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Abstract

We consider a duopoly competing in quantity, where firms can invest

in both innovative and absorptive R&D to reduce their unit production

cost, and where they benefit from free R&D spillovers between them. We

analyze the case where firms act non cooperatively and the case where

they cooperate by forming a research joint venture. We show that, in

both modes of play, there exists a unique symmetric solution. We find

that the investment in innovative R&D is always higher than in absorptive

R&D. We also find that the value of the learning parameter has almost no

impact on innovative R&D, firms profits, consumer’s surplus and social

welfare. Finally, differences in investment in absorptive research and social

welfare under the two regimes are in opposite directions according to the

importance of the free spillover.
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e-mail: georges.zaccour@gerad.ca

1



1 Introduction

In this paper, we consider a duopoly where firms can invest both in innovative

(or original) and absorptive research and development (R&D) to reduce their

unit production cost. We suppose the existence of free and exogenous R&D

spillovers, that is, a firm cannot fully appropriate the knowledge developed in

its laboratory. However, for a firm to benefit from rival’s innovative R&D, it

must invest in absorptive capacity, e.g., hire technical staff to adapt the rival’s

knowledge to its context. The duopoly game is played in two stages: In the first

stage, firms choose their investment levels in R&D, and in the second stage they

compete in quantity on the market. We consider two cases. In the first case, the

firms act non-cooperatively, while in the second case, they cooperate in both

types of research by forming a research joint venture (RJV). Interestingly, we

show that under both modes of play, the sub-game perfect equilibrium is unique.

We then characterize and compare the cooperative and non-cooperative R&D

equilibrium strategies and outcomes.

The literature on process R&D can be schematically divided into three

streams. The first stream has its root in the seminal paper by d’Aspremont and

Jacquemin ([1], see also [2]), who considered a two-stage model where the firms

invest in (innovative) R&D in the first stage and compete in quantities in the

second stage, and where each firm benefits gratuitously from the research invest-

ment of the rival through research externalities. D’Aspremont and Jacquemin

showed that cooperation in R&D through a RJV leads to higher investment

in research and to higher production with respect to the non-cooperative out-

come when the free spillover externality is high, while it is the reverse when the

spillover is low. However, they did not explicitly determine whether coopera-

tion in research is beneficial for firms, or socially desirable. Suzumura [3] showed

that in the presence of sufficiently large R&D spillovers, neither noncooperative

nor cooperative equilibria achieve even second-best R&D levels. However, in

the absence of spillover effects, while the cooperative R&D level remains so-

cially insufficient, the noncooperative level may overshoot first- and second-best

levels of R&D. Salant and Shaffer [4] pointed out that asymmetric equilibria

may exist for cooperating firm and showed that in that case a RJV can raise

welfare, even when there are no free spillovers. Kamien, Muller and Zang [5]

showed that creating an RJV increases firms’ profits and social welfare. Amir

and Wooders [6] showed that the symmetric equilibrium under R&D competi-

tion is sometimes unstable, in which case two asymmetric equilibria must also

2



exist. For the latter, they found that total profits are sometimes higher with

R&D competition than with RJV.

The above-mentioned references all assume that R&D spillovers are exoge-

nous and cost less. A second stream of literature considers that, to benefit from

the rival’s R&D, a firm must acquire absorptive capacity. Cohen and Levinthal

[7] were the first to introduce the concept of absorptive capacity in the R&D

literature. They showed that investment in R&D develops the firm’s ability to

identify, assimilate, and exploit knowledge from the environment, which they

termed “learning” or “absorptive” capacity. Poyago-Theotoky [8] showed that,

when information spillovers are endogenized, non cooperating firms never dis-

close any of their knowledge, whereas they always share their full knowledge

when they cooperate in R&D. Kamien and Zang [9] found that, when firms

cooperate in R&D, they choose identical R&D approaches, while they choose

firm-specific R&D approaches otherwise, unless there is no danger of exogenous

spillovers. In contrast, Wiethaus [10] showed that competing firms do choose

identical R&D approaches in order to maximize the flow of knowledge between

them.

Grünfeld [11] showed that, in a small market, the highest welfare is reached

when the learning parameter of absorptive capacity is large, while the opposite

is true in a large market. Leahy and Neary [12], specifying a general model

for the absorptive capacity process, showed that costly absorption raises the

effectiveness of own R&D and lowers the effective spillover coefficient, thereby

weakening the case for encouraging RJVs, even under total information sharing

between firms. Kaiser [13] showed that cooperating firms invest more in R&D

than non cooperating ones if spillovers are sufficiently large. Milliou [14] showed

that the lack of full appropriability can lead to an increase in R&D investments.

All the above-mentioned papers consider that investments in R&D neces-

sarily increase the absorptive ability of firms, and as such do not allow for

distinguishing R&D investment decisions by type. A third stream of literature

makes a distinction, in one way or another, between innovative and absorptive

research. Frascatore [15] distinguished “basic research,” which increases the

firm’s absorptive capacity, from “applied research,” which reduces the firm’s

costs. The author showed that firms’ expenditures in basic research can differ

from what is socially optimal, and discussed policy responses that could bring

firms’ behavior in line with what is socially desirable. Jin and Troege [16] dis-

tinguished the innovative activity from the imitation activity, and obtained that

asymmetric firms choose the same level of imitation expenditure, and the same
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ratio of innovative cost reduction to output. Hammerschmidt [17] considered a

two-stage game in which R&D plays a dual role: first, it generates new knowl-

edge; and second, it develops a firm’s absorptive capacity. She found that firms

invest more in R&D to strengthen their absorptive capacity when the spillover

parameter is higher. Finally, Kannianinen and Stenbacka [18] showed that there

is an under investment in imitation from a social point of view when imitation

leads to sufficiently intense competition.

Our paper is principally related to this third stream of literature. We con-

sider the investment in absorptive capacity as a decision separate from the

investment in innovative R&D. The two decisions are however related, as invest-

ment in absorptive capacity allows the firms to increase the spillover from the

rival’s research. Our main contributions are the introduction of a free spillover

parameter along with a learning (or absorptive) parameter, the comparison of

non-cooperative and cooperative outcomes, and the analysis of the impact on

firms profits and on social welfare of parameter values and modes of play.

More specifically, we address the following questions:

1. How do investment levels in innovative and absorptive research compare

under cooperation and non-cooperation in R&D?

2. What is the impact of the free spillover and learning parameters on strate-

gies and outcomes?

3. Does cooperation in R&D improve profits, consumers’ surplus or welfare?

We obtain some new and non obvious results. Indeed, contrary to the results

obtained when decisions in absorptive and innovative research are not dissoci-

ated, as in [11], we find that an increase in the efficiency of absorptive research

investments has almost no impact on innovative R&D investments, firms’ profits,

consumers’ surplus and social welfare. We also find that when the free spillover

is low, investment in absorptive R&D, consumers’ surplus and social welfare are

higher under non-cooperation than under a RJV. This challenges a result in [4]

stating that a RJV can raise welfare even in the absence of spillovers.

A third interesting result, in line with a finding of [17] in a non-cooperative

setting, is that investment in innovative R&D is always higher than in absorptive

R&D, in both the cooperative and non-cooperative cases, even when investment

costs for innovation are much higher than for absorption capacity.

Finally, in our model, an increase in the free spillover leads to higher prof-

its under the two regimes, and to higher social welfare and absorptive research
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investments in a RJV. This last result carries a priori a non-obvious message.

Indeed, under cooperation, one could presume that when the free spillover de-

creases, firms are tempted to compensate by increasing their investment in ab-

sorption capacity, but our computations show that this is not the case.

The rest of the paper is organized as follows. Section 2 presents the basic

model and Section 3 the market equilibrium. Section 4 characterizes the unique

symmetric equilibrium in the non-cooperative case and Section 5 characterizes

the unique equilibrium solution when the firms cooperate in R&D. Section 6

presents and discusses numerical illustrations and Section 7 briefly concludes.

2 The model

We consider a duopolistic industry producing a homogeneous good sold on a

market having the following linear inverse demand function:

p(qi, qj) = λ− b(qi + qj), λ > 0, b > 0, i, j ∈ {1, 2}, j 6= i.

Firms are symmetrical and can invest in R&D to decrease their per-unit

production cost. We distinguish between two types of R&D efforts, namely,

innovative or original R&D, denoted yi, which directly reduces production costs,

and absorptive-capacity R&D, denoted ai, which enables a firm to capture part

of the original research developed by the rival, i ∈ {1, 2}. The total knowledge

available (also referred to as the effective R&D level in the literature) to firm

i ∈ {1, 2} is:

yi + (β + lai) yj , j ∈ {1, 2}, j 6= i,

where β ∈ [0, 1) is a parameter capturing the free and exogenous spillover and

l > 0 is a learning or absorptive parameter. It is convenient to make a change

of variable, defining xi ≡ β + lai, representing the effective spillover, that is,

the fraction of knowledge developed by the rival firm which is captured by firm

i, i ∈ {1, 2}. We assume that a firm cannot capture more than the knowledge

developed by its competitor, so that xi ∈ [β, 1] .

The above specification differs from that in d’Aspremont and Jacquemin

[1] and in the first stream of literature mentioned in the introduction by the

inclusion of a new spillover component that is not free, and that necessitates

an investment in absorptive capacity. When l = 0, we obtain the corresponding

R&D level in the d’Aspremont and Jacquemin model. Our specification also
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generalizes papers in the third stream of literature by considering a component

β of free spillover that is independent of absorptive capacity.

Before investing in R&D, the marginal cost of production of firms is ∈ (0, ),

and it becomes after both types of investments:

Ci (yi, xi, yj) = θ − yi − xiyj, i, j ∈ {1, 2}, j 6= i

with the condition Ci (yi, xi, yj) ≥ 0.

To accommodate for diminishing returns to scale of R&D, we let the cost

of R&D activity be a convex increasing function that vanishes when there is

no activity. For simplicity, we assume that the investment cost is additive and

quadratic, so that the cost of original and absorptive R&D for firm i ∈ {1, 2} is

given by

A (yi)
2 +D (ai)

2 = A (yi)
2 +D

(

xi − β

l

)2

= A (yi)
2
+B (xi − β)

2

≡ I(yi, xi),

where A and D are positive parameters and B = D
l2
. The profit of firm i ∈ {1, 2}

is then given by

Πi(qi, qj , yi, xi, yj) = (p(qi, qj)− Ci(yi, xi, yj)) qi − I(yi, xi), j ∈ {1, 2}, j 6= i.

As usual in the literature, the game is played in two stages; in the first

stage, the firms decide on their investments in both types of R&D, and in the

second stage they decide on their outputs. The sub-game perfect equilibrium is

obtained by backward induction.

The consumers’ surplus derived from the consumption of qi + qj is:

CS(qi, qj) =

∫ qi+qj

0

p(u)du− p(qi, qj)(qi + qj) =
b

2
(qi + qj)

2, i, j ∈ {1, 2}, j 6= i.

The social welfare level is defined as the sum of the consumers’ surplus and

the profit of firms:

S(qi, qj , yi, xi, yj , xj) = CS (·) + Πi (·) + Πj (·) , i, j ∈ {1, 2}, j 6= i.

Without loss of generality, from now on we normalize the quantity and cur-
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rency units so that b = 1 and λ − θ = 1. The parameter set characterizing

the game is then {A,B, β}. In the sequel, we however implicitly assume that

solutions satisfy the constraints Ci (yi, xi, yj) ≥ 0, which depends on the value

of θ.

3 Output game

In the second stage, for a given investment of each firm in original and absorptive

research corresponding to (y1, y2, x1, x2), where yi ≥ 0 and β ≤ xi ≤ 1, i ∈
{1, 2}, firms’ profit functions are concave, and first-order conditions characterize

the optimal reaction functions:

1− 2q1 − q2 + y1 + y2x1 = 0

1− 2q2 − q1 + y2 + y1x2 = 0,

provided that profits are non-negative. Simultaneous solution of the F.O.C.

yields the equilibrium output as a function of R&D investments:

q∗i (y1, y2, x1, x2) =
1 + (2− xj) yi + (2xi − 1) yj

3
, i, j ∈ {1, 2}, j 6= i.

To interpret the above equilibrium, we compute the partial derivatives of output

decisions with respect to R&D efforts, to obtain:

∂q∗i
∂yi

=
2−xj

3 > 0
∂q∗i
∂xi

=
2yj

3 ≥ 0
∂q∗i
∂yj

= 2xi−1
3

∂q∗i
∂xj

= − yi

3 ≤ 0.

When a firm increases its level of innovative or absorptive research, its

marginal cost of production decreases, enabling it to expand its equilibrium

production (
∂q∗i
∂yi

> 0,
∂q∗i
∂xi

≥ 0). On the other hand, when a competitor in-

creases its investment in absorption, its marginal cost decreases, enabling it to

expand its production, which in turn forces the other firm to reduce its produc-

tion (
∂q∗i
∂xj

≤ 0). Consider now the derivative
∂q∗i
∂yj

. When the competing firm

increases its innovative research, then this has two opposite effects on the firm’s

production, namely, (i) a positive effect on production due to the free R&D

spillovers and absorptive capacity; and (ii) a negative effect due to competi-

tion between firms. When the proportion xi of the captured knowledge is high

enough (β and/or l are high enough), the first positive effect dominates and the
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production of the firm increases.

If x1 = x2 = x and y1 = y2 = y, then

q∗i (y, x) =
1 + y (1 + x)

3
, i ∈ {1, 2}.

4 Non-cooperative solution

In this section, we suppose that the two firms behave non-cooperatively in the

first stage: each firm chooses its optimal levels of innovative and absorptive re-

search independently, taking into account the equilibrium solution of the second

stage game.

The profit function for firm i, given that the rival firm j chooses innovative

R&D level yj and absorptive capture level xj is given by:

(p(q∗1 (y1, y2, x1, x2) , q
∗

2 (y1, y2, x1, x2))− C(yi, xi, yj))

q∗i (y1, y2, x1, x2)− I(yi, xi)

=
1

9
(2yi − yj + 2xiyj − xjyi + 1)2 −A (yi)

2 −B (xi − β)2

and is positive when yi = 0 and xi = β. Assuming an interior solution, profit is

positive and first order conditions yield

xi =
Bβ (9A− 4)− 2Ayj (yj − 1) +Bβxj (4− xj)

A
(

9B − 4y2j
)

−B (2− xj)
2

yi = B (2− xj)
1− yj (1− 2β)

A
(

9B − 4y2j
)

−B (2− xj)
2 ,

which is the optimal investment decision pair for firm i if the following second

order conditions are satisfied:

9A > (2− xj)
2

(1)

9B > 4y2j (2)

A
(

9B − 4y2j
)

> B (2− xj)
2
. (3)

The equilibrium solution is necessarily symmetric and is denoted (xn, yn); it

satisfies:
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2yn (yn (xn + 1) + 1)− 9B (xn − β) = 0 (4)

(2− xn) (yn (xn + 1) + 1)− 9Ayn = 0 (5)

or, equivalently,

xn =
9Bβ + 2yn (yn + 1)

9B − 2 (yn)
2 (6)

yn =
2− xn

9A− (xn + 1) (2− xn)
. (7)

Proposition 4.1 If

A > max

[

(2− β)
2

9
, 0.25

]

(8)

B >
2A

(1− β) (9A− 2)
2 , (9)

then there exists a unique symmetric non-cooperative equilibrium solution (xn, yn)

satisfying (6)-(7), with yn > 0 and β < xn < 1.

Proof. We first show that under assumptions (8)-(9), there is a unique interior

solution to (6)-(7), and that this solution satisfies the second order condition.

Consider (6) as a function xn(y), y2 6= 9B
2 . Differentiating with respect to y

yields

2
9B + 2y2 + 18By + 18Byβ

(9B − 2y2)
2 > 0 if y ≥ 0.

Therefore, xn is an increasing function of y. Accordingly, xn(y) ∈ [β, 1] if

y ∈
[

0,
−1+

√
1+36B(1−β)

4

]

.

Now consider (7) as a function yn(x), (x+ 1) (2− x) 6= 9A. Differentiating

with respect to x yields

(2− x)
2 − 9A

(9A− (x+ 1) (2− x))2
< 0.

Under assumption (8), 9A > (2− β)2. Therefore, yn is decreasing in x

for x ∈ [β, 1]. Moreover yn(x) > 0 for x ∈ [β, 1] if 9A > (x+ 1) (2− x) ≥
2.25, which is satisfied under assumption (8). Accordingly, yn(x) ∈

[

1
9A−2 ,

2−β
9A−(β+1)(2−β)

]

if x ∈ [β, 1] .
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Since xn is increasing in y and yn is decreasing in x, there is at most one

intersection point of the two curves defined by (6)-(7). Since yn(β) > 0, the

intersection defines a unique interior solution with x < 1 if

1

9A− 2
<

−1 +
√

1 + 36B (1− β)

4
,

which is equivalent to Assumption (9).

It remains to check if this unique intersection point satisfies the second order

conditions. Under Assumption (9), (2− xn)
2
< (2− β)

2
< 9A and condition

(1) is satisfied.

Using (7) and the fact that yn(x) is decreasing,

4 (yn)
2

= 4

(

(2− xn)

9A− (xn + 1) (2− xn)

)2

< 4

(

(2− 1)

9A− (1 + 1) (2− 1)

)2

=
4

(9A− 2)
2

and using Assumption (9),

9B >
18A

(9A− 2)2 (1− β)
>

18A

(9A− 2)2

and Condition (2) is satisfied if 18A > 4, which is the case under Assumption

(8).

Finally, using (4)-(5),

B = 2
yn

9 (x∗ − β)
(yn (xn + 1) + 1)

A =
1

9y
(yn (xn + 1) + 1) (2− xn)

so that

A
(

9B − 4 (yn)
2
)

−B (2− xn)
2

=
2

9

(2− xn) (yn (xn + 1) + 1)

xn − β
(yn (2β − 1) + 1)

which is positive if yn (2β − 1) + 1 > 0. Now, this is always the case if β ≥ 0.5.
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If on the other hand β < 0.5, then

y ≤ 2− β

9A− (β + 1) (2− β)

<
2− β

(2− β)
2 − (β + 1) (2− β)

=
1

1− 2β

and yn (2β − 1) + 1 > 0.

We now show that there are no other possible (non interior) equilibrium

points. Indeed, according to the values of x2 and y2, the optimal solution for

Player 1 could be either

x1 = β, y1 = max
[

0, (2−x2)(y2(2β−1)+1)

9A−(x2−2)2

]

, with a candidate equilibrium point

at
(

β, 2−β
9A−(β+1)(2−β)

)

x1 = 1, y1 = max
[

0, 2y2(2−x2)+(y2−1)(x2−2)

9A−(x2−2)2

]

, with a candidate equilibrium

point at
(

1, y = 1
9A−2

)

1. If x2 = β and y2 = 2−β
9A−(β+1)(2−β) , the profit function of Player 1 is

1

9

(

2y1 −
2− β

9A− (β + 1) (2− β)
+ 2x1

2− β

9A− (β + 1) (2− β)
− βy1 + 1

)2

−A (y1)
2 −B (x1 − β)

2
.

Differentiating with respect to x1 and evaluating the derivative at x1 = β

and y1 = 2−β
9A−(β+1)(2−β) yields

4A
2− β

(9A− (β + 1) (2− β))
2 > 0

which implies that
(

β, 2−β
9A−(β+1)(2−β)

)

cannot be an equilibrium solution.

2. If x2 = 1 and y2 = 1
9A−2 , the profit function of Player 1 is

1

9

(

y1 −
1

9A− 2
+ 2x1

1

9A− 2
+ 1

)2

−A (y1)
2 −B (x1 − β)

2
.

Differentiating with respect to x1 and evaluating the derivative at x1 = 1
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and y1 = 1
9A−2 yields

−2

9

9B (9A− 2)
2
(1− β) − 18A

(9A− 2)
2

< −2

9

9 2A
(9A−2)2(1−β)

(9A− 2)2 (1− β)− 18A

(9A− 2)2
= 0

which implies that
(

1, 1
9A−2

)

cannot be an equilibrium solution.

Recall that we discarded as non interesting the case where the cost param-

eter θ is smaller than yn(xn + 1), meaning that the firms can eliminate their

production costs at equilibrium. This could also happen, irrespective of the

value of θ, for low values of A; For instance, when 9A < 1,the profit function

of Player 1 becomes convex in y1 for all x2 ≤ 1, and it is optimal for players to

invest in both types of R&D until production costs vanish.

Finally notice that when Assumption (8) is satisfied, but Assumption (9) is

not, it is straightforward to show, using the arguments in the proof of Proposi-

tion 4.1, that the unique equilibrium is at x = 1, y = 1
9A−2 . Figure 1 illustrates

the space of parameter values yielding interior equilibrium solutions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

A

B

interior solu!on

costs vanish

x≤1

Figure 1: Solution regions according to parameter values for β = 0.4.
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5 Cooperation in research

In this section, firms cooperate in both types of research in the first stage by

creating a Research Joint Venture, and compete in the second stage of produc-

tion. Thus, the solution of the second stage is the same as in Section (3). The

total profit function is then

Π(x1, x2, y1, y2) =
1

9

(

(2y1 − y2 + 2x1y2 − x2y1 + 1)
2

+ (2y2 − y1 + 2x2y1 − x1y2 + 1)2
)

−A
(

y21 + y22
)

−B
(

(x1 − β)
2
+ (x2 − β)

2
)

.

As in [[1]], we look for a symmetric equilibrium, which can be motivated by the

fact there are no side-payments between firms, who only agree in coordinating

their R&D investments; the total profit function becomes

Π(x, y) =
2

9
(y + xy + 1)2 − 2A (y)2 − 2B (x− β)2

where x and y represent the knowledge captured and the investment in original

research, for both firms in the RJV. Total profit is positive when y = 0 and

x = β. Moreover, at y = 0,

Π′

y(x, 0) =
4

9
(x+ 1) > 0,

implying that the maximizing y is strictly positive, and, at x = β,

Π′

x(β, y) =
4

9
y (y + yβ + 1) > 0,

implying that the maximizing x is strictly greater than β.

Assuming an interior solution, denoted by (yc, xc), profit is positive and first

order conditions yield

yc (yc + xcyc + 1)− 9B (xc − β) = 0

(xc + 1) (yc + xcyc + 1)− 9Ayc = 0

13



or, equivalently,

xc =
9Bβ + yc + (yc)2

9B − (yc)
2 (10)

yc =
xc + 1

9A− (xc + 1)
2 . (11)

which is optimal if the following second order conditions are satisfied:

9A > (xc + 1)
2

(12)

9B > (yc)2 (13)
(

9B − (yc)
2
)(

9A− (xc + 1)
2
)

> (2yc + 2xcyc + 1)
2
. (14)

Proposition 5.1 If

A >
4

9
(15)

B >
2A

(1− β) (9A− 4)
2 , (16)

then there exists a unique optimal solution (xc, yc) satisfying (10)-(11), with

yc > 0 and β < xc < 1.

Proof. We first show that there is a unique interior solution to (10)-(11).

Consider (10) as a function xc(y), y2 6= 9B. Differentiating with respect to

y yields
9B + 18By + y2 + 18Byβ

(9B − y2)
2 > 0 if y ≥ 0.

Therefore, xc is an increasing function of y. Accordingly, xc(y) ∈ [β, 1] if

y ∈
[

0,

√
72B(1−β)+1−1

4

]

, where

√
72B(1−β)+1−1

4 < 9B. Moreover, the second

derivative of xc(y) is

2
27By2 + 81B2β + 27By + 81B2 + y3 + 27By2β

(9B − y2)
3 ,

implying that this function is convex for 0 ≤ y2 < 9B, so that [xc]
−1

(x) is

concave on the corresponding domain.

Now consider (11) as a function yc(x), (x+ 1)
2 6= 9A. Differentiating with
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respect to x yields

9A+ (x+ 1)
2

(

9A− (x+ 1)
2
)2 > 0,

so that yc is decreasing in x, implying that yc(x) ∈
[

β+1
9A−(β+1)2

, 2
9A−4

]

for

x ∈ [β, 1] where β+1
9A−(β+1)2

> 0 under Assumption (15). Moreover, the second

derivative of yc(x) is

2 (x+ 1)
27A+ (x+ 1)2

(

9A− (x+ 1)
2
)3 > 0,

implying that this function is convex for x ∈ [β, 1] .

Now consider [xc]
−1

(β) = 0 < β+1
9A−(β+1)2

= yc(β). Since [xc]
−1

is concave

and yc is convex, there is a unique intersection point of the two curves defined

by (10)-(11) in (β, 1) if [xc]
−1

(1) > yc(1), which translates to the condition

√

72B (1− β) + 1− 1

4
>

2

9A− 4
,

corresponding to Assumption (16).

We now show that (xc, yc) maximizes the profit function. Second order

conditions (12) and (13) are readily verified if xc ∈ (β, 1):

(xc + 1)2 < 4 < 9A

(yc)
2

<

√

72B (1− β) + 1− 1

4
< 9B,

but Condition (14) cannot be checked analytically. To prove that (xc, yc) is

indeed a maximum, consider the partial derivative of the profit function with

respect to the variable y on x ∈ [β, 1] , y ≥ 0 :

Π′

y(x, y) =
4

9
(x+ 1) (y + xy + 1)− 4Ay

≤ 8

9
(2y + 1)− 4Ay

and notice that this derivative is negative for all y > 2
9A−4 . As a consequence,

we can restrict the optimization domain to the compact set [β, 1]×
[

0, 2
9A−4

]

,

and since the profit function is continuous, it admits a maximum in this set

which is either the unique stationary point (xc, yc) or a boundary point. We
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already know that investment in both types of research are strictly positive at

optimality. At x = 1,

Π′

x(1, y) =
4

9
y (2y + 1)− 4B (1− β)

≤ 8
A

(9A− 4)
2 − 4B (1− β) < 0,

implying that the interior stationary point (xc, yc) is optimal.

Again, we assume that θ ≥ yc(xc+1). When Assumption (15) is not satisfied,

the objective function is convex in y at x = 1, therefore unbounded if y can take

arbitrarily large values, and it is optimal for firms to invest in both types of R&D

until production costs vanish. On the other hand, if Assumption (15) is satisfied,

but Assumption (16) is not, one can show that either there exist no intersection

point of xc(y) and yc(x), and the optimal solution is then at
(

x = 1, y = 2
9A−4

)

,

or there are two intersection points, one of which is a saddle point.

6 Numerical Results

As it is not possible to have explicit closed-form solutions, we resort to numer-

ical experiments to gain some qualitative insight into the (fully analytically)

characterized equilibria. In particular, we are interested in assessing the im-

pact of key model parameters on strategies and outcomes, and in comparing

profits, consumers’ surplus and total welfare under the two modes of play, i.e.,

non-cooperative and cooperative R&D. Note that in the sequel, we retain the

restrictions on parameter values derived for the cooperative solution, which are

more stringent than their non-cooperative counterparts.

The parameter set characterizing the game is {A,B, β}, with B = D
l2
. As we

are interested in highlighting, among other things, the impact of the learning

parameter, we shall present the results in terms of the parameters A,D, β and l.

Recall that A > 0 and D > 0 are the coefficients of the investment cost function

in innovative and absorptive research, that β ∈ [0, 1) is a parameter capturing

the free and exogenous spillover, and that l > 0 is a learning or absorptive

parameter. The first step is to define the space of feasible parameter values

and to discretize it using some suitable step sizes for the various parameters. In

our context, as three out of the four parameters of interest, namely, A,D and

l, do not have any natural upper bounds, the definition of a numerical grid is

somewhat arbitrary, as long as the combination of values remains in the feasible
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region. For the sake of parsimony, we let l vary in the same way as β, i.e.,

in the interval [0.1, 1].1 For the cost parameters, we arbitrarily assume that

A,D ∈ [1, 5] , that is, the largest value for each of them can be up to 5 times

the lowest one.2

The results are reported in six series of figures. In each series, we show three

values for β, namely, a low (0.1), medium (0.5), and a high value (0.9), and vary

the value of l in the interval [0.1, 1]. In each series, the first two rows report the

results for equal innovative and absorptive costs, while the last two rows show

the results for asymmetric costs. In this way, we can immediately see (i) the

impact of increasing both costs (by comparing row 1 to row 2), (ii) the impact

of increasing absorptive research cost (by comparing row 1 to row 3), and (iii)

the impact of increasing innovative research cost (by comparing row 1 to row

4). We emphasize that the results presented here represent a very small subset

of the total number of conducted experiments.3

We summarize our findings in seven claims. Claims 1-3 assess the impact of

varying the parameter values on R&D equilibrium strategies. Claim 4 compares

investment strategies under non-cooperative R&D and RJV. Claim 5 compares

the investment levels in innovative and absorptive research, and Claims 6-7

relate to the outcomes (profits, consumers’ surplus and welfare).

Claim 6.1 Impact of cost parameters on strategies. Increasing the cost

of any type of R&D activity, leads to

1. lower investment in that research activity (see Figures 2-4);

2. lower profits and consumers’ surplus, and consequently to lower wel-

fare (see Figures 5-7).

The above results are expected. Indeed, a higher investment cost in R&D

means lower investment and higher production cost, which implies a higher

price to consumer and lower demand for the product. Consequently, profits and

consumers’ surplus are lower, and so is total welfare.

Claim 6.2 Impact of spillover parameter on strategies. For any cost

configuration and any given l, increasing β leads to

1We exclude zero as a lower bound because the characterization of the solutions was made
under the assumption that l > 0.

2Actually, we compared the results obtained with values of A as high as 50 times the lowest
value (similarly for D) and the conclusions remain qualitatively the same.

3Results for other parameters’ value are available from the authors upon request.
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1. higher (lower) investments in innovative research when the firms coop-

erate (do not cooperate) in R&D (Figure 2);

2. higher (lower) investments in absorptive research when the firms coop-

erate (do not cooperate) in R&D (Figure 3);

3. higher (lower) total knowledge (effective R&D) when the firms cooperate

(do not cooperate) in R&D (Figure 4).

The result that firms increase their investments in innovative R&D when

they cooperate (item 1), can be explained by the fact that cooperating firms

internalize the free spillover; thus, increasing the latter makes the investment

in innovative R&D more efficient and results in a higher investment. However,

when β is increased in the non-cooperative case, firms are incited to invest less

in innovative research and to profit from this increasing gratuitous research

spillover. The result in item 2 is of interest in view of its newness to the lit-

erature, and because it carries a priori a non-obvious message. Indeed, under

cooperation, one could presume that when the free spillover decreases, firms

are tempted to compensate by increasing their investment in absorption ca-

pacity, but our computations show that this is not the case. The explanation

is that when the free spillover decreases, cooperating firms reduce their inno-

vative research, which incite them to invest less in absorptive research. On

the other hand, non-cooperating firms invest less in absorptive R&D when the

free spillover increases, because the reduction in the investment in innovative

research renders the former less efficient. The result in the third item is a

consequence of the first two.

Recall that the results obtained in [15], [16] and [17] are not comparable to

ours because there is no free spillover in their model of absorptive research. On

the other hand, although the existence of a free R&D spillover has been assumed

in many studies (e.g., [1], [2], [4], [5], [8], [9],[10], [11], [13], [14]), none of them

assessed the impact of varying this parameter on R&D levels. In this sense, the

results in Claim 2 are new, and cannot be compared to the literature.

Claim 6.3 Impact of learning parameter on strategies. Under both coop-

eration and non-cooperation in R&D, for any cost configuration and any given

β, increasing l leads to

1. almost no change in investments in innovative research (Figure 2);

2. higher investments in absorptive research (Figure 3);
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3. higher total knowledge or effective R&D (Figure 4).

Contrary to what we found when varying the spillover parameter, here the

direction of change is the same under both cooperative and non-cooperative

R&D. Interestingly, a higher value for the learning parameter increases the

efficiency of the investment in absorption, and that is why the investment in

absorptive R&D increases with the learning parameter. This is similar to the

result found in the non-cooperative case by Hammerschmidt ([17]).

Our results show that l does not have any significant impact on investment in

innovative research. Indeed, even when we multiply the value of l by ten, that is,

we consider the two extreme values of l = 0.1 and l = 1.0, we obtain a variation

of less than 10% in individual investments in innovative R&D. As explained

above, a greater value for the learning parameter increases the investment in

absorptive R&D, which may discourage the investment in innovative R&D. On

the other hand, a higher learning ability increases the efficiency of innovative

research, and therefore we could a priori expect it to increase. It seems that

these two opposite effects neutralize. This interesting result is different from

the one found by Hammerschmidt ([17]) for the non-cooperative case where

she showed that the investment in innovative R&D decreases with the learning

parameter. This is due to the fact that the learning parameter in her model has

a multiplicative impact on both the free spillover parameter and the learning

capacity, while in our model we disentangle the two phenomena.

As a direct consequence of the two preceding results, total knowledge in-

creases with l. Therefore, for any given cost structure, it seems that the signifi-

cant determinants of innovative R&D are the firms’ behavior (cooperate or not

in R&D) and the spillover parameter β. We discuss below the welfare implica-

tions of this result.

Claim 6.4 Cooperative versus non-cooperative R&D strategies. For

any cost configuration

1. when the spillover is sufficiently low, that is β ≪ 0.5, firms invest more

in innovative R&D in the non-cooperative equilibrium than in the RJV

solution. It is the other way around for β ≫ 0.5 (Figure 2);4

2. when the spillover is sufficiently low, that is β ≪ 0.5, non-cooperative

4The exact threshold where investments are the same is around 0.5, but depends on other
parameter values.
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investment in absorptive research is higher than its cooperative coun-

terpart (Figure 3);

3. when the spillover is sufficiently low (high), that is β ≪ 0.5 (β ≫ 0.5)

the total knowledge is higher (lower) in the non-cooperative equilibrium

than in the RJV solution (Figure 4).

The first result is the same as in [1]. It appears that the statement made

in the first item and in the early literature ([1], [5], [9], [13]) is robust to the

inclusion of additional features in the model, namely, absorptive research and

learning. When the free spillover is low, non-cooperating firms invest more in

innovative research than cooperating ones. This incites them to invest more in

absorptive research under non-cooperation in order to increase the R&D exter-

nality. This result is new and interesting because the studies (i.e., [15], [16], [17])

that have considered investment in absorptive research as a decision variable did

not include a free spillover parameter and have not compared cooperation to

non-cooperation. The level of total knowledge, which results from both types

of R&D, goes generally in the same direction as innovative research.

Claim 6.5 Comparison of innovative and absorptive research. The in-

vestment in innovative R&D is always higher than the investment in absorptive

R&D (Figures 2 and 3).

The above result is valid for both the non-cooperative and cooperative cases,

and holds even when the investment cost in innovation is much higher than the

one for absorption (A = 5 > D = 1), and when the learning parameter is very

high. The intuition behind this result is that the investment in absorption takes

its economic value from innovation. This result confirms the result found in [17]

in the non-cooperative case and extends it to the RJV case.

In the next two claims, we summarize the results regarding the outcomes.

Claim 6.6 Impact of spillover and learning parameters on outcomes.

1. For any cost configuration, increasing β leads to:

(a) higher individual profits. This holds true under both modes of play

(Figure 5);

(b) higher consumers’ surplus when firms cooperate, and almost no im-

pact when they behave non-cooperatively (Figure 6);
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(c) higher total welfare under cooperation (Figure 7).

2. For any cost configuration, increasing l does not significantly affect profits,

consumers’ surplus or welfare.

We observe that a higher value for the free spillover parameter is beneficial

to firms in both modes of play. However, increasing β has a positive effect on

consumers’ surplus and social welfare in the cooperative case, and almost no

impact on consumers’ surplus in the non-cooperative case. In the cooperative

case, a higher β leads to a higher effective research and lower production cost.

Consequently, profits and consumers’ surplus are higher, and so is the social

welfare. On the contrary, a higher β leads to a lower effective research in the

non-cooperative case, and hence to a higher unit-production cost (see Claim 2).

This leads to the ambiguity of the impact of β on social welfare. The literature

in this area does not assess the impact of varying the spillover parameter on

outcomes.

From Claim 3, we know that increasing l, reduces the unit production cost

but increases the investment cost in absorption. Consequently, varying the

learning parameter has a little impact on firms profits and production, con-

sumers’ surplus, and social welfare. Therefore, even if a higher value for the

learning parameter increases the efficiency of investing in absorptive research,

it has no impact on profits, consumers’ surplus and social welfare. This last

result contradicts the one established by Grünfeld ([11]) who found a significant

impact of the learning parameter on welfare. However, notice that [11] does

not consider the possibility of investing in absorptive capacity, so that the the

learning parameter in his model represents the efficiency of own inventive R&D

in promoting absorptive capacity.

Claim 6.7 Ranking of outcomes. For any cost configuration, we obtain that

1. individual profits under RJV dominate their non-cooperative counterparts.

For β = 0.5, the profits are (almost) equal (Figure 5);

2. when the spillover is sufficiently low, that is β ≪ 0.5, consumers’ surplus

and total welfare are higher in the non-cooperative equilibrium than in the

RJV solution. It is the other way around for β ≫ 0.5. For β = 0.5,

consumers’ surplus and total welfare are almost equal (Figures 6-7).

We know from Claim 4 that, depending on the value of the spillover param-

eter β, the unit production cost (resp. the investment cost in R&D) increases
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(decreases) or decreases (increases) with cooperation. The consequence is that

a RJV is beneficial for firms. This result is similar to the one found in Kamien

et al. ([5]). Amir and Wooders ([6]) and Salant and Shaffer ([4]) found that

non-cooperative asymmetric equilibriums may raise joint profit with respect to

an RJV. Recall however that in our model, there is a unique non-cooperative

equilibrium, which is symmetric.

When the value of the free spillover parameter is low, the unit production

cost is higher and the research investment cost is lower under cooperation than

competition, leading to an important reduction in production and consumers’

surplus; consequently, the social welfare decreases with cooperation even though

the profit of firms increases.

Conversely, when β is high, unit production cost is lower and investment in

R&D is higher under a RJV, leading to an increase in production and consumers’

surplus with respect to competition; since the profits of firms also increase, the

social welfare is higher with cooperation and when β is high. This result is

similar to the one found by Kamien et al. ([5]).

7 Conclusion

In this paper, we considered two types of R&D investment decisions, where

firms may decide to invest in innovative research to reduce their production cost

and/or to invest in absorptive capacity, to be able to profit from other firms’

innovations. We characterized and compared cooperative and non-cooperative

R&D equilibrium strategies and outcomes in a two-stage game of R&D invest-

ment followed by Cournot market competition. We also assessed the impact of

varying the spillover and the learning parameters on the R&D levels and out-

comes. We showed for both the non-cooperative and the cooperative case that

there exist a unique symmetric subgame-perfect Nash equilibrium. As the solu-

tion, while analytical, cannot be stated in closed-form, we resorted to numerical

experiments to investigate the equilibrium results. Whereas some of our results

confirm what was already known for other models involving spillovers and ab-

sorptive capacity, other results extended our knowledge. By disentangling the

impact of investment decisions on knowledge and on absorptive capacity, we

found that some results differ from what has been found earlier under different

settings.
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Figure 2: Impact of parameter values on innovative research. Vertical axis:
level of innovative research (yn, yc). Horizontal axis: learning parameter (l).
Left panel: β = 0.1; center panel: β = 0.5; right panel: β = 0.9. Unit cost of
innovative research (A) and of absorptive research (D) in {1, 5}.

23



Absorptive research
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Figure 3: Impact of parameter values on absorptive research. Vertical axis:
level of absorptive research (an, ac), where a = x−β

l
. Horizontal axis: learning

parameter (l). Left panel: β = 0.1; center panel: β = 0.5; right panel: β = 0.9.
Unit cost of innovative research (A) and of absorptive research (D) in {1, 5}.
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A =1,

D=1

A =5,

D=5

A =1,

D=5

A =5,

D=1

 0,10

 0,15

 0,20

 0,25

 0,30

 0,35

 0,40

 0,45

0 0,5 1

 0,10

 0,15

 0,20

 0,25

 0,30

 0,35

 0,40

 0,45

0 0,5 1

 0,10

 0,15

 0,20

 0,25

 0,30

 0,35

 0,40

 0,45

0 0,5 1

 0,025

 0,030

 0,035

 0,040

 0,045

 0,050

0 0,5 1

 0,025

 0,030

 0,035

 0,040

 0,045

 0,050

0 0,5 1

 0,025

 0,030

 0,035

 0,040

 0,045

 0,050

0 0,5 1

 0,12

 0,17

 0,22

 0,27

 0,32

 0,37

0 0,5 1

 0,12

 0,17

 0,22

 0,27

 0,32

 0,37

0 0,5 1

 0,12

 0,17

 0,22

 0,27

 0,32

 0,37

0 0,5 1

 0,020

 0,025

 0,030

 0,035

 0,040

 0,045

 0,050

 0,055

 0,060

0 0,5 1

 0,020

 0,025

 0,030

 0,035

 0,040

 0,045

 0,050

 0,055

 0,060

0 0,5 1

 0,020

 0,025

 0,030

 0,035

 0,040

 0,045

 0,050

 0,055

 0,060

0 0,5 1

coopera!ve solu!on non-coopera!ve solu!on

Figure 4: Impact of parameter values on effective R&D. Vertical axis: total level
of R&D (yn + an, yc+ ac), where a = x−β

l
. Horizontal axis: learning parameter

(l). Left panel: β = 0.1; center panel: β = 0.5; right panel: β = 0.9. Unit cost
of innovative research (A) and of absorptive research (D) in {1, 5}.
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Firm profits
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Figure 5: Impact of parameter values on firms profits. Vertical axis: equilibrium
profits (Πn,Πc). Horizontal axis: learning parameter (l). Left panel: β = 0.1;
center panel: β = 0.5; right panel: β = 0.9. Unit cost of innovative research
(A) and of absorptive research (D) in {1, 5}.
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Figure 6: Impact of parameter values on consumer’s surplus. Vertical axis:
equilibrium consumer’s surplus (CSn, CSc). Horizontal axis: learning parame-
ter (l). Left panel: β = 0.1; center panel: β = 0.5; right panel: β = 0.9. Unit
cost of innovative research (A) and of absorptive research (D) in {1, 5}.
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Figure 7: Impact of parameter values on total welfare. Vertical axis: equilibrium
social welfare (Sn, Sc). Horizontal axis: learning parameter (l). Left panel:
β = 0.1; center panel: β = 0.5; right panel: β = 0.9. Unit cost of innovative
research (A) and of absorptive research (D) in {1, 5}.
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We obtained that varying the learning parameter has almost no impact on

innovative R&D, firms’ profits, consumers’ surplus and social welfare. Therefore,

even if a higher absorptive parameter increases the efficiency of investing in

absorptive research, it has almost no impact on social welfare.

When the free spillover is low, the investment in absorptive R&D, consumers’

surplus and social welfare are higher under non-cooperation than under a RJV.

However, cooperation is welfare improving when the free spillover is high.

The investment in innovative R&D is always higher than in absorptive R&D

for both the cooperative and non-cooperative cases. This remains true even

when the investment cost in innovation is much higher than that of absorp-

tion.This is due to the fact that the investment in absorption takes its economic

value from innovation.

Increasing the free spillover, leads to higher profits under the two regimes,

and to higher social welfare and investments in absorptive research in a RJV.

However, increasing the free spillover reduces the investment in absorptive re-

search under non-cooperation.

Our model is static, and considers firms that are symmetric in all parameters

and results in symmetric non-cooperative and cooperative solutions. Interesting

extensions would be to consider asymmetrical firms and a dynamic setting where

the stock of knowledge and absorptive capacity evolves over time.
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