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Abstract

We analyse the roles of social network topology and size on the monopoly pric-
ing of network goods in a market, where consumers interact with each other and are
characterised by their social relations. The size e¤ect is the well-known network ex-
ternalities phenomenon, while the topological e¤ect has not been previously studied
in this context. The topological e¤ect works against, and dominates, the size e¤ect
in monopoly pricing by reducing the monopoly�s capacity to extract consumer sur-
plus. Under asymmetric information about consumer types, the monopoly prefers
symmetric network topologies, but the social optimum is an asymmetric network.
Keywords: Social relations, networks, coordination, monopoly.
JEL Classi�cation: D42, D82, L14.

1 Introduction

Economists have synthesised network e¤ects in positive externalities: an agent�s utility in-
creases as an additional member joins his network. However, real world networks exhibit
often topological asymmetries that challenge this straightforward relation. For example,
some people maintain only few close relations, whereas some people have a large number
of more shallow acquaintances. In this paper, we analyse how monopoly pricing depends
on the network size and topology in markets for social goods, such as personal commu-
nications equipment, which induce network e¤ects. Where the size e¤ects have been well
covered in the previous externalities literature, we discover topological e¤ects that have
been overlooked thus far.

The conventional externalities model, building on the seminal works by Farrell and
Saloner (1985), Katz and Shapiro (1985), David (1985), and Arthur (1989), assumes a

�I thank Yann Bramoullé, Juuso Välimäki, Robin Mason, Tuomas Takalo, Pekka Ilmakunnas, Olli
Kauppi, Ismo Linnosmaa, Pauli Murto, Jean-Charles Rochet, Steinar Vagstad, the Editor, two anonymous
Referees and seminar participants at the HECER, the FDPE, and the XXVIII Annual Meeting of the
Finnish Society for Economic Research for helpful comments. I �nalised the �rst version of the manuscript
while working at the Helsinki School of Economics. I also thank the Université de Toulouse 1, where
the original idea was developed, for the hospitality while I was staying there. The �nancial support from
the European Commission and the ENTER network, the FDPE, and the Yrjö Jahnsson Foundation is
gratefully acknowledged.
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functional form for network e¤ects: a network member�s marginal utility is positive for
an additional network member.1 This relation constitutes the size e¤ect. In a two-period
model, Cabral et al. (1999) show how positive network externalities create an incentive for
the monopolist to price so that the consumers buy in the �rst period rather than at the later
stage. This involves an increasing price path. In general, the size e¤ect creates an incentive
for the monopolist to sell more than without network externalities in order to increase the
value of the good. A similar incentive is present under negative network externalities;
the monopolist limits supply in order to increase the value of the good (Kessing and
Nuscheler 2006). Mason (2000) associates network externalities with economies of scale
on the demand side. He shows that the monopolist prices at marginal cost, but grows
the network size slower than the socially optimal rate, as it fails to internalise the full
bene�t of increasing the current size of the network.2 The conventional externalities
approach implicitly takes the underlying relations network as a completely connected
graph, where each network member is linked with everybody else. In other words, any
kind of heterogeneity in terms of social relations is absent. However, and as I show in
this paper, the size e¤ect is often exaggerated, and dominated by an e¤ect due to network
topology. Therefore, in markets where the social relations are important, the conventional
approach falls short and needs to be re�ned.

A recent literature on social relations studies the question of how network members
can bene�t from their connections, when there are well-connected members and members
with only a few connections. There are two classes of social relations models.3 One class
takes the network structures as exogenous to the model, and the other studies endogenous
network formation. There is a very rich literature analysing models where the agents are
characterised by their pre-existing, exogenous, social relations.4 Jackson (2005) is a survey
on the endogenous (undirected) network formation models. The network formation set-up
is particularly �tting for e.g. �rm-level interaction (see Kranton and Minehart 2001 about
buyer-seller networks, and Goyal et al. 2003 about R&D collaboration networks). The
problem is, however, that the economic dimension in link formation can be di¢cult to
isolate, e.g. in personal relations. In contrast, if the network is exogenous, we can focus
on the speci�c economic problem, such as whether to buy or not a mobile phone when
the decision is a¤ected by the network structure of personal relations. It is often the case
that social relations exist prior to the decision making. For example, when we think about
buying a mobile phone, we think about with whom we can use it, not how many new

1Consider the example by Mason and Valletti (2001): A link between two network members gives utility
equal to 1: When a new member joins the network with n� 1 existing members, the total utility increases
by 2 (n� 1). The total utility in the network of n members, when n is large, is n (n� 1) � n2: This
corresponds to the famous Metcalfe�s Law, which states that the value of the network equals the square
of the number of its members. Swann (2002) studies the functional form approach in more detail. He
establishes speci�c conditions that the utility function and the di¤usion law governing the network good�s
adoption rate must satisfy for Metcalfe�s Law to hold.

2Bensaid and Lesne (1996) obtain results that also overturn the Coase conjecture of durable goods
monopolist, similar to the results by Mason (2000). They illustrate how the optimal price path of the
monopolist can be increasing when network externalities are delayed so that the �rst adopters do not
bene�t from network externalities while the future buyers� utility is increasing in the number of �rst
buyers.

3Related to the social networks models, in local interaction games network members coordinate their
actions on a �xed relations network over time (see Ellison 1993, Young 1998 ch.6, Lee and Valentinyi 2000,
and Morris 2000).

4See Sääskilahti (2005b) for a list of references for di¤erent application �elds where the social network
is taken as exogenous.
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friends we get by using it. We follow this line of analysis and treat the social network as
exogenous in our model.

Our model di¤ers from the previous work on (exogenous) social networks in two as-
pects. First, we endogenise the network members� payo¤s via monopoly pricing. The
question we are interested in is, how an external player (the seller) can take advantage
of the (buyers�) social network structure. Secondly, we introduce asymmetric information
with respect to the consumer types. Sundararajan (2005) and Banerji and Dutta (2005)
analyse closely related models of product adoption with local network e¤ects. Banerji and
Dutta (2005) are, to our knowledge, the only others who study endogenous pricing under
local network e¤ects. They analyse the case of a Bertrand duopoly, and show that, in
certain network topologies, market segmentation with positive pro�ts is feasible. They,
however, analyse only the case of perfect information. Sundararajan (2005) analyses a
model with imperfect information. He studies the existence and e¢ciency of equilibria in
a coordination game with action complementarities where the agents are characterised by
their local network connections. His model involves imperfect information with respect to
both the consumer types as well as the network structure. Our paper di¤ers from Sun-
dararajan (2005) in that he does not analyse endogenous pricing, as the cost of adoption
is �xed in his model. Tucker (2006) is the �rst to analyse empirically the role of social
network topology in conjunction with the adoption of a network good.

We study the case where a monopoly launches a new device that constitutes an e¢cient
medium for interaction. The product has no intrinsic value, as it is used only when two
people interact with each other. As a consequence, a potential buyer needs to coordinate
his actions with the other people on whether to switch to the new good or to stay using the
legacy system. We think of products such as the fax machine that is a relatively drastic
innovation in the sense that it is not compatible with the earlier generation products (postal
and courier services). Other examples are PC and mobile phone software, and the �xed
line telephony in the late 1800�s. The �rm decides on the device price. It understands that
a low price may help in solving the buyers� coordination problem, but it erodes margins.
Consumers are characterised by their exogenous personal social relations. Each person
is interested only in interacting with a subset of the population, called his neighbours,
who are e.g. their friends, family, and colleagues.5 Consumers are heterogeneous with
respect to the attainable interaction utility. For example, some people like to write letters
(the conventional way to interact), whereas some people prefer to send e-mails (the novel
product). Importantly, a consumer cannot tailor his actions vis-à-vis each neighbour. This
way, he must consider the overall network structure, rather than each link separately.

We analyse two informational regimes. In the �rst one, all information is perfect, and in
the other case, the buyers� types are private information. We give general characterisations
of both cases, and apply them to three network topologies: complete graph, circle, and
star. The complete graph and the circle are symmetric networks, whereas the star is
asymmetric. The complete graph is the structure implicitly assumed in the conventional
network externalities models.

We show how certain consumers have critical network positions through their social
relations, which give them leverage against the monopoly, and are thus able to capture
higher surplus than other people. Critical network members, whose connections are impor-
tant from all network members� perspective, exist in asymmetric and symmetric networks

5See Tucker (2006) for an empirical result supporting the assumption that network bene�ts are pre-
dominantly a "local", rather than a "global", phenomenon.
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under perfect information. In symmetric networks, the critical roles are due to consumer
heterogeneity. Members who have links with high types are critical, as opposed to the high
types themselves. When information is reduced to asymmetric, these critical roles cease to
exist. On the other hand, the critical roles due to centrality in the network always capture
higher utility in asymmetric networks under asymmetric information. This is not true
necessarily with perfect information, as it depends on the level of consumer heterogeneity.

Our main �nding is that the network topology has a dominating e¤ect on the optimal
monopoly price. The topological e¤ect is caused by the existence of the critical roles. The
�rm�s response to the existence of critical consumers is to set a lower price in order to
guarantee a higher probability to buy for them compared to the other consumers. The
more completely linked the network is, i.e. the more connections the members have, the
higher the optimal price is. In other words, the topological e¤ect dominates the size e¤ect,
and it is the stronger the less linked the network is. As a result, the implicit complete
graph assumption of the conventional network externalities model risks overestimating the
value of the network e¤ects and the level of the monopoly mark-up.

Under asymmetric information, the asymmetric network topologies yield lower monopoly
pro�ts, but higher total surplus, than symmetric networks of a given link value do. There-
fore, the monopolist�s and the society�s preferences are misaligned. The topological e¤ect
has distributional implications via monopoly pricing, as the critical and the other net-
work members obtain opposite surplus e¤ects when the number of network members is
increased under asymmetric information. The �rm can match the pro�ts generated in
symmetric networks, if price discrimination according to the network position is allowed
in asymmetric topologies. Price discrimination equalises the buying probabilities of the
critical and non-critical consumers, but it reduces total surplus.

In section 2, we formalise the model. We study the perfect information case in section
3. We analyse the asymmetric information case in section 4. We conclude in section 5.

2 Network structure and actions

The timing of events is that �rst the consumers draw their types, then the �rm sets the
device price, after which the consumers decide on buying. The interaction structure in
the model is given by a graph G =(I; E) ; where the set of nodes is I = (1; :::; I) ; I 2 N;
and the set of undirected links, or edges, between the nodes is E � I � I. The nodes
i 2 I are interpreted as consumers, and the links fi; jg 2 E are connections between
the consumers. Two consumers connected by a link are called neighbours. The set of
neighbours of the consumer i is Ni = fj 2 I n i : fi; jg 2 Eg :We assume that the graph is
completely connected, i.e. there exists a path between any two nodes. The total number
of links jEj corresponds to the size, or link value, of the graph. The topology of the graph
follows from the link wiring E between consumers.

The network inherits its structure from outside the model. The links represent personal
relationships with family, friends and colleagues. We assume that these connections have
been formed prior to the launch of the product, and they are not a¤ected by the availability
of a new medium for interaction. Because the network is constant over time, also the �rm
is able to acquire information of its structure. Hence, we assume that the structure of the
graph is common knowledge.

Assumption 1 The graph G =(I; E) is common knowledge.
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The problem for the consumer i is to choose an action ai 2 f0; 1g ; where 1 = buy
the new device and 0 = do not buy. If both end nodes of a link buy, their interaction is
mediated by the new good. In this case, we call that the link becomes "active". If only
one of the consumers buys or neither buy, the link remains inactive.

Throughout the paper, we are interested in the role of the exogenous structure of the
social network on the activity level that results from consumers� buying decisions. The
following de�nition characterises the activity level on the network.

De�nition 2 The activity level on the network is said to be
(i) a complete network, when min ai = 1; i 2 I:
(ii) an empty network, when max ai = 0; i 2 I:
(iii) a partial network, when min ai = 0 and max ai = 1, i 2 I.

All interaction is mediated by the new product in a complete network. In a partial
network some, but not all, interaction is mediated by the new product. In the empty
network, no-one uses the new product.

The value of an inactive link is normalised to zero representing the utility from interac-
tion with the help of older generation systems. Interaction generates positive utility when
it is facilitated by the new device. This can be thought as an e¢ciency gain or additional
utility obtained from the types of interaction not previously available. Importantly, the
consumer i has an interest in interacting only with his neighbours Ni. The consumer i
gets utility �i; corresponding to his type, from each activated link he has. The value �i
is an i.i.d. random variable drawn from the uniform distribution F (�) with the support�
��; �+

�
; �� � 0, for all i 2 I. We assume that �i is independent of the network location

the consumer i occupies, because the social relations are formed prior to the launch of the
new device and they are unrelated to the value the consumer puts on the device. Under
perfect information, the types of all consumers are revealed to everybody, including the
�rm, before the �rm sets the price. Under asymmetric information, the types are private
information, and the �rm observes nothing. This simpli�cation is based on the assumption
that the consumers know their own needs better than the �rm. The distribution F (�) is
common knowledge.

Since our model is a coordination game, it has multiple equilibria.6 The most in-
teresting equilibrium in regard to the monopoly�s pricing problem is the one that max-
imises the usage of the new device, because it also maximises the monopoly�s pro�ts. So
the monopoly would suggest this maximal equilibrium. The maximal equilibrium is not
in contradiction with e¢ciency in the consumers� coordination game. The coordination
game is supermodular with strategic action complementarities, which guarantee that the
maximal equilibrium is the Pareto-dominant one. Moreover, the consumers might be able
to use the network to communicate their buying intentions in order to reach the e¢cient

6Sääskilahti (2005a) studies the existence of a unique equilibrium in network externalities models. The
paper builds on the recent work on coordination games by Carlsson and van Damme (1993), Herrendorf
et al. (2000), Mason and Valentinyi (2003), and Morris and Shin (2003). In the context of consumer�s
buying decision making, uniqueness requires that both actions, "buy" and "do not buy", are played as
strictly dominant strategies simultaneously by di¤erent groups of consumers. The key to uniqueness is
su¢cient buyer heterogeneity with respect to non-network speci�c attributes. Under perfect information,
heterogeneity must be real in the sense of a broad type distribution. Under imperfect information, a
possibility that some consumers are of very high and very low types simultaneously is su¢cient to yield a
unique equilibrium.
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outcome. We rationalise that all this focalises the maximal equilibrium compared to the
other candidate equilibria.

In the real world, we can observe almost in�nite number of di¤erent network struc-
tures. Unfortunately, large networks are analytically cumbersome typically, so we opt for
analysing three primitive networks that bring out the e¤ects missing in the conventional
externalities models:

� Complete graph, where each consumer is connected to everybody else, Ni = fI n ig
for all i 2 I: The complete graph is the structure used implicitly by the conventional
network externalities models.

� Circle, where each consumer has exactly two neighbours. The links form a circle,
when the nodes are indexed in ascending order, so that the consumer i 2 fIn (1; I)g
has neighbours Ni = fi� 1; i+ 1g, and the �rst and the last consumer have neigh-
bour sets N1 = fI; 2g and NI = fI � 1; 1g :

� Star, where one consumer is a centre with connections to everybody else, and where
the peripheral consumers are linked only to the centre. The centre C 2 I has a set
of neighbours NC = fI n Cg. A peripheral consumer�s only neighbour is the centre,
Ni = C; for all i 2 fI n Cg.

The network is symmetric if all consumers have an equal number of links. The complete
graph and the circle are symmetric, whereas the star is asymmetric.

The link fi; jg 2 E comprises two directed links (i; j) and (j; i) :With I consumers, the
complete graph has I (I � 1), the circle 2I; and the star 2 (I � 1) directed links. When the
number of consumers is �xed, the comparison across di¤erent network topologies comprises
the size e¤ect (number of links) and the topological e¤ect (link wiring). The way di¤erent
consumer types are con�gured on the network causes a third e¤ect. The size e¤ect has
been carefully analysed in the earlier literature, while the topological e¤ect and the role
of the type con�guration are new features. The size e¤ect relates to the understanding of
network e¤ects as demand side economies of scale, because it corresponds to the link value
of the network the consumer is associated with. There are two types of critical consumers,
who have connections that are important from all network members� perspective. One
type are focal topology-wise, e.g. the centre in a star. The existence of these consumers
induces the topological e¤ect on monopoly pricing. The second, more subtle, critical type
is focalised by high heterogeneity between the consumer�s and his neighbours� types. These
critical consumers induce the e¤ect due to the type con�guration. We can eliminate the
size e¤ect by controlling for the link value. This requires that the less connected networks
are compensated by increasing the number of consumers.

3 Perfect information

The consumer types � = (�1; :::; �I) are revealed to all before the �rm sets the price. Let
a = (ai; a�i) be the vector of actions, where the actions taken by the other consumers
than i are denoted by a�i. The net utility of the consumer i 2 I is

ui (a; �i) =
X

j2Ni

aiaj�i � aip; (1)
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where p is the unit price for the device.7 He is indi¤erent between buying and not when
his type is

e�i =
pP

j2Ni
aj
:

The coordination game �; parameterised by the price p; consists of consumers I with
types � = (�1; :::; �I) arranged on the graph G, pure actions a 2 f0; 1g ; and payo¤s (1)
for all i 2 I: The consumer i�s best response is a�i 2 argmaxai2f0;1g ui (a; �i) : The Nash
equilibrium (NE) of � is the strategy pro�le a� = (a�1; :::; a

�
I) which maximises the con-

sumer�s utility ui
�
a�i ; a

�
�i; �i

�
� ui

�
ai; a

�
�i; �i

�
for all i 2 I: The game � has multiple NE

conditional on the price, the realisations of types, and the network topology. Particularly,
the empty network is always a trivial NE for a positive p: In the rest of this section, we
consider only the interesting cases of non-empty, or "active", NE.

Lemma 3 The action pro�le a� = (a�1; :::; a
�
I) is an active NE of � if

a�i = 0 if �i < e�
�

i

a�i = 1 if �i � e�
�

i

where e��i = pP
j2Ni

a�j
for all i 2 I:

We de�ne the total consumer surplus CS =
P
i2I ui (a

�; �i) as the sum of utilities of
all consumers in the network. There can be a number of active NE. The largest NE, which
maximises the use of the new device, corresponds to e¢cient coordination, because � is
supermodular with positive spillovers (action complementarity).

Lemma 4 The coordination game � is supermodular with positive spillovers.
Proof. Steps (i)-(iii) prove the supermodularity of �. Positive spillovers result from (iv).
(i) Action set a = f0; 1g is a compact subset of R:
(ii) If proportion k = jaj = 1j ; j 2 Ni buy, the number of active links is k when i plays
ai = 1: The gain from ai = 1 versus ai = 0 is vi (�i; k) = k�i�p; which is strictly increasing
in �i for all i 2 I; showing increasing di¤erences.
(iii) The payo¤ function ui : f0; 1g � � ! R is continuous.
(iv) The payo¤ gain vi (�i; k) is strictly increasing in k:

Lemma 4 applies to both symmetric and asymmetric graphs. Now, Topkis� theorem
guarantees that the supermodular game � has the maximal and the minimal NE elements,
and due to positive spillovers, the maximal NE is Pareto-dominating (Vives 2001, p. 33-
34). We have rationalised the adoption of the maximal NE by its compatibility with
both the monopoly�s interests and the Pareto-e¢ciency in the consumers� coordination
game earlier. Therefore, we focus on the maximal NE when analysing the �rm�s problem.
Denote b (p) 2 [0; I] as the number of consumers who buy in the maximal NE for a given p.

7We can write the equation (1) with links explicitly expressed ui (a; �i) =
P

j2fInig gijaiaj�i � aip;

where gij = f0; 1g indicates whether i and j are neighbours (gij = 1) or not (gij = 0). If we write the
equation (1) as ui (a; �i) = �+

P

j2Ni
aiaj�i�aip; where � = 0 is the intrinsic utility from the good, we see

that the utility function is of the de Palma and Leruth (1996) type, where the consumers have di¤erentiated
valuations of network bene�ts, as opposed to the original Katz and Shapiro (1985) speci�cation, where the
consumers are di¤erentiated with respect to the intrinsic utility �.
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The function b (p) is decreasing in p. The �rm observes the realisations of � and maximises
pro�ts

V = b (p) (p� c)

by setting the price p. Marginal cost is constant c � 0; and there are no �xed costs.
The pricing problem is interesting only if the �rm sets one price for all consumers under
perfect information. If price discrimination was allowed, the �rm would capture all surplus
from every consumer, and the resulting activity level would be a complete network. The
optimal price is

p� = argmax
p
fb (p) (p� c)g :

Finally, we de�ne the total surplus as the sum of total consumer surplus and pro�ts
W = CS+V: Next we apply the general framework to the complete graph, the circle, and
the star. We do a comparison across networks in section 3.4.

3.1 Complete graph

The type con�guration of consumers is irrelevant in a complete graph, because each
consumer is connected to everybody else. Utility for the consumer i is ui (a; �i) =P
j2fInig aiaj�i � aip: The NE of � is expressed in lemma 5.

Lemma 5 The action pro�le a� = (a�1; :::; a
�
I) is an active NE of �; if for all i 2 I

a�i = 0 if �i <
pP

j2fInig a
�
j

a�i = 1 if �i �
pP

j2fInig a
�
j

All activity levels are sustainable in equilibrium, conditional on p and the realisations of
�, and multiple NE are possible. The number of buyers in the maximal NE b (p) is decreas-
ing in p; with a ceiling b

�
(I � 1) ��

�
= I and a �oor b

�
(I � 1) �+ + "

�
= 0; where " > 0

is small. Hence, the optimal price is bounded in the range p� 2
�
(I � 1) ��; (I � 1) �+

�
:

Example 25 in the appendix analyses the optimal price in a four consumer complete graph.

3.2 Circle

In the circle, each consumer has two neighbours. The consumer i�s utility is ui (a; �i) =
ai (ai�1 + ai+1) �i � aip: We obtain a three-partition of consumer types. The low types
never buy. The medium types buy only if both of their neighbours buy. The high types
buy if at least one of their neighbours buys. The NE of � is expressed in lemma 6.

Lemma 6 The action pro�le a� = (a�1; :::; a
�
I) is an active NE of �; if for all i 2 I

a�i = 0; if one neighbour buys and �i < p; or both neighbours buy and �i <
1

2
p

a�i = 1; if one neighbour buys and �i � p; or both neighbours buy and �i �
1

2
p

All activity levels are feasible as NE, conditional on p and the realisations of �; and
multiple NE can exist. The network structure matters now more than in a complete graph,
as the consumer�s action depends on the types of his neighbours rather than of the whole
population. The optimal price is in the range p� 2

�
2��; 2�+

�
. See example 26 in the

appendix for an example how the monopolist sets the price in a four consumer circle.
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3.3 Star

The star network is asymmetric with a single central consumer connected to I � 1 pe-
ripheral consumers, who in turn are connected only to the centre. The centre�s utility
is uC (a; �C) =

P
i2NC

aCai�C � aCp; NC = fI n Cg. A peripheral consumer�s utility is
ui (a; �i) = aiaC�i � aip; for all i 2 fI n Cg : An active NE requires that the centre buys.

Lemma 7 The action pro�le a� =
�
a�C ; a

�
1; :::; a

�
I�1

�
is an active NE of � if

a�i = 0 if aC = 1 and �i < p

a�i = 1 if aC = 1 and �i � p

a�C = 1 if �C �
pP

i2NC
a�i

for the centre C 2 I and all peripheral consumers i 2 fI n Cg :

De�ne b (p) as the largest number of peripheral consumers who buy in the maximal
NE for a the price p. The centre�s demand bC (p) is a step-function

bC (p) =

�
0; if p > uC
1; if p � uC

where uC = b (p) �C is the utility from active links: The lower and upper bounds for b (p)
are b

�
min

�
�+; (I � 1) �C

	
+ "
�
= 0; and b

�
��
�
= I � 1; which take into account the

centre�s and periphery�s topological di¤erences. In order to evade the empty network, the
�rm must guarantee that the centre and at least one peripheral consumer buy. Hence,
the �rm�s problem is to maximise pro�ts, V = [1 + b (p)] (p� c) subject to p � uC : See
example 27 in the appendix how the monopolist sets the price in a four consumer star.

3.4 Comparison of networks

With perfect information, the type con�guration of consumers makes the comparison
across network topologies impractical. For example, a complete graph with four consumers
corresponds to a compensated circle with six consumers. A circle of six consumers has
720 permutations (of which half are mirror images). In order to have the topological
e¤ect stand out, we �rst do comparisons across networks where the type con�guration is
eliminated. This requires that all consumers are of the same type.

Let the consumer types be identical �i = � > c for all i 2 I: The optimal prices
are simple in this case. The monopoly price is constant with respect to the number of
consumers in the star and the circle, but it is increasing in I in the complete graph.

Lemma 8 The monopolist maximises its pro�ts by setting p = (I � 1) � in the complete
graph, p = 2� in the circle, and p = � in the star, when �i = � > c for all i 2 I:
Proof. In the complete graph, a price higher than p = (I � 1) � yields negative net utility
for any consumer i 2 I even if everybody else buys. A price lower than p = (I � 1) �
leaves positive surplus to all consumers in the maximal NE, thus the monopolist could
increase the price up to p = (I � 1) �; without changes in the consumers� NE actions.
Similar argumentation applies to the price in the circle p = 2�: In the star, with similar
argumentation, the optimal price is p = �, which is determined by a peripheral consumer�s
net utility.
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Next we �x the link value of the social network at I (I � 1), which corresponds to
a complete graph of I consumers, and compensate the less connected circle and star by
increasing the number of consumers in them so that the link values equal I (I � 1). We
also assume I > 3 in order to di¤erentiate between the topologies. The optimal prices are
de�ned in lemma 8, and they produce a complete network (full activity) in the maximal NE
in all topologies. The monopoly is able to extract all consumer surplus in the symmetric
complete graph and circle, CSCG = CSC = 0. In contrast, the centre in the star is
left with positive surplus, while the peripheral consumers get zero surplus, CSS > 0.
In the case of symmetric networks, the topological e¤ect causes the monopoly pro�ts
to be lower in the less connected compensated circle, VCG > VC . This is because the
monopolist incurs higher production costs for selling to a higher (compensated) number of
consumers in the circle compared to the fully connected complete graph. The monopoly
faces even higher costs due to the higher number of consumers in the compensated star.
The monopoly pro�ts in the compensated star are lower than in the symmetric networks
also because the monopoly is unable to extract all surplus from the centre due to the pricing
constraint created by the less-connected peripheral consumers. The centre bene�ts from
his topologically focal position and his links that are important from all network members�
perspective. Therefore, the pro�ts are the lowest in the compensated star, VCG > VC > VS :

Proposition 9 For a given network link value I (I � 1), I > 3, and the consumer types
�i = � > c for all i 2 I; the topological e¤ect implies that
(i) monopoly pro�ts are the highest in complete graph, and the lowest in the compensated
star, VCG > VC > VS :
(ii) consumer surplus is zero in the symmetric networks, and positive in the compensated
star, CSS > CSCG = CSC = 0:
(iii) total surplus is the highest in the complete graph, and the lowest in the compensated
star, WCG > WC > WS :

Proof. A complete graph of I consumers generates a link value of I (I � 1) : A circle

requires I(I�1)
2 consumers to generate I (I � 1) links. Similarly, a star requires 1 + I(I�1)

2
consumers. The optimal monopoly prices are given in lemma 8. The reported results (i)-
(iii) follow directly from the comparisons of consumer surpluses, pro�ts, and total surpluses
detailed below.
(i) The monopoly pro�ts in the maximal NE are VCG = I (I � 1) � � Ic in the complete

graph, VC = I (I � 1) ��
I(I�1)
2 c in the compensated circle, and VS =

�
1 + I(I�1)

2

�
(� � c)

in the compensated star. The di¤erence VC � VS is always positive for I � 3 and � > c:
(ii) The total consumer surplus in the maximal NE equals zero CSCG = CSC = 0 in the

complete graph and in the compensated circle, and it is positive CSS =
�
I(I�1)
2 � 1

�
� > 0

in the compensated star.

(iii) The total surplus in the compensated star is WS = I (I � 1) ��
�
1 + I(I�1)

2

�
c; while

the total surplus in the compensated circle isWC = I (I � 1) ��
I(I�1)
2 c and in the complete

graph WCG = I (I � 1) � � Ic in the maximal NE.

The size e¤ect relates to an increase in the (uncompensated) link value of the network.
The e¤ect has straightforward and predictable implications.8 The pro�ts and total surplus

8The size e¤ect is derived by comparing the uncompensated networks. The optimal monopoly prices
are given in lemma 8. The monopoly pro�ts in the maximal NE are VCG = I (I � 1) �� Ic in the complete
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increase in the link value of the network, while consumer surplus decreases. Thus, pro�ts
and total surplus are maximised in the complete graph, whereas consumer surplus is
maximised in the star. Monopoly pro�ts and total surplus are increasing in the total
number of network members in all topologies.

The more links there are, the higher is the generated value in the network. This
shows how the strength of network externalities is easily overestimated. An assumption
on a complete graph as the prevailing social structure, when the true social structure is
something less connected, produces exaggerated estimates for the network value, thus for
the total surplus and monopoly rents.

Let us next analyse a more diverse case, where we do not eliminate the type con�gu-
ration. This, however, necessitates us to limit the size of the network and consider only
the uncompensated networks in order to maintain the model�s workability.9 Consider a
complete graph, a circle and a star of four consumers with �1 � �2 � �3 � �4; and assume
c = 0 for expositional reasons. Figure (1) gives the �rm�s pro�ts, consumer surplus, and
the total surplus in the maximal NE. The social networks are given in the rows, columns
correspond to the activity level.

The optimal monopoly price, which are given in the parenthesis in the pro�ts lines, is
a¤ected by the size and the topology of the social network, and by the type con�guration
(e.g. circle A and B have the same topology, but are di¤erent con�gurations). Because the
coordination game is supermodular with positive spillovers, consumer surplus is maximised
in the complete network (full activity) in all social networks in the illustrated example.10

Since pro�ts are just transfers from consumer surplus, total surplus is maximised in the
complete network.

Network topology can create topologically critical positions that constrain pricing, like
the centre in the star. The critical positions due to the type con�guration of consumers
is illustrated by the comparison of the circles A and B. Consumer �2 in the circle B is
an example of this. His position constrains pricing, if his type is su¢ciently low rela-
tive to his neighbours� types (2�2 < �3) ; despite network symmetry. Obviously, the type
con�guration can matter only in networks that are not completely connected.

Remark 10 Critical consumers that constrain the optimal price have
(i) topologically central positions (centre in star),
(ii) important connections (low types with high type neighbours),
in networks that are not completely connected graphs.

Consider the circles A and B again. Let the complete network be optimal in A, so that
8�1 > max f3�2; 2�3g : If we also have 8�1 < 6�2 and 2�2 > �3 it is optimal for the �rm to
choose the 3-buyer network in B. Why? The �rm �nds it pro�table to increase the price

graph, VC = 2I�� Ic in the circle, and VS = I (� � c) in the star, which all are increasing in I: Consumer
surplus in the complete graph and circle equals zero, CSCG = CSC = 0: Consumer surplus in the star is
constituted by the centre�s surplus CSS = (I � 2) �; which is increasing in I: Total surplus in the complete
graph and circle equals the monopoly pro�ts, and in the star it is WS = 2 (I � 1) � � Ic: The reported
results in the text follow directly from the comparisons of the above values.

9We label the results from examples as remarks, in order to distinguish them from propositions with
formal proofs.
10One must be careful not to compare consumer surpluses in dominated networks, so that the implied

type con�guration conditions on pricing have to be taken into account. Once the type conditions are
factored in, the comparison is straightforward and shows that the consumer surplus is maximised in the
complete network in all social structures.
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Figure 1: Pro�ts and surpluses in di¤erent social networks.

so that �1 opts out. At the same time, the high types �3 and �4 induce their common
neighbour �2 to purchase. The consumer �2 bene�ts from the links with high types �3 and
�4, and the �rm is able to capture some (or all) of this rent.

When we compare the 2-buyer networks, we see that in the circle B and the star with
�2 at the centre, the 2-buyer networks are always dominated (in terms of pro�ts) by the
3-buyer networks. The critical type �2 sets a pricing constraint. The �rm may be forced to
sell at a lower price in order to guarantee his participation. On the contrary, in the circle
A and the star with �3 at the centre, because the high types are clustered, the 2-buyer
networks are not dominated. Hence, in some graphs, the monopolist limits supply whereas
in other graphs that are identical save the con�guration of consumers, it covers the whole
market. When consumers are relatively homogeneous, the �rm prefers to have the high
types scattered in the network. Scattered high types support the purchases of lower types,
and therefore full coverage is more likely to occur. On the other hand, if the consumers
are highly heterogeneous, so that the �rm prefers to exclude the low types by setting a
high price, the dispersion of high types hurts the �rm as the price is constrained by the
critical (low) types.

Remark 11 The role of consumer heterogeneity:
(i) the �rm excludes the low consumer types in heterogeneous markets, whereas homoge-
neous markets are completely covered.
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Figure 2: Modi�ed star: "insiders - outsider"

(ii) the dispersion of the high consumer types is good for the �rm in homogeneous mar-
kets, whereas in heterogeneous markets, the dispersion of the high types constrains the
�rm.

We close the analysis with a modi�cation to remark 11 underlining the importance of
network topology in the monopoly pricing problem. Consider the network illustrated in
�gure (2) with types �1 < �2 < �3 < �4; and c = 0: Let the 2-buyer network dominate the
3-buyer network, V2 = 2 (�2) > V3 = 3 (2�1). If �4 > 3�1 and 3�1 < �2 < 6�1 hold, then
it is true that V4 = 4 (3�1) > V2 = 2 (�2). When this holds, the types �3 and �4 can be
signi�cantly higher than �1 and �2 (high heterogeneity) and the �rm still covers the whole
market. This is possible thanks to two factors. One, �3 and �4 are not neighbours, so the
�rm cannot sell only to them. Two, �1 is well connected, which compensates his low type
and negates his otherwise critical position.

4 Asymmetric information

In this section, the types � = (�1; :::; �I) are private information, but the structure of
the social network G =(I; E) and the distribution F (�) remain common knowledge. Pure
strategy for the consumer i is ai :

�
��; �+

�
! f0; 1g : The consumer i�s expected net utility

is
E [ui (a; �i)] =

X

j2Ni

ai�j�i � aip; (2)

where �j is the probability consumer i puts on the event that his neighbour j chooses
aj = 1: The consumer i is indi¤erent between the actions when his type is

e�i (�Ni) =
pP

j2Ni
�j
;

where
P
j2Ni

�j 6= 0: The utility (2) is increasing in the consumer�s own type �i and in
the number of neighbours for a �xed �j ; j 2 Ni: This means that the consumer i�s best
response is the threshold strategy a�i = 1 if �i � e�i (�Ni) ; and a�i = 0 if �i < e�i (�Ni) : The
probability that i buys, given his beliefs over his neighbours� actions and price, is

�i = 1� F
�
min

n
�+;e�i (�Ni)

o�
:

The coordination game �AI with asymmetric information consists of consumers I
arranged on the graph G; pure actions a = f0; 1g ; i.i.d. types � = (�1; :::; �I) with prior
distribution F (�) ; and payo¤s (2) ; for all i 2 I, and it is parameterised by the price p:
As in the case of perfect information, the game �AI has multiple equilibria conditional
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on the price and network topology. In particular, the empty network is always a trivial
equilibrium. In the rest of this section, we consider only the interesting active equilibria.
The active Bayesian Nash equilibrium (BNE) of �AI is characterised in lemma 12.

Lemma 12 The action pro�le a� = (a�1; :::; a
�
I) is an active BNE of �AI if

a�i = 0 if �i < e�i
�
��Ni

�

a�i = 1 if �i � e�i
�
��Ni

�

where e�i
�
��Ni

�
= pP

j2Ni
��j
and ��i = 1� F

�
min

n
�+;e�i

�
��Ni

�o�
for all �i and i 2 I:

We can further narrow down the set of interesting BNE by resorting to supermodularity
that carries over to the asymmetric information regime.

Lemma 13 The game �AI is supermodular with positive spillovers.
Proof. Steps (i)-(iii) prove the supermodularity.
(i) The set �i 2 [0; 1] is a compact subset of R:
(ii) The expected payo¤ gain from ai = 1 versus ai = 0 is E [vi (�i; �j)] = E [ui (a; �i)] ;
j 2 Ni, for all i 2 I; where E [ui (a; �i)] is given by equation (2). We have increasing
di¤erences in the payo¤s as E

�
vi
�
�0i; �j

��
� E [vi (�i; �j)] for all �

0
i > �i:

(iii) The payo¤ function E [ui (a; �i)] : f0; 1g � � ! R is continuous.
Positive spillovers arise because the payo¤ gain is strictly increasing in the neighbours�

strategies
@E[vi(�i;�j)]

@�j
> 0, j 2 Ni for all i 2 I:

Supermodularity guarantees the existence of the maximal and the minimal BNE el-
ements. The smallest BNE is the empty network with ��i = 0 for all i 2 I; while any
active BNE depends on the price and the network topology. Positive spillovers mean that
the largest BNE, which maximises the use of the new device, is Pareto-dominating. We
assume that this focalises the equilibrium, like under perfect information. We get further
support for this argument by proving later that the maximal BNE is Cournot tâtonnement
stable in all studied social networks.

The �rm�s expected pro�ts are

E (V ) =
X

i2I

��i [p (�
�)� c] :

The �rm cannot choose the activity level directly, as it could under perfect information.
Instead, it maximises pro�ts by choosing ��i : The inverse demand p (�

�) is derived from
the BNE condition of �AI :

Next we apply the general framework to the complete graph, the circle, and the star.

4.1 Symmetric networks

Symmetric networks are analytically identical under asymmetric information, because the
role of type con�guration on the social network is eliminated. We work through a gen-
eralised version of a symmetric graph where all consumers have n neighbours. For the
complete graph n = I � 1 and for the circle n = 2: Note that some constructions are
infeasible. For example, it is impossible to construct a symmetric graph of �ve consumers
each having three neighbours. The generalised version applies to complete graphs and
circles of any number of consumers, though.
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Lemma 14 An active BNE in a symmetric network is characterised by a unique proba-
bility to buy �; for each consumer i 2 I; and it satis�es

� = 1� F
�
min

n
�+;

p

n�

o�
(3)

Proof. Let n 2 [1; I � 1] be the number of neighbours for the consumer i in a population
arranged on a symmetric graph Gsym. By symmetry, n is the number of neighbours for all
consumers. Lemma 12 gives the BNE probability that the consumer i buys ��i . Assume
that the probabilities are di¤erent so that for all other consumers except i; the probability
to buy is � and for i it is �i < �. The consumer i�s expected utility is

E [ui (a; �i)] =
nX

k=0

ai

�
n

k

�
�k (1� �)n�k k�i � aip

= ai�n�i � aip:

Similarly, the expected payo¤ for the consumer j 2 Ni is

E [uj (a; �j)] =
n�1X

k=0

aj

�
n� 1

k

�
�k (1� �)(n�1)�k k�j + aj�i�j � ajp

= aj [(n� 1)� + �i] �j � ajp:

The equilibrium condition that the consumer i buys is zi (�) = 1�F
�
min

�
�+; p

n�

	�
; and

for all j 2 Ni it is zj (�i; �) = 1 � F
�
min

n
�+; p

(n�1)�+�i

o�
: The functions zi (�) and

zj (�i; �) are increasing in � and in (�; �i) respectively. If the initial assumption �i < �
holds, then it must be that zi (�) > zj (�i; �) which leads to a contradiction. The case
�i > � leads to a corresponding contradiction. Hence, in the BNE it must be that �i = �
for all i 2 I:

Asymmetric information eliminates the e¤ects caused by the type con�guration. Unlike
with perfect information, under asymmetric information the consumer cannot condition
his behaviour with respect to the realisations of his neighbours� types, and he can base
his action on the number of neighbours only. When the network is symmetric, every
consumer has the same number of neighbours. In this situation, a consumer holds that all
his neighbours face an identical situation to his own, and therefore a consumer of type �
has the same BNE strategy independent of his network location. As a result, asymmetric
equilibria, where identical consumer types would buy with di¤erent probabilities, are ruled
out. This is in contrast with the case with perfect information, which allows asymmetric
NE thanks to the e¤ects by the type con�guration.

The introduction of asymmetric information has reduced the number of equilibria to
three at most. In addition to the empty network, there can be at most two active BNE in

the interval � 2
i
p

n�+
; 1
i
. To check the existence of active BNE, we solve the equation (3)

for the positive �: Real roots exist when
�
�+n

�2
�4
�
�+ � ��

�
np � 0; with equality yielding

a unique active BNE. The �rm operates in the region where the price is determinate, so
that the equation (3) gives the inverse demand

p = n�
�
�+ �

�
�+ � ��

�
�
�
: (4)
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The �rm maximises expected pro�ts E (V ) = I� [p (�)� c] by choosing the optimal
level for �. The �rst order condition gives the standard monopoly mark-up rule

p (��)� c

p (��)
=
1

�
; (5)

where �� is the optimum and � = �@��

@p
p(��)
��

is the price elasticity of demand.
Consider the special case of c = 0. The equation (5) gives

�� =
2�+

3
�
�+ � ��

� ;

and the equation (4) gives

p (��) =
2
�
�+
�2

9
�
�+ � ��

�n; (6)

which satisfy second order conditions.11 The derived values represent the maximal BNE.
When the price (6) is plugged back into equation (3), we can solve again for the corre-
sponding equilibrium probabilities. As suggested, there exist two active BNE

� =
�+ � 1

3�
+

2
�
�+ � ��

� :

The maximal BNE and the empty network are Nash tâtonnement stable, whereas the
smaller active BNE is an unstable one.12 Hence, the convergence occurs towards zero
or the maximal BNE, unless the tâtonnement process begins exactly at the lower active
BNE. Denote the maximal, focal, BNE as ��+. The expected pro�ts are in that case

13

E
�
V �+
�
=
4

27

�
�+

�+ � ��

�2
�+In: (7)

Total expected consumer surplus in the maximal BNE is given by

E (CS) = I

Z �+

e�(��+)
f (�)

�
n��+� � p

�
�
d� (8)

=
4

27

�
�+

�+ � ��

�2
�+In

which shows that it equals expected pro�ts E (CS) = E
�
V �+
�
.

We are ready to compare the asymmetric information model (with c = 0) with the
results from the perfect information case. We see from equations (7) and (8) that the
pro�ts and consumer surplus are increasing in the number of neighbours (i.e. in the link
value) and in the overall number of consumers. Hence, the size e¤ect guarantees that the
complete graph generates the highest total surplus, and therefore the size e¤ect agrees
with the results under perfect information.

11 @2E(V )
@�2

�

�

�

�= 2�+

3(�+���)

= �2�+In < 0:

12The checks for stability are provided in the appendix 7.2.1.
13The di¤erence in realised pro�ts between the maximal BNE and the smaller active BNE is

(��+ � �
�
�) p (�

�) = 1
2
E (V �

+) : The empty network yields zero pro�ts of course.
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Proposition 15 The size e¤ect implies that
(i) monopoly price increases as the number of neighbours increases.
(ii) expected consumer surplus and pro�ts increase in the number of neighbours, with
the complete graph supporting the highest expected consumer surplus and pro�ts in the
maximal BNE.
(iii) pro�ts and consumer surplus increase in the total number of consumers in symmetric
graphs.
Proof. Follows directly from equations (6) ; (7) and (8).

The type con�guration of consumers is irrelevant since the consumers are ex ante
symmetric. Hence, the critical roles that existed in symmetric networks under perfect
information are removed. It is obvious now that the complete graph corresponds to the
conventional network externalities model, where the underlying social structure is ab-
stracted away. When we take the probability � as the fraction of the total population
who buy, we arrive at a basic membership externality model, where the consumer�s utility
increases with the number of people joining the (global) network at any location.

Proposition 16 Type con�guration does not a¤ect the optimal monopoly price in sym-
metric graphs under asymmetric information.
Proof. Follows from lemma 14.

We apply a mean-preserving spread
�
�� � x; �+ + x

�
; x > 0; on F (�) to see what the

impact of consumer heterogeneity is. Increased heterogeneity reduces the probability to
buy

@��+
@x

= �
2
�
�+ + ��

�

3
�
�+ � �� + 2x

�2 < 0:

This results in a lower monopoly price in general.

@p�

@x
= �

4
�
�+ + x

� �
�� � x

�

9
�
�+ � �� + 2x

�2 ;

which is negative when �� > x > 0; but positive with �� = 0: An increase in heterogene-
ity causes two e¤ects. First, higher heterogeneity induces higher monopoly price as in the
standard case of monopoly pricing with unit demand. Second, higher heterogeneity in-
creases the uncertainty about the neighbours� buying decisions. The second e¤ect induces
the monopoly to reduce its price to counter the reduction in the neighbours� probability
to buy. Because the second e¤ect dominates in general, the total e¤ect is negative.

We can write the expected consumer surplus and pro�ts in the maximal BNE as

E (CS) = E
�
V �+
�
=
4

27

 
�+ + x�

�+ + x
�
�
�
�� � x

�
!2 �

�+ + x
�
In: (9)

Since the spread increases uncertainty about neighbours� purchasing decisions, expected
consumer surplus decreases despite the reduction in price. For the �rm, higher uncertainty
leads to lower demand and lower price, thus lower pro�ts. The �rm cannot distinguish
between networks where the high consumer types are clustered and where they are dis-
persed. Hence, it is incapable of taking advantage of clusters of high types, unlike it was
under perfect information.
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Proposition 17 Increased consumer heterogeneity, i.e. uncertainty, decreases expected
consumer surplus and pro�ts in the maximal BNE.

Proof. From equation (9) we get @E(CS)
@x

=
@E(V �+)
@x

= 4
27In

(�++x)
2

(�+���+2x)
3

�
�
�
�+ + x

�
� 3

�
�� � x

��
;

which is negative when �� � 0 and x > 0 is small.

4.2 Star

For the star, we obtain an equilibrium system that comprises two distinct probabilities for
buying. One is for the centre and the other for the peripheral consumers. The �rm has
to choose a price that applies to all consumers, but we allow price discrimination in the
section 4.3.

The consumers� utilities are E [uC (a; �C)] =
P
j2NC

aC�Cj�C � aCp for the centre
C 2 I, and E [ui (a; �i)] = ai�iC�i � aip for the peripheral consumer i 2 fI�Cg : Since
the peripheral consumers are ex ante symmetric, their behaviour is characterised by a
common probability.

Lemma 18 An active BNE in a star is characterised by (�C ; �), where �C is the prob-
ability that the centre C 2 I buys and � is the probability that a peripheral consumer
i 2 fI�Cg buys, and they satisfy

�C = 1� F
�
min

n
�+; p

(I�1)�

o�

� = 1� F
�
min

n
�+; p

�C

o� (10)

Proof. Proof follows directly from lemma 14 and uses the symmetry property.

We get the market clearing price and the centre�s probability to buy as a function of
� from the system (10) :

p (�) = �C (�)
�
�+ �

�
�+ � ��

�
�
�

�C (�) =
�+ (I � 1)�

�+ + (I � 2)
�
�+ � ��

�
�

The di¤erence between the probabilities �C (�) � � is always non-negative, which
indicates that the centre�s probability to buy is higher.

The �rm maximises expected pro�ts E (V ) = [�C (�) + (I � 1)�] [p (�)� c] by choos-
ing the probability �: The FOC gives a modi�ed inverse elasticity rule

p (��)� c

p (��)
=
1

�

(�
2�+ + (I � 2)

�
�+ � ��

�
��
� �
�+ + (I � 2)

�
�+ � ��

�
��
�

�
�+
�2
+
�
�+ + (I � 2)

�
�+ � ��

�
��
�2

)
; (11)

where � = �@��

@p
p(��)
��

is the price elasticity of demand of a peripheral consumer.
Because the rule (11) is di¢cult to use analytically, let us consider the speci�c case

with c = 0, � � Unif [0; 1], and a non-degenerate star I � 3. In this case, the equation
(11) has only one real root in the range � 2 (0; 1) ; which yields positive pro�ts, and the
corners � = f0; 1g yield zero pro�ts. Hence, the root in the range � 2 (0; 1) is the global
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maximum.14 Because the derivative @E(V )
@�

at point � = 2
3

�
� = 1

3

�
is positive (negative),

the optimal � must be in the range 13 < �
� < 2

3 : So, the probability to buy for a peripheral
consumer is less than the probability to buy in symmetric graphs. Respectively, the
monopoly achieves a higher mark-up associated with the periphery than the mark-up in
the symmetric graphs. This means that the topological e¤ect on the monopoly price is
never latent under asymmetric information. On the other hand, we see from lemma 18
that the type con�guration is irrelevant in pricing due to the same reasons it was in the
case of a symmetric network under asymmetric information.

The �rm always takes into account the topologically focal centre by guaranteeing him
a higher probability to buy. At the same time, the �rm balances the lower centre-speci�c
revenues with a higher mark-up for the periphery. With perfect information, similar bias
depends on the type con�guration of consumers and occurs only if the centre�s type is
su¢ciently low inducing a pricing constraint.

Proposition 19 (i) A consumer in the periphery has a lower probability to buy, and the
centre has a higher probability to buy, compared with a consumer in a symmetric network.
(ii) The type con�guration does not in�uence the optimal monopoly price in the star
under asymmetric information.

We have veri�ed numerically that the optimal �� is decreasing in the number of periph-
eral consumers I; whereas the optimal ��C � �C (�

�) is growing in I: Therefore, the centre
bene�ts the more people join his neighbourhood, but a peripheral consumer is negatively
a¤ected by an additional peripheral consumer, even though the additional consumer is
not his neighbour. Why? The centre�s probability to buy increases when a peripheral
consumer is added. The �rm can compensate this addition by increasing the price. The
price increase, however, does not capture the whole increase in the centre�s utility, because
the �rm takes into account the topologically critical position. The centre�s market power
and relative position against the periphery increases in importance as I grows. By leav-
ing more surplus to the centre, thus increasing the centre�s probability to buy, the �rm
indirectly increases the periphery�s expected utility. The price increase, however, is high
enough that an individual peripheral consumer gets a negative surplus e¤ect in total, as
a result of his reduced signi�cance to the whole network. When I grows very large, the
optimal �� approaches 1

2 ; and the optimal �
�
C approaches

I�1
I
� 1: In the minimal case

where I = 3; the optimal values are �� � 0:5971 and ��C � 0:7478: The monopoly price is
the lowest at I = 3; where it equals p (��) � 0:3012: As the periphery becomes very large,
the optimal price approaches 12 :

The size e¤ect in the star agrees with the size e¤ects in the perfect information regime,
and with the symmetric network case under asymmetric information. Pro�ts and the total
expected consumer surplus (centre�s plus periphery�s surpluses) increase in I. At the same
time, the di¤erence between the centre�s and the periphery�s expected surpluses becomes
larger. Hence, the network topology has distributional e¤ects on consumer surplus via the
monopoly�s pricing strategy. This is an important di¤erence compared to the symmetric
network case under asymmetric information. We summarise the size e¤ect in remark 20.

Remark 20 The e¤ects of changes in the size of the periphery are:

14Second order conditions for the maximal pro�ts are satis�ed for the active BNE. This can be checked
numerically for the particular case c = 0; �+ = 1; �� = 0. We have @2E(V )

@�2
< 0 for I � 3. A stability check

for the BNE is in the appendix 7.2.2.
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(i) the centre bene�ts the larger the periphery is.
(ii) a peripheral consumer is adversely a¤ected by an additional peripheral consumer.
(iii) total consumer surplus increases as the periphery grows, driven by the increase in
the centre�s surplus.
(iv) the price and the monopoly�s expected pro�ts increase as the number of peripheral
consumers increases.

To measure the e¤ects of higher consumer heterogeneity, we consider the spread � �
Unif [�x; 1 + x] ; x > 0 on the type distribution. A numerical run shows that the �rm
chooses a higher optimal price for a small x. This is in contrast with the result from the
symmetric network case. In the star, an increase in heterogeneity induces a price increase
in the standard way, as it did in the symmetric networks case. The negative e¤ect of higher
uncertainty about neighbours� buying decisions is now weaker thanks to the asymmetric
network topology. The �rm is able to limit the negative e¤ect by contrasting the centre
and the periphery, which results to a positive price change in total. However, the increase
in uncertainty has a negative e¤ect on pro�ts and consumer surplus in total, as in a
symmetric graph.

Remark 21 Small increase in consumer heterogeneity, i.e. uncertainty, decreases equi-
librium pro�ts, and total consumer surplus associated with the periphery and the centre.

4.3 Comparison and price discrimination

We compare the symmetric networks and the star in the case of a uniform distribution of
� over [0; 1] ; c = 0; and I > 3: Figure (3) illustrates the size e¤ect: the complete graph
(dotted line) generates far higher total surplus (pro�ts plus consumer surplus) than the
uncompensated circle (dashed line) or star (solid line). This is because each additional
consumer creates 2 (I � 1) new links in the complete graph whereas only two links in
the circle and the star. In other words, the same network value exaggeration problem
presents itself with asymmetric information as with perfect information. If we adopt the
complete graph as a postulate, when the true network is something less connected, we end
up exaggerating the network�s value.

Remark 22 The complete graph generates the highest total surplus.

For small numbers of consumers, the circle produces higher total surplus compared
to the star, but for large networks, the star generates higher total surplus. The solid
line crosses the dashed line just before the number of consumers reaches I = 30: The
circle has always two links (one two-directional link) more than the star, which returns a
higher consumer surplus for small networks. The star, however, supports a lower optimal
monopoly price than the symmetric networks, even if the monopoly increases its price
as I grows. Therefore, as the size di¤erence becomes less determining, consumer surplus
becomes higher in the star than in the circle in large networks. Because the �rm maintains
a lower price in the star than in a symmetric network, and because there are less links in
the star, the �rm�s pro�ts are the lowest in the star for a given number of consumers.

We can isolate the topological e¤ect by comparing the compensated networks. Let us
�x the link value of the complete graph with I consumers. A compensated circle has I(I�1)2

consumers and a compensated star 1 + I(I�1)
2 consumers.
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Figure 3: Uncompensated total surplus (log scale), � � Unif [0; 1] ; c = 0:

Figure 4: Compensated pro�ts, � � Unif [0; 1] ; c = 0:
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Figure 5: Compensated total surplus, � � Unif [0; 1] ; c = 0:

We can read from �gure (4) that the �rm is worse o¤ in the compensated star. The
asymmetric network topology constrains the �rm as it has to leave more surplus to the
centre by setting a relatively lower price. As a result, the consumer surplus is higher in the
compensated star than in the circle or the complete graph. Total surplus is higher in the
compensated star, since higher consumer surplus dominates lower pro�ts. Yet, the centre
amasses the surplus at the expense of the peripheral consumers and the �rm. Hence,
there is a misalignment between the socially optimal and the monopoly-preferred network
topology. This is seen by comparing �gures (4) and (5) :

Remark 23 Misalignment of private and social preferences for network topology:
(i) the �rm prefers the symmetric compensated network topology.
(ii) total surplus is maximised in the asymmetric compensated star.

Remark 23 does not agree with the results under perfect information. The total surplus
and monopoly pro�ts were both maximised in the complete graph, and minimised in the
star, under perfect information. So, the social and private preferences over the network
topology were aligned.

The bias in favour of the centre in the star raises the question whether the �rm could
bene�t by price discriminating with respect to the network location. With price discrimi-
nation, the active BNE probability system is

�C = 1� F

�
min

�
�+;

pC

(I � 1)�

��

� = 1� F

�
min

�
�+;

p

�C

��

where pC is the price for the centre and p for the periphery. The �rm maximises expected
pro�ts E (V ) = �C [pC (�C ; �)� c] + (I � 1)� [p (�C ; �)� c] by choosing (�; �C) :
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For zero unit costs c = 0; the optimal probabilities are

��C = �
� =

2�+

3
�
�+ � ��

� :

Proposition 24 Price discrimination with respect to network location removes the bias
in favour of the centre.

The �rm of course captures a larger share of the value generated in the network by
price discriminating. In the case with � � Unif [0; 1] ; c = 0; and compensated networks,
it is straightforward to compute that price discrimination increases the �rm�s pro�ts to
the same level as in the compensated symmetric networks. Respectively, total consumer
surplus falls to the level in symmetric networks. There is an e¢ciency loss due to price
discrimination as the total surplus is reduced.

5 Conclusions

We have analysed the monopoly pricing of social goods when the market is characterised
by buyers� social relations. Our model is a stylised version of coordination goods, such
as mobile phones, for which the buyers� social relations determine the patterns of usage
and consequently the demand for the good. We have shown that in markets where social
relations are important, the parametric approach, used in the conventional network exter-
nalities models, falls short and needs to be re�ned. In particular, the implicit assumption
of a completely connected graph that does away all topological asymmetries can result in
a serious overestimation of the strength of the network e¤ects. Consequently, both the
achievable monopoly rents and the total surplus generated in the market are exaggerated.
In addition, an asymmetric network topology induces distributional e¤ects as certain con-
sumers bene�t at the expense of others from the monopoly pricing compared to a case
with a symmetric network topology.

Critical consumers who have important connections capture a higher surplus compared
to the more peripheral agents. A critical position is either due to a central network location
(network topology) or due to important neighbours (type con�guration). Under perfect in-
formation, critical positions exist in symmetric and asymmetric networks, but they always
depend on the type con�guration and the level of heterogeneity between the consumers.
The critical positions in symmetric networks are eliminated once the consumers� types are
private information, because the type con�guration cannot a¤ect the consumers� decision
making. In contrast, the topologically central consumers in asymmetric networks always
capture higher surplus than the peripheral consumers.

Under perfect information, the monopoly�s pricing strategy depends on the network
size and topology, on the heterogeneity of the consumers and their type con�guration on
the network. When the heterogeneity is high and the high types are clustered, the �rm can
charge a high price from them and exclude the low types. Pro�ts increase as heterogeneity
increases, but only if the high types are clustered. If the high types are scattered in the
network, the low types� participation is needed, and therefore, the �rm does not bene�t
from increased heterogeneity.

Asymmetric information removes the role of type con�guration, and the network size
and topology remain the only network-speci�c parameters a¤ecting the optimal price. The
monopoly price is increasing in the number of links. Higher heterogeneity equals higher
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uncertainty, which reduces consumer surplus in all network topologies. The �rm cannot
identify those networks with clusters of high types, where it would bene�t from higher
consumer heterogeneity in the way it could under perfect information. Therefore, higher
heterogeneity reduces also pro�ts.

In asymmetric networks, the �rm sets a price that guarantees a higher probability to
buy for the topologically central consumers under asymmetric information. As the size
of the periphery increases, the centre becomes relatively more important, while an indi-
vidual peripheral consumer becomes relatively less important from the whole network�s
perspective. An additional peripheral consumer increases the expected utility of the cen-
tre. A peripheral consumer is not directly a¤ected by the additional consumer, however,
increased price decreases the peripheral consumer�s expected utility.

When we compare the compensated networks under asymmetric information, we see
that the star is the social optimum, but the �rm prefers a symmetric network. If the �rm
is allowed to price discriminate with respect to network location, its pro�ts equal the level
it obtains in the symmetric networks. This has a social cost, because price discrimination
reduces total surplus as consumer surplus drops more than the pro�ts increase.

We made a relatively strong assumption that the size and topology of the underlying
social network are common knowledge. If we assume that the social relations are private
information, as in Sundararajan (2005), the consumers have to take expectations on the
sizes of their neighbours� neighbourhoods, neighbours� neighbours� neighbourhoods, and
so on. On the other hand, if the �rm observes nothing, it applies the same expectations
on all neighbourhoods. The complexity level may not be too much increased for networks
that present some regularity, suggesting an interesting area for future research.

Our model enables a number of interesting extensions.15 We assumed that each link
generates equal value independent of the interaction partner. Utility could, however, be
dependent on the interaction partner as well, so that the value of a link is the random
variable instead of the consumer type. We have focused on the static properties of social
networks, and an obvious extension would be to expand the model in time. A multi-
period model would shed light on the optimal price paths and how the �rm uses the
network to di¤use information about the new device. This could be done in conjunction
with an extension to richer forms of social networks. Finally, it would also be interesting
to understand how the �rm could use two-part tari¤s for screening.
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7 Appendix

7.1 Perfect information examples

Example 25 (Complete graph) Consider a four consumer complete graph with types
�1 < �2 < �3 < �4; and c < 3�1 so that costs do not constrain the �rm�s decisions,
and focus on the maximal NE. Complete network is feasible only if p � 3�1: Partial
network with three buyers is feasible if max f3�1; �3g < p � 2�2; and with two buyers if
max f3�1; 2�2g < p � �3: The �rm�s pro�ts are V4 = 4 (3�1 � c) ; V3 = 3 (2�2 � c) ; and
V2 = 2 (�3 � c) respectively. Depending on the relative values of �1; �2 and �3 (the highest
type does not matter), the �rm chooses between a complete network and a partial network
of either 2 or 3 buyers. The optimal activity level is
(i) complete network if V4 > V3 and V4 > V2; i.e. �1 > max

�
1
2�2 +

1
12c;

1
6�3 +

1
6c
	
.

(ii) 3-buyer network if V3 > V4 and V3 > V2; i.e. �2 > max
�
2�1 �

1
6c;

1
3�3 +

1
6c
	
:

(iii) 2-buyer network if V2 > V4 and V2 > V3; i.e. �3 > max
�
6�1 � c; 3�2 �

1
2c
	
.

A comparison of pro�ts suggests that the complete network is the optimal activity level,
if the consumers are homogenous in regard to their types, as the �rm bene�ts from high
sales volumes. Partial 3-buyer network is chosen when the middle types �2 and �3 are
close together, but signi�cantly higher than �1: 2-buyer network is chosen when there is
a large di¤erence between the two lowest and the two highest types. If the consumers are
heterogeneous, it pays o¤ to exclude the low types by charging a high price.

Example 26 (Circle) Consider a circle with four consumers with types �1 < �2 < �3 <
�4; and c < 2�1 so that costs do not interfere pricing, and focus on the maximal NE.
There are two cases that yield di¤erent results. In the case A, the high types �3 and �4
are neighbours (a circle where �1 has neighbours �2 and �3, and where his neighbours are
�2 and �4 yield identical results). In the case B, they are not. The network structure sets
limits to the �rm�s choices in the circle B, because the consumer �2 located between �3 and
�4, holds a potentially critical position. Any non-empty NE must include him. In both
cases, complete network occurs if 2�1 � p; and the �rm�s pro�ts are V4 = 4 (2�1 � c) :
Partial network with three buyers is feasible in the circle A if 2�1 < p � �2; and in the
circle B if 2�1 < p � min f2�2; �3g : Partial network with two buyers is feasible in the
circle A if max f2�1; �2g < p � �3: Two buyer network is always dominated by the other
structures in the circle B.

The �rm chooses the complete network only when the consumers� types are su¢ciently
close together.
(ia) Complete network in A if V4 > V

A
3 and V4 > V

A
2 ; i.e. �1 > max

�
3
8�2 +

1
8c;

1
4�3 +

1
4c
	
:

(ib) Complete network in B if V4 > V
B
3 ; i.e. �1 >

3
8 min f2�2; �3g+

1
8c:

The �rm chooses a three buyer network in both cases, if the lowest type is signi�cantly
lower, and the other consumers� types are not too di¤erent from each other. Type con�g-
uration is important, as the �rm bene�ts if the high types (�3 and �4) are dispersed in the
network. We have V A3 < V B3 always. High types support the purchases of their common
neighbour �2; so that the type con�guration relaxes �rm�s pricing constraint.
(iia) 3-buyer network in A if V A3 > V4 and V

A
3 > V A2 ; i.e. �2 > max

�
8
3�1 �

1
3c;

2
3�3 +

1
3c
	
:
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(iib) 3-buyer network in B if V B3 > V4; i.e. min f2�2; �3g >
8
3�1 �

1
3c:

The �rm chooses a 2-buyer network in the circle A when the two highest types are
signi�cantly higher compared with the two lowest types. In the circle B, a 2-buyer network
is always dominated either by the complete network or the 3-buyer network.
(iii) 2-buyer network in A if V A2 > V4 and V

A
2 > V A3 ; i.e. �3 > max

�
4�1 � c;

3
2�2 �

1
2c
	
:

When the di¤erence in types of the two highest and the two lowest types grows large,
so that �3 > max

�
4�1 � c;

3
2�2 �

1
2c
	
; the �rm strictly prefers the 2-buyer network. In

the circle A, this causes no problems to the �rm as it can exclude �1 and �2. However,
in the circle B, segregation between the two highest and the two lowest types is blocked by
the type con�guration. It is forced to sell to three consumers, which yields lower pro�ts
when �2 <

1
3�3+

1
6c. In this case, the �rm prefers the case where �3 and �4 are neighbours

(circle A). Respectively, if �3 < max
�
4�1 � c;

3
2�2 �

1
2c
	
holds, then the �rm is better o¤

if the high types are dispersed in the network (circle B), as they support the purchases of
their common neighbour �2:

In general, when the consumers are homogenous, the �rm prefers the complete network,
and the higher the heterogeneity is, the lower is the activity level on the network in the NE.
Due to the incompletely connected circular network structure, this relation is conditional
on type con�guration, since the segregation between the low and the high types may be
blocked.

Example 27 (Star) Consider a four consumer star with a centre �C and three peripheral
agents. Let the peripheral consumers� types be c < �1 < �2 < �3; and focus on the maximal
NE.

(i) Complete network is optimal if

�
min f�1; 3�Cg >

3
4 (min f�2; 2�Cg) +

1
4c

min f�1; 3�Cg >
1
2 (min f�3; �Cg) +

1
2c

(ii) 3-buyer network is optimal if

�
min f�2; 2�Cg >

4
3 (min f�1; 3�Cg)�

1
3c

min f�2; 2�Cg >
2
3 (min f�3; �Cg) +

1
3c

(iii) 2-buyer network is optimal if

�
min f�3; �Cg > 2 (min f�1; 3�Cg)� c
min f�3; �Cg >

3
2 (min f�2; 2�Cg)�

1
2c

From (i)-(iii) we see that higher heterogeneity in � supports partial networks, whereas
if the consumers are su¢ciently homogeneous in terms of �; the �rm chooses a complete
network. The centre�s topologically critical position is emphasised, as the �rm must guar-
antee his participation. If the centre�s type is low, the �rm may be forced to price low
although segregation between the high and the low types might be otherwise desired.

7.2 Stability of equilibria under asymmetric information

We provide checks for BNE stability against small perturbations, based on a Nash tâton-
nement process (see e.g. Fudenberg and Tirole 1991).

7.2.1 Symmetric networks

The BNE condition (3) can be deconstructed into two equations � = z (the 45-degree line)
and z = 1�F

�
min

�
�+; p

n�

	�
; which must be equal in the equilibrium. The deconstructed
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BNE condition is
�
� = z
z = 1� F

�
p
n�

� for active equilibria

�
� = z
z = 0

for the empty network.

The condition for asymptotic stability is
��@�
@z

�� �� @z
@�

�� < 1. We have for the maximal BNE��@�
@z

�� �� @z
@�

��
�=��+

= 1
2 ; and the equilibrium is stable. For the lower positive BNE we have

��@�
@z

�� �� @z
@�

��
�=���

= 2; which indicates that the equilibrium is unstable. The empty network

is also stable since
��@�
@z

�� �� @z
@�

��
�=0

= 0:

7.2.2 Star

We study only the case c = 0, �+ = 1; and �� = 0; discussed in the main text. In the
region where an active BNE can exist, the BNE conditions (10) can be written as

�C = 1� F

�
p

(I � 1)�

�

� = 1� F

�
p

�C

�

Since the model does not give out explicit equilibrium values that would be easily

applied to the stability check
��� @�@�C

���
���@�C@�

��� < 1, we resort to a numerical test. When the

equilibrium values ��C , �
� and p (��C ; �

�) are substituted into the stability equation, we

can plot the curve s =
��� @�@�C

���
���@�C@�

��� for di¤erent values of I: It turns out that s remains
below one for I � 3; and it approaches zero as I grows very large. Hence, the BNE is
stable. The other BNE, namely the empty network, is obviously a stable one as well.
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