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1 Introduction

The literature on panel cointegration has experienced a huge development since the 90’s. Earlier
analysis assumed cross-section independence when designing the inference procedures.! This
assumption is convenient because it allows the application of the central limit theorem over
the cross sections to achieve asymptotic normality for the underlying statistics. A key fea-
ture of cointegration is co-movement of economic variables, or existence of common stochastic
trends. While cross-section independence allows within-unit common stochastic trends, it can-
not capture the cross-section (global) common stochastic trends, thereby limiting the model’s
applicability. To tackle this problem, we follow a similar framework as in Bai and Ng (2004)
and Bai (2009), who use the approximate common factor model to characterize common shocks
and common stochastic trends; also see Moon and Perron (2004). We consider a model of the
form:

Yie = pit+yit+X;,Bi+F\i+ei

i 1,2,.,N; t=1,2,...T

where f1; +; t describes the deterministic component, X;; is a vector of observable I(1) regres-
sors, F} is a vector of unobservable common shocks whose impact varies over cross sections via
Ai. The e;; are the idiosyncratic errors.

We refer to Fy, when it is I(1), as unobservable cross-section common stochastic trend. When
eir are 1(0), then Y;;, X, ¢, F} are cointegrated, even though Y;; and X;; are not cointegrated.
So this paper considers cointegration between Yj; and X ; up to a small number of unobservable
common stochastic trends. When both e;; and F; are I(0), Y;; and X;; are cointegrated. In
this case, we may regard F; as common shocks, which capture the cross-section correlations.

A similar framework has been adopted by a number of recent panel cointegration studies.
Banerjee and Carrion-i-Silvestre (2006), Gengenbach, Palm and Urbain (2006), Westerlund
(2008), and Westerlund and Edgerton (2008) extend the residual-based Engle-Granger approach
to panel data with common factors. Gengenbach, Urbain and Westerlund (2008) focus on the
error correction model with common factors. Groen and Kleinberger (2003) and Breitung
(2005) use the vector error correction specification to test the presence of cointegration, where
dependence is considered through the residual covariance matrix. Finally, Carrion-i-Silvestre
and Surdeanu (2009) propose a panel cointegration rank test with global stochastic trends.
A recent survey of the field is provided by Baltagi (2008), Breitung and Pesaran (2008), and
Banerjee and Wagner (2009).

Panel cointegration with cross-section dependence has important empirical applications.
Gengenbach, Palm and Urbain (2005) test the PPP hypothesis using panel cointegration tech-
niques that allow for common factors. Banerjee and Carrion-i-Silvestre (2006) analyze the
long-run exchange rate pass-through for the euro area. Constantini and Lupi (2006) estimate
the long-run relationship between Italian regional unemployment rates. Westerlund (2008) an-
alyzes the Fisher effect, while Gengenbach, Urbain and Westerlund (2009) examine both the
Fisher effect and the monetary exchange rates. Moverover, Banerjee and Wagner (2009) study
the environmental Kuznets curve; Holly, Pesaran and Yamagata (2009) examine the long-run
relationship between housing prices and incomes, and Carrion-i-Silvestre and Surdeanu (2009)
focus on money demand.?

!See, e.g., McCoskey and Kao (1998), Kao (1999), Pedroni (2000, 2004) and Larsson, Lyhagen and Léthgren
(2001).

2There is also a related literature using common factors when estimating panel cointegration relationships.
For instance, Pedroni (2007) estimates an augmented neoclassical Solow growth model, and Tosetti and Moscone
(2007) for a health-care demand model, using the approach in Pesaran (2006). Westerlund (2007) estimates a
panel model based on the forward rate unbiasedness hypothesis and Costantini and Destefanis (2009) estimate
the Italian regional production functions, using the approach in Bai and Kao (2006).



Few of the above studies consider the case where the common factors are allowed to be cor-
related with stochastic regressors. Correlation between the common factors and I(1) regressors
arises in practice since common factors that affect the endogenous variable, in general, also
affect the stochastic regressors. Not only do we want to control for cross-sectional correlation,
but also we want to determine if the unobserved component F; is integrated. If F; is integrated,
then y; and x; are not cointegrated directly, but may be cointegrated up to a small number
of cross-sectional unobserved stochastic trends. Our analysis permits F; to contain both I(1)
and 1(0) components. We do not regard cross-section dependence as nuisance or a burden on
inference, but rather a structure that is potentially informative about the way in which the
panel data are linked. A further difference between our framework from the previous panel
cointegration studies is the use of the modified Sargan-Bhargava (MSB) statistic. The MSB
statistic possesses some optimality properties within the class of tests that are invariant to het-
erogeneous trends, as is shown by Ploberger and Phillips (2004). Our analysis complements
the analysis in Bai and Kao (2006), and Bai, Kao and Ng (2009), who assume the existence of
cointegration.?

Under the null hypothesis of no cointegration, the disturbances e;; are I(1). To consistently
estimate the factors and residuals, we follow Bai and Ng (2004) by taking the first order dif-
ference of the data. After estimating the factors and residuals from the differenced data, we
re-cumulate them and construct test statistics based on these estimated quantities. This pro-
cedure has notable advantages. The individual statistics do not depend on the dimension of
the stochastic regressors. Therefore, there is no need for many tables of critical values. Nor do
the individual statistics depend on the common factors. This implies that the individual statis-
tics are cross-sectionally independent as long as the idiosyncratic errors are cross-sectionally
independent. This allows pooled statistics to be constructed.

We find it useful to distinguish two setups: one having X;; and F} to be independent, and
the other having X;; and F; to be correlated. The first setup permits a simpler procedure
when constructing the test statistics. For the second setup, an iterated procedure is needed to
consistently estimate the slope parameters and the common factors in order to construct the
test statistics.

The paper is organized as follows. Section 2 describes the model and the underlying as-
sumptions. We distinguish two situations depending on whether the stochastic regressors are
strictly exogenous or non-strictly exogenous with respect to the idiosyncratic errors. Limiting
distributions of the test statistics are derived in this section. Section 3 considers the case in
which regressors are correlated with the unobservable common factors. Section 4 studies pooled
test statistics. Section 5 conducts Monte Carlo simulations to investigate the finite sample
properties of proposed statistics. Section 6 concludes. All proofs are collected in the appendix.

2 Heterogeneous panel cointegration
Let {Y;:} be a stochastic process with DGP expressed as:

Yie = pi + it + X[ B + uiy (1)
t=1,...,T,i=1,...,N, where X;; is a p x 1 vector of I(1) regressors such that

(I —L)X;1 =G (L)viy (2)

3Related approaches can be found in Pesaran (2006) and Kapetanios, Pesaran and Yamagata (2006), who
approximate the common factors using cross-section means of the variables in the model.



and the disturbances u;; have a factor structure such that

wir = F{N\i+eiy, (3)
(I-L)F = C(L)w (4)
(I1—pil)eiy = d;i(L)eiy; (5)

with F} a vector of (r x 1) unobservable dynamic factors and \; the vector of loadings. We
assume C'(L) = 322, C;L7. Despite the operator (1 — L) in equation (4), F; does not have
to be I(1). In fact, F}; can be I(0), I(1), or a combination of both, depending on the rank
of C(1). If C(1) = 0, then F; is 1(0). If C(1) is of full rank, then each component of F; is
I(1). If C(1) # 0, but not of full rank, then some components of F; are I(1) and some are
I(0). Regarding the deterministic component u; + 7; t, we consider two specifications: (1) the
intercept only model (v; = 0 for all i) and (2) the general linear trend model (without imposing
~vi = 0). These two cases are separately considered as the resulting test statistics have different
limiting distributions. Our analysis is based on similar assumptions introduced in Bai and Ng
(2004). Let S < oo be a generic positive number, not depending on 7" and N

Assumption A: (i) E|N|* < S, (ii) + vazl AiX: B S0 a (1 x 1) positive definite matrix.

Assumption B: (i) w; ~ iid (0,2y,), E |Jw||* < S, and (i) Var (AF,) = > 520 CiZwC) > 0,
(ili) 27207 1G]l < S5 and (iv) C'(1) has rank r1, 0 <71 < 7.

Assumption C: (i) for each i, ;4 ~ iid (0,012), E\5i7t|8 < S, Z?ioj‘di,j

d; (1)* 02 > 0; (ii) & are independent across i.

< S, w? =

Assumption D: (i) For each i, vy ~ iid(0,%,), Elvig|* < S, and (ii) Var (AXis) =
> 520 GiiEuGl > 0, (ilD) 327207 1G]l < S and (iv) G (1) has full rank.

Assumption E: The errors {e;;}, {w;}, and the loadings {\;} are mutually independent.
Assumption F: E ||Fy|| < S, and for every i =1,...,N, Ele; ol < S.

Assumptions A and B imply r factors, they are necessary for consistent estimation of factor
loadings and the factors (up to a rotation). Assumption B specifies the short-run and long-
run variances of AF;. The short-run variance is positive definite (implying r factors), but the
long-run variance can be of reduced rank in order to accommodate linear combinations of I (1)
factors to be stationary. Assumption C(i) allows for some weak serial correlation in (1 — p;L) e; ¢,
whereas C(ii) assumes cross-section independence, a useful assumption when pooling individual
test statistics. Assumption D gives conditions on the first order difference of the stochastic
regressors. Assumption E assumes the unobservable common factors are independent of the re-
gression errors, and of the factor loadings, a standard assumption for factor models. Assumption
F is for initial conditions.

In the next two subsections, we consider two situations depending on whether stochastic
regressors are strictly exogenous regressors or non-strictly exogenous regressors. The first case
is quite simple, it is shown that the limiting distribution of statistics does not depend on the
stochastic regressors X;; nor on F;. With non-strictly exogenous regressors, the procedure
needs to be modified in order to achieve the same result.

2.1 Strictly exogenous regressors

In this section, we assume that X, is independent of u;; = F{\; + e;+. This assumption will
be relaxed in the next section. Under this assumption, a simpler estimation procedure (without



iteration) is sufficient. The proof requires, for the case of intercept model (y; = 0 for all 7),

T T
1 1
T D AX Ay = 0,(T7?), 7 D AXAF] = 0,(T717). (6)
t=1 t=1

For the case of linear trends, the requirements become

1

T
72(

> (AXie — BX;)(AF, — AF) = 0,(T1?), (7)
t=1

and a similar expression with e;; in place of F;. These requirements are met for strictly exoge-
nous regressors X;;, as explained below. We make this assumption explicit:

Assumption G: X;; is independent of (e; s, Fs) for all ¢ and s.

The intercept only case and the linear trend case will be studied separately. The former
requires that the I(1) regressors X; ; and the common trends F; have no drifts. The latter allows
drift in X;; and in F;. The reason is that for the intercept case, we need T_l/QXLt = 0,(1)
and T~Y2F, = O,(1). This cannot be true if drifts exist. When linear trend is included in
the estimation, the model is invariant to whether the I(1) regressors have drifts. In this case,
the proof of our results needs T~ /2(X; ; — % X; 1) = Op(1) and T-Y2(F, - % Fr) = Oy(1), but
these are true even if drifts exist in X;; and Fj.

2.1.1 Intercept only case

This case assumes no linear trend in the model so that v; = 0 for all ¢
Yie = pi + X148+ F{\i + eiq. (8)

We also assume X;; and F} have no drifts. If these series do exhibit drifts, test statistics in the
next subsection should be used as they are invariant to drifts. Differencing the above model,
we have

AY{J = AXé,th + AFt/\z + Aei,t.

By the driftless assumption for X;; and F}, F(AX;) = 0 and F(AF;) = 0. Since they are also
independent, it follows that (6) holds. The above equation can be written as, in vector notation,

where
AY; 9 AX{,2 AF}
AY; 3 AX! AF}
Av,i=| " axi=| Y L ar=] T,
AY; AX! AFF,

and Ae; is defined similarly as AY;. We further introduce
yit =AYy, wy = AXy, fi = AF.
The differenced model can be rewritten as
Yi = xifi + fAi + Qe (9)
Define (T'— 1) x (T — 1) projection matrix as

M; = Ir—y — zi(2hw;) 'l = Ir—y — P,



Left multiplying M; on each side of (9)

M;y; = M;f\ + M;Ae;
= fAi— BifAi+ M;Ae,

which can be rewritten as
yr = i+ 2, (10)
where
y; = Miyi, 2z = M;Ae; — Pif ;. (11)
Therefore, (10) is a factor model with new observable variables y’. In the appendix, we show

that
Zit = Aejy + AXi,tOp(T_1/2)7

and furthermore,

t
T_1/2 Z Zis = T_1/2€2‘,t + Op(T_1/2>.
s=1

Thus under the null hypothesis of no cointegration, we have
t
T_1/2 Z Zis — O'Z'WZ'(T),
s=1

where W;(r) denotes a standard Brownian motion.

In order to use z;; to form test statistics, we must have an estimate for z; ;. This requires an
estimate for f and A = (A1, ..., Ax)". The estimation of the common factors and factor loadings
can be done as in Bai and Ng (2004) using principal components. Let

y* = (yfa y>2kv ey y}k\f)

be the (T'— 1) x N data matrix. The estimated principal component of f = (fa, f3,..., fr),
denoted as f ,is /T — 1 times the r eigenvectors corresponding to the first r largest eigenvalues
of the (T'— 1) x (T — 1) matrix y*y*, under the normalization ff’/ (T — 1) = I,. The estimated
loading matrix is A = y*'f/ (T' — 1). Therefore, the estimated residuals are defined as

21‘7,5 = y;t — ft’;\Z (12)

We can estimate the idiosyncratic disturbance terms through cumulation, i.e.

t
€t = g Zis-
s=2

The null hypothesis of no cointegration is based on €;; in place of unobservable e; ;.

We use the modified Sargan-Bhargava (MSB) statistic proposed in Stock (1999) to test
the null hypothesis. As mentioned in the introduction, this statistic possesses some optimality
properties within the class of tests that are invariant to heterogeneous trends as shown by
Ploberger and Phillips (2004). The MSB statistic on the idiosyncratic disturbance terms is
given by

2T 2
T Zt:lei,t—l

~9
0;

MSB; (i) =

, (13)

22 is an estimation of the long-run variance of {Ae;;}. Here we suggest estimating the

long-run variance as in Ng and Perron (2001)

where &

67 = — 2 (14)



with ¢ (1) = Z§:1 ¢; and &,372- =(T—k)* ZtT:kH 6Zt, where ¢; and {0;;} are obtained from
the OLS estimation of

k
Aéiy = Poéip—1 + Z PjAE 15 + Vig (15)
j=1

where the lag order k is specified in the theorem below. An alternative estimator for o is that
of Newey-West based on the residuals €;; — p;€;4—1, where p; is obtained from regressing €;; on
€it—1-

We can also test whether the common factor F; is I(1). Define

t
Ft = Zfs
s=2

When there is one common factor, i.e. r = 1, we construct the unit root test statistic as in
(13), using F; instead of €&;4, that is,

-9 T 2
T Zt:l Ft—l
~92 Y

MSBp =
g
1

(16)

where the long run variance (5?) can be estimated as described above.
When the number of common factors is 7 > 1 we suggest to use the modified @ statistic —

hereafter M@ statistic — in Bai and Ng (2004). Let Ftc = F, — I denote the demeaned common
factors. Start with ¢ = r and proceed in three stages:

1. Let & be the ¢ eigenvectors associated with the ¢ largest eigenvalues of T2 23:2 Ffﬁf’ .

2. Let Y = &, Ff, from which we can define two statistics — the first one (MQCS(q)) ac-
counts for autocorrelation in a non-parametric way, while the second one | M Q; (q)) in
a parametric way:

(a) Let K(j)=1—-4/(J+1),7=0,1,2,...,J:
i. Let étc be the residuals from estimating a first-order VAR in f@c, and let

J T
Si=) K() (T‘l Z£§5§’> :
j=1 t=2
. . - N . -1
it Tet 76 (q) = § [Sf (V¥ + Ve 00 ) = T (S5 + 59) | (T Sla Ve ve)
iii. Define M Q¢ (q) = T [0S (¢) — 1].
(b) For p fixed that does not depend on N and 7"

i. Estimate a VAR of order p in ~Aﬁc to obtain (L) =1, - L —...—TL,L".
Filter Y;¢ by II (L) to get g =II (L) Y°.
ii. Let 0 (g) be the smallest eigenvalue of

T
Z (ﬁcﬁ% + ?f_lfff’)
=2

1

T -1
(ro3ome)
t=2

iﬂdeﬂwﬁmﬁmMQﬂ@:TPﬂ@—q.



3. If Hy : r1 = q is rejected, set ¢ = ¢ — 1 and return to the first step. Otherwise, 71 = ¢ and
stop.

The limiting distribution of these statistics are given in the following Theorem.

Theorem 1 Let {Y;;} be the stochastic process with DGP given by (1) to (5), with ~; = 0 in
(1). Under Assumptions A-G, the following results hold as N,T — oo. Let k be the order of
autoregression in (15) chosen such that k — oo and k3/min [N, T] — 0.

(i) Under the null hypothesis that p; = 1 in (5),
1
MSB; (i) = / Wi (r)? dr,
0

where W; (r) denotes a standard Brownian motion.

(ii) When r = 1, under the null hypothesis that F} has a unit root:
! 2
MSBp :>/ Wy (1) dr,
0

where Wy, (r) denotes a standard Brownian motion.

(i4i) Whenr > 1, let Wg be a vector of demeaned Brownian motions. Let v§ (q) be the smallest
etgenvalues of the statistic

1 , I
PE = 5 (We ()W (1) — 1) UO W (r)Wg (r)dr|

For the non-parametric statistic, let J be the truncation lag of the Bartlett kernel, chosen
such that J — oo and J/ min [\/ N, \/T] — 0. For the parametric statistic, let us assume

that Fy; has q stochastic trends with a finite VAR(p) representation and a VAR(p) is
estimated with p > p. Then, under the null hypothesis that F; has q stochastic trends,

T3¢ (a) = 1] v (@) and T |55 (a) — 1] % 0% (a).

It is interesting to note that the limiting distribution in part (i) does not depend on the
stochastic regressors X; ;, nor on the unobservable common stochastic trend F;. This is a very
useful property as it does not require many tables for critical values. Furthermore, since the
limit is free from the common shocks, the individual test statistics can be pooled if e; ; are cross-
sectionally uncorrelated. As is shown in the next section, the limiting distribution is different,
however, when linear trends are entertained in the model.

To sum up, the statistics that have been proposed in this section can be constructed following
these steps:

1. Take the first order difference for the dependent and the explanatory variables, and label
them as y;, which is (T"— 1) x 1, and z;, which is (T'— 1) x p, fori =1,2,..., N.

2. Construct the projection matrix M;, and define y; = M;y; ¢ = 1,2,..., N, and let y* =
(Y1, Y3, - UN)-

3. Estimate f and A from the (T'—1) x (T'— 1) matrix y*y* via singular value decomposition.
Define

S ok £y
it = Yit — Tt



4. For each i, construct the cumulative sum €;; = 22:1 Z; s, estimate the long-run variance

52 using (14) and (15), and construct the M SB test given in (13) based on é&;;. Response
surfaces to approximate finite sample p-values are provided in Bai and Carrion-i-Silvestre
(2009).

5. If there is only one common factor (r = 1), construct the cummulative sum F, = Z’;:Q fs.
Estimate the long-run variance 62 using (14) and (15), but with F; instead of &, and
construct the M SB test given in (16) based on F;. Response surfaces to approximate
finite sample p-values are provided in Bai and Carrion-i-Silvestre (2009).

6. If there are more than one common factor (r > 1), define the cummulative sum F; =

2222 fs, and compute the demeaned Ftc = F, — F series. Start with ¢ = r and proceed
to test the number of stochastic trends following the three stages described earlier. This
requires the computation of either the MQ¢ (q) or the M Q; (q) statistics. Asymptotic
critical values are provided in Bai and Ng (2004), Table I.

2.1.2 Linear trend case

In the previous section we assume ~; = 0 for all i. We now relax this assumption to allow
heterogeneous linear trends as in (1)

Yie = pi + it + Xi .0 + F{Ni + ey (17)

The estimation starts with model transformation that purges the deterministic component p; +
vit. By doing so, the analysis also allows drifts in X;; and in F;. In fact, the analysis is
invariant to drifts, as explained in details in the appendix. Purging the deterministic part
requires differencing and then demeaning. Differencing (17) yields,

AYis =i+ AX[ B + AF N + Aeyy.

The first difference does not remove the deterministic elements as the trend becomes an intercept
for the differenced data. This is a relevant feature, leading to a different limiting distribution
of the MSB statistic. Further demeaning yields

AY;y — AY; = (AX;: — AX;)Bi + (AF; — AF)\; + Aeir — Aey,
where AY; = ﬁ ZtTZQ AY; ¢ with AX; and AF defined similarly. Rewrite the above as
yi = zifi + fi + Ae; — 1 Aey, (18)
where L L .
yi =AY, — LAY, x;=AX; —1AX;, [f=AF—1AF,

these are, respectively, (T'—1) x 1, (T'—1) x p, and (T — 1) x r matrices. Introduce the projection
matrix,

M; = Ip—y — wi(afa;) ' af,
which has the same form as in the previous section, but x; is defined differently. Left multiply
M; on each side of (18), we have

My, = M;f\+ M;(Ae; — 1 Ae;)
f)\z + Aei - LEi - sz)\z - .PZ(AQ — LEZ'),

or
y;‘ = f)\i + z;, (19)



where

yi = Myyi, 2z = Ae; —1Ae; — Pif\; — PilAe;, (20)

note Pyt Ae; =0 as P, = 0.
To estimate f and A = (A1, ..., \y)’, we introduce,

v =1y YN

a (T — 1) x N matrix. Let f and X be computed the same way as in the previous subsection.
Define

% £y
Zit = Yit — ¢ i

Finally,

Let MSB; and MSBj be constructed exactly the same way as before. When r > 1 we can
compute the M () statistics defined in the previous subsection where now Ftc is replaced by F{,
F[ being the residuals from a regression of F, on a constant and a time trend. Then, testing
the number of common stochastic trends proceeds exactly in the same way using either the
M@ (q) or the M Q7 (q) statistics, with 07 (¢) and 0} (¢) computed as ¢ (¢) and 9% (¢) in the
previous subsection, respectively, but using detrended common factors.

Theorem 2 Let {Y;+} be the stochastic process with DGP given by (1) to (5), with linear trends
allowed in (1). Under Assumptions A-G, the following results hold as N,T — oo. Let k be the
order of autoregression chosen such that k — oo and k*/min [N, T] — 0.

(i) Under the null hypothesis that p; = 1 in (5)
1
MSB; (i) = / Vi (r)? dr,
0

where V; (r) = Wi (r) —rW; (1), i =1,..., N, denotes a standard Brownian bridge.

(ii) When r = 1, under the null hypothesis that F} has a unit root:
1
MSBz = / Vi ()2 dr,
0

where Vi, (1) = Wy, (1) — rWoy, (1) denotes a standard Brownian bridge.

1) When r > 1, let W] a vector of detrended Brownian motions. Let v] (q) be the smallest
q *
eigenvalues of the statistic

1 1
@7 = L [Wy (W] (1) ~ 1, [/0 W ()W () dr|

For the non-parametric statistic, let J be the truncation lag of the Bartlett kernel, cho-
sen such that J — oo and J/min [\/ N, \/T] — 0. For the parametric statistic, let us

assume that F; has q stochastic trends with a finite VAR(p) representation and a VAR(p)
is estimated with p > p. Then, under the null hypothesis that F; has q stochastic trends,

TI57 () = 1] % o] (q) and T |5 () — 1] 4 o7 (q).



The proof is provided in the appendix. As expected, the limiting distribution of these
statistics depend on the deterministic specification, but it does not depend on the stochastic
regressors in the cointegrating relationship. This is quite convenient since it reduces the amount
of tables needed to carry out the statistical inference.

To sum up, the statistics that have been proposed in this section for the linear trend case
can be constructed as follows:

1. Differencing and demeaning both the dependent and the explanatory variables, and label
them as y;, which is (T'— 1) x 1, and x;, which is (T'—1) x p, for i = 1,2,..., N.

2. Construct the projection matrix M;, and define y; = M;y; ¢ = 1,2,..., N, and let y* =
(YT, Y55 YN)-

3. The computation of the MSB; and M SBj, statistics is identical to the previous section.
Response surfaces to approximate finite sample p-values are provided in Bai and Carrion-
i-Silvestre (2009).

4. If r > 1, define the cummulative sum F; = Zizz fs, and compute the detrended F{
factors, where F denotes the residuals from a regression of F; on a constant and a linear
time trend. Start with ¢ = r and proceed to test the number of stochastic trends follow-
ing the three stages described earlier, computing the M Q7 (¢q) or the M QF (q) statistics.
Asymptotic critical values are provided in Bai and Ng (2004), Table I.

2.2 Non-strictly exogenous regressors

In this section we allow X;; to be correlated with the disturbances e;; but maintain the as-
sumption that X;; and the factors F; are independent. The case of dependence between X;;
and F; is considered in the next section. Using idea from dynamic least squares method, by
adding leads and lags of AX,; to control for endogeneity, we assume the model can be written
as

Yie = pi + it + X0 + AX;, Ai (L) + B + &g, (21)

where A; (L) is a vector of polynomials of lead and lag operators with m; lags and mqy leads.
Let m = my + mg. For simplicity, we assume m; and mgy are finite. The regressors X;; and
AX; ¢ are strictly exogenous relative to & ;. In addition, the error term &;; is I(0) when e;; is
1(0), and &; 4 is I(1) when e;; is I(1).

Equation (21) follows from the projection argument. If e;; is I(0), we can directly project
eir on leads and lags of AX;; such that e;; = AX;ytAi(L) + &+ with & ¢ being 1(0), and (21)
follows immediately. When e;; is I(1), we can project Ae;; onto AX;; such that Ae;; =
AX;tBZ(L) + it This implies that et = X;tBl(L) + giﬂg with fi}t = Zi:() Mi,s ~ I(l) But
by the Beveridge-Nelson decomposition, we can write X;,3; + X; ,Bi(L) as X;,7; + AX; A;(L)
for some 7; and A;(L). Then (21) follows upon renaming 7; as ;. The idea is that & ; has the
same order of integration as e; ;.

The intercept only specification imposes 7; = 0 in (21), while for the time trend specification
v # 0. Differencing (21) gives

AYiy = + AX] B + A°X] A (L) + AF/N + Ay (22)

As in section 2.1, introduce the following notation for the intercept only case. Let y; be the
(T'—m — 1) x 1 vector consisting of AY;; (t =my + 2,...T —my), and let x; be the (T —m —
1) x (m + 2)p matrix with each row of the form (AX], AQX{,t—mlv s A2X£7t+m2). Similarly,

let f be (T —m — 1) x r matrix with row elements AF/ and let A& be (T'—m — 1) x 1 vector
with elements A&, (t =mq +2,...,T —mg). We can rewrite (22) with ; =0 as

Yi = xidi + fAi + A&, (23)
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where 0; is a vector of parameters consisting of 3; and the coefficients in A;(L). Let us define
the (T'—m — 1) x (T — m — 1) projection matrix

1

/ — /
M; = Ir_pm1 — xi(xjws) x; = Ir—m—1 — P

Left multiplying M; each side of (23), we obtain (10) with vy = M;y; and z; = M; A& — PifA; as
n (11). The whole analysis in Section 2.1.1 goes through. The requirement % Zle AX;Aej =
O,(T~%/2) is now replaced by %232_7212 z; 1A = Op(T~1/?), which holds since A& is
uncorrelated with x; ;.

In the presence of linear trends, we define y; and x; as the above but with their time series
sample means (columnwise means) removed. Similarly, f and AE; are defined with their sample
means removed as well. The analysis is the same as that of section 2.1.2. We summarize the
result in the following theorem.

Theorem 3 Let {Y;,} be the stochastic process with DGP given by (1) to (5). Suppose that
Assumptions A-F hold. Let M SBz(i) and MSB be the test statistics based on newly defined
y; and x;, then Theorem 1 and Theorem 2 still hold.

3 Regressors correlated with common factors

Previous derivations rely on the assumption that stochastic regressors are not correlated with
the common factors. In this section, we relax this assumption by allowing correlations between
Xt and Fy. In fact, X;; can be correlated with F}, or with A; or both. The idea is that, similar
to the left hand side variable Y;;, the regressors X;; are likely to be impacted by the common
shocks F;. For example, X;; may take on the form

T
Xiy = Ahi + BiFy + Z Cik(FrtAkt) + ILG: + mig,
k=1

where Ay, B;, C; ) are matrices or vectors, and G; is vector of another common factors not
influencing Y; ¢, and 7;; are iid, say. As a result, the following condition used earlier

T
% > AXAF = 0,(T7?),
t=1
(for the intercept only case), or
1 T
n > (AXiy — AX,)(AF, — AF) = O,(T7'?),
t=1

(for the linear trend case) may not hold. The above limit is nonzero in general when X;; and F;
are correlated. To tackle the problem, we estimate 3; and F jointly. This will permit consistent
estimation of both the regression parameters and factors, and thus the residuals.

We reproduce model (17) here

Yie = pi +7it + X[ 10 + F{\i + eig. (24)

In the context of stationary regressors and stationary disturbances, Bai (2009) considers the
estimation of the above model, allowing for correlation between X;; and F;. Bai, Kao and Ng
(2009) estimate the model with I(1) regressors and I(1) factors, taking cointegration as given.
Our purpose here is to test for cointegration.

In the present setting, the null hypothesis implies e;; to be I(1). We therefore need to
difference the data to achieve stationarity. As in the previous sections, an added advantage of
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differencing is that the limit of the test statistic, M SBz(i), does not depend on X;; and F;.
Without differencing, the resulting test statistic would have a limit involving residual Brownian
motion, which is obtained as a projection residual by projecting the Brownian motion associated
with e;; onto those associated with X;; and F;. The resulting test statistics cannot be pooled
due to cross correlations induced by the common trend F;.

Differencing gives
AYE,t =y + AXZIJIBZ + AFt/)\z + Aem.
In vector notation,

AY; = v+ AX; Bi + AF )\ + Ae;

where ¢ is a vector of ones. The discussion in this section assumes X;; is strictly exogenous
with respect to the idiosyncratic errors, otherwise, we need to add leads and lags of AX;; in
equation (24), as in Section 2.2.
If no linear trend is assumed (vy; = 0 for all i), we define the projection matrix to be an
identical matrix, i.e.,
M =Ip_;.

If linear trend is allowed, we define
M=Ip,-T% !,
(a demean operator). Multiply M on each side of the model equation we have
MAY; = MAX; B; + MAF \; + M Ae;,
or
Yi = i + fAi + 2, (25)

where

Note that M does not depend on i.
We use the least squares method to estimate (5;, f,A). They are estimated jointly. The
least squares objective function is defined as:

N

SSR (B, £, M) = (yi — il — fA) (i — 23 — fN) (26)

i=1

subject to the constraint f'f/(T —1) = I, and A’A being diagonal. Concentrating out A,
the least squares estimator (01, ...0n, f) must satisfy, see Bai (2009), the following system of
nonlinear equations:*

Bi= (ahes) Mt (= TN, =1,2,0 ) (27)

% i\f: (Z/z‘ - xzﬁz)/ (yz- - w,@)] f = fVNT, (28)

1=

where Viyr is the diagonal matrix containing the r largest eigenvalues of the matrix in the
squared brackets. Note that §; and f can be obtained iteratively. Given [;, we can estimate

“If common slope coefficient 3; = 3 is assumed, equation (27) becomes
i=1 i=1

and equation (28) remains the same with B; replaced by 3.
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f, and given f we can estimate ;. This process is iterated until convergence. Once (Bz, f) is

available we can obtain the loading matrix as A; = (T — 1)_1 f (yZ — xZB) Finally, define

Zi=yi—zifi — fh

Bai (2009) shows that this iterated approach gives consistent estimation of 3;, f and \; (for
each 7). Because the differenced data are I(0), the rate of convergence for 8; is v/T. But this
rate is sufficient for our purpose. In addition, the estimated f and A possess properties similar
to a pure factor model, despite correlations between AX;; and AF;. In particular, we have

t t
PRS- TS ) = 0
s=2 5=2

and .
di = N\i — H VN = O,(Cyh)-

Exactly as before, estimate e;; again by

t
éi,t = Z 21‘,87
s=2
and estimate F; by
t
Fy = Z fs-
s=2

Let MSBz, MSBj and MQ test statistics be defined as in Section 2. The limiting distributions
of these statistics are given in the following Theorem.

Theorem 4 Let the DGP for the stochastic process {Y;+} be given by (24) together with (2) to
(5). Suppose that Assumptions A-F hold and the slope coefficients and the factors are estimated
jointly. Then the limiting distributions in Theorem 1 and Theorem 2 still hold.

In summary, in spite of correlations between X;; with F; or with );, the results in previous
sections continue to hold. Simulations show this approach indeed works quite well in terms of
size and power properties.

4 Pooled test statistics

Using results of previous sections, we can define panel cointegration statistics that combine
individual statistics for each cross-section. Pooling individual statistics can yield more pow-
erful tests. We consider several approaches to combining. Each of those approaches assumes
asymptotic independence of individual statistics. Assuming idiosyncratic errors e;; are cross-
sectionally independent, then all cross-section correlations are captured by the common factors
F;. In view that the individual test statistics M.SB;z(i) do not depend on the common factors
in the limit, they are asymptotically independent. Thus pooling is permitted.

The first approach of combining standardizes the sample average of individual statistics so
that ~

MSB;: = \/NMSBZ(Z)_f — N (0,1),

where M SB; (i) = N~1 Zfil MSB; (i), £ = N71 Zi\il &and 2= N1 le\il 2, where & and
¢Z denotes the mean and variance of MSB; (i) respectively. The following Lemma provides
these moments.
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Lemma 1 Let MSB; (i) = 6, T2 Zthl é?’t_l be the test statistic with limit distribution given
in Theorems 1 to 4. Let & and giz denote the mean and variance, respectively, of the limiting
random variable of M SBg (i), then

and giz =

D=

(1) The only constant case: & =

1

(2) The time trend case: & =¢ and ¢? = I

=

It is possible to define panel statistics through the combination of individual p-values. Thus,
under the assumption of cross-section independence of e; ¢, —21Inp; ~ X%, a result that was used
in Maddala and Wu (1999) to define the Fisher-type test statistic:

N
P = —2ZInp,- ~ Xan,

i=1
where p; denotes the p-value of the M SB; (i) statistic for the i-th unit. Choi (2001) proposes
the following test when N — oo:
P - —2 Ei\il Inp; — 2N
VAN

— N(0,1),

as N — o0.

The computation of these statistics requires the corresponding p-values. Bai and Carrion-i-
Silvestre (2009) provide response surfaces that can be used to approximate these p-values for the
MSB statistic. In summary, we have three different ways to combine the individual statistics.
Monte Carlo simulations are conducted in the next section to evaluate the performance of those
aggregated statistics.

5 Monte Carlo simulation

5.1 Regressors independent of the common factors

Finite sample properties of our procedure are investigated through the specification of the
following bivariate DGP:

Yie=pi+vit+ X0 +uis
Uit = F{Ai + €t
Fy=aF, 1 +opw
€it = Pi€it—1 1+ Eit
AX;y = vig,

where (wy, € ¢, viﬁt)/ consists of iid standard normal random variables for all ¢ and t. We consider
various combinations for the number of factors r and the value of AR parameters («, p;). More
specifically, » = {1,3}, a = {0.9,0.95,1} and p; = {0.95,0.99, 1} for all 7. These values allow
analyzing both the empirical size and power of the statistics. The relative importance of the
common factors is controlled through the value of 6% = {0.5,1,10}. Note that the test statistics
are invariant to the values of u; and ~;, therefore they are set to zero. The test statistics only
depend on whether trends are allowed or not in the estimation procedure. In addition, we
set §; = 1 for all i. The heterogenous slope coefficients will be considered later. Throughout
the simulation experiments the number of common factors is estimated using the panel BIC
information criterion in Bai and Ng (2002) with rmax = 6 as the maximum number of factors.
We consider N = 40 individuals and 7" = {50,100, 250} time observations. The number of
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replications in all cases is set at 5,000 and the nominal size is set at the 5% level. In order to
save space, we only report the results for the time trend deterministic specification — the results
for the intercept-only case are similar in all cases.

Table 1 reports the empirical size and power for the time trend case. As can be seen, the
M S B; statistic is undersized since the empirical size is mildly below the nominal size. The
panel statistics that are based on the combination of individual p-values, P and P,, statistics,
show good size. All three panel data statistics present high power, even for p; = 0.99. In most
cases the empirical power is almost one for p; = 0.95. The M.SBj; statistic has the correct size
and, as expected, the power increases as the autoregressive coefficient moves away from unity. It
is worth noticing that these features are also found for the constant deterministic specification.

Similar conclusions are obtained for the case of three common factors. As above, Table 2
suggests that statistics using individual p-values have better empirical size and power. One
reason for the mild oversize shown by M .S Bg could be the fact that the limiting distribution of
this statistic is not symmetric. Regarding the M Q tests, we observe that when o = 1 and large
T the parametric M@ statistic has the correct empirical size, while the non-parametric one
shows some size distortion. Note that, in Table 2, MQ(3) denotes the frequency that the MQ
statistics have detected three common stochastic trends, MQ(2) the frequency of two stochastic
trends, MQ(1) the frequency of one stochastic trend, and finally, MQ(0) denotes the frequency
that the statistics detect no stochastic trend. Regarding the empirical power, we see that the
M@ tests do not show high power unless T is large and « moves away from unity, which is
expected even if F} is observable, and is due to the non-panel nature of F;. This is in contrast
with evidence for the panel statistics, which show good power.

5.2 Regressors correlated with common factors

The DGP that is used to assess the performance of the statistics when stochastic regressors are
correlated with either the common factors or the loadings is given by

Vit = X1itBa + Xoitfio + F{Ni + eit, (29)
i=1,...,N,t=1,...,T, where the stochastic regressors are generated according to

Xiip = 1+ C1F£)\Z' + N+ VF+ Mt
Xoj = 2 + CQFt/)\Z‘ + N+ VF+ M2it
Mit = Mit—1 + Vit N2t = M2it—1 T V25t
(V1it,v2i ) ~ iid N (0, I2) .

Common factors and idiosyncratic disturbance terms are given by

€it = PpPi€it—1TEit
Ft = OéFt_l + opwy, (30)

with (wt,ai,t)/ consists of iid standard normal random variables for all ¢ and t. We set u; =
o = ¢1 = co = 1. FEmpirical size and power are investigated for all possible pairs of p; =
{0.95,0.99,1} and « = {0.9,0.95,1}. As above, r = {1, 3}, and the importance of the common
factors is controlled through the value of o% = {0.5,1,10}. Simulations are performed for
T = {50,100,250} observations and N = 40 individuals. Computational cost due to the
iterative estimation procedure has led us to base the results on 1,000 replications. For the slope
parameters, we consider two cases. The first case is for common slope parameters, so that ;1
and B;2 do not depend on 7. The second case considers heterogenous slope parameters.
Common slope parameters. The true parameter values are (31, 32) = (1,3). Table 3
offers results when r = 1, which shows similar conclusions as the case in Section 5.1. Regarding
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the statistics for the idiosyncratic disturbance terms, we see that the statistics based on pooling
the p-values show better performance in terms of the empirical size. In all cases the tests present
non-trivial power, even for p; = 0.99. The M .S B statistic computed for the common factor shows
good empirical size and power as well. Note that these results are obtained irrespective of the
deterministic specifications.

Results under three common factors are reported in Tables 4 to 6. As before, the panel
data statistics using the p-values have empirical size close to the nominal one. Their empirical
power is quite good even for large autoregressive coefficient. Note that these results are obtained
regardless of the deterministic specification. Regarding the M Q) statistics, we are able to detect
the existence of three common factors. The M@ tests show the correct empirical size. However,
we require large T and large U% for the statistics to have good empirical power. As mentioned
above, this feature is due to the fixed dimension of F}.

Heterogeneous parameters. The set-up of the simulation experiment in this case is the
same as for the homogeneous case, except that the slope parameters §; and (2 in (29) are
randomly distributed as 81 ~ N (1,1) and B2 ~ N (3,1). The results in Tables 7 to 9 are
similar to those in the previous analysis. In general, panel data unit root tests based on p-value
combination have an empirical size that is closer to the nominal one, while the panel test that
combines the statistics is mildly under-sized. As for the empirical power, the statistics show
higher power for the constant only case than for the time trend case. This is in accordance with
the findings in Moon, Perron and Phillips (2004) and in our another paper, where it was shown
that the more complicated the deterministic component the lower power of the statistics around
the null hypothesis. Finally, the performance of the MQ tests is not altered when considering
the heterogeneous parameters case; the non-parametric version of the MQ test IS more powerful
than the parametric one.

6 Conclusions

This paper contributes to the literature on panel data cointegration analysis by considering
cross-section dependence. The framework used is the approximate factor models. We dis-
tinguish two important aspects of the model. First, stochastic regressors are assumed to be
independent of the unobservable common factors and factor loadings. Second and more impor-
tant is the allowance of correlation amongst regressors and common factors and factor loadings.
In both cases, the paper proposes statistics to test the presence of cointegration, whether or
not the stochastic regressors are strictly or non-strictly exogenous. It is shown that the limiting
distribution of these statistics depend on the deterministic specification but not on the number
of stochastic regressors.
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A Mathematical Appendix

A.1 Common factors with strictly exogenous regressors

Proof of Theorem 1. From y = f\; + 2; and y; = fAi + %, we have
Zi=zi+ f\— fj\z
That is,

Zie = Zig+ fih— fih (31)
= Zit— v H Y\ — fids,

where vy = ft — Hf, and d; = 5\1 — H~V);. The computation of the partial sum processes of
(31) gives:

t t t t
TN 5 =T 2 =T V2 0, H VA -T2 fld;. (32)
s=2 s=2 s=2 s=2

We next analyze each term on the right hand side of (32). For the first term, recall
zi = Ae; — Pi[Ae; + fA],
or
zip = Aejy— AXZ{7t(l’;£L'i)_1 [x;Aei + :L';f)\l}
= Aeyy— AXY, (T*lx;xi) - [T*lx;Aei I fAZ} .

Note that

T T
Tl wiAe; =T AX] Aeiy = Op(T71?), T7laif =T AX],AF, = 0,(T7/?).
t=2 t=2

Thus
zip = Nejy + AXL,0,(T13).

The cumulative sum of z;; after dividing by VT is,

t
T7V2N "z = TV, —(T7V2X],)0,(T71/?)
s=1

= T Y2, +0,(T7V?),

we have assumed e; 1 = 0 and X; ; = 0 for notational simplicity, without loss of generality.
Regarding the term involving {v;} we see from Eq. (A.3) in Bai and Ng (2004) that

t
T2 sz =0y (C&%F) )
s=2

where Cny7r = min [\/N, \/T} Moreover and as shown in Bai and Ng (2004), the term d; =
Oy (C;,lT) and T-123 . fo = 0, (1), so that

t t
TN 5 =T 2 2+ 0, (Cyp) =T Veis + 0, (Cyt) -
s=2 s=2
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Since T_l/Qe@t = o;Wi(r), it follows that
1
MSB; (i) = / Wi (r)? dr,
0

that is, the limiting distribution is the same as derived in Stock (1999) for the constant case.
This implies that the presence of stochastic regressors does not affect the limiting distribution
of the statistic.

Next consider unit root test for F}, the case of r = 1. From

T—WZU —T—WZ (fo = Hf) = 0p(CxY),

5=2 5=2
from fs = AF, and the definition of Z*:'t, we have
T7'2[F, — H(F, — F1)] = O,(Cy}),
and from T-V2F, = oWy (1), where W, (r) is standard Brownian motion, we have
TY2HE = 0pWy(r),

note that H~! is scalar for » = 1. The MSB test is scale invariant, the scalar H~! is cancelled

out from the numerator and the denominator. This implies that MSB <, f01 W (r)%dr. The
case of r > 1 is similar to Bai and Ng (2004), and is thus omitted.

To prove Theorem 2, we need the following lemma. Recall in the linear trend case, x;; =
AXi,t - AXz and ft = AFt - H

Lemma 2 For drifted or driftless X;; and F}, we have
(i) T72 Y wis = Op(1)
(ii) T~ a}f = Op(T717?)
(iti) T~ alAe; = O, (T~Y/?)
(iv) Let zi1 = Ae;r — Ae; — x’»t(x;xz) [ac i+ zh(Ae; — L Ae;)|. Then
T2y zis = TP leis — (p)eir] + 0p(1) = ai[Wilr) — rWi(1)] = aVi(r)
Proof of (i). Note z;; = AX;; — AX; is invariant to drift of X;; (i.e., does not depend

on the drift of X;,, if any) Without loss of generality, one may assume X;; has no drift. In
addition, z;; = AX;; — (XzT Xi.1). Thus

t
t t
T—1/? s =T V2| X — =X, 7] = T7Y2X;1(1 — =) = O,(1).
> [Xi — 7 Xar] 1= 2) = 0,(1)
Proof of (ii). We have
T
T'aif =T (AX;y — AX;)(AF, - AF),
t=2

but (AX;; — AX;) and (AF; — AF) are invariant to drift, so without loss of generality, we can
assume they are driftless. Then the above is Op(Tfl/ 2) due to the independence of X and Fj.
Proof of (iii). Same as (ii).
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Proof of (iv). Combining (i),(ii), and (iii), we have
T—1/2 sz S[ (T b)) T 2l f + T 2l (Aey — LEZ')} = Op(T_1/2),

it follows that . .
T2 "2 =T7Y2) (Aeiy — Dey) + Op(T71?)

s=2 s=2
_ t _
T2 (ei,t - TQ‘,T) +0p(T7?) = o,Vi(r).

Q.E.D.
Proof of Theorem 2. As in the proof of Theorem 1,

Zi=zi+ fhi—
Zit = Zit — th_ll)\i — ft’di,

where v; = ft — Hf; and d; = S\Z — H~Y);. Again, as before, cumulative sum leads to

t t t ¢
TN 5 =T 2o =T V2> w,H VN -T2 fld;

s=2 s=2 s=2 s=2
where, from (20),

zit = Aejy — Ae; — :L‘;’t(azgxi)fl {x;f)\z + 2t Ae; — LEZ')} )
By Lemma 2(iv),

t
T2 Z 2 s = o Vi(r)
s=2

From Bai and Ng (2004),

T_1/2ZUS—O 1) = o,(1),

and }
di = i — H Y\ = 0,(Cyt),

we have . t
T2 Z Zi,s = T2 Z Zis + op(1) = o;Vi(r).
It follows that X
MSB; (Z) = / Vi(r)Zdr‘
0
Consider testing the stationarity of F; with » = 1. From Bai and Ng (2004),

1/2Zf Hf;) = 0p(Cyr)

s=2

where f; = AF; — AF with AF = (FT — F1). Cumulative sum of the true f;

t
t—1
T—wzfs:T—w<a—m—ﬁ<ﬁ—m>>www
s=2
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where V,,(r) is a Brownian bridge. Next,

¢
o . B t _
T-\PF, =T UZSEZQfs:HT 1/2 (Ft_Fl_T 1(FT_F1)>+OP(CN1T)'

It follows that )
T Y2HE = 0,Vi(r).
By the definition of MSB test,
1
d
MSBf = /0 Voo ()% dr.

The proof of r > 1 is the same as in Bai and Ng (2004), thus omitted.

A.2 Stochastic regressors correlated with common factors
Proof of Theorem 4. From y; = x;0; + fA; + z; and y; = xZﬂAZ + j?;\Z + %;, we have
5 = zi— 2B — Bi) + fh — fh
= zi—xi(Bi—B) — (f = FH)H "X — fOu — H N,
or
Zit = Zit — 1‘ (ﬁ Bi) —UtH Py _ft is
where v; = f; — Hf; and d; = A; — H~Y);. Thus,

t

1 < 1 i v 1 < -
TZ z,s—7zzi,s \/—Z ’LS z Z )\Z_(\/Tsz:;fS)d

s=2 s=2 s=2

The remaining proof focuses on the linear trend model, as the intercept only model is simpler.
In this case, z; = MAX; = AX; —tAX,; and f = MAF = AF — .AF and z = MAe; =
Ae; — 1 Ae;. Consider the first term on the right hand side of (33),

t
t—1
TN e = TV (e — e = lenr —eua))

t—1
Tﬁl/Q(eit— — 61T>+O( 1/2):>0'i‘/i(7‘)

where V; is a Brownian bridge, and 07;2 is the long run variance of Ae;;. Next,

¢
_ _ t—1
T2 Zl‘i,t =712 (Xi,t —Xi1— ﬁ(Xi,T - Xi,l)) = Op(1).

The above being Op(1) holds even if X;; is a drifted random walk (containing a linear trend
component). Thus the second term on the right hand side of (33) is O, (1)(8i — 3i) = O,(T~/?).
As in Bai and Ng (2004), we have

T—WZU —T—I/QZ fo— Hf) = 0y(Cy}),

s=2 s=2

and

di =N — HY\ = Op(Cyy)-
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Combining these results, we have

t
T_l/géi,t = T_1/2 Zé@s = O‘i‘/i(T‘),
s=2

it follows that )
MSB; % / Vi(r)2dr.
0
Next consider testing unit root in F} for the case of r = 1. By definition, F} = Zts:Q f.
Adding and subtracting,

t

" t
T_l/QFt = T_1/2H2fs + T2 Z(fs —Hfs) = T_1/2Hzf5 + OP(CK[%F)'

s=2 s=2 s=2
But

t
t—1
712 Zfs =712 {Ft — I - ﬁ(FT - Fl)} = 0w Vi (7).
s=2

It follows that 3
H'TY2E, = 6,V (r),

and .
MSBy % / Vi (r)2dr-.
0

The proof of r > 1 is the similar to that of Bai and Ng (2004), thus omitted.
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Table 1: Empirical size and power for the time trend case, when regressors are independent of the common factor. One common factor and N = 40
pPi = 1 pPi = 0.99 pPi = 0.95

T « a% MSB; P, P MSBj | MSB: Py P MSB; | MSB: Py P MSBp
50 1 0.5 | 0.014 0.042 0.035 0.051 0.019 0.047 0.040 0.050 0.252 0.239 0.217  0.058
100 1 0.5 | 0.028 0.051 0.043 0.052 0.052 0.075 0.064 0.051 0.990 0.923 0.913 0.049
250 1 0.5 | 0.038 0.050 0.043 0.050 0.432 0.312 0.289  0.050 1 1 1 0.053
50 0.95 0.5 | 0.015 0.036 0.030 0.061 0.019 0.051 0.044 0.073 0.251 0.226 0.207  0.066
100 0.95 0.5 0.025 0.049 0.040 0.107 0.048 0.076 0.067 0.105 0.991 0.937 0.924 0.116
250 0.95 0.5| 0.031 0.060 0.063 0.377 0.441 0.331 0.301 0.382 1 1 1 0.411
50 0.9 0.5 | 0.012 0.035 0.029 0.110 0.016 0.040 0.033 0.108 0.242 0.224 0.201 0.102
100 0.9 0.5 0.021 0.040 0.032 0.258 0.044 0.071 0.061 0.261 0.993 0.927 0.916 0.259
250 0.9 0.5 0.031 0.063 0.045 0.788 0.438 0.316 0.291 0.775 1 1 1 0.835

50 1 1 0.019 0.042 0.036 0.050 0.019 0.050 0.043 0.048 0.253 0.225 0.203 0.045
100 1 1 0.024 0.048 0.041 0.046 0.056 0.085 0.074 0.049 0.992 0923 0913 0.045
250 1 1 0.033 0.059 0.050 0.051 0.446 0.316 0.288  0.054 1 1 1 0.052
50 095 1 0.014 0.039 0.032 0.065 0.023 0.046 0.040 0.061 0.238 0.221 0.201  0.063
100 095 1 0.025 0.046 0.040 0.107 0.0564 0.072 0.063 0.113 0991 0933 0921 0.117
250 095 1 0.027 0.049 0.042 0.392 0.434 0317 0.292  0.402 1 1 1 0.407
50 0.9 1 0.013 0.034 0.029 0.099 0.018 0.041 0.036 0.113 0.237 0.221 0.2 0.104
100 0.9 1 0.025 0.048 0.042 0.270 0.046 0.068 0.059 0.277 0.993 0928 0914 0.281
250 0.9 1 0.027 0.055 0.048 0.823 0.441 0311 0.282  0.839 1 1 1 0.853
50 1 10 | 0.017 0.039 0.033 0.044 0.020 0.043 0.035 0.031 0.180 0.182 0.161  0.049
100 1 10 | 0.026 0.048 0.044 0.048 0.045 0.073 0.064 0.038 0.959 0.869 0.853 0.044
250 1 10 | 0.030 0.052 0.044 0.050 0.417 0302 0.277 0.051 1 1 1 0.050
50 0.95 10 | 0.014 0.038 0.032 0.058 0.017 0.043 0.037 0.041 0.179 0.176 0.157  0.069
100 0.95 10 | 0.023 0.051 0.044 0.113 0.061 0.075 0.065 0.086 0.947 0.847 0.828 0.112
250 095 10 | 0.027 0.052 0.045 0.433 0.411 0305 0.279  0.437 1 1 1 0.434
50 09 10| 0.016 0.039 0.035 0.104 0.016 0.039 0.034 0.076 0.168 0.182 0.162 0.116
100 09 10 | 0.025 0.045 0.039 0.305 0.042 0.069 0.059 0.295 0.946 0.844 0.825 0.298

250 0.9 10 | 0.030 0.054 0.046 0.873 0.395 0.283 0.259  0.880 1 1 1 0.891
Nominal size is set at the 5% level of significance. Results based on 5,000 replications
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Table 2: Empirical size and power for the time trend case, when regressors are independent of the common factor. Three common factors and
N =40

Non-parametric test Parametric test
T p o ob MSB: Pn P | MQU) MQ() MQE2) MQ(3) | MQU) MQ() MQ2) MQE)
50 1 1 0.5 0.028 0.049 0.043 | 0.001 0.047 0.207 0.745 0.002 0.047 0.210 0.741
100 1 1 0.5 0.048 0.067 0.058 | 0.010 0.079 0.591 0.320 0.005 0.073 0.598 0.324
250 1 1 0.5 0.034 0.059 0.051 | 0.002 0.009 0.080 0.909 0 0.004 0.037 0.959
50 1 095 0.5 0.065 0.086 0.077 | 0.017 0.356 0.345 0.282 0.016 0.359 0.345 0.280
100 1 095 0.5 0.070 0.104 0.093 | 0.018 0.070 0.860 0.052 0.011 0.056 0.881 0.052
250 1 0.95 0.5 0.032 0.053 0.045 | 0.045 0.048 0.205 0.702 0.023 0.036 0.167 0.774
50 1 09 0.5 0.031 0.061 0.055| 0.008 0.090 0.195 0.707 0.007 0.094 0.196 0.703
100 1 09 0.5 0.08 0.114 0.104 | 0.064 0.127 0.344 0.465 0.054 0.121 0.350 0.475
250 1 0.9 05 0.044 0.067 0.058 | 0.556 0.059 0.160 0.225 0.314 0.063 0.177 0.446
50 1 1 1 0.018 0.039 0.033 0 0.001 0.011 0.989 0 0.001 0.018 0.981
100 1 1 1 0.025 0.051 0.045 | 0.001 0.006 0.054 0.939 0.001 0.004 0.042 0.953
250 1 1 1 0.039 0.058 0.050 | 0.001 0.005 0.079 0.915 0 0.002 0.034 0.964
50 1 095 1 0.014 0.036 0.032 0 0.001 0.014 0.985 0 0.002 0.018 0.980
100 1 095 1 0.021  0.044 0.037 | 0.004 0.008 0.060 0.928 0.003 0.007 0.051 0.939
250 1 095 1 0.034 0.054 0.048 | 0.047 0.053 0.211 0.689 0.023 0.041 0.173 0.763
50 1 0.9 1 0.008 0.032 0.027 | 0.001 0.001 0.013 0.985 0.001 0.001 0.019 0.979
100 1 09 1 0.021  0.039 0.033 | 0.012 0.018 0.098 0.872 0.008 0.014 0.094 0.884
250 1 0.9 1 0.031 0.046 0.038 | 0.590 0.056 0.151 0.203 0.336 0.060 0.169 0.435
50 1 1 10  0.026 0.049 0.043 0 0.001 0.008 0.987 0 0.001 0.011 0.984
100 1 1 10 0.031 0.059 0.049 0 0.002 0.040 0.958 0 0.002 0.034 0.964
250 1 1 10  0.037 0.060 0.051 0 0.005 0.073 0.922 0 0.002 0.038 0.961
50 1 095 10 0.016 0.041 0.035 0 0.001 0.009 0.972 0.001 0.001 0.014 0.966
100 1 095 10 0.026 0.045 0.039 | 0.003 0.010 0.082 0.905 0.003 0.008 0.069 0.920
250 1 0.95 10 0.030 0.050 0.042 | 0.092 0.056 0.214 0.638 0.057 0.052 0.184 0.707
50 1 09 10 0.011 0.034 0.028 | 0.001 0.001 0.012 0.981 0.001 0.001 0.016 0.977
100 1 09 10 0.022 0.044 0.038 | 0.027 0.028 0.122 0.823 0.021 0.022 0.114 0.843
250 1 0.9 10 0.028 0.047 0.041 | 0.659 0.051 0.136 0.154 0.385 0.058 0.179 0.378

Nominal size is set at the 5% level of significance. Results based on 5,000 replications



L2

Table 2 (cont): Empirical size and power for the time trend case, when regressors are
independent of the common factor. Three common factors and N = 40

Non-parametric test

Parametric test

T p  a ob MSB: P, P | MQ(O) MQI) MQ2) MQE®)|MQUO) MQI) MQ2) MQ3)
50 0.99 1 0.5 0.041 0.064 0.057 | 0.005 0.077 0.220 0.698 0.004 0.078 0.222 0.696
100 0.99 1 0.5 0.058 0.075 0.066 0 0.003 0.057 0.940 0 0.003 0.050 0.948
250 0.99 1 0.5 0.440 0.315 0.290 0 0.008 0.080 0.912 0 0.005 0.058 0.937
50 099 095 0.5 0.048 0.072 0.065 0.008 0.157 0.477 0.358 0.010 0.160 0.475 0.355
100 0.99 0.95 0.5 0.047 0.070 0.060 | 0.001 0.008 0.093 0.898 0.001 0.007 0.087 0.905
250 0.99 095 0.5 0417 0.307 0.283 | 0.042 0.048 0.205 0.705 0.023 0.040 0.166 0.771
50 099 09 0.5 0.035 0.067 0.061 0.004 0.055 0.237 0.704 0.005 0.056 0.238 0.701
100 0.99 0.9 0.5 0.049 0.069 0.062 0.013 0.022 0.113 0.852 0.009 0.017 0.108 0.866
250 0.99 09 05 0414 0.300 0.276 | 0.548 0.046 0.177 0.229 0.447 0.082 0.186 0.285
50 0.99 1 1 0.024 0.047 0.040 0 0.004 0.041 0.955 0 0.004 0.044 0.952
100 0.99 1 1 0.056 0.08 0.070 0 0.003 0.041 0.956 0 0.003 0.032 0.965
250 0.99 1 1 0.432 0.314 0.289 | 0.001 0.007 0.080 0.912 0 0.004 0.060 0.936
50 0.99 0.95 1 0.022 0.044 0.038 0 0.002 0.085 0.913 0 0.004 0.089 0.907
100 0.99 095 1 0.047 0.074 0.065 | 0.002 0.008 0.056 0.934 0.001 0.007 0.049 0.943
250 0.99 0.95 1 0.404 0.297 0.276 | 0.071 0.051 0.206 0.672 0.04 0.048 0.173 0.739
50 099 0.9 1 0.019 0.041 0.034 | 0.001 0.002 0.012 0.985 0.001 0.002 0.018 0.979
100 0.99 0.9 1 0.041 0.064 0.057 | 0.017 0.02 0.106 0.857 0.014 0.016 0.099 0.871
250 0.99 0.9 1 0.407 0.290 0.266 | 0.606 0.054 0.156 0.184 0.498 0.099 0.173 0.230
50 0.99 1 10 0.026 0.050 0.044 0 0.001 0.005 0.992 0 0.001 0.010 0.987
100 0.99 1 10 0.048 0.074 0.063 0 0.004 0.053 0.943 0 0.002 0.044 0.954
250 0.99 1 10 0.340 0.261 0.236 | 0.001 0.010 0.098 0.891 0.001 0.008 0.073 0.918
50 0.99 0.95 10 0.020 0.044 0.038 0 0.001 0.008 0.985 0 0.001 0.012 0.980
100 0.99 0.95 10 0.041 0.07 0.061 | 0.003 0.012 0.064 0.919 0.001 0.010 0.060 0.926
250 0.99 0.95 10 0.300 0.229 0.206 | 0.056 0.062 0.194 0.688 0.03 0.050 0.158 0.762
50 099 09 10 0.014 0.035 0.028 0 0.001 0.013 0.983 0 0.001 0.020 0.976
100 0.99 0.9 10 0.042 0.058 0.050 | 0.013 0.021 0.104 0.861 0.01 0.017 0.095 0.877
250 099 09 10 0311 0.235 0.216 | 0.670 0.057 0.123 0.150 0.559 0.107 0.135 0.199

Nominal size is set at the 5% level of significance. Results based on 5,000 replications
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Table 2 (cont): Empirical size and power for the time trend case, when regressors are
independent of the common factor. Three common factors and N = 40

Non-parametric test

Parametric test

T p  a ob MSB: P, P | MQ(O) MQI) MQ2) MQE®)|MQUO) MQI) MQ2) MQ3)
50 0.95 1 0.5 0.222 0.211 0.191 0 0.016 0.077 0.907 0 0.017 0.081 0.902
100 0.95 1 0.5 0.910 0.809 0.794 | 0.003 0.026 0.396 0.575 0.001 0.019 0.402 0.578
250 0.95 1 0.5 1 1 1 0 0.008 0.080 0.912 0.001 0.004 0.059 0.936
50 095 095 0.5 0.290 0.249 0.230 | 0.004 0.094 0.710 0.192 0.004 0.097 0.708 0.191
100 0.95 0.95 0.5 0.976 0.902 0.885 | 0.003 0.011 0.110 0.876 0.002 0.009 0.101 0.888
250 0.95 095 0.5 1 1 1 0.208 0.255 0.469 0.068 0.145 0.276 0.502 0.077
50 095 0.9 05 0.246 0.228 0.209 | 0.011 0.114 0.217 0.658 0.008 0.117 0.220 0.655
100 0.95 0.9 0.5 0.983 0.899 0.887 | 0.018 0.021 0.121 0.840 0.012 0.018 0.114 0.856
250 095 0.9 0.5 1 1 1 0.612 0.058 0.149 0.181 0.493 0.106 0.163 0.238
50 0.95 1 1 0.206 0.199 0.179 0 0.001 0.013 0.987 0.001 0.001 0.015 0.983
100 0.95 1 1 0.976 0.879 0.86 0 0.004 0.041 0.955 0 0.004 0.033 0.963
250 0.95 1 1 1 1 1 0.002 0.011 0.087 0.900 0.001 0.007 0.064 0.928
50 0.95 0.95 1 0.174 0.186 0.169 0 0.001 0.007 0.993 0 0 0.013 0.987
100 0.95 095 1 0.967 0.868 0.851 | 0.003 0.007 0.063 0.927 0.001 0.007 0.058 0.934
250 0.95 0.95 1 1 1 1 0.076 0.052 0.218 0.654 0.049 0.048 0.188 0.715
50 095 0.9 1 0.16 0.173 0.157 0 0.002 0.019 0.979 0.001 0.002 0.027 0.970
100 0.95 0.9 1 0.969 0.870 0.848 | 0.021 0.026 0.117 0.836 0.016 0.019 0.112 0.853
250 0.95 0.9 1 1 1 1 0.626 0.058 0.140 0.176 0.523 0.103 0.152 0.222
50 0.95 1 10 0.108 0.133 0.116 0 0.001 0.009 0.988 0.001 0 0.014 0.983
100 0.95 1 10 0.784 0.681 0.652 0.001 0.003 0.054 0.942 0.001 0.002 0.046 0.951
250 0.95 1 10 1 1 1 0.002 0.012 0.086 0.900 0.002 0.008 0.062 0.928
50 0.95 0.95 10 0.096 0.109 0.094 0 0.002 0.008 0.989 0 0.002 0.012 0.984
100 0.95 0.95 10 0.736 0.640 0.613 | 0.003 0.009 0.072 0.916 0.002 0.007 0.062 0.928
250 0.95 0.95 10 1 1 1 0.039 0.054 0.200 0.707 0.022 0.041 0.172 0.765
50 095 0.9 10 0.079 0.099 0.085 0 0.002 0.011 0.986 0 0.003 0.019 0.977
100 0.95 0.9 10 0.756 0.649 0.621 0.02 0.021 0.103 0.855 0.017 0.02 0.096 0.866
250 095 09 10 1 1 1 0.658 0.044 0.156 0.142 0.543 0.094 0.176 0.187

Nominal size is set at the 5% level of significance. Results based on 5,000 replications
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Table 3: Empirical size and power for the linear time trend case, when regressors are correlated with the common factor. One common factor,
panel BIC (ryq, = 6) and N = 40

0 =1 p; = 0.99 p; = 0.95 p; =09
T « o%|MSB: P, P MSB;|MSB: P, P MSB;|MSB: P, P MSB;|MSB: P, P MSBj
50 1 0.5 0.004 0052 0.043 0.050 | 0.010 0.068 0.062 0.051 | 0.089 0231 0202 0.056 | 0.311 0.783 0.764 0.047
100 1 05| 0014 0046 0039 0.040 | 0.029 0082 0076 0.052 | 0.613 0.877 0.868 0.041 | 0.609 0.985 0.985 0.048
250 1 05| 0.020 0.047 0.042 0.050 | 0.355 0.328 0.296 0.054 | 0.854 0.996 0.996 0.054 | 0.948 0.999 0.999  0.068
50 0.95 0.5 | 0.008 0.058 0.052 0.061 | 0.006 0.075 0.065 0.081 | 0.111 0.283 0.263 0.060 | 0.334 0.828 0.821  0.082
100 0.95 0.5 | 0.018 0.050 0.045 0.096 | 0.029 0.082 0.073 0.106 | 0.655 0.939 0.929 0.091 | 0.682 0.998 0.998 0.149
250 0.95 0.5 | 0.028 0.081 0.068 0.367 | 0.408 0.372 0.340 0.356 | 0.967 0.999 0.999 0425 | 0.999 0.999 0.999 0.477
50 0.9 0.5 0.005 0.069 0.063 0.089 | 0.004 0.080 0.077 0.092 | 0.117 0.338 0.319 0.113 | 0.399 0.899 0.889 0.119
100 0.9 05| 0008 0070 0062 0.260 | 0.041 0.109 0.097 0.254 | 0.727 0.950 0.940 0.294 | 0.741 0.999 0.999 0.335
250 0.9 0.5 | 0.020 0.082 0.072 0.726 | 0.398 0.392 0.358 0.786 | 0.987 0.999 0.999 0.848 | 0.999 0.999 0.999  0.883
50 1 1 | 0.014 0.046 0.037 0.056 | 0.019 0.049 0.043 0.027 | 0.294 0.266 0.239 0.054 | 0.936 0.926 0.915 0.062
100 1 1 | 0022 0059 0048 0.045 | 0.069 0.075 0.058 0.049 | 0.98 0941 00936 0.063 | 0.997 0.999 0.999 0.044
250 1 1 | 0.029 0.052 0.046 0.053 | 0.434 0.329 0.310 0.061 | 0.999 0.999 0.999 0.041 | 0.999 0.999 0.999  0.045
50 0.95 1 | 0.017 0.034 0.030 0.066 | 0.018 0.044 0.034 0.072 | 0.267 0.266 0.245 0.064 | 0.940 0.910 0.898 0.071
100 0.95 1 | 0.020 0.038 0034 0.117 | 0.047 0.076 0.068 0.115 | 0.993 0.958 0.951 0.120 | 0.996 0.999 0.999 0.101
250 0.95 1 | 0.035 0.063 0.062 0369 | 0.484 0.340 0.319 0.383 | 0.999 0.999 0.999 0.445 | 0.999 0.999 0.999  0.445
50 0.9 1 | 0.008 0.038 0032 0103 | 0.012 0.040 0.036 0.103 | 0.279 0.262 0.232 0.105 | 0.948 0.935 0.921 0.117
100 09 1 | 0025 0052 0041 0.267 | 0.053 0.080 0.065 0.265 | 0.993 0.958 0.942 0.261 | 0.996 0.999 0.999  0.292
250 0.9 1 | 0.041 0.054 0.049 0.792 | 0.455 0.342 0.318 0.810 | 0.999 0.999 0.999 0.861 | 0.999 0.999 0.999  0.862
50 1 10 | 0.012 0.031 0.027 0.039 | 0.018 0.047 0.043 0.044 | 0.296 0278 0254 0.035 | 0.992 0.931 0.920 0.042
100 1 10 | 0.026 0.037 0032 0.067 | 0.048 0.074 0.067 0.047 | 0.994 0.948 0.939 0.046 | 0.999 0.999 0.999 0.052
250 1 10 | 0.029 0.051 0.042 0.055 | 0.461 0.327 0.302 0.048 | 0.999 0.999 0.999 0.054 | 0.999 0.999 0.999  0.042
50 0.95 10 | 0.011 0.035 0.032 0.062 | 0.023 0.038 0.032 0.071 | 0.276 0.262 0.237 0.058 | 0.981 0.926 0.914 0.051
100 0.95 10 | 0.020 0.052 0.046 0.124 | 0.051 0.080 0.068 0.095 | 0.996 0.950 0.939 0.105 | 0.999 0.999 0.999 0.097
250 0.95 10 | 0.028 0.048 0.037 0427 | 0.436 0.321 0.296 0402 | 0.999 0.999 0.999 0.414 | 0.999 0.999 0.999 0.397
50 0.9 10 | 0.017 0.047 0.041 0.118 | 0.009 0.037 0.029 0.101 | 0.250 0.253 0.228 0.094 | 0.988 0.929 0.920 0.096
100 0.9 10 | 0.026 0.038 0034 0.297 | 0.041 0.080 0071 0.301 | 0.996 0.941 0934 0.296 | 0.999 0.999 0.999 0.292
250 0.9 10 | 0.035 0.050 0.044 0.857 | 0.456 0.356 0.320 0.864 | 0.999 0.999 0.999 0.845 | 0.999 0.999 0.999  0.863

Nominal size is set at the 5% level of significance. Results based on 1,000 replications
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Table 4: Time trend case, homogeneous parameters, three common factors correlated with stochastic regressors, panel BIC (7,4, = 6) and N = 40

Non-parametric Parametric
T p o ob MSB: Pn P | MQU) MQ() MQE2) MQ(3) | MQO) MQ() MQ2) MQE)
50 1 1 05 0.023 0.047 0.038 | 0.000 0.001 0.007 0.993 0.000 0.001 0.010 0.990
100 1 1 05 0.020 0.0564 0.045| 0.000 0.002 0.028 0.970 0.000 0.002 0.023 0.975
250 1 1 05 0.040 0.052 0.047 | 0.000 0.002 0.077 0.921 0.000 0.002 0.030 0.968
50 1 095 0.5 0.012 0.029 0.025 | 0.000 0.001 0.009 0.990 0.000 0.001 0.014 0.986
100 1 095 0.5 0.031 0.050 0.042 | 0.000 0.002 0.064 0.934 0.000 0.001 0.055 0.944
250 1 0.95 0.5 0.032 0.060 0.050 | 0.003 0.041 0.189 0.764 0.000 0.012 0.105 0.882
50 1 0.9 0.5 0.009 0.030 0.026 | 0.000 0.001 0.008 0.992 0.000 0.001 0.025 0.975
100 1 09 05 0.011 0.038 0.034 | 0.000 0.012 0.094 0.894 0.000 0.010 0.091 0.899
250 1 0.9 0.5 0.027 0.040 0.035| 0.242 0.179 0.287 0.289 0.103 0.118 0.241 0.535
50 1 1 1 0.018 0.043 0.035 | 0.000 0.001 0.004 0.996 0.000 0.001 0.004 0.995
100 1 1 1 0.021  0.057 0.051 | 0.000 0.001 0.032 0.968 0.000 0.001 0.024 0.976
250 1 1 1 0.040 0.054 0.047 | 0.000 0.002 0.071 0.927 0.000 0.001 0.026 0.974
50 1 095 1 0.016 0.033 0.030 | 0.000 0.001 0.004 0.996 0.000 0.001 0.008 0.992
100 1 095 1 0.033 0.044 0.037 | 0.000 0.001 0.051 0.948 0.000 0.001 0.042 0.957
250 1 095 1 0.026  0.053 0.045 | 0.004 0.029 0.207 0.757 0.000 0.011 0.105 0.884
50 1 09 1 0.011  0.035 0.029 | 0.000 0.001 0.005 0.995 0.000 0.001 0.009 0.991
00 1 09 1 0.019 0.036 0.034 | 0.000 0.015 0.079 0.906 0.000 0.009 0.080 0.910
250 1 09 1 0.025 0.042 0.038 | 0.332 0.166 0.253 0.246 0.145 0.103 0.235 0.514
50 1 1 10 0.014 0.036 0.032 | 0.000 0.001 0.007 0.993 0.000 0.001 0.009 0.991
100 1 1 10 0.035 0.049 0.039 | 0.000 0.001 0.028 0.971 0.000 0.001 0.023 0.976
250 1 1 10 0.025 0.053 0.047 | 0.000 0.002 0.063 0.935 0.000 0.001 0.029 0.971
50 1 095 10 0.012 0.035 0.031 | 0.000 0.001 0.007 0.992 0.000 0.001 0.018 0.981
100 1 095 10 0.021 0.037 0.029 | 0.000 0.003 0.042 0.955 0.000 0.001 0.038 0.962
250 1 0.95 10 0.041 0.051 0.047 | 0.008 0.036 0.214 0.739 0.000 0.013 0.086 0.898
50 1 09 10 0.014 0.029 0.026 | 0.000 0.001 0.006 0.994 0.000 0.001 0.013 0.987
100 1 09 10 0.024 0.049 0.045 | 0.000 0.014 0.106 0.879 0.000 0.010 0.095 0.894
250 1 09 10 0.025 0.044 0.039 | 0.467 0.147 0.181 0.202 0.243 0.107 0.198 0.449

Nominal size is set at the 5% level of significance. Results based on 1,000 replications
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Table 5: Time trend case, homogeneous parameters, three common factors correlated with stochastic regressors, panel BIC (7,4, = 6) and N = 40

Non-parametric Parametric

T s o ob MSB, P, P | MQU) MQ() MQE2) MQE3)| MQU) MQ() MQ(2) MQ3)
50 099 1 0.5 0.026 0.058 0.053 | 0.000 0.001 0.008 0.992 0.000 0.001 0.013 0.986
100 099 1 05 0.074 0.083 0.072 | 0.000 0.001 0.044 0.956 0.000 0.001 0.037 0.963
250 099 1 0.5 0447 0.319 0.290 | 0.000 0.002 0.049 0.949 0.000 0.001 0.018 0.982
50 0.99 095 0.5 0.024 0.058 0.055 | 0.000 0.001 0.008 0.991 0.000 0.001 0.014 0.985
100 0.99 095 0.5 0.049 0.078 0.070 | 0.000 0.002 0.032 0.966 0.000 0.001 0.030 0.969
250 099 095 0.5 0444 0.313 0.288 | 0.005 0.031 0.182 0.779 0.000 0.014 0.083 0.900
50 099 09 0.5 0.013 0.041 0.034 | 0.000 0.001 0.003 0.997 0.000 0.001 0.009 0.991
100 0.99 09 0.5 0.042 0.071 0.060 | 0.000 0.012 0.086 0.901 0.000 0.007 0.076 0.916
250 099 09 0.5 0431 0.336 0.310 | 0.255 0.188 0.265 0.289 0.104 0.099 0.233 0.561

50  0.99 1 0.020 0.047 0.044 | 0.000 0.001 0.009 0.991 0.000 0.001 0.015 0.985
100 0.99 1 0.052 0.092 0.081 | 0.000 0.001 0.032 0.968 0.000 0.001 0.023 0.977
250 0.99 1 0.48 0325 0.297 | 0.000 0.001 0.073 0.927 0.000 0.001 0.024 0.976
50  0.99 0.95 0.027  0.037 0.033 | 0.000 0.001 0.006 0.994 0.000 0.001 0.009 0.990

100 0.99 0.95
250 0.99 0.95

0.037  0.07 0.057 | 0.000 0.003 0.059 0.938 0.000 0.001 0.051 0.948
0.453 0334 0.308 | 0.011 0.045 0.197 0.744 0.000 0.013 0.106 0.878

50 099 0.9 0.019 0.029 0.025 | 0.000 0.001 0.006 0.994 0.000 0.001 0.014 0.985
100 0.99 0.9 0.048 0.069 0.059 | 0.000 0.008 0.098 0.893 0.000 0.008 0.090 0.901
250 0.99 0.9 0.449 0.281 0.258 | 0.376 0.179 0.219 0.223 0.168 0.136 0.226 0.467
50  0.99 1 0.028 0.056 0.049 | 0.000 0.001 0.005 0.995 0.000 0.001 0.008 0.992
100 0.99 1 0.066 0.092 0.079 | 0.000 0.001 0.038 0.961 0.000 0.001 0.036 0.963
250 0.99 1 0.465 0.323 0.29 0.000 0.005 0.061 0.934 0.000 0.002 0.029 0.969
50  0.99 0.95 0.015 0.064 0.054 | 0.000 0.001 0.007 0.993 0.000 0.001 0.008 0.992

100 0.99 0.95
250 0.99 0.95

0.053 0.074 0.059 | 0.000 0.003 0.052 0.945 0.000 0.003 0.048 0.949
0.424 0.300 0.272 | 0.007 0.058 0.205 0.727 0.000 0.018 0.111 0.868
50 099 0.9 0.016 0.033 0.027 | 0.000 0.001 0.010 0.99 0.000 0.001 0.015 0.984
100 0.99 0.9 0.043 0.0561 0.041 | 0.000 0.013 0.111 0.874 0.000 0.012 0.099 0.887
250 099 09 10 0430 0.311 0.285 | 0.448 0.154 0.200 0.195 0.190 0.127 0.236 0.444

Nominal size is set at the 5% level of significance. Results based on 1,000 replications
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Table 6: Time trend case, homogeneous parameters, three common factors correlated with stochastic regressors, panel BIC (7,4, = 6) and N = 40

Non-parametric Parametric

T s o ob MSB, P, P | MQU) MQ() MQE2) MQE3)| MQU) MQ() MQ(2) MQ3)
50 095 1 0.5 0.27r8 0.268 0.244 | 0.000 0.001 0.003 0.997 0.000 0.001 0.006 0.994
100 095 1 05 0991 0.929 0.915 | 0.000 0.001 0.037 0.962 0.000 0.001 0.034 0.965
250 095 1 0.5 1 1 1 0.000 0.001 0.072 0.927 0.000 0.001 0.026 0.973
50 0.95 095 0.5 0.249 0.219 0.199 | 0.000 0.001 0.011 0.989 0.000 0.001 0.015 0.985
100 0.95 095 0.5 0991 0.929 0.917 | 0.000 0.003 0.043 0.954 0.000 0.003 0.035 0.962
250 095 0.95 0.5 1 1 1 0.006 0.055 0.236 0.700 0.000 0.026 0.108 0.864
50 095 09 05 0.224 0.204 0.187 | 0.000 0.001 0.010 0.989 0.000 0.001 0.016 0.983
100 095 09 05 0996 095 0.939 | 0.000 0.012 0.101 0.886 0.000 0.006 0.099 0.894
250 0.95 09 0.5 1 1 1 0.429 0.150 0.209 0.209 0.195 0.115 0.222 0.465

50  0.95 1 1 0.273 0.248 0.217 | 0.000 0.001 0.006 0.994 0.000 0.001 0.008 0.992
100 0.95 1 1 0.995 094 0.934 | 0.000 0.001 0.031 0.968 0.000 0.001 0.028 0.971
250 0.95 1 1 1 1 1 0.000 0.004 0.081 0.915 0.000 0.002 0.029 0.969
50 095 095 1 0.242 0.236 0.211 | 0.000 0.003 0.004 0.993 0.000 0.002 0.005 0.993
100 095 095 1 0.993 0.947 0.936 | 0.000 0.006 0.054 0.940 0.000 0.002 0.051 0.947
250 095 095 1 1 1 1 0.006 0.054 0.225 0.712 0.000 0.014 0.132 0.851
50 095 0.9 1 0.252 0.232 0.207 | 0.000 0.001 0.009 0.991 0.000 0.001 0.019 0.981
100 095 0.9 1 0.992 0931 0.92 0.000 0.011 0.090 0.898 0.000 0.007 0.084 0.908
250 095 0.9 1 1 1 1 0.411 0.149 0.229 0.208 0.189 0.111 0.234 0.463
50  0.95 1 10 0278 0.25 0.231 | 0.000 0.001 0.005 0.995 0.000 0.001 0.008 0.992
100 0.95 1 10 0994 0.938 0.926 | 0.000 0.001 0.040 0.96 0.000 0.001 0.030 0.970
250 0.95 1 10 1 1 1 0.000 0.001 0.072 0.927 0.000 0.001 0.027 0.973
50 0.95 095 10 0.26  0.252 0.221 | 0.000 0.001 0.005 0.995 0.000 0.001 0.009 0.990

100 095 0.95 10 0987 0.941 0.936 | 0.000 0.004 0.052 0.944 0.000 0.004 0.045 0.951
250 095 0.95 10 1 1 1.000 | 0.017 0.060 0.222 0.698 0.000 0.028 0.116 0.854
50 095 09 10 0.24 0232 0.204 | 0.000 0.001 0.011 0.989 0.000 0.001 0.017 0.983
100 095 09 10 0991 0.924 0.918 | 0.000 0.013 0.100 0.884 0.000 0.011 0.088 0.900
250 095 09 10 1 1 1.000 | 0.473 0.129 0.214 0.181 0.236 0.114 0.228 0.419

Nominal size is set at the 5% level of significance. Results based on 1,000 replications
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Table 7: Time trend case, heterogeneous parameters, three common factors correlated with stochastic regressors, panel BIC (7,4, = 6) and N = 40

Non-parametric Parametric
T p o ob MSB: Pn P | MQU) MQ() MQE2) MQ(3) | MQO) MQ() MQ2) MQE)
50 1 1 05 0.026 0.044 0.040 | 0.001 0.018 0.063 0.917 0.001 0.018 0.065 0.915
100 1 1 05 0.025 0.036 0.028 | 0.000 0.000 0.041 0.959 0.000 0.001 0.033 0.966
250 1 1 05 0.033 0.064 0.048 | 0.000 0.002 0.061 0.937 0.000 0.001 0.026 0.973
50 1 095 0.5 0.015 0.035 0.030 | 0.003 0.011 0.054 0.932 0.002 0.012 0.056 0.930
100 1 095 0.5 0.015 0.036 0.034 | 0.000 0.001 0.057 0.942 0.000 0.001 0.053 0.946
250 1 0.95 0.5 0.031 0.044 0.037 | 0.003 0.034 0.199 0.764 0.000 0.007 0.101 0.892
50 1 0.9 0.5 0.013 0.033 0.029 | 0.003 0.009 0.052 0.936 0.003 0.011 0.052 0.934
100 1 09 05 0.012 0.037 0.030 | 0.000 0.005 0.095 0.900 0.000 0.003 0.096 0.901
250 1 09 05 0.029 0.039 0.036 | 0.194 0.163 0.285 0.358 0.074 0.098 0.228 0.600
50 1 1 1 0.024 0.044 0.038 | 0.000 0.000 0.006 0.993 0.000 0.000 0.010 0.989
100 1 1 1 0.024 0.033 0.029 | 0.000 0.000 0.033 0.967 0.000 0.001 0.027 0.972
250 1 1 1 0.032 0.052 0.047 | 0.000 0.002 0.060 0.938 0.000 0.003 0.022 0.975
50 1 095 1 0.016 0.039 0.027 | 0.000 0.000 0.007 0.993 0.000 0.000 0.011 0.989
100 1 095 1 0.015 0.034 0.032 | 0.000 0.001 0.057 0.942 0.000 0.001 0.047 0.952
250 1 095 1 0.031 0.045 0.037 | 0.003 0.041 0.219 0.737 0.002 0.010 0.101 0.887
50 1 09 1 0.013 0.028 0.022 | 0.000 0.001 0.010 0.989 0.000 0.001 0.014 0.985
00 1 09 1 0.013 0.036 0.026 | 0.000 0.009 0.096 0.895 0.000 0.005 0.089 0.906
250 1 09 1 0.030 0.038 0.036 | 0.301 0.155 0.262 0.282 0.112 0.100 0.246 0.542
50 1 1 10 0.025 0.042 0.038 | 0.000 0.001 0.005 0.993 0.000 0.000 0.007 0.992
100 1 1 10 0.023 0.034 0.026 | 0.000 0.002 0.031 0.967 0.000 0.001 0.029 0.970
250 1 1 10 0.034 0.058 0.047 | 0.000 0.003 0.062 0.935 0.000 0.003 0.019 0.978
50 1 095 10 0.015 0.036 0.029 | 0.000 0.001 0.005 0.993 0.000 0.001 0.007 0.991
100 1 095 10 0.014 0.031 0.028 | 0.000 0.002 0.060 0.938 0.000 0.001 0.050 0.949
250 1 0.95 10 0.031 0.045 0.040 | 0.006 0.040 0.226 0.728 0.002 0.010 0.109 0.879
50 1 09 10 0.012 0.025 0.021 | 0.000 0.001 0.010 0.988 0.000 0.001 0.013 0.985
00 1 09 10 0.012 0.032 0.027 | 0.000 0.015 0.102 0.883 0.000 0.010 0.091 0.899
250 1 09 10 0.030 0.045 0.037 | 0.447 0.132 0.202 0.219 0.218 0.115 0.208 0.459

Nominal size is set at the 5% level of significance. Results based on 1,000 replications
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Table 8: Time trend case, heterogeneous parameters, three common factors correlated with stochastic regressors, panel BIC (7,4, = 6) and N = 40

Non-parametric Parametric

T s o ob MSB, P, P | MQU) MQ() MQE2) MQE3)| MQU) MQ() MQ(2) MQ3)
50 099 1 0.5 0.026 0.045 0.039 | 0.001 0.019 0.069 0.910 0.001 0.019 0.073 0.906
100 099 1 05 0.047 0.060 0.054 | 0.000 0.001 0.039 0.960 0.000 0.001 0.034 0.965
250 099 1 0.5 0414 0.306 0.267 | 0.000 0.003 0.062 0.935 0.000 0.000 0.024 0.976
50 0.99 095 0.5 0.019 0.045 0.035| 0.003 0.014 0.058 0.925 0.003 0.016 0.057 0.924
100 0.99 095 0.5 0.038 0.0564 0.048 | 0.000 0.001 0.058 0.941 0.000 0.001 0.058 0.941
250 099 095 0.5 0.395 0.285 0.264 | 0.003 0.027 0.206 0.764 0.002 0.008 0.101 0.889
50 099 09 05 0.014 0.035 0.027 | 0.003 0.013 0.054 0.930 0.003 0.015 0.055 0.927
100 0.99 09 0.5 0.033 0.0563 0.048 | 0.000 0.004 0.095 0.901 0.000 0.003 0.097 0.900
250 099 09 0.5 0391 0.282 0.258 | 0.209 0.163 0.285 0.343 0.083 0.105 0.236 0.576

50  0.99 1 0.028 0.047 0.042 | 0.000 0.000 0.005 0.994 0.000 0.000 0.011 0.988
100 0.99 1 0.045 0.058 0.054 | 0.000 0.001 0.034 0.965 0.000 0.001 0.030 0.969
250 0.99 1 0.415 0.305 0.266 | 0.000 0.002 0.058 0.940 0.000 0.001 0.024 0.975
50  0.99 0.95 0.020 0.037 0.033 | 0.000 0.000 0.007 0.993 0.000 0.000 0.010 0.990

100 0.99 0.95
250 0.99 0.95

0.036 0.054 0.044 | 0.000 0.001 0.057 0.942 0.000 0.001 0.050 0.949
0.396 0.285 0.264 | 0.004 0.037 0.213 0.746 0.003 0.011 0.108 0.878

50 099 0.9 0.016 0.032 0.026 | 0.000 0.001 0.008 0.991 0.000 0.001 0.014 0.985
100 0.99 0.9 0.032 0.0561 0.042 | 0.000 0.010 0.096 0.894 0.000 0.005 0.090 0.905
250 0.99 0.9 0.390 0.285 0.253 | 0.319 0.149 0.239 0.293 0.128 0.112 0.230 0.530
50  0.99 1 0.028 0.052 0.040 | 0.000 0.001 0.006 0.992 0.000 0.000 0.007 0.992
100 0.99 1 0.048 0.061 0.051 | 0.000 0.002 0.030 0.968 0.000 0.001 0.027 0.972
250 0.99 1 0.418 0.293 0.258 | 0.000 0.004 0.061 0.935 0.000 0.003 0.019 0.978
50  0.99 0.95 0.024 0.041 0.034 | 0.000 0.001 0.005 0.993 0.000 0.001 0.007 0.991

100 0.99 0.95
250 0.99 0.95

0.035 0.055 0.046 | 0.000 0.002 0.058 0.940 0.000 0.001 0.048 0.951
0.400 0.279 0.254 | 0.006 0.043 0.220 0.731 0.002 0.010 0.110 0.878
50 099 0.9 0.014 0.033 0.023 | 0.000 0.001 0.009 0.989 0.000 0.001 0.012 0.986
100 0.99 0.9 0.035 0.048 0.041 | 0.000 0.013 0.103 0.884 0.000 0.010 0.089 0.901
250 099 09 10 0394 0.278 0.255 | 0.444 0.132 0.202 0.222 0.218 0.114 0.209 0.459

Nominal size is set at the 5% level of significance. Results based on 1,000 replications




53

Table 9: Time trend case, heterogeneous parameters, three common factors correlated with stochastic regressors, panel BIC (7,4, = 6) and N = 40

Non-parametric Parametric

T s o ob MSB, P, P | MQU) MQ() MQE2) MQE3)| MQU) MQ() MQ(2) MQ3)
50 095 1 0.5 0.232 0.207 0.180 | 0.001 0.031 0.079 0.889 0.001 0.031 0.080 0.888
100 095 1 05 098 0.909 0.897 | 0.001 0.003 0.043 0.953 0.000 0.004 0.038 0.958
250 095 1 0.5 1 1 1 0.000 0.001 0.069 0.930 0.000 0.002 0.025 0.973
50 0.95 095 0.5 0.223 0.198 0.177 | 0.004 0.020 0.070 0.906 0.004 0.021 0.073 0.902
100 0.95 0.95 0.5 0.988 0.917 0.903 | 0.000 0.003 0.068 0.929 0.000 0.003 0.063 0.934
250 095 0.95 0.5 1 1 1 0.010 0.053 0.227 0.710 0.004 0.013 0.108 0.875
50 095 09 05 0.199 0.187 0.173 | 0.003 0.017 0.061 0.919 0.004 0.017 0.065 0.914
100 095 09 05 0987 0.912 0.894 | 0.000 0.004 0.111 0.885 0.001 0.003 0.099 0.897
250 0.95 09 0.5 1 1 1 0.397 0.131 0.220 0.252 0.194 0.102 0.215 0.489

50  0.95 1 0.238 0.216 0.199 | 0.000 0.002 0.006 0.992 0.000 0.002 0.011 0.987
100 0.95 1 0.987 0.916 0.897 | 0.000 0.001 0.031 0.968 0.000 0.001 0.029 0.970
250 0.95 1 1 1 1 0.000 0.002 0.066 0.932 0.000 0.001 0.024 0.975
50  0.95 0.95 0.228 0.2 0.183 | 0.000 0.000 0.009 0.991 0.000 0.000 0.012 0.988

100 0.95 0.95
250 0.95 0.95

0.989 0.915 0.907 | 0.000 0.001 0.056 0.943 0.000 0.001 0.048 0.951
1 1 1 0.011 0.050 0.225 0.714 0.003 0.012 0.099 0.886

50 095 0.9 0.197 0.191 0.173 | 0.000 0.001 0.010 0.989 0.000 0.002 0.012 0.986
100 095 0.9 0.988 0.914 0.897 | 0.000 0.009 0.103 0.888 0.000 0.004 0.094 0.902
250 095 0.9 1 1 1 0.431 0.121 0.213 0.235 0.225 0.101 0.218 0.456
50  0.95 1 0.242 0.224 0.202 | 0.000 0.001 0.006 0.992 0.000 0.000 0.007 0.992
100 0.95 1 0.988 0914 0.9 0.000 0.000 0.034 0.966 0.000 0.001 0.028 0.971
250 0.95 1 1 1 1 0.000 0.003 0.060 0.937 0.000 0.001 0.022 0.977
50  0.95 0.95 0.22 0.206 0.185 | 0.000 0.000 0.006 0.993 0.000 0.000 0.006 0.993

100 0.95 0.95
250 0.95 0.95

0.988 0.922 0.906 | 0.000 0.003 0.058 0.939 0.000 0.002 0.043 0.955

1 1 1 0.009 0.043 0.221 0.727 0.004 0.012 0.102 0.882
50 095 0.9 0.196 0.187 0.172 | 0.000 0.001 0.010 0.988 0.000 0.000 0.013 0.986
100 095 0.9 0.988 0.917 0.902 | 0.001 0.013 0.101 0.885 0.000 0.011 0.088 0.901
250 095 09 10 1 1 1 0.461 0.131 0.198 0.210 0.232 0.117 0.203 0.448

Nominal size is set at the 5% level of significance. Results based on 1,000 replications




