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Uncovering Long Memory in High Frequency UK Futures 

 

Abstract: 

Accurate volatility modelling is paramount for optimal risk management practices.  

One stylized feature of financial volatility that impacts the modelling process is 

long memory explored in this paper for alternative risk measures, observed 

absolute and squared returns for high frequency intraday UK futures.  Volatility 

series for three different asset types, using stock index, interest rate and bond 

futures are analysed.  Long memory is strongest for the bond contract.  Long 

memory is always strongest for the absolute returns series and at a power 

transformation of k < 1.  The long memory findings generally incorporate intraday 

periodicity.  The APARCH model incorporating seven related GARCH processes 

generally models the futures series adequately documenting ARCH, GARCH and 

leverage effects. 

 

Keywords: Long Memory, APARCH, High Frequency Futures 



 3 

Uncovering Long Memory in High Frequency UK Futures 

1 Introduction 

Volatility is a latent variable fundamental to asset pricing, asset allocation and risk 

management. For instance, the quality of risk management practices is critically 

determined by the modelling of financial volatility and its associated attributes 

must be measured and modelled properly.  An extensive literature has 

characterized the systematic properties of volatility at the daily and 

lower frequencies for equity and fixed-income assets.  Here, volatility is 

both time-varying and predictable and this latter feature importantly 

gives rise to long memory where persistence occurs for large lags.  This 

property is important for risk management as it affects the monitoring 

and management of risk associated with market trading.   

 

This paper investigates long memory in alternative risk measures, observed 

absolute and squared returns for high frequency futures data.
1
  The paper 

determines which risk measure exhibits long memory at it strongest in terms of 

length and magnitude of persistence.  Whilst the long memory property is cited in 

the literature for exchange rate and equity series this paper extends the analysis to 

less volatile assets, using interest rate and bond futures series.  Furthermore, the 

paper investigates long memory at relatively high frequency intraday intervals of 

interest to the everyday operations of a trading desk.  5-minute intervals are chosen 

to minimise non-synchronous trading effects.   

 

                                                           
1
 Granger (1998) notes that long memory is usually discussed in the context of squared returns 

series, but that absolute returns series have more interesting statistical properties thus motivating 

the investigation in this study. 
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The long memory property occurs where volatility persistence remains at large lags 

as in an absolute returns series, Rtk
, or a squared returns series, [Rt]

k
, where k > 

0.  Long memory is documented for daily equity prices series where volatility 

persistence decays relatively slowly for a long period after an initial rapid decline 

(Ding et al, 1993; Ding and Granger, 1996).  In addition, Ding et al (1993) indicate 

that this non-linear dependence is strongest at the power transformation of k = 1 

suggesting that volatility modelling incorporating this property should focus at the 

level of returns rather than squared returns.  For intraday currency realisations, 

previous evidence shows that the slow decay of the autocorrelation structure 

involves a u-shaped cyclical pattern describing intraday volatility behaviour 

(Andersen and Bollerslev, 1997a, 1997b).   

 

This paper examines whether these characteristics of long memory are evident for 

high frequency bond, interest rate and equity futures and what variations occur (if 

any) according to asset type.  The paper determines which power transformation 

exhibits long memory at its strongest, and whether intraday cycles exist for the 

asset types analysed. 

 

In terms of model building, parametric ARCH models have emerged as the 

archetype for modelling time-varying and predictable volatility.  There are a 

large number of possible specifications available incorporating many stylized 

features of financial returns.  One such model proposed by Ding et al (1993), the 

Asymmetric Power ARCH (APARCH), has considerable success in modelling 

time-varying and predictability features of daily returns is applied here to the high 

frequency series.  Furthermore the simulated autocorrelation function mirrors the 
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long memory features of their daily returns series.  This model encompasses seven 

different GARCH related specifications incorporated into a single model nesting 

ARCH, GARCH, and leverage effects coupled with different power 

transformations of the volatility process (see Shephard, 1996; for a survey of time-

varying volatility models and their applications).  The model is applied here to 

determine what stylized features of volatility are associated with the high 

frequency futures and whether this family of GARCH models adequately models 

intraday volatility effects. 

 

The paper proceeds as follows.  In section 2, long memory is discussed.  The 

section is completed by a presentation and discussion of a single representation of 

seven GARCH related processes fitted to the intraday futures series.  Details of the 

futures contracts chosen and data capture follow in section 3.  Section 4 presents 

the empirical findings.  It begins by a thorough analysis of the futures long 

memory characteristics.  In addition, the stylized features of high frequency futures 

series are documented from fitting the APARCH process.  Finally, a summary of 

the paper and some conclusions are given in section 5. 

 

2 Theory of Long Memory and Financial Volatility: 

2.1 Long Memory:  

Long memory properties may be investigated by focusing on the absolute returns 

series, Rtk
, or the squared returns series, [Rt

2
]

k
, and on their power 

transformations, where k > 0.
2
  Models with a long memory property have 

                                                           
2
 For an excellent treatment of long memory processes see Beran (1994).  An alternative approach 

to this paper that does not examine the characteristics of long memory for volatility series calculates 

the degree of fractional integration, d, and this is generally found to be close to 0.4 (Taylor, 2000).   
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dependency between observations of a variable for a large number of lags so that 

Cov[Rt+h, Rt-j, j ≥ 0] does not tend to zero as h gets large.  In contrast, if the 

dependency between observations of a variable disappears for a small number of 

lags, h, such as for a stationary ARMA process then the model is described as 

having a short memory property and Cov[Rt+h, Rt-j, j ≥ 0] → 0.  Formally, long 

memory is defined for a weakly stationary process if its autocorrelation function 

ρ(⋅) has a hyperbolic decay structure:  

ρ( ) ~ , , , ( )j Cj as j C dd2 1 0 0
1

2
1− → ∞ ≠ < <

 

Baillie (1996) shows that long memory processes have the attribute of having very 

strong autocorrelation persistence before differencing, and thereby being non-

stationary, whereas the first differenced series does not demonstrate persistence in 

themselves and is stationary.  However, the long memory property of these price 

series is not evident from just first differencing alone, but has resulted from 

analysis of risk measures.  Long memory has been documented across a large 

sphere of the finance literature from macroeconomic series such as GNP (Diebold 

and Rudebusch, 1989) to exchange rate series (Dacorogna et al, 1993; Baillie et al, 

1996; Andersen and Bollerslev, 1997a, 1997b).  Of closer relevance to this study 

long memory is documented for equity index series, albeit at daily intervals (Ding 

et al, 1993, Ding and Granger, 1996).      

 

The explanations for long memory are varied.  One economic rational results from 

the aggregation of a cross section of time series with different persistence levels 

(Andersen and Bollerslev, 1997a; Lobato and Savin, 1998).  Alternatively, regime 

switching may induce long memory into the autocorrelation function through the 
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impact of different news arrivals (Breidt et al, 1998).  The corresponding shape of 

the autocorrelation function may be hyperbolic, beginning with a high degree of 

persistence that reduces rapidly over a few lags, but that slows down considerably 

for subsequent lags to such an extent that the length of decay remains strong for a 

very large number of time periods.  Also, with a slight variation, it may follow a 

slowly declining shape incorporating cycles that correspond to intraday volatility 

patterns associated with different trading hours (Andersen and Bollerslev, 1997a, 

1997b).    

 

Whilst second order dependence is a characteristic of financial returns, usually 

modeled by a stationary GARCH process, these specifications have been 

questioned as to their ability to model the long memory property adequately in 

contrast to their Fractionally Integrated GARCH counterparts (Baillie, 1996).  For 

instance, while stationary GARCH models show the long memory property of 

financial returns volatility series occurs by having [Rt
2
] and |Rt| with strong 

persistence, they assume that the autocorrelation function follows a certain pattern 

not corresponding to a long memory process.  In particular, the correlation between 

[Rt
2
] and |Rt| from stationary GARCH models and their power transformations 

remain strong for a large number of lags, with the rate of decline following a 

constant pattern (Ding et al, 1993), or an exponential shape (Ding and Granger, 

1996).  In contrast, a number of returns series, both [Rt
2
] and |Rt|, in fact have been 

found to decay in a hyperbolic manner, namely, they decline rapidly initially, and 

this is followed by a very slow decline (Ding and Granger, 1996).  However, Ding 

et al (1993) find that the APARCH model nesting seven GARCH specifications 
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adequately models long memory for equity series observed at daily intervals and 

this analysis is extended for relatively high frequency intraday series.
3
      

 

2.2 APARCH Model: 

Ding et al (1993) propose a generalised version of seven GARCH related processes 

with a link based on their parameter values, named an APARCH model.  This 

model nests the following specifications: ARCH (Engle, 1982); Non-linear ARCH 

- NARCH (Higgins and Bera, 1992); Log-ARCH (Geweke, 1986/Pantula, 1986); 

GARCH with variance (Bollerslev, 1986); GARCH with standard deviation 

(Taylor, 1986/Schwert, 1990), Threshold ARCH - TARCH (Zakoian, 1991); and 

GJR (Glosten et al, 1993). In fitting the APARCH model to time series, it offers 

the flexibility of dealing with different power transformations incorporating for 

instance, the variance and standard deviation that are associated with the 

identification of long memory for financial data.  Furthermore by incorporating 

Schwert’s (1990) model it allows for absolute realisations, again used to model 

long memory features of financial returns.  Given the success of applying the 

APARCH specification in modelling long memory at daily intervals (Ding et al, 

1993), it is interesting to extend this analysis to intervals of interest to the everyday 

operations of a trading desk. 

 

The APARCH model, will in the first instance, be applied to determine which 

features of the seven processes describe the volatility characteristics of the futures 

data.  Secondly it will examine the features of the standardised residuals from 

fitting the APARCH model.  As well as describing the traditional time dependent 

                                                           
3
 Alternative modelling approaches using for example, Fractionally Integrated GARCH and Long 

Memory Stochastic Volatility processes could also be followed but are not examined in this study. 
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volatility feature, the model specifically incorporates the leverage effects (see 

Black, 1976), by letting the autoregressive term of the conditional volatility 

process be represented as asymmetric absolute residuals.  The most appropriate 

version from these seven processes is determined through statistical analysis of the 

fitted APARCH model.  The volatility expression is given as:  

The residuals, εt, were initially assumed to be from a conditionally normal process 

as in Engle’s (1982) representation of the stochastic volatility process, but can 

easily take on other conditional assumptions.  Given the commonly found fat-tailed 

characteristics in financial returns, the conditional mean process can be adjusted 

for this attribute with the assumption of a student-t distribution as in (Baillie and 

DeGennaro, 1990) or the generalised exponential distribution as in (Nelson, 1989).   

 

3 Data Considerations 

The empirical analysis is based on transaction price data obtained from Liffedata 

for futures contracts trades on the LIFFE exchange.
4
   The FTSE100 stock index 

contract, the UK Long Gilt bond contract, and the Three-month Sterling interest 

rate contract are the asset type proxies chosen for analysis between 1998-1999.  

                                                           
4
 Information is available on the time of trading upto the nearest second, the originator of the trade 

whether from the trading floor or electronically, the price and volume traded of the contract and its 

expiry date, and the transaction code (bid, ask, trade, spread and volatility).  Furthermore, this 

exchange has made a clear distinction, between contracts that are either linked to an underlying 

asset or developed formally on the basis of links to the recently developed European currency, the 

Euro, and those that remain linked to factors outside the currency area.  Representative samples of 

the latter asset type based on the consideration of being the most actively traded, and thus providing  

more accurate information, using market volume are included.   
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Data is available on contracts for four specific delivery months per year, March, 

June, September and December with prices chosen from the most actively traded 

delivery months using a volume crossover procedure.  The empirical analysis is 

completed on the futures contracts for a sampling frequency of five-minute prices 

based on microstructure arguments.  Primarily, the bias induced by non-

synchronous trading as a result of interpolation of tick data at this time interval is 

minimised  (Andersen et al, 1999).  This non-synchronous trading issue results in 

large and negative autocorrelation in the newly formed returns’ series (Lo and 

MacKinlay, 1990).  As an example, consider dependency in tick data caused by 

bid-ask bounces which may be as a result of the sequential execution of limit 

orders on the books of a specialist as the market moves through those limit prices.  

Turning to less high frequency intervals, for example 5-minutes, minimises this 

effect.  For each contract, log closing prices (or log closing prices to the nearest 

trade available) for each interval are first differenced to obtain each period’s return. 

 

A full trading day, and consequently the full set of returns, depends on hours of 

trading and holiday effects.  Each futures contract is cleaned for these effects, as 

they would impact on respective contracts’ time series characteristics.  In 

particular, the FTSE100 future’s trading day is between 08.35 and 18.00, the UK 

Long Gilt between 08.00 and 18.00, and the Sterling contract between 08.05 and 

17.55.
5
  Prior to cleaning, the futures (FTSE100 – 113, UK Long Gilt – 120 and 

Sterling – 118) involved different numbers of daily trading intervals.  Turning to 

the specific details of the data capture, trading does not take place during 

weekends.  In addition all contracts had holidays removed involving 9 per year.  

                                                           
5
 The last trade on the Sterling contract is actually 17.57 but the cut-off is imposed due to the lack 

of a complete five-minute interval. 
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These consisted of New Year’s (two days), Easter (two days), May Day, Spring 

holiday (1 day), Summer holiday (1 day), and Christmas (two days). This results in 

251 trading days per year
6
.  Finally, any five-minute interval not including a trade 

is excluded, and this had the greatest impact on the Sterling contract.
7
  For 

instance, relatively scant trading volume occurs for the Sterling futures between 12 

and 2pm.   

 

4 Empirical Findings 

4.1 Long Memory Properties of UK Futures: 

A preliminary examination of the futures data indicates a number of well-known 

characteristics.  These include non-symmetric leptokurtotic returns.  Furthermore, 

excess kurtosis becomes more pronounced moving from the returns series to the 

volatility estimates.
8
 The autocorrelation function (ACF) is used to determine 

dependency in the UK futures series following amongst others Ding et al (1993) 

and Granger and Ding (1996) over a large number of lags.
9
  The patterns of the 

autocorrelation values have similar features for the different assets analysed.  

Generally we see that the autocorrelation values of returns are negligible compared 

to absolute and squared returns series suggesting that dependence is not evident in 

returns themselves but rather is prevalent in the volatility series.  In particular this 

                                                           
6
 Specifically, in 1998 this involved January 1, April 10, April 13, May 4, May 25, August 31, 

December 25, December 28, December 31; and in 1999 it involved January 1, April 2, April 5, May 

3, May 31, August 30, December 27, December 28, December 31. 
7
 In contrast, many intervals contained a multitude of trades although only a single return is 

computed for each interval.  However, it is important to note that the long memory properties may 

be affected by thin trading, especially the Sterling contract.  The cleaned series total 55011 

(FTSE100), 57227 (UK Long Gilt), and 27406 (Sterling) returns respectively. 
8
 The preliminary findings are not presented to aid conciseness and are available on request. 

9
 Although there is possible miss-specifications with the approach examining only a few lags 

(Lobato and Savin, 1998), the extensiveness of the analysis are able to clearly identify the long 

memory property.  Furthermore, alternative approaches for identifying long memory such as the 

LM test and Wald test are invalidated if a finite fourth moment does not exist (Lobato and Savin, 

1998) as indicated for financial returns by Loretan and Phillips (1993).     
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is true for the UK Long Gilt contract that has relatively few significant 

autocorrelation values for the returns series, but very strong persistence evident for 

the volatility series at very large lag numbers.  This second stylised fact documents 

the long memory property of the volatility series having an autocorrelation 

structure that decays slowly, with significant positive values over a large number 

of lags.   

 

As previous studies (see for example, Taylor, 1986) suggest that the long memory 

of low frequency returns series tend to be stronger for the absolute returns series at 

the expense of the squared series, it is worth analysing this issue for high frequency 

intervals.  In table 1, we see the number of significant autocorrelation values for 

each volatility series incorporating separate power transformations.  The findings 

are clear with few exceptions, notably, the assets analysed here confirm the 

previous findings that the persistence property is strongest for the absolute returns 

series.     

INSERT TABLE 1 HERE 

 

Taking the bond contract, the UK Long Gilt future as an example to illustrate 

variations in dependency, we see that squared and absolute values are reasonably 

similar in magnitude (0.2455 versus 0.2399 for the series k = 1, and at lag 1), but 

that the latter values generally dominate the former.  The extent of the long 

memory property for this futures contract regardless of the volatility measure is 

clearly evident with an autocorrelation structure that decays very slowly with all 

5722 lags statistically significant for k = 1.  Similar findings are made for the other 

contracts.  Notable exceptions include the Sterling contract with the power 
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transformation k = 0.25 at almost all lags, and the FTSE100 contract for the 

equivalent series at lags 1 and 2.  The values in table 1 also demonstrate the 

relative strength of long memory according to asset type.  From all the results, it is 

clear that the long memory property is strongest for the UK Long Gilt contract, 

with the characteristic weakest for the Sterling contract.  The ambiguity regarding 

the long memory property, and also as we will see later its intraday patterns for the 

Sterling contract may be as a result of its degree of thin trading especially around 

lunchtime vis-à-vis the other contracts. 

 

A further issue that invites examination is which power transformation, k, 

demonstrates the long memory property at its strongest.  To answer this, we again 

examine the values in table 1.  Interestingly, this property is never at its strongest 

for the original volatility series, namely where k = 1.  For example, taking the 

squared returns series of the FTSE100 as a case in point, we see that persistence is 

strongest for the power transformation of k = 0.25 for nearly all lags (4598) 

significant.  Concentrating on the absolute returns series that dominate the 

autocorrelation values in terms of magnitude, we see that long memory is strongest 

for the stock index contract at k = 0.5, the bond contract at k = 0.5 (with larger 

autocorrelation values for respective lags), and the Sterling contract at k = 0.75 

according to the aggregate levels of slow autocorrelation decay, as well as the 

magnitude of the individual lag values cited.  In contrast, Ding et al (1993) find 

that autocorrelation is strongest for k = 1 for stock indexes using daily 

observations.  The associated correlation values for these series showing the long 

memory property at its strongest shows the full extent of persistence in the assets 

analysed with the UK Long Gilt having all lags positive and significant, the 
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FTSE100 being only slightly less resolute for the aggregate numbers of significant 

lags and in terms of magnitude, and finally, the Sterling contract’s long memory 

results diverging from the other two assets.  This latter asset’s findings are 

surprising given the general support of long memory offered for financial time 

series in general, but it does point out that asset type classification may be an 

important determinant in citing persistence and its associated degree of strength.   

 

Having first established the long memory property of volatility measures, it is 

worth exploring the shape of the autocorrelation function to determine their 

patterns.  Previous evidence suggests that the autocorrelation function for asset 

volatility series follows a hyperbolic decay structure that decreases relatively fast 

initially, and then starts decreasing very slowly (Ding et al, 1993).  In figure 1 each 

respective contract’s autocorrelation values are plotted over a trading week where 

the long memory property is strongest, namely for the absolute returns series 

representing 5 complete trading days.  Certainly this appears to be true for the UK 

Long Gilt Contract with for example, the first 20 lags of untransformed absolute 

returns series falling consecutively from 0.2455 to 0.0454 and then decays slowly.  

Similarly, this is also true for the Sterling contract, the one that shows the weakest 

signs of long memory persistence. However, there are a number of discrepancies 

here that suggest further examination. For instance, looking at the FTSE100, we 

see a general decay in autocorrelation values at greater lags, but this does not 

follow the hyperbolic decay structure.  Here, there appears to be a cyclical pattern 

within the declining persistence, and this would agree with evidence presented for 

stock index and exchange rate series (Andersen and Bollerslev 1997a; 1997b). 

INSERT FIGURE 1 HERE 
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Daily periodicity of persistence is clearly evident for the stock index and bond 

futures with 5 repeated cycles presented.  In contrast, no clear pattern emerges for 

the interest rate contract, with the exception that persistence is reasonably small, 

especially after lag 100 where the series resembles realisations of white noise.  

Specifically, for the FTSE100 contract, volatility persistence follows the u-shaped 

pattern corresponding to high levels at opening and closing times that surround 

lower levels during the rest of the day.  Support for this pattern in the volatility 

measures are caused by strategic interaction of traders at opening and closing times 

is offered for other stock indexes (Brock and Kleidon, 1992).  The pattern for the 

periodicity of the persistence of the UK Long Gilt differs slightly, with the 

existence of an overall u-shape that incorporates two smaller u-shaped patterns 

involving half-day cycles.  Also, there is a slight day-of-the week effect for these 

latter two assets with an overall consecutive reduction in the first four cycles 

followed by a small increase in the peak on the fifth cycle.
10

                         

 

4.2 APARCH Model Findings: 

Turning to the GARCH modelling, each returns series is fitted with a multitude of 

APARCH specifications using the Berndt-Hall-Hall-Hausman (1974) algorithm in 

S-PLUS.  Variations under the auspices of modelling the conditional mean with an 

ARMA (and separately with an AR and MA) process, coupled with various 

numbers of lags (P, Q) in the conditional variance expression, are examined.  In 

addition, to assuming that the conditional returns series can be modelled with  

                                                           
10

 The pattern for the FTSE100 is very similar to the S&P 500 (Andersen and Bollerslev, 1997b).  

In contrast, weekend effects would also be evident in the u-shaped pattern for assets that trade 

continuously over the full trading week (Dacorogna et al, 1993).  
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gaussian errors, the commonly noted fat-tailed characteristic of financial returns is 

accounted for, by modelling the error terms with student-t and generalised 

exponential distributions.  Findings for the optimal models based on the AIC and 

BIC criteria are presented in table 2 offering support for an APARCH 

specification.  The APARCH model itself is well specified with all parameters 

significant at asymptotic significance levels.  Generally, the conditional volatility 

models are similar in their attributes.  For each series, the APARCH specification 

relying on a conditional student-t distribution dominates the other models.  The 

parsimonious specification with p and q equalling one is also optimal for each 

series.  Inclusion of AR and MA terms in the conditional mean equation is valid 

for the Long Gilt and Sterling contracts, whereas neither term is appropriate for the 

FTSE100 futures.  Also, significant leverage effects, γ, are accepted for each 

contract, demonstrating that information has an asymmetric effect on volatility 

with bad news having a greater impact than good news.   

INSERT TABLE 2 HERE 

 

Whilst all contracts exhibit similar time series characteristics, with for example, all 

confirming the covariance stationary property, by having α + β < 1, there is some 

divergence in the volatility estimates with the Sterling contract exhibiting much 

smaller but significant persistence with its β estimate.  However in general, the 

volatility parameter estimates for 5-minute intervals correspond to those from daily 

observations.  Whilst changing persistence parameters have been noted for 

estimation at different frequencies daily and 5-minute estimates are similar 

(McMillan and Speight, 2002).  An implication of these parameter estimates 

investigates the volatility clustering for each futures examining the half-life of the 
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impact of a shock to the volatility measure, σt, calculated from –log 2(log αi + βi)
-

1
.  This measure gives the number of time periods it takes for half the expected 

reversion back to σt after a shock occurs.  From table 2, we see that on average the 

persistence in the volatility measures for the UK Long Gilt and FTSE100 contracts 

are the same at approximately 114 minutes (22.75 5-minute intervals).  These 

differ substantially from the smaller persistence of the Sterling contract’s value of 

13 minutes (2.65 5-minute intervals).   

 

As volatility persistence is found for all futures series, a concise method of 

distinctions is made as to the most appropriate version of GARCH related 

specification by examining the coefficients of the volatility model.  Here we see, in 

addition to ARCH effects, GARCH and leverage effects also occur.  The 

significant leverage effects illustrate that information has an asymmetric effect on 

volatility.  Thus Engle’s (1982) ARCH, Higgins and Bera (1992) Nonlinear 

ARCH, and the Log-ARCH process of Geweke (1986) and Pantula (1986) would 

not optimally fit each series volatility generating process due to the lack of 

GARCH and leverage characteristics.  In addition, the lack of moving average 

terms, βj, in the volatility expression outweighs the advantages of the inclusion of a 

leverage term in Zakoian’s (1991) TARCH model.  Similarly, whilst GARCH 

effects are documented for each series, the existence of statistically significant 

leverage effects are included in neither Bollerslev’s (1986) or Taylor (1986) and 

Schwert’s (1990) generalised processes.  Moving to the final model that is 

incorporated by an APARCH process, there does appear to be support initially for 

GJR’s (1993) model with the inclusion of both ARCH and GARCH effects, 

coupled with asymmetric leverage effects.  However, as the t-statistics of δ, are all 
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significantly different from two, the power characteristic of GJR’s model is not 

accepted.  In fact, whilst the APARCH process is itself well specified with all 

parameters significant, there is no clear conclusion with regards to the suitability of 

the specific nested models δ values for any of the futures contracts analysed.       

 

As stated, the second objective from fitting the APARCH model is to determine 

the features of the standardised residuals, the residuals divided by the APARCH 

estimates of conditional volatility.  Autocorrelation findings are presented in table 

3 and we see that the rescaling does not have a consistent effect on the original 

series.  For instance, persistence is strongest both in terms of magnitude and 

staying power for the absolute standardised residuals series.  In addition, long 

memory is never strongest for the standardised residuals volatility series at k = 1 

regardless of whether it’s the absolute or squared values.  However, in comparing 

the absolute series with the most persistence, we see a slight change.  Whilst the 

findings for the stock index contract remain unchanged (k = 0.5), the magnitude of 

autocorrelation values for the UK Long Gilt series, k = 0.25, now outweighs its 

original counterpart.  Also, there is an impact for the Sterling contract, with k = 

0.25 now offering the strongest levels of persistence, and a very large first spike 

(0.4258). 

INSERT TABLE 3 HERE 

 

Focusing more closely on the findings in table 3, we do see some minor 

differences in the autocorrelation structure of the standardised residuals volatility 

series.  For the squared standardised residuals, the persistence has a quicker decay 

after fitting the conditional volatility model.  For example for the series k = 0.25, 
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the full impact is complete after 2224 lags, whereas it remains in the absolute 

returns series for the full lifetime of analysis.  Also, for the squared standardised 

residuals, there are slightly weaker autocorrelation values for the Sterling contract 

at d = 1. In contrast, differences in the absolute standardised residuals series are 

mainly in having stronger dependence for the contract analysed.  For example with 

the FTSE100, there is a similar structure to the decay of the autocorrelation values 

for the standardised residuals series vis-à-vis the original series, but with the long 

memory property being slightly more pronounced for the former series.  The 

strongest signs of this characteristic occur for k = 0.25 after obtaining the 

standardised residuals from fitting the APARCH specification.  Generally the 

rescaling does not remove long memory indicating an inability of the APARCH 

model to capture this property for high frequency interval.   

 

5 Summary and Conclusions 

Accurate volatility measures are paramount for optimal risk management practices.  

The intraday features in the risk measures have important implications for 

modelling the volatility of high frequency realisations.  However intuitively, 

financial markets and the behaviour of volatility patterns would have a number of 

sources of time dependence, for example cyclical occurrences.  This paper 

concentrates on identifying and accounting for the long memory property.  First, 

long memory is investigated through the autocorrelation function for a large 

number of lags of two volatility series, absolute returns, and squared returns.  

Then, seven related GARCH processes through an APARCH specification, are 

fitted to the data to determine what stylized features are inherent in the high 

frequency realisation.  In particular, previous successful evidence in modelling 
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long memory using the APARCH process at daily intervals is the backdrop for the 

analysis in this study.  This paper turns its attention to intraday volatility series for 

three different asset types, using stock index, and the less risky, interest rate and 

bond futures.  The FTSE100, UK Long Gilt and Sterling contracts are the most 

actively traded representatives of each asset type from the LIFFE exchange.  

Observations at 5-minute intervals are chosen to minimise non-synchronous 

trading effects.  Each contract is cleaned to remove non-trading and holiday 

effects. 

 

The results presented for the volatility series are novel and interesting.  First, as 

well as volatility magnitudes varying by asset type, long memory properties do 

also.  In particular, dependency in the volatility structure at a large number of lags 

is strongest for the bond contract, followed by the stock index contract.  Second, 

long memory is strongest for the absolute returns series for all contracts.  This 

feature occurs in the length of the memory and the magnitude of the dependence.  

Third, for all assets, the long memory property is strongest at a power 

transformation of k < 1.  These two findings suggest that the use of absolute 

returns as a volatility measure and at different transformations offer attractive 

alternatives for describing the long memory property.  Fourth, intraday periodicity 

is strongly supported for two of the assets analysed, with again the interest rate 

futures displaying weaker evidence. 

 

Turning to the findings from fitting the parametric APARCH model, further 

important conclusions are made.  Whilst the APARCH model itself fits the data 

adequately in terms of describing the general volatility features of the data, none of 
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the seven separate GARCH models are fully well specified.  This implies that 

modelling volatility with a generalised process incorporating a number of stylized 

features may dominate modelling with individual standard GARCH related 

specifications.  Furthermore, the APARCH process is unable to remove the long 

memory features by rescaling the original futures series.  Long memory remains, 

and follows a slightly different pattern prior to rescaling.  Future parametric work 

on high frequency realisations should incorporate alternative approaches such as 

the discrete Fractionally Integrated GARCH (FIGARCH) related models (Baillie et 

al, 1996) or the Long Memory Stochastic Volatility (LMSV) processes (Breidt et 

al, 1998) to assess their ability to capture long memory with cyclical intraday 

patterns.  
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Table 1: Autocorrelation Estimates for Squared and Absolute Returns at Different 

Power Transformations 

 k=0.25 0.5 0.75 1 1.25 1.5 1.75 2.0 

Squared         

FTSE100         

> 0 4598 1010 340 242 195 171 153 25 

< 0 5 0 0 0 0 0 0 0 

UK Long Gilt         

> 0 5722 2681 1360 2038 2208 1992 1468 840 

< 0 0 3 295 0 0 0 0 0 

Sterling         

> 0 345 343 102 43 28 23 19 16 

< 0 3 5 0 0 0 0 0 0 

         

Absolute         

FTSE100         

> 0 3586 4598 3493 1010 434 340 281 242 

< 0 5 0 0 0 0 0 0 0 

UK Long Gilt         

> 0 5722 5722 5720 2681 1255 1360 1721 2038 

< 0 0 0 0 3 326 295 75 0 

Sterling         

> 0 273 345 394 343 194 102 63 43 

< 0 7 3 3 5 3 0 0 0 

Notes: The critical values for each contract are ±0.008 (FTSE100), ±0.008 (UK 

Long Gilt) and ±0.012 (Sterling).  The rows labelled > 0 and < 0 represent the 

number of autocorrelation values that are significantly greater than and less than 

zero respectively. 
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Table 2: APARCH Models for Five-minute UK Futures Returns 

 FTSE100 UK Long Gilt Sterling 

AR  0.53 0.27 

  (30.13)
 ***

 (9.79)
***

 

MA  -0.57 -0.43 

  (-34.48)
 ***

 (-16.77)
 ***

 

α0 0.01 7.10E-04 9.00E-07 

 (3.13)
 ***

 (8.35)
 ***

 (1.53)
*
 

α1 0.15 0.11 0.15 

 (9.51)
 ***

 (56.97)
 ***

 (30.06)
 ***

 

β1 0.82 0.86 0.62 

 (39.15)
 ***

 (310.81)
 ***

 (73.38)
 ***

 

γ1 -0.09 -0.08 -0.09 

 (-1.60) (-4.21)
 ***

 (-4.59)
 ***

 

δ 1.07 0.47 1.17 

 (9.14)
 ***

 (-46.22)
 ***

 (2.79)
 ***

 

Likelihood 6162.87 384241 221382 

AIC -2.05 -768463 -442746 

BIC -2.04 -768383 -442672 

Notes: Marginal significance levels using Bollerslev-Wooldridge standard errors 

are displayed by parentheses.  A single asterisk denotes statistical significance at 

the 10%, two denotes statistical significance at the 5% level, while three denotes 

statistical significance at the 1% level.  The t-statistics for the power coefficient, δ, 

represents the value being significantly different from 1.  Optimal models are 

chosen based on Akaike’s (AIC) and Schwarz’s (BIC) selection criteria. 
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Table 3: Autocorrelation Estimates for Rescaled Squared and Absolute Returns at 

Different Power Transformations 

 k=0.25 0.5 0.75 1 1.25 1.5 1.75 2.0 

Squared         

FTSE100         

> 0 570 473 301 205 154 122 99 79 

< 0 113 5 0 0 0 0 0 0 

UK Long Gilt         

> 0 2224 956 1201 879 584 388 263 174 

< 0 8 109 0 0 0 0 0 0 

Sterling         

> 0 241 96 63 24 8 4 2 2 

< 0 17 18 5 0 0 0 0 0 

         

Absolute         

FTSE100         

> 0 4569 4704 3511 1009 434 340 281 242 

< 0 5 0 0 0 0 0 0 0 

UK Long Gilt         

> 0 5722 5722 5720 2648 1254 1352 1692 1977 

< 0 0 0 0 3 315 292 75 0 

Sterling         

> 0 1856 1643 1432 1123 665 266 129 48 

< 0 10 10 17 24 19 3 0 0 

Notes: The critical values for each contract are ±0.008 (FTSE100), ±0.008 (UK 

Long Gilt) and ±0.012 (Sterling).  The rows labelled > 0 and < 0 represent the 

number of autocorrelation values that are significantly greater than and less than 

zero respectively. 
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Figure 1: Plots of Autocorrelation Values across a trading week Absolute Returns 

showing the Long Memory Property at its Strongest.  Confidence intervals are 

imposed on each plot. 

 


