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Abstract: 

This letter uses the Block Maxima Extreme Value approach to quantify catastrophic 

risk in international equity markets.  Risk measures are generated from a set threshold 

of the distribution of returns that avoids the pitfall of using absolute returns for 

markets exhibiting diverging levels of risk.  From an application to leading markets, 

the letter finds that the Nikkei is more prone to catastrophic risk than the FTSE and 

Dow Jones Indexes. 
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Modelling catastrophic risk in international equity markets: An extreme value 

approach 

 

I Introduction: 

Tail returns can be catastrophic for investors and accurate modelling of these is 

paramount.  This letter uses the Block Maxima Extreme Value approach to quantify 

catastrophic risk for investors with long and short positions in international equity 

markets.
1
  Quantitatively, catastrophic risk occurs if market movements exceed some 

extreme threshold value.  We fit the Generalised Extreme Value (GEV) distribution to 

leading equity indexes that only models the tail returns of a probability distribution 

associated with catastrophic risk.
2
  Risk measures are generated from a set threshold 

of the distribution of returns (99% level) that avoids the pitfall of using absolute 

returns for markets exhibiting diverging risk.   

 

Catastrophic events relate to extraordinary trading periods that cannot be reconciled 

with previous and subsequent market movements. Thus, these events distinctively 

belong to a separate distribution distinct from ordinary market movements and should 

be modelled separately.  Extreme Value Theory (EVT) is an optimal approach to 

quantifying the extent of rare catastrophic events. First, and most important, EVT 

dominates alternative frameworks in modelling tail events (Longin, 2000, Cotter, 

2004a).  Second, event risk is explicitly taken into account by EVT since it explicitly 

focuses on extreme events.  Third EVT reduces model risk since it does not assume a 

                                                
1
 In contrast, in a qualitative sense, catastrophic risk requires market participants such as investors and 

bankers agreeing on the occurrence of extreme events.  Kindleberger (2001) notes that these extreme 

events are a result of irrational speculation in the form of manias and panics, accurately describing the 

large decline in international markets during the 1987 crash. 
2
 Alternative applications of EVT include modelling margin requirements (Dewachter and Gielens, 

1999) and stability in foreign exchange markets (Cotter, 2005). 

 



 

particular model for returns.  Finally, it avoids coarseness and bias in the tail estimates 

and produces a useful risk language for promoting high-risk concepts.   

 

The letter is organised as follows: section II describes the risk measures and 

estimation procedure. Using three leading market indexes from different geographical 

regions, the Dow Jones Industrial Average, the Nikkei 225 and the FTSE All Share, 

section III follows with extreme value estimates and discussion. 

 

II Risk measures and estimation procedure 

Using techniques from EVT this study fits a GEV to the data using the Block Maxima 

approach that models the maxima, M, for the upper tail for some block of time, for 

example, a year.
3
  Assuming a random variable X, for finite samples the following 

three parameter version of the GEV is as follows:  
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where µ is the location parameter, σ is the scale parameter and ξ is the shape 

parameter of the extreme value distribution.  The shape parameter is the key to using 

EVT as it separates three types of extreme value distributions according to different 

shapes, the Gumbel (ξ = 0), Weibull (ξ < 0) and Fréchet (ξ > 0) distributions.  The 

latter extreme value distribution is supported in the finance literature as it exhibits a 

fat-tails property, also found for market returns (Cotter and McKillop, 2000).   

 

                                                
3
 EVT is commonly applied in the financial economics literature, and for a comprehensive discussion 

of the theoretical framework see Embrechts et al (1997).  Following convention we will focus on the 

maxima but alternatively we could detail the minima for the lower tail of a distribution.  Alternative 

non-pararmetric approaches have also been applied in modelling tail behavour (see Cotter, 2004b)  



 

The maximum likelihood estimation procedure yields parameter estimates for ξ, µ 

and σ  by maximizing the following log-likelihood function with respect to the three 

unknown parameters 

( ) ( )( )∏ ∈=
i

ii MxxhxL ,log;,, σµξ   

where 

( )
�
�

�

�

�
�

	



�
�

�
�
	


 −
+−�

�

�
�
	


 −
+=

−−− ξξ

σ

µ
ξ

σ

µ
ξ

σ
σµξ

111

1exp1
1

;,,
xx

xh   (2) 

is the probability distribution function for ξ ≠ 0 and 01 >+ −

σ
µξ x

.  Confidence 

intervals for these parameters ξ̂ , µ̂  and σ̂  can easily be obtained via the profile log 

likelihood function.  

 

The GEV parameters are used to generate the catastrophic risk measures.  Taking an 

extreme threshold or qth quantile of a continuous distribution with distribution 

function F is 

  ( )qFxq
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is the inverse of the distribution function.  The GEV catastrophic risk level, 

xn,k, using the maximum likelihood parameters is: 
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Again asymmetric confidence intervals for the catastrophic risk level can be 

calculated using the profile log likelihood function. 

 

To illustrate, consider a model using daily returns and a block size corresponding to 

annual maxima ( ≈ 261 days).  The k-year catastrophic risk level x261,k is defined as 

 { } 1,1,261261 >=> kkxMP k       (4) 

 



 

This is the return level that we expect to exceed only in one year out of every k years, 

on average and has a probability k1 .  Now we turn to our estimation and inferences.  

 

III Results and discussion 

The analysis is completed on daily logarithmic returns series from liquid US, Asian 

and European markets between January 1, 1985 and December 31.  The indexes 

chosen are the well-known Dow Jones Industrial Average, the Nikkei 225 and the 

FTSE All Share.  Findings from a representative selection of indexes are given.   

 

In Table 1 summary statistics detailing the first four moments, min and max values 

and the Jarque-Bera normality test are given for the full distribution of returns and for 

a subset of values incorporating 10 percent of the full sample. The latter analysis is to 

investigate the tail behaviour of financial returns, as it this part of the distribution that 

gives rise to catastrophic risk and our application of GEV.  Overall, we find the mean 

of upper and lower tail returns deviate substantially from the approximately zero 

mean of the full distribution of returns, with the Nikkei exhibiting the largest 

deviations. Moreover, daily risk is approximately 1% although some very large single 

day returns occur.   

INSERT TABLE 1 HERE 

 

Standard financial time series properties are recorded for the tail and full distributions 

namely, a lack of normality, due to excess skewness, and excess kurtosis.  To 

investigate this latter property in more detail, Figure 1 presents QQ plots of quantiles 

of the observed distribution set against the normal distribution for both the full set of 

Dow returns and for the subsets of tail values.  Two obvious points are clear.  First, all 



 

distributions exhibit fat-tails.  Second, the fat-tail characteristic becomes more 

pronounced for the tail returns.  These plots drive our application of the GEV and in 

particular, the Fréchet GEV.   

INSERT FIGURE 1 HERE 

 

Turning to the extreme value analysis, maximum likelihood parameters of the fitted 

GEV to the upper tails of the indexes are given in table 2.  The dispersion parameter 

values concur with the summary statistics of the tail distributions, indicating that the 

Nikkei index fluctuates more than its counterparts.  And as expected, the location and 

dispersion estimates increase as interval size increases.  As stated, the most important 

parameter for modelling and distinguishing tail behaviour is the shape parameter.  We 

find all point estimates are positive, and generally there is support for the hypothesis 

of returns converging to the fat-tailed Fréchet distribution at a 95% confidence levels.  

Specifically, the fattest tail shape recorded is for the FTSE index at a quarterly 

interval with a shape point estimate of 0.361.  Variation in tail shape does occur 

across markets, and interval of estimation, where no systematic pattern occurs.  For 

example, the shape parameter is reasonably constant across the intervals for the Dow 

whereas it decreases for the Nikkei.  This has implications for the modelling of 

catastrophic risk where each asset should be modelled separately, and for different 

frequencies. 

INSERT TABLE 2 HERE 

 

Taking the three EV parameters, we now estimate the catastrophic risk levels for a 

99.9% confidence level and these are given in Table 3.  This allows us to obtain 

information on the size and frequency of catastrophic risk levels.  Here we show the 



 

estimated 20-month, 20-quarter and 20-semester catastrophic risk levels for the upper 

and lower tail of each index.  These have an attractive inference with for example, a 

20-month catastrophic risk level representing a level that we expect to exceed in one 

month out of every twenty months on average.  So for example, the 20-month 

catastrophic risk level for the upper tail of the Nikkei index is 5.82% implying that 

positive extreme price movements of this magnitude are expected in this market once 

every 20 months on average.   

INSERT TABLE 3 HERE 

 

Some interesting findings are noted.  Catastrophic risk increases as you increase the 

interval size where investors would experience larger absolute returns from these 

major markets.  Furthermore, with the exception of the Dow for monthly blocks, 

lower and upper catastrophic risk is similar and is within the respective confidence 

intervals for each interval block.  However in terms of identifying the riskiest market 

at this interval, we find that the Nikkei exhibits the largest levels, and the FTSE 

exhibits the smallest levels, of extreme returns.   

 

An overall portfolio return is driven by these extreme catastrophic values as investor 

performance is frequently the end result of a few exceptional trading days as most of 

the other days only contribute marginally to the bottom line.  Hence correct modelling 

of catastrophic risk is vital. 
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Figure 3.  Q-Q plots of Dow Jones Industrial Average returns.  

This figure plots the quantiles of the observed distribution against the normal 

distribution (straight line) for the full series and upper and lower 10 percent of returns.   
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Table 1.  Summary statistics for daily index series 

Index Mean Std D Min Max Skew Kurt J-B 

DOW 0.0524 1.06 -25.64 9.67 -3.74 92.32 1397123 

Upper 1.76 0.76 1.12 9.67 4.14 33.55 17404 

Lower -1.80 1.50 -25.64 -0.97 -10.36 154.85 408088 

FTSEALL 0.0387 0.87 -11.91 5.70 -1.31 20.32 53380 

Upper 1.45 0.59 0.98 5.70 3.28 18.83 5104 

Lower -1.53 0.96 -11.91 -0.91 -6.04 55.85 51071 

NIKKEI 0.0043 1.34 -16.14 12.43 -0.17 13.01 17453 

Upper 2.39 1.17 1.40 12.43 3.23 20.12 5820 

Lower -2.48 1.15 -16.14 -1.45 -4.93 50.80 41392 

Notes: The summary statistics are presented for each index as well as the upper and 

lower 10 percent of realisations.  Mean, min, max, standard deviation (Std D) values 

are presented in percentages.  Normality is formally examined with the Jarque-Bera 

(J-B) test which a critical value of 3.84.  All the skewness (Skew), kurtosis (Kurt) and 

normality coefficients are significant at the 5 percent level.   

 



 

Table 2.  Parameter estimates for upper tail of index series 

Index Block 

Length 
ξ̂   σ̂   µ̂   

DOW Month 0.167 [0.075, 0.271] 0.546 [0.495, 0.609] 1.411 [1.339, 1.478] 

 Quarter 0.168 [0.025, 0.354] 0.716 [0.607, 0.869] 1.908 [1.739, 2.057] 

 Semester 0.170 [-0.002, 0.382] 0.825 [0.665, 1.091] 2.241 [1.959, 2.477] 

FTSEALL Month 0.259 [0.150, 0.373] 0.388 [0.352, 0.432] 1.107 [1.059, 1.151] 

 Quarter 0.361 [0.147, 0.586] 0.456 [0.389, 0.555] 1.434 [1.340, 1.513] 

 Semester 0.214 [-0.007, 0.510] 0.644 [0.514, 0.859] 1.800 [1.585, 1.978] 

NIKKEI Month 0.294 [0.172, 0.423] 0.872 [0.791, 0.973] 1.688 [1.582, 1.784] 

 Quarter 0.114 [-0.042, 0.337] 1.407 [1.184, 1.715] 2.696 [2.354, 3.003] 

 Semester 0.052 [-0.231, 0.301] 1.765 [1.392, 2.351] 3.434 [2.795, 3.993] 

Notes: Extreme value parameters, the tail index (ξ), the scale parameter (σ), and the 

location parameter (µ) are estimated via maximum likelihood methods.  95% 

confidence intervals are given in [].  Block lengths of 192 extremes (month), 64 

extremes (quarter) and 32 extremes (semester) are used.   



 

Table 3. Estimated catastrophic risk levels of index series 

Index Tail Month Quarter Semester 

DOW Lower 4.32 [3.71, 5.29] 6.47 [4.90, 10.09] 9.04 [6.05, 19.40] 

 Upper 3.51 [3.14, 4.07] 4.66 [3.92, 6.25] 5.45 [4.33, 8.40] 

FTSE Lower 3.21 [2.80, 3.87] 4.07 [3.29, 5.97] 5.02 [3.63, 10.69] 

 Upper 2.84 [2.50, 3.39] 3.89 [3.03, 6.04] 4.47 [3.49, 7.87] 

NIKKEI Lower 5.46 [4.77, 6.60] 7.09 [5.85, 9.71] 8.81 [6.62, 16.69] 

 Upper 5.82 [4.95, 7.28] 7.67 [6.38, 10.65] 9.10 [7.33, 14.59] 

Notes: The table shows the estimated 20-month, 20-quarter and 20-semester 

catastrophic risk levels for the upper and lower tail of each index.  95% confidence 

intervals are given in [].   


