

places no weight on any others.  

 Our second risk measure is the ES, which is the average of the worst α−1  of 

losses. In the case of a continuous loss distribution, the ES is given by: 

 

                                             �−
=

1

1

1

α

α
α

dpqES p                                                      (2) 

 

Using an ES measure implies taking an average of quantiles in which tail quantiles 

have an equal weight and non-tail quantiles have a zero weight. However, the fact that 

the ES gives all tail losses equal weights suggests that a user who uses this measure is 

risk-neutral at the margin between better and worse tail outcomes, and this is 

inconsistent with risk-aversion.
5
  

 It is also possible to relate coherent risk measures to a user’s risk aversion, 

and, indeed, to tailor coherent measures to fit a user’s risk aversion. Let us define 

more general risk measures φM  that are weighted averages of the quantiles pq : 

 

                                                �=
1

0

)( dpqpM pφφ                                                      (3) 

 

where the weighting function, )( pφ , known as the risk spectrum or risk-aversion 

function, still remains to be determined.
6
  

                                                                                                                                       
in terms of lower-partial moments (LPMs), which are probability-weighted deviations of returns r  

from some below-target return *r : more specifically, the LPM of order 0≥k around *r  is equal to 

E[max(0, k
rr )*− ]. The parameter k  reflects the degree of risk aversion, and the user is risk-averse if 

1>k , risk-neutral if 1=k , and risk-loving if 10 << k . However, we would choose the VaR as our 

preferred risk measure only if 0=k  (Grootveld and Hallerbach, 2004, p. 35), and this suggests that the 

use of the VaR as a preferred risk measure indicates negative risk aversion of a fairly extreme sort. 

5
 This interpretation is also confirmed from the downside risk literature. From that perspective, the ES 

is the ideal risk measure if k=1, and this implies that the user is risk-neutral (Grootveld and Hallerbach, 

2004, p. 36). 

6
 The spectral risk measure (3) also includes both the VaR and the ES as special cases. The VaR 

implies a )( pφ  function that takes the degenerate form of a Dirac delta function that gives the outcome 
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 We are interested in the broader class of coherent risk measures, and want to 

know the conditions that )( pφ  must satisfy to make φM  coherent. The answer is the 

class of (non-singular) spectral risk measures, in which )( pφ  takes the following 

properties:
7
 

• Non-negativity: 0)( ≥pφ  for all p belong in the range [0,1]. 

• Normalization: 1)(
1

0
=� dppφ . 

• Weakly increasing: )()( 21 pp φφ ≤  for all 10 21 ≤≤≤ pp . 

The first condition requires that the weights are non-negative, and the second requires 

that the probability-weighted weights should sum to 1. Both of these are obvious. 

However, the third condition is a direct reflection of risk-aversion, and requires that 

the weights attached to higher losses should be bigger than, or certainly no less than, 

the weights attached to lower losses. This implies that the key to coherence is that a 

risk measure must give higher losses at least the same weight as lower losses. This 

explains why the VaR is not coherent and the ES is, and it also tells us that the VaR’s 

most prominent inadequacies are closely related to its failure to satisfy the weakly 

increasing property.  

 If a user has a ‘well-behaved’ risk-aversion function, then the weights will 

rise smoothly, and the rate at which they do so is related to the degree of risk 

aversion: the more risk-averse the user, the more rapidly the weights will rise. This 

implies that there is an optimal risk measure for each user, which depends on the 

user’s risk aversion function. Thus, two users might have identical portfolios, but they 

                                                                                                                                       
p=α an infinite weight, and every other outcome a zero weight, and the ES implies a discontinuous 

)( pφ that takes the value 0 for profits or small losses and takes a constant value for high losses. 

However, these are not ‘well-behaved’ spectral risk measures, because they are inconsistent with risk 

aversion..   

7
 For more on these, see Acerbi (2004, proposition 3.4). There is also a good argument that spectral 

measures are the only really interesting coherent risk measures. Kusuoka (2001) and Acerbi (2004, pp. 

180-182) show that all coherent risk measures that satisfy the two additional properties of comonotonic 

additivity and law invariance are also spectral measures. The former condition is that if two random 

variables X and Y are comonotonic (i.e., always move in the same direction), then 

)()()( YXYX ρρρ +=+ ; comonotonic additivity is an important aspect of subadditivity, and 

represents the limiting case where diversification has no effect. Law-invariance is equivalent to the (in 

practice essential) requirement that a measure be estimable from empirical data. Both conditions are 

important, and coherent risk measures that do not satisfy them are probably not worth considering 

further.  
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will only have the same (coherent) risks if they also have exactly the same risk-

aversion.  

 To obtain a spectral risk measure, the user must specify a particular form for 

their risk-aversion function. This decision is subjective, but can be guided by the 

economic literature on utility-function theory. A user would pick some ‘reasonable’ 

utility function whose risk-aversion properties seem to reflect a suitable attitude 

toward risk. The chosen utility function could then be transformed into a risk-

aversion function suitable for risk measurement purposes. A plausible candidate is a 

standard exponential utility function, which can be transformed into an exponential 

risk-aversion function defined by 

 

                                               
)1(

)(
/1

/

γ

γ

γ
γ

φ
−

−

−
=

e

e
p

p

      (4) 

 

where ),0( ∞∈γ  (see Acerbi, 2004, p. 178). This function satisfies the conditions 

required of a spectral risk measure, and is also attractive because it is a simple 

function that depends on a single parameter, the value of which reflects the risk 

aversion of the user. A spectral risk-aversion function is illustrated in Figure 1. This 

shows how the weights rise with the cumulative probability p, and the rate of increase 

depends on γ : the more risk-averse the user, the more rapidly the weights rise.  

 

Insert Figure 1 here 

 

 It is also curious to note that γ  plays a role in spectral measures similar to 

the role that the confidence level α  plays in the VaR and ES. More specifically, if we 

think in loose terms of a higher confidence level reflecting a greater concern with 

higher losses – which might reflect increasing risk-aversion in a crude sense – then 

this is comparable to a falling γ  in a spectral risk measure. However, whereas a 

falling γ  reflects a well-defined sense of increasing risk aversion, the choice of 

confidence level is arbitrary.  
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 To obtain our spectral measure φM , we choose a value of γ  and substitute 

)( pφ  and )(Xq p  into φM  to get: 

 

                               dpq
e

e
dpqpM p

p

p �� −

−−

−
==

1

0 /1

/)1(
1

0 )1(
)(

γ

γ

φ
γ

φ     (5) 

 

(5) gives us our third risk measure, the spectral risk measure, contingent on a chosen 

value of γ . 

 Of course, with all these risk measures we still face the problem of how to 

obtain the quantile pq , and it is to this problem that we now turn. 

 

3. THE PEAKS OVER THRESHOLD (GENERALISED PARETO) 

APPROACH 

As we are particularly interested in the extreme risks faced by the clearinghouse, we 

model extreme returns using an Extreme Value (EV) approach.  Perhaps the most 

suitable of these for our purposes is the Peaks over Threshold (POT) approach based 

on the Generalized Pareto distribution (GPD).
8
  This approach focuses on the 

realisations of a random variable X over a high threshold u. More particularly, if X has 

the distribution function F(x), we are interested in the distribution function )(xFu  of 

exceedances of X over a high threshold u: 

 

                            
)(1

)()(
}{)(

uF

uFuxF
uXxuXPxFu

−

−+
=>≤−=    (6) 

 

As u gets large (as would be the case for the thresholds relevant to clearinghouses), 

then the distribution of exceedances tends to a GPD: 

 

                                                
8
 Alternatively, extreme tail returns could be modelled by Generalised Extreme Value (GEV) theory, 

which deals with the distribution of the sample maxima. The GEV and POT approaches are analogous 

in the limit, but we prefer to use the POT approach because it (generally) uses one less parameter, and 

because the GEV approach does not utilise all extreme returns if extremes occur in clusters.    
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�
�
�

−−

+−
=

−

)/exp(1

)/1(1
)(

/1

,
β

βξ ξ

βξ
x

x
xG if   

0

0

<

≥

ξ

ξ
   (7) 

 

where  

�
�
�

−

∞
∈

]/,0[

),0[

ξβ
x     if    

0

0

<

≥

ξ

ξ
 

 

and the shape ξ  and scale β >0 parameters are estimated conditional on the threshold 

u (Balkema and de Haan (1974); Embrechts et al., 1997, pp. 162-164). Note that the 

shape parameter ξ sometimes appears in GPD discussions couched in terms of its 

inverse, a tail index parameter α given by α = 1/ξ.    

 The GPD parameters can be estimated by maximum likelihood methods. The 

log likelihood function of the GPD for ξ≠0 is:  

 

                         �
=

++−−=
n

i

ixnl
1

)/1ln()/11()(ln(),( βξξββξ    (8) 

 

where xi  satisfies the constraints specified for x. If ξ=0, the log likelihood function is: 

 

                                         �
=

−−−=
n

i

ixnl
1

1)(ln()( βββ     (9) 

 

ML estimates are then found by maximising the log-likelihood function using suitable 

(e.g., numerical optimisation) methods. 

 The behaviour of the GPD tail depends on the parameter values, and the shape 

parameter is especially important.  A negative ξ  is associated with very thin-tailed 

distributions that are rarely of relevance to financial returns, and a zero ξ  is 

associated with other thin tailed distributions such as the normal.  However, the most 

relevant for our purposes are heavy-tailed distributions associated with ξ>0.  The tails 

of such distributions decay slowly and follow a ‘power law’ function.  Moreover the 

number of finite moments is ascertained by the value of ξ: if ξ ≤ 0.5 (or, equivalently, 
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α ≥2) we have infinite second and higher moments; if ξ ≤ 0.25 (or α ≥4), we have 

infinite fourth and higher moments, and so forth. α  thus indicates the number of finite 

moments. Evidence generally suggests that the second moment is probably finite, but 

the fourth moment is more problematic (see, e.g., Loretan and Phillips, 1994). 

 Assuming that u is sufficiently high, the distribution function for exceedances 

is given by:  

 

                                        
ξ

β
ξ

1

11)(

−

��
�

�
		



� −
+−=

ux

n

N
xF u

u              (10) 

 

where n the sample size and uN  is the number of observations in excess of the 

threshold (Embrechts et al., 1997, p. 354). The p
th

 quantile of the return distribution  - 

which is also the VaR at the (high) confidence level p - can then be obtained by 

inverting the distribution function: 

 

                                    
�

�
�
�

��

�
�
�

−��
�

�
		



�
+==

−

1

ξ

ξ

β
p

N

n
uVaRq

u

pp              (11) 

 

The ES is then given by: 

 

                                             =pES
ξ

ξβ

ξ −

−
+

− 11

uqp
              (12) 

 

To obtain more general spectral risk measures, we substitute (11) into (5) to obtain: 

 

           dpp
N

n
u

e

e
dpXqpM

u

p

p �� �
�

�

�

�
�

�

�

�

�
�
�

��

�
�
�

−��
�
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�
+

−
==

−

−

−−
1

0 /1

/)1(
1

0
1

)1(
)()(

ξ

γ

γ

φ
ξ

β

γ
φ            (13) 

 

 Estimates of our risk measures are then obtained by estimating/choosing the 

relevant parameters and plugging these into the appropriate risk measure equation 
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(i.e., (11), (12) or (13)). This is straightforward where our risk measures are the VaR 

and the ES; where our risk measures are spectral, we can solve (13) using a suitable 

numerical integration method (e.g., a trapezoidal rule, Simpson’s rule, Monte Carlo, 

etc.).
9
 

 

4. PRELIMINARY DATA ANALYSIS 

Our data set consists of daily geometric returns (taken as the difference between the 

logs of respective end-of-day daily prices) for the most heavily traded index futures – 

that is, the S&P500, FTSE100, DAX, Hang Seng and Nikkei 225 futures – between 

January 1 1991 and December 31 2003.  

 As a preliminary, Figure 2 shows QQ plots for these contracts’ empirical 

return distributions relative to a normal (or Gaussian) distribution.  If the normal 

distribution is an adequate fit, then the QQ plot should be approximately a straight 

line. However, in each case, we find that the QQ plot is approximately straight only in 

the central region, but not for the tails. For their part, the tails – on both left-hand and 

right-hand sides – of the QQ plot show steeper slopes than the central observations, 

indicating that the tails exhibit excess kurtosis (or tail heaviness) relative to the 

normal distribution. These findings are consistent with the widely held perception that 

both long and short futures positions are heavy-tailed.  

 

Insert Figure 2 here 

 

 In addition, the points where the QQ plots change shape provide us with 

natural estimates of tail thresholds. These lead us to select thresholds of 2 for the 

S&P, DAX, Hang Seng and Nikkei indices, and to select a threshold of 1.5 for the 

FTSE.  

 This choice of threshold values is also consistent with the tail index plots – 

plots of the estimated tail index α and its 95% confidence interval against the number 

of exceedances – shown in Figure 3. The number of exceedances reflects the choice 

of threshold, a smaller number reflecting a higher threshold. In each case the 

                                                
9
 More details on such methods can be found in standard references (e.g., Miranda and Fackler (2002, 

chapter 5).  
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estimated tail index is stable over a wide range of exceedance numbers (or threshold 

size, if you prefer). This tells us that the estimated indices are stable over the 

thresholds selected.  

  

Insert Figure 3 here 

 

 We now assume that the distributions of exceedances take the form of GPDs, 

and ML estimates of the GPD parameters are given in Table 1 for both long and short 

trading positions. The tail indices are positive except for the Nikkei and the estimated 

scale parameters fluctuate around 1. All of these estimates are plausible and in line 

with those reported from other studies. The Table also gives the assumed thresholds u, 

the associated numbers of exceedances (Nu) and the observed exceedance probabilities 

(prob). The numbers and probabilities of exceedances vary somewhat, but all confirm 

that the chosen thresholds are in the stable tail-index regions identified in Figure 2. 

 

Insert Table 1 here 

 

 To check that the GPD provides an adequate fit, Figure 4 shows empirical 

exceedances fitted to the GPDs based on the parameter estimates given in Table 1. 

The GPD provides a good fit in all cases, and this confirms both the selection of the 

GPD as an appropriate distribution and the parameter estimates on which the fitted 

distribution is predicated.  

 

Insert Figure 4 here 

 

5. ESTIMATION OF VAR AND EXPECTED SHORTFALL 

Estimates of VaRs and ESs based on these parameters are shown in Table 2 and 

illustrated in Figures 5 and 6. These risk measures are based on extremely high 

confidence levels and reflect the clearinghouses’ concerns with very high trading 

losses and the associated possibilities of investor default. The ESs are notably larger 

than the VaRs: they are typically 20-30% larger, but in some cases considerably more. 

However, the two risk measures otherwise behave in similar ways. Both risk measures 
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increase as the confidence levels get bigger, and the rates of increase tend to be 

exponential. Estimated risks are lowest for the S&P and FTSE contracts and highest 

for the Hang Seng; and there is relatively little difference between the estimated risk 

measures of short and long positions.  

 

Insert Table 2 here 

Insert Figure 5 here 

Insert Figure 6 here 

 

 These risk estimates are only useful if we have some idea of their precision, 

and one common way to assess precision is through estimates of standard errors. 

Table 3 presents some estimates of their standard errors based on a parametric 

bootstrap. The results presented in this Table show that the ES standard errors are 

higher than the VaR standard errors for all contracts except the Nikkei 225.  

 

Insert Table 3 

 

 However, it can be argued that a straight comparison of standard errors is 

likely to be unfair, because the ratio of the ES to its standard error (coefficients of 

variation) is generally larger than the ratio of the VaR to its standard error. A 

comparison of these coefficients of variations would then suggest that where the ES is 

in relative terms more precisely estimated than the VaR. To investigate this issue 

further, Table 4 presents estimates of the 90% confidence intervals for the two risk 

measures. To facilitate their comparison, these confidence intervals are standardised 

(i.e., divided) by the corresponding mean risk measures. So, for example, for a 

confidence level of 98%, the first result on the top row of Table 4 tells us that the 90% 

confidence interval spans the range 0.9476 to 1.0560 of the mean (or expected) VaR. 

The results presented here show that the ES confidence intervals are narrower than the 

VaR ones, and confirm that the ES is estimated relatively more precisely than the 

VaR.  

 

Insert Table 4 here 
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 These results also indicate a second interesting finding: for relatively low 

confidence levels they are more or less symmetric, but for higher confidence levels 

(and especially a confidence level of 0.999), the confidence intervals are notably 

asymmetric: in particularly, the right bound of the confidence level is further away 

from the mean than the left bound. This tells us that we cannot use symmetric 

textbook confidence intervals based on the underlying central limit theorem 

assumptions when dealing with risk measures at very extreme confidence levels. The 

explanation for this asymmetry is that at these very high confidence levels the data are 

notably more sparse on the right-hand side than on the left-hand side of the 

confidence interval, and this greater sparsity pulls the right-hand bound of the interval 

further away from the mean.  

 

6. ESTIMATION OF SPECTRAL RISK MEASURES 

As noted already, to apply a spectral risk measure requires that we first choose a 

suitable value for the risk-aversion parameter γ . In principle, the value of this 

parameter is a matter of choice, subject only to the constraint that γ  be positive. 

However, in the present context where we are primarily concerned with extremes,  we 

need a relatively low γ  value (i.e., a high-degree of risk-aversion) for the application 

of an EV approach to make sense. The reason why can be seen in Figure 1. If we have 

a relatively low degree of risk aversion (e.g., such as that implied by 05.0=γ ), then 

the risk-aversion weights applied to extreme losses are not much higher than those for 

somewhat lower losses; in such circumstances, we would be concerned with losses 

over a relatively wide range of confidence levels and we would have no reason to 

apply an EV approach in the first place. On the other hand, with a very high degree of 

risk-aversion (e.g., 005.0=γ ), then the weights attached to extreme losses are much 

higher than those attached to smaller losses – indeed, the weights attached to smaller 

losses are negligible – and in these circumstances we have little real choice but to 

apply an EV approach. A casual inspection of Figure 1 thus suggests that in the 

present context we would want to work with a γ  value well below 0.05.  
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 Having chosen a γ  value, we calculate the integral (13), which we can do  

using numerical integration. This requires that we approximate the continuous integral 

by a discrete equivalent: we discretise the continuous variable p into a number N of 

discrete slices, where the approximation gets better as N gets larger. We also have to 

choose a suitable numerical integration method, and some obvious ones are 

trapezoidal and Simpson’s rules, and quasi-Monte Carlo methods (e.g., using 

Niederreiter and Weyl algorithms).
10

  

 To evaluate the accuracy of these methods, Table 5 gives estimates of the 

spectral-exponential risk-measure approximation errors generated by these alternative 

numerical integration methods based on various values of N and a plausible set of 

benchmark parameters (i.e., more specifically, the mean long-position parameters in 

Table 1 with 01.0=γ ). These results indicate that all methods have a negative bias 

for relatively small values of N, but the bias disappears as N gets large. For example, 

on average, approximation errors are of the order of -2% to -3% for N = 10000 and of 

the order of -0.05% for N = 1 million. They also show that the Simpson’s and 

trapezoidal methods are a little more accurate than the quasi-methods. This perception 

is confirmed by the plots in Figure 7, which show how rapidly the different 

integration methods converge as N gets large: the Simpson and trapezoidal methods 

converge most rapidly, and the quasi methods a little less so. Thus, any of these 

methods ought to give reliable results provided that one is able to choose a 

sufficiently high value of N.  

 

Insert Table 5 here 

Insert Figure 7 here 

 

 For the purposes of the remaining estimations, we selected a benchmark 

method consisting of the trapezoidal rule calibrated with N=1 million, and the results 

just examined suggest that this benchmark should deliver highly accurate estimates.   

 Estimates of the spectral-exponential risk measures themselves are given in 

Figure 8 and Table 6. The Figure shows plots of estimated spectral-exponential 

                                                
10

 One might also use pseudo-MC methods too, but results for pseudo methods are not reported because 

they are considerably less accurate than the methods whose results are reported here. 
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measures against γ−1 , which we can take as a proxy for risk-aversion: the risk 

measures increase as γ−1  (or risk aversion) increases. They also increase in a similar 

way to the exponential increases exhibited by the estimated VaR and ES measures 

shown in Figures 5 and 6. The estimated spectral measures are also similar to the 

earlier ones in that they are lowest for the S&P and FTSE and highest for the Hang 

Seng, and show relatively little asymmetry across short and long positions. 

 

Insert Figure 8 here 

Insert Table 6 here 

   

 It is also interesting to compare the rough magnitudes of the spectral and 

earlier risk measures. For example, the VaR at the 0.995 confidence level, the ES at 

the 0.99 confidence level, and the spectral risk measure with 01.0=γ  are all of much 

the same size. This type of comparison gives us a sense of the relative sizes of the 

different risk measures: it tells us that a spectral risk measure with 01.0=γ  gives us 

comparable margin requires as the VaR at the 0.995 confidence level; this implies that 

a spectral risk measure with 01.0<γ  gives us margin requirements greater than the 

VaR at the 0.995 confidence level, and so on.  

 As with the earlier risk measures, it also important to gauge the precision of 

these estimates. Accordingly, Table 7 presents estimates of the standard errors of the 

spectral risk measures based on a parametric bootstrap similar to our earlier ones.
11

 

These results show us that the estimated standard errors are broadly similar across 

futures contracts, but increase as γ  falls: this makes sense because a falling γ  implies 

that we are placing ever more weight on fewer observations; this suggests that the 

effective sample size is falling and a smaller effective sample size implies a higher 

standard error. However, this increase in standard errors is quite substantial: for 

example, for the long S&P500 contract, 05.0=γ  produces a standard error of 0.1575, 

whereas 005.0=γ  produces a standard error of 0.8862. In terms of a rough order of 

                                                
11

 As with the earlier bootstrap, this involves resampling from the estimated distribution function. 

However, in doing so we also have to restrain the number of slices N to the sample size: the parametric 

bootstrap therefore involves N=3392.  



 

 

 

 

 

 19

magnitude, these results also suggest that a spectral risk measure with 01.0=γ  

usually has a standard error larger than those of the VaR or ES at the 0.995 

confidence level, but less than those the VaR or ES at the 0.999 confidence level. 

 Table 8 presents the standardised confidence intervals for the spectral risk 

measures (i.e., confidence intervals divided by bootstrapped means). Again, these are 

similar across different futures positions, but the confidence intervals also expand 

markedly as γ   falls, again reflecting the fact that the effective sample size falls as γ  

gets smaller. For example, for the long S&P500 contract considered earlier, 05.0=γ  

produces a confidence interval of [0.8895 1.1143], whereas 005.0=γ  produces a 

standard error of [0.6769 1.3806]. The confidence intervals for very low γ  values 

also show a small asymmetry similar to those we got earlier with VaR and ES 

confidence intervals predicated on extremely high confidence levels.  

 However, when we compare the magnitudes of the spectral confidence 

intervals with the earlier ones, we see that the confidence intervals of the spectral risk 

measures are considerably wider. For example, the standardised confidence intervals 

for the spectral risk measures for 01.0=γ  are notably wider than those for the VaR or 

ES at the 0.999 confidence interval: as a rough average, the former are about [0.77 

1.25], whereas the latter are about [0.84 1.19]. Naturally, the confidence intervals for 

sprectral risk measures with 005.0=γ  are even wider. Thus, our results present clear 

evidence that estimates of spectral-exponential risk measures are less precise than 

estimates of VaR or ES The explanation for the wider confidence intervals of the 

spectral measures would again appear to be related to effective sample size: to see 

this, note that the ES has a fixed sample size given by the number of tail observations, 

whereas a spectral risk measure predicated on a high degrees of risk aversion 

effectively puts a lot of weight on a small number of tail observations, and therefore 

operates with fewer effective observations.  

 

7. DISCUSSION  

All our estimated risk measures show considerable similarity. They all agree that the 

S&P and FTSE contracts are the least risky indices, and that the Hang Seng is the 

most risky. The use of any of these measures for setting margin requirements would 
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therefore lead to the former ones having the lowest margin requirements and to the 

Hang Seng having the highest. All the estimated risk measures also agree that there is 

only mild asymmetry across long and short positions, and this suggests that there 

should be only small differences across the margin requirements of long and short 

positions.  

 It is also interesting that all three types of risk measure react in similar ways as 

the appropriate key parameter (i.e., the confidence level in the case of the VaR and 

ETL, and γ  in the case of the spectral measures) changes. In all cases, the estimated 

risk measure depends critically on the value of the key parameter, and the relevant 

plots (of risk measure against key parameter) are all close to exponential. However, 

whilst these plots look broadly similar, the different risk measures vary considerably 

in terms of their interpretation and usefulness: 

• The VaR is of limited use for setting margin requirements because a VaR as 

such gives the clearinghouse no indication of how big its losses might be in the 

event that an investor suffers losses that exhaust its margin. As far as the 

clearinghouse is concerned, the only practically useful VaR information relates 

to the probability of default associated with any given VaR: if clearinghouse risk 

managers have a VaR calculation engine, then they can use it to work out the 

default probabilities associated with particular margin requirements interpreted 

as VaRs. VaR information is also limited in so far as it is contingent on the 

confidence level, but there is little a priori guide to tell the clearinghouse what 

particular confidence level it should work with.  

• The ES is more useful to the clearinghouse than the VaR because it does, and 

the VaR does not, take account of the sizes of losses higher than the VaR itself. 

It also has the helpful interpretation that it tells the clearinghouse the loss an 

investor can expect to make conditional on it experiencing a loss that exceeds a 

chosen VaR threshold. So if the clearinghouse sets a VaR-based margin 

requirement, then the ES tells the clearinghouse the expected default loss 

conditional on the investor experiencing a loss that exceeds its margin. This 

said, the ES measure is also contingent on a confidence level, and there is little a 

priori guide to tell the clearinghouse what that should be. 
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• The spectral risk measures are in principle the most useful, because they alone 

take account of the user’s (i.e., clearinghouse’s) degree of risk aversion: the 

more risk averse the user, the greater the risk measure. This gives clearinghouse 

risk managers an opportunity to select a γ  value that reflects the 

clearinghouse’s corporate risk aversion. So, whereas the VaR or the ES are 

contingent on a key parameter whose value is to a greater or lesser extent 

arbitrary, spectral measures are contingent on a key parameter whose value can 

be determined from the clearinghouse’s risk appetite. Thus, spectral measures 

are generally better both because they take account of the clearinghouse’s risk 

aversion, and because their key parameter can be chosen from it. Spectral risk 

measures can be higher or lower than the earlier risk measures, depending on the 

sizes of the two key parameters, but our confidence-interval results also suggest 

that spectral risk measures have a tendency to be less precisely estimated than 

the VaR or the ES – which is unfortunate given the advantages of spectral risk 

measures over earlier ones. 

 

8. SUMMARY AND CONCLUSIONS 

By acting as a counterparty in all trades, a clearinghouse relieves individual traders of 

credit risk concerns but acquires credit-risk exposures of its own. It then seeks to 

manage these exposures by imposing margin requirements. However, even with 

margin requirements the clearinghouse is still exposed to the risk of loss arising from 

investor defaults triggered by extreme price movements located in the tail of a 

distribution. This paper has sought to model these risks using an EV approach, where 

margin requirements might be set using one of three different financial risk measures: 

the VaR, the Expected Shortfall (ES), and spectral-coherent risk measures. 

 This paper compares the three approaches for margin setting as to whether risk 

aversion is explicitly incorporated into the risk measures.  Both VaR and ES do not 

incorporate risk aversion, and as a consequence result in inappropriate attitudes to 

risk, being either risk lovers (VaR) or risk neutral (ES).  In contrast, spectral risk 

measures allow clearinghouses specifically exhibit their degree of risk aversion, and 

importantly attach greater weights to the more extreme price movements, those 

associated with investor default.  The paper illustrates the relative merits of the 
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approaches by noting, for example, that spectral measures are not only coherent like 

ES measures, but also allow for unique margins with varying risk aversion across 

contract type and trading position.   

Furthermore, the paper examines the empirical features of the alternative 

approaches to margin setting.  Comparing the margin requirements based on VaR and 

ES measures, we see two desirable results for the latter, namely, they takes some 

account of losses beyond the various quantiles, and are also more precise than VaR 

measures.  Whilst the spectral measures incorporate varying degrees of risk aversion 

by giving higher weights to the more extreme returns unlike the equal weighting 

scheme of ES measures, the paper finds that the spectral measures are generally less 

precise.  Given the obvious benefits that spectral measures offer economic agents, it 

would be interesting to determine if the choice of utility function is driving the lack of 

precision and this will be investigated in future work. 
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TABLES 

 

 

 

 

Table 1: GPD Parameters for Futures Indexes 

 

Long position Short position Futures   

index  
u prob Nu  Tail ξ̂  Scale β̂  u prob Nu  Tail ξ̂  Scale β̂  

S&P500 2.00 0.04 130 0.18 0.60 2.00 0.03 118 0.13 0.76 

    (0.10) (0.08)    (0.15) (0.13) 

FTSE100 1.50 0.07 250 0.10 0.71 1.50 0.08 276 0.02 0.73 

    (0.08) (0.07)    (0.07) (0.07) 

DAX 2.00 0.07 235 0.01 1.19 2.00 0.07 237 0.05 1.00 

    (0.05) (0.10)    (0.07) (0.10) 

Hang Seng 2.00 0.10 353 0.13 1.18 2.00 0.11 367 0.14 1.15 

    (0.06) (0.10)    (0.05) (0.09) 

Nikkei 225 2.00 0.08 277 -0.01 0.89 2.00 0.08 255 -0.07 1.04 

    (0.06) (0.07)    (0.05) (0.08) 

Notes: The Table presents estimates of the GPD parameters for long and short futures positions in the 

five contracts shown. The sample size n is 3392, the threshold is  u, the probability of an observation in 

excess of u is prob, the number of exceedences in excess of u is Nu, the estimated tail parameter is ξ̂  

and the estimated scale parameter is β̂ . The numbers in brackets are the estimated standard errors of 

the parameters concerned. The thresholds u are chosen as the approximate points where the QQ plots in 

Figure 2 change slope.  
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Table 2: Estimates of GPD VaRs and Expected Shortfalls for Futures Positions 

 

Long position Short position Futures    

index 
α =0.98 α =0.99 α =0.995 α =0.999 α =0.98 α =0.99 α =0.995 α =0.999 

 VaR 

S&P500 2.414 2.912 3.476 5.092 2.436 3.029 3.677 5.428 

FTSE100 2.489 3.070 3.692 5.315 2.539 3.063 3.594 4.857 

DAX 3.488 4.326 5.170 7.152 3.291 4.042 4.819 6.731 

Hang Seng 4.171 5.231 6.392 9.526 4.190 5.250 6.419 9.611 

Nikkei 225 3.243 3.850 4.452 5.833 3.315 3.957 4.568 5.877 

 Expected Shortfall (ES) 

S&P500 3.237 3.844 4.532 6.503 3.375 4.056 4.801 6.813 

FTSE100 3.388 4.033 4.725 6.527 3.305 3.840 4.382 5.670 

DAX 4.705 5.551 6.404 8.406 4.411 5.202 6.020 8.033 

Hang Seng 5.851 7.070 8.404 12.007 5.884 7.117 8.475 12.188 

Nikkei 225 4.112 4.712 5.308 6.677 4.201 4.801 5.372 6.595 

Notes: Estimates in daily % return terms based on the parameter values shown in Table 1, where α is 

the confidence level and the holding period is 1 day. 
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Table 3: Standard Errors for VaRs and Expected Shortfalls 

 

Long position Short position Futures    

index 
α =0.98 α =0.99 α =0.995 α =0.999 α =0.98 α =0.99 α =0.995 α =0.999 

 VaR 

S&P500 0.0811 0.1311 0.2028 0.6386 0.0977 0.1500 0.2331 0.6555 

FTSE100 0.0954 0.1448 0.2195 0.5909 0.0882 0.1309 0.1830 0.4210 

DAX 0.1438 0.2030 0.2916 0.6629 0.1278 0.1842 0.2724 0.6552 

Hang Seng 0.1738 0.2667 0.4147 1.1749 0.1735 0.2700 0.4201 1.2130 

Nikkei 225 0.1037 0.1490 0.2095 0.4546 0.1551 0.1522 0.2049 0.4079 

 Expected Shortfall 

S&P500 0.0976 0.1598 0.2498 0.7789 0.1110 0.1742 0.2633 0.7440 

FTSE100 0.1089 0.1609 0.2406 0.6581 0.0906 0.1312 0.1914 0.4321 

DAX 0.1462 0.2112 0.2921 0.6795 0.1335 0.1999 0.2811 0.6875 

Hang Seng 0.2025 0.3069 0.4775 1.3617 0.2017 0.3197 0.4932 1.4061 

Nikkei 225 0.1036 0.1465 0.2047 0.4478 0.1071 0.1446 0.1934 0.3851 

Notes: Estimates in daily % return terms based on a parametric bootstrap with 5000 resamples using 

the parameter values shown in Table 1. α is the confidence level and the holding period is 1 day. 
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Table 4: 90% Confidence Intervals for VaRs and Expected Shortfalls 

 

 α=0.98 α =0.99 α =0.995 α =0.999 

 VaR of long position 

S&P500 [0.9476  1.0560] [0.9294  1.0769] [0.9072  1.1025] [0.8243  1.2253] 

FTSE100 [0.9384  1.0651] [0.9252  1.0805] [0.9082  1.1015] [0.8413  1.2015] 

DAX [0.9327  1.0691] [0.9245  1.0797] [0.9107  1.0965] [0.8602  1.1638] 

Hang Seng [0.9346  1.0731] [0.9179  1.0859] [0.9001  1.1140] [0.8250  1.2214] 

Nikkei 225 [0.9479  1.0533] [0.9376  1.0659] [0.9258  1.0810] [0.8825  1.1386] 

 VaR of short position 

S&P500 [0.9348  1.0693] [0.9224  1.0870] [0.9002  1.1120] [0.8318  1.2177] 

FTSE100 [0.9434  1.0580] [0.9310  1.0724] [0.9202  1.0880] [0.8729  1.1574] 

DAX [0.9351  1.0646] [0.9271  1.0785] [0.9106  1.0959] [0.8557  1.1731] 

Hang Seng [0.9325  1.0713] [0.9192  1.0882] [0.8959  1.1137] [0.8222  1.2269] 

Nikkei 225 [0.9440  1.0587] [0.9385  1.0647] [0.9263  1.0762] [0.8935  1.1186] 

 Expected Shortfall of long position 

S&P500 [0.9519  1.0515] [0.9338  1.0711] [0.9141  1.0985] [0.8334  1.2221] 

FTSE100 [0.9476  1.0536] [0.9377  1.0671] [0.9198  1.0903] [0.8542  1.1776] 

DAX [0.9499  1.0517] [0.9399  1.0654] [0.9295  1.0805] [0.8821  1.1413] 

Hang Seng [0.9450  1.0592] [0.9315  1.0746] [0.9111  1.0978] [0.8366  1.2073] 

Nikkei 225 [0.9583  1.0420] [0.9509  1.0527] [0.9382  1.0653] [0.8994  1.1156] 

 Expected Shortfall of short position 

S&P500 [0.9482  1.0543] [0.9312  1.0731] [0.9139  1.0944] [0.8450  1.1996] 

FTSE100 [0.9559  1.0469] [0.9456  1.0581] [0.9313  1.0752] [0.8878  1.1366] 

DAX [0.9516  1.0501] [0.9398  1.0662] [0.9278  1.0831] [0.8737  1.1536] 

Hang Seng [0.9469  1.0580] [0.9297  1.0777] [0.9072  1.1011] [0.8363  1.2112] 

Nikkei 225 [0.9587  1.0426] [0.9521  1.0508] [0.9426  1.0623] [0.9107  1.1018] 

Notes: Estimates in daily % return terms based on a parametric bootstrap with 5000 resamples 

using the parameter values shown in Table 1. α  is the confidence level and the holding period is 1 

day. Bounds of confidence intervals are standardised (i.e., divided) by the means of the 

booststrapped estimates.  
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Table 5: Approximation Errors (%) of Numerical Integration Estimates of 

Spectral-Exponential Risk Measure  

 

Number of slices (N) Numerical integration 

method 1000 10000 100000 1000000 10000000 

Trapezoidal rule -16.38 -2.48 -0.34 -0.04 0.00 

Simpson’s rule -16.67 -2.51 -0.34 -0.04 0.00 

Niederreiter quasi MC -14.27 -3.49 -0.56 -0.07 0.00 

Weyl quasi MC -14.27 -3.49 -0.56 -0.07 0.00 

Notes: Estimates are based on the mean long-position parameters in Table 1 (i.e., 914.0=β , 

082.0=ξ , threshold =1.9, and 249=uN ), and 01.0=γ . Errors are assessed against a ‘true’ 

value of 4.595 obtained using the trapezoidal rule with N = 20 million. Estimates of pseudo MC 

errors are standard derivations of sample pseudo risk estimates based on samples of size 100.  

 

 

 

Table 6: Estimates of Spectral-Exponential Risk Measures for Futures Positions 

 

Futures  index 05.0=γ  01.0=γ  005.0=γ  

 Spectral-exponential risk of long position 

S&P500 2.2965 3.5143 4.156 

FTSE100 2.2871 3.6629 4.326 

DAX 3.0894 5.0365 5.884 

Hang Seng 3.8460 6.3850 7.651 

Nikkei 225 2.9378 4.3428 4.940 

 Spectral-exponential risk of short position 

S&P500 2.2549 3.6731 4.380 

FTSE100 2.2973 3.5165 4.053 

DAX 2.9767 4.7331 5.533 

Hang Seng 3.8804 6.4284 7.713 

Nikkei 225 2.9355 4.4180 5.006 

Notes: Estimates based on the parameter values shown in Table 1, using the trapezoidal 

integration method with N=1 million. 
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Table 7: Standard Errors for Spectral-Exponential Risk Measures 

 

Long position Short position 
Futures    

index 05.0=γ  01.0=γ  005.0=γ  05.0=γ  01.0=γ  005.0=γ  

S&P500 0.1575 0.5273 0.8862 0.1662 0.5636 0.9247 

FTSE100 0.1626 0.5405 0.8960 0.1538 0.5009 0.7988 

DAX 0.2226 0.7363 1.1901 0.2117 0.7103 1.1483 

Hang Seng 0.2809 0.9724 1.6352 0.2866 0.9934 1.6845 

Nikkei 225 0.1950 0.6018 0.9576 0.1969 0.6173 0.9702 

Notes: Estimates in daily % return terms based on a parametric bootstrap with 5000 resamples 

using the parameter values shown in Table 1. The holding period is 1 day. 

 

 

 

Table 8: 90% Confidence Intervals for Spectral-Exponential Risk Measures 

 

Futures index 05.0=γ  01.0=γ  005.0=γ  

 Long position 

S&P500 [0.8895  1.1143] [0.7682  1.2576] [0.6769  1.3806] 

FTSE100 [0.8860  1.1221] [0.7704  1.2505] [0.6822  1.3594] 

DAX [0.8844  1.1231] [0.7697  1.2512] [0.6834  1.3597] 

Hang Seng [0.8824  1.1235] [0.7661  1.2610] [0.6742  1.3758] 

Nikkei 225 [0.8938  1.1123] [0.7783  1.2314] [0.7004  1.3378] 

 Short position 

S&P500 [0.8825  1.1257] [0.7622  1.2654] [0.6768  1.3737] 

FTSE100 [0.8931  1.1126] [0.7711  1.2454] [0.6963  1.3394] 

DAX [0.8854  1.1167] [0.7648  1.2554] [0.6816  1.3556] 

Hang Seng [0.8818  1.1258] [0.7623  1.2660] [0.6602  1.3816] 

Nikkei 225 [0.8924  1.1117] [0.7790  1.2424] [0.6958  1.3277] 

Notes: Estimates in daily % return terms based on a parametric bootstrap with 5000 resamples 

using the parameter values shown in Table 1. The holding period is 1 day. Bounds of 

confidence intervals are standardised (i.e., divided) by the means of the booststrapped 

estimates.  
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FIGURES 
 

 

 

 

Figure 1: Exponential Risk-Aversion Function for Various Values of γ  

 
Notes: Based on equation (4) in the text, for stated γ  values.  
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Figure 2: QQ Plots for Futures Return Indexes 
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Notes: Quantiles of the respective empirical return distribution against those of normal distributions. 
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Figure 3: Tail Index Plots as Functions of Numbers of Exceedances 
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Notes: Tail estimates with 95% confidence bands are presented as a function of threshold size and 

number of exceedences. 
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Figure 4: Exceedances Fitted to GPD 
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Notes: Tail distribution based on the parameter values given in Table 1.  
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Figure 5: Generalised Pareto VaRs of Futures Positions at Extreme Confidence 

Levels 

 
 

Notes: Based on the parameter values given in Table 1.  
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Figure 6: Generalised Pareto Expected Shortfalls of Futures Positions at 

Extreme Confidence Levels 

 

 
Notes: Based on the parameter values given in Table 1.  
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Figure 7: Plots of Estimated Spectral-Exponential Risk Measures Against the 

Number of Slices, N 

 

 
 

Notes: Each plot shows the estimated spectral-exponential risk measure against N, where 

N covers the range 100 to 50000 in steps of 100, obtained using the numerical integration 

routines shown on each plot. Estimates are based on the mean long-position parameters in 

Table 1 (i.e., 914.0=β , 082.0=ξ , threshold=1.9, and 249=uN ) along with 01.0=γ .  
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Figure 8:  Spectral-Exponential Risk Measures of Futures Positions  
 

 
Notes: Based on the parameter values given in Table 1.  

  

 

 


