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Abstract 

Futures exchanges require a margin requirement that ensures their competitiveness 

and protects against default risk.  This paper applies extreme value theory in 

computing unconditional optimal margin levels for a selection of stock index futures 

traded on European exchanges.  The theoretical framework focuses explicitly on tail 

returns, thereby properly accounting for large levels  of risk in measuring prudent 

margin levels.  The paper finds that common margin requirements are sufficient for 

each contract, with the exception of the Norwegian OBX index, in providing equitable 

costs for traders.  In addition, the paper shows the underestimation bias in margin 

levels that are calculated assuming normality.  Differing margin requirements reflect 

the unconditional and conditional trading environments.   
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Margin Exceedences for European Stock Index Futures using Extreme Value 

Theory 

 

1. Introduction 

The commercial strength of Futures Exchanges necessitates that there be a trade-off 

between optimising liquidity and prudence.  The imposition of margins is the 

mechanism by which these objectives are met.  The margin requirement represents a 

deposit that brokers, and consequentially traders enter into prior to trading.  The 

margin is used to settle any profits or losses on a contract and to act as collateral 

against default.  Default risk is incurred if the effect of the futures price change is at 

such a level that the investor's margin does not cover it, leading to non-payment by 

one of the parties to the contract.   

 

The occurrence of default risk may lead to systemic problems thereby reducing 

investor confidence.  Whilst a clearing house should guarantee compensation in the 

case of investor non-payment, this has not always been the situation as evidenced by 

defaults in Paris, Kuala Lumpar and Hong Kong over the past three decades (Booth et 

al, 1997). 2  At the same time, the total elimination of default risk through very high 

margins may not be desirable as it would discourage investor participation.  Also, 

futures returns may be extremal in nature, that is specific values may be very large, 

and clearing houses would be reluctant to set the margin levels to cover these large 

returns for competitive reasons.
3
   

                                                                 
2
 Individual high profile disasters including Barings and Orange County add to the lack of investor 

confidence in futures markets.  

3 Futures price changes, movements and returns are interchangeable for the purposes of this paper. 
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Instead, a compromise is set so that the margin covers a vast range of possible price 

movements with a relatively low probability that actual price changes exceed the 

margin.  Thus an exchange’s participants utility maximisation criteria involve similar 

preferences, that is, they want to safeguard the future of the exchange as well as 

having a competitive trading environment.     

 

Whilst Duffie (1989) suggests that clearing houses impose margins based on a 

statistical analysis of price changes, actual margining systems have been introduced 

that also rely on other issues including open interest, volume of trade, concentration in 

futures positions and the margins of competing exchanges (Gay et al, 1986).  Two 

alternative systems are Standard Portfolio Analysis of Risk (SPAN) and the 

Regulation T (Reg T).  Kupiec and White (1996) compare these.  They note that the 

former is based on simulating the effects of possible market conditions and imposing 

a margin that covers the resulting price changes, while the latter develops a strategic 

approach to the introduction of margins where margin size is based on a wide range of 

possible trading positions.  Obviously both of these systems utilise subjective 

judgements as to the variables that should be included for simulation (SPAN) and the 

effects of particular trading positions on margin requirements (Reg T).  A practical 

example of the use of judgement in margin setting is the approach taken in the 

London International Financial Futures Exchange through its clearing house, the 

London Clearing House.  Here an extreme price movement is included in margin 

setting if it is believed that it may be repeated, and excluded if the view is that it will 

not be repeated (Vosper 1995).  This leads to a lack of consistency whic h could be 

avoided if a statistical analysis of the variables that affect margin setting was adhered 

to.  This paper focuses on the main proxy of futures volatility, namely their price 
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changes, and provides a statistical mechanism to implement margin requirements on 

the basis of these price movements.          

 

Two approaches to setting optimal margins in the finance literature have been 

implemented.  First, development of economic models has taken place where the 

margin level is endogenously determined.  For example, Brennan (1986) introduced a 

model for broker cost minimisation using the ratio between futures margins and the 

settlement costs due to losses.  Second, and the focus of this paper, is the application 

of statistical guidelines that may evolve from a number of techniques.  These 

procedures include parametric and non-parametric methods that rely on gaussian and 

non-normal assumptions for the underlying distribution of futures returns (Longin, 

1999a; Dewachter and Gielens, 1999; Edwards and Neftci, 1988; and Gay et al, 

1986).
4
  The line of enquiry followed in this paper is statistical in nature relying on 

extreme value theory with non-parametric measures of the optimal margin level.  

Given, the true distribution of futures price changes being non-nor mal and in fact, 

unknown (Cotter and McKillop, 2000; Yang and Brorsen, 1993; and Hall et al, 1989), 

it is appropriate to examine the theoretical underpinnings of the asymptotic behaviour 

of a range of possible distributions.  Leadbetter et al (1983) and Embrechts et al 

(1997) document a family of distributions that are separated into three distinguishing 

types, the assumption is that a sequence of values display asymptotic behaviour 

belonging either to a Gumbell, Frechet or Weibull distribution.  In that the fitting of a 

sequence of price changes is not exact in nature, but rather, involves weak 

convergence, then the limiting distribution has non-parametric underlying 

                                                                 
4
 The univariate analysis in this paper is similar to most of the decomposition of extreme price 

movements.  Edwards and Neftci (1988) give an illustration of multivariate analysis.    
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assumptions.  For this reason, a non-parametric tail statistic should be applied 

(Danielsson and de Vries, 1997c), and the Hill index is found to have the optimal 

estimation properties (Kearns and Pagan, 1997), and is therefore utilised in this study 

to generate measures of the margin levels.  In addition, dynamic margin requirements 

accounting for current volatility levels are measured using a GARCH (1, 1) 

specification.  Given the consistent finding of stochastic volatility for financial assets 

(Pagan, 1996), it is appropriate that each exchange incorporates the respective 

conditional distributional properties in their margin setting.       

 

Whilst most individual exchanges have a common margin requirement regardless of 

the futures position, it may be necessary to distinguish between extreme price 

movements on either tail of the distribution of returns.  Extreme price changes may 

not be symmetrical and this would require the imposition of separate margin 

requirements for long and short positions in order to optimise the trade -off between 

futures trading liquidity and their prudential control.  Default due to extreme negative 

price changes occurs on a long position, whereas it occurs on a short position for 

extreme positive changes.  Possible default through margin violation is illustrated for 

a short position in figure 1.  As is evident small price changes are insufficient to cause 

default through margin exceedences whereas this is not the case for the very large 

positive returns. The non-parametric estimates of the optimal margin levels will be for 

left and right tail price movements, and a common measure that encompasses both 

sets of movements together.  This latter measure is not necessarily an average of the 

positive and negative extreme price changes, but rather, a single margin level 

incorporating the most extreme price movements in its value regardless of its tail 
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origin.  Obviously, asymmetric tail returns impose inequitable margin levels on the 

two futures trading positions. 

INSERT FIGURE 1 

 

Two important issues in the determination of optimal margin requirements for a 

number of European stock index futures contracts are addressed in this paper.  First, it 

applies extreme value theory and its asymptotic behaviour in the examination of 

large-scale price movements.  It utilises the non-parametric Hill index to calculate the 

influence of extreme returns on margin requirements that should not be exceeded for a 

range of probability levels.  Theoretically, the Hill index gives measures that 

correspond to the non-parametric nature of the extreme value distribution.  Second, 

the paper examines whether the margin requirements on a long or short trading 

position should be different given the behaviour of upper and lower tail price 

movements.  These tail movements might be significantly different and as a 

consequence, there should be two separate margin requirements in the interest of 

fairness to the trader.     

 

The paper proceeds as follows.  In section 2, extreme value theory is presented 

coupled with the non-parametric tail estimator that is used to generate probabilities of 

exceeding margin requirements given the price movements inherent in futures 

contracts.  Justification of applying this approach in the context of margin setting is 

also given.  Section 3 details the stylised facts of the stock index futures, and how 

these may influence the statistical approach taken in calculating margin requirements. 

Section 4 presents the empirical findings.  Here, margin levels computed using 

extreme value theory and gaussian assumptions are presented for comparison.  
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Conditional margin requirements calculated using a GARCH (1, 1) model are 

discussed in the context of the Extreme Value findings.  Also, an assessment is made 

on the issue of whether to have common margin levels or impose two separate 

requirements based on trading position for each exchange.  Finally, a summary of the 

paper and some conclusions are given in section 5.   

 

2. Theory and Methods 

2.1. Extreme Value Theory 

Margin requirements and measures of violation probabilities are developed using the 

theoretical framework of extreme value theory. The distributional assumptions are 

applicable through the maximum domain of attraction (MDA) allowing for 

approximation to certain distributional characteristics rather than belonging to a 

specific distribution (Leadbetter et al, 1983).  Dealing with a sequence of futures 

returns, {R}, arranged in ascending order and expressed in terms of the maxima (Mn) 

of n random variables belonging to the true unknown cumulative probability density 

function F where   

Mn = max {R1, R2,..., Rn}        (1) 

The corresponding density function of Mn is obtained from the cumulative probability 

relationship and this represents the probability of exceeding a margin level on a short 

position for n returns: 

Pshort = P{Mn  > rshort} = P{R 1 > rshort , …, Rn > rshort }  = 1 -  Fmax
n
(rshort)        (2) 

rshort represents the margin level on a short position.  

However, the random variables of interest to us are located at both upper and lower 

tails of the distribution F
n
(r) and whilst extreme value theory is usually notated for 

upper order statistics, it is equally applicable for lower order statistics.  Lower tail 
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price movements are relevant for margin requirements of a long position in a futures 

contract.  The theoretical framework for examining sample minima tail statistics can 

easily be conve rted by applying the identity Min{R1, R2,..., Rn}  = -Max{-R1, -R2,..., -

Rn}.  The corresponding probability expression for exceeding a margin level on a long 

position for n returns is: 

Plong = P{Mn  < rlong} = P{R1 < rlong, …, Rn < rlong }  =  Fmin
n
(rlong)    (3) 

rlong represents the margin level on a short position.   

The rest of the extreme value theory framework is presented for the short position 

outlined in (2) but, as noted, it is equally applicable for a long position.
5
 

 

2.1.1. Asymptotic Behaviour of Distribution 

The Fisher-Tippett theorem is used to examine asymptotic behaviour of the 

distribution.  From this theorem, there are three types of limit laws and these 

incorporate the extreme value distributions, namely the Gumbell (Λ), Frechet (Φα) 

and Weibull (ψα) distributions.  The Fisher-Tippett theorem indicates that the maxima 

at the limit converges in distribution to H after normalising and centring.  Formally 

this is expressed as 

cn
-1 

(Mn – dn) d→ H   for  cn > 0, -∞ < dn < ∞  (4) 

Where d→ represents convergence in distribution, cn is a normalising constant and dn is 

a centring constant that is determined as a particular quantile or related measure. 

 

                                                                 
5
 The probability of exceeding a margin level for one return (for example, on a specific day in this 

study) can also be examined with expressions related to (2) and (3).  For the short position, the 

probability of exceeding a margin level is Probshort = P{Ri  > rshort}, and the related expression for the 

long position in (3) is Problong = P{Ri  < rlong } where i = {1,…, n}.   
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These extreme value distributions can be divided into three separate types depending 

on the value of their shape parameter, α.  The classification of a Weibull distribution 

(α < 0) includes the uniform example where the tail is bounded by having a finite 

right end point and is a short tailed distribution.  The more commonly assumed class 

of distributions used for futures' price changes includes the set of thin tailed densities.  

This second classification of densities includes the normal and gamma distributions 

and these belong to the Gumbell distribution, having a characteristic of tails decaying 

exponentially.  Of primary concern to the analysis of fat-tailed distributions is the 

Frechet classification, and examples of this type generated here are the Cauchy, 

student -t, ordinary frechet, and the pareto distributions. This important classification 

of distributions for extreme futures price movements has tail values that decay by a 

power function. A vast literature on financial returns (Longin, 1999b; Cotter, 1998; 

Danielsson and DeVries, 1997a, 1997b, 1997c; Kearns and Pagan, 1997; 

Venkataraman, 1997; Lux, 1996; and Koedijk et al, 1992) and on derivative first 

differences (Cotter and McKillop, 2000; Longin, 1999a; Hull and White, 1998; and 

Duffie and Pan, 1997) has recognised the existence of fat-tailed characteristics.  For 

this reason the rest of the theory section deals with this Frechet type of extreme value 

distribution.   

 

A single representation of the extreme value distributions is outlined in the 

Generalised extreme value distribution and this is as follows: 

Hγ(r)  = exp (-(1 + γr)
(-1/γ)

)   if γ ≠ 0, and 

  = exp (- exp (-r))   if γ = 0,   (5) 

where 1 + γr > 0, and γ = 0 is to be regarded as the limit of the distribution function as 

γ → 0.  Equation (5) is the Jenkinson-Von Mises representation of the generalised 
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extreme value distribution.  This simplified representation for the Frechet extreme 

value distribution focuses on a single parameter γ which has the following 

relationship with α:  

Type II (Frechet): Φα   for γ = α -1 > 0 

 

The necessary and sufficient conditions for a distribution to asymptotically converge 

on the Frechet type of extreme value distribution only requires its tail to have a 

regular variation at infinity property (Feller, 1971).  

 

2.1.2. Maximum Domain of Attraction 

For the fat-tailed case, returns do not have to exactly fit a particular set of 

distributional assumptions.  Rather, our analysis assumes the return series have 

extreme values that are approximated by a Frechet type distribution, and this implies 

that the series belong to the maximum domain of attraction of the Frechet distribution.  

Parametric assumptions alone are required in estimating exact fits of a particular 

distribution.  In contrast, measuring approximations of distributions utilises non-

parametric frameworks.  Formally we can denote the characteristic of belonging to the 

maximum domain of attraction (MDA) as  

R1, R2, ..., Rn are stationary from F ∈ MDA (Hγ)                   (6) 

And in the specific case of a Frechet distribution approximation, (6) reduces to  

F(r) = r
-α

L(r),   r > 0                  (7) 

Where α has parametric assumptions, whereas L(r) is some slowly decaying function 

that is underpinned by non-parametric assumptions.  While there is a general 

agreement on the existence of fat-tails for financial data, its exact form for all 

financial returns is unknown.  For this reason, it is appropriate to deal with 
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approximation of the Frechet distribution in the sense of being in the maximum 

domain of attraction.  

 

2.2. Tail and Probability Estimators 

Due to the semi-parametric specification of being in the ma ximum domain of 

attraction of the fat-tailed Frechet distribution, it is appropriate to apply non-

parametric measures of our tail estimates.  For example, from an analysis of different 

extremal statistics, Danielsson and de Vries (1997c) note that non-parametric 

measures offer an advantage over their parametric counterparts in that under non-

gaussian conditions one obtains better bias and mean squared error properties.  The 

non-parametric Hill index (1975) determines the tail estimates of the stock index 

futures, and is given as:   

γh = 1/α = (1/m)
 ∑ [log r(n + 1 - i)  - log r(n - m)]  for i  = 1....m             (8) 

This tail estimator is asymptotically normal, (γ - E{γ})/(m)1/2 ≈ (0, γ2) (Hall, 1982). 

As this study is examining the probability of a sequence of returns exceeding a 

particular margin level relying on expressions (2) and (3), an empirical issue arises in 

determining the number of returns entailed in the tail of a distribution.  Amongst the 

methods for finding the optimal threshold of where the tail of a distribution begins, 

we adopt the approach proposed by Phillips et al (1996).  The optimal threshold value, 

Mn, which minimises the mean square error of the tail estimate, γ, is m = Mn = {λn2/3} 

where λ is estimated adaptively by λ = γ1/2
1/2

(n/m2(γ1 - γ2)2/3
.  
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One of the main focuses of this study is to not only determine optimal margin 

requirement for each futures' analysed, but also to determine if separate levels should 

be set for long and short trading exposure against the alternative of ha ving a common 

margin regardless of trading position.  To investigate this, the tail index estimator is 

used to determine each tail individually, and also to measure a common margin 

requirement encompassing the extreme price movements of both tails. The relative 

stability of the tail measures determines the optimal margin policy.  Stability across 

the tails supports the hypothesis of having a common margin requirement regardless 

of trading position, and instability suggests the need for separate margin levels.  Tail 

stability is tested using a statistic suggested by Loretan and Phillips (1994):   

V(γ+ - γ-) =  [γ+ - γ-]2/[γ+2/m+ + γ-2/m-]1/2                       (9) 

for γ+
 (γ-

) is the estimate of the right (left) tail.
 
 

 

Two related margin levels measures are generated based on the non-parametric tail 

index estimates.  The first measure allows us to determine the probability of 

exceeding a certain price movement.  From this, the setting of optimal margin 

requirements can be made based on an examination of the violation probability for a 

range of price movements in association with the trade -off between optimising 

liquidity and prudence for an exchange's contract.  The non-parametric measure 

detailing the probability, p, of exceeding a certain large price change, rp for any tail 

measure: 

rp  =  rt(M/np)
γ
                  (10) 

 

Using (10) a related non-parametric measure examines the margin level that would 

not be violated for particular extreme price movements, rp at different probabilities, p: 
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p  =  (rt/rp)
1/γM/n                  (11) 

This will be used to compare the margin levels associated with a normal distribution 

at similar confidence levels.       

 

2.3. Dynamic Risk Measurement 

The theoretical underpinnings presented in the previous sub-sections focus on the 

unconditional distribution of futures returns.  Complementary, but different 

information can be attained from analysing the conditional distribution.   This analysis 

will give futures’ markets’ clearing houses information on the volatility levels around 

the current period, t, as opposed to that of the full sample period available with the 

unconditional distribution.  Thus margin setters will forecast risk for time t + 1, and 

make margin requirement decisions which incorporate the level of risk currently 

inherent in the respective futures contracts.  In its favour, the technique recognises 

that the risk environment is dynamic as opposed to static.  This implies that margin 

levels will incorporate any impact the current economic climate would have on their 

values, for instance increasing volatility levels resulting in greater margin levels due 

to incidences of investor default.  

 

Given a vast set of empirical evidence in favour of time varying volatility (see Pagan, 

1996; for a comprehensive review), this paper focuses on modelling conditional 

volatility levels through a stochastic process.  The major breakthrough in modelling 

financial time series volatility has been through GARCH processes whose 

specification mirrors many of the characteristitics of the data.  A GARCH (1,1) model 

is applied to determine the effects of time varying volatility, and is capable of dealing 

with the clustering of futures returns.  Here, the unconditional variance is assumed 
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normal, whereas the conditional variance is allowed to be time-varying and is given as 

follows: 

σ2
t = α0 + α1εt - 1

2
 + βσ2

t - 1                                    (12) 

with the variance modelled by past values of itself, σ2
t - 1, and the noise process 

process, εt - 1
2
.       

 

However, there are shortcomings with dynamic estimation of extreme quantile and 

probability risk measures relative to the Extreme Value approach and these should be 

noted.  For instance, GARCH specifications are specifically set up to predict common 

volatility levels, but have relatively poor tail properties, where the extreme values are 

located (Danielsson and de Vries, 1997a).  This is because the stochastic model’s 

strength is in accounting for volatility clustering, whereas extreme values do not 

actually cluster (Cotter, 1999; and Danielsson and de Vries, 1997a).  In addition, 

GARCH models are outperformed by Extreme Value methods due to the lack of 

distributional assumptions which the latter relies on, thereby avoiding model 

misspecification problems such as constant unconditional varianc es in the time series.    

 

3. Data Description 

3.1. Futures Contracts 

Primary stock index futures are selected from a number of European exchanges.  The 

time period of focus varies by contract as the analysis deals with price movements 

since their inception.  A brief description of these contracts is given in appendix 1 

detailing the contracts chosen, the exchanges on which they trade, and the respective 

time period of analysis.  The distinct time periods of analysis may result in differing 

empirical findings.  There are a number of reasons for this including the effect that a 



 15 

changing trading environment may have on the contracts analysed.  For example, 

events during the 1980’s were different form the 1990’s and futures trading during the 

former decade may have different risk and return characteristics as a consequence.  

However, the purpose of this paper is to provide insights into the margin levels for 

European bourses, regardless of specific time periods, so the longest period of 

analysis possible for each contract is chosen.  In addition, any impact from  separate 

sample sizes on the extreme value findings are counteracted by using the tail method 

of Phillips et al (1996).  Here, each tail measure is based on an optimal tail threshold, 

m, and this is spec ific to the respective stock index contract.   

 

Whilst there are a number of methods of generating the time series of prices with 

different qualities, consecutive series of futures price series are developed using each 

nearest contract to maturity and upto the last trading day for the period before the 

delivery month.  Price changes are measured by the first difference of the natural 

logarithm of closing day quotes. Figure 2 represents a plot of the French CAC40 

returns and as can be seen the largest positive and negative price movements occur 

around the Gulf crises in 1991, and volatility tends to be greater towards the end of 

the decade.6  Whether any of the price movements exceed the margin requirements 

imposed on traders remains to be seen in our non-parametric analysis of the tail 

returns in the empirical results section.  

INSERT FIGURE 2 HERE 

 

 

                                                                 
6
 Given the extensive data set, figures are presented for a selection of contracts rather than all contracts.  

The full set of figures are available on request.    
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3.2. Preliminary Statistics 

A preliminary description of the price movements for all the contracts is given in table 

1.  The full set of returns follow the usual stylised facts about futures data, namely, 

the price movements do not belong to a normal distribution using a Kolmogorov-

Smirnov test, there is negative skewness present (Norwegian OBX contract excepted), 

and also leptokurtosis.  Thus, statistical determination of margin levels based on the 

normal distribution is inappropriate, and would lead to inadequate requirements that 

would test the integrity of the exchanges prudential controls given the excess kurtosis.  

Leptokurtosis is demonstrated by a fat-tail characteristic, and this is most evident for 

the OBX index.  This finding may be due to the influence of the most extreme outliers 

of the contracts analysed.     

INSERT TABLE 1 HERE 

 

The consideration of using one margin level as opposed to giving individual 

requirements for the two trading positions may be examined to a certain extent by 

relying on the skewness, maximum, minimum, mean and median values.  Here, the 

conclusion is ambiguous as negative price movements appear to be more pronounced 

given the skewness coefficient and the minimum values generally outweigh the 

positive ones, can be contrasted by the observation that the positive returns outweigh 

their negative counterparts in the mean values.  A more detailed description of the 

price movements around both tails is given by the upper and lower values that 

represent ten percent of the returns respectively.  Extreme European stock index 

futures returns do have different characteristics from the full set of returns in 

agreement with the excess kurtosis and non-normality being more pronounced for the 
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former values.  Figures 3 - 5 details this clearly for the German DAX contract as the 

deviation from the normal distribution as given by the straight line is much greater for 

the tail values than for the full data set.  Although, it is still unclear as to the extent of 

any divergence in the characteristics of the two tails.     

INSERT FIGURES 3 - 5 HERE   

 

3.3. Dependency in Returns 

The dependency structure of financial returns is generally cited as the source of the 

many stylised facts including non-normality and excess kurtosis (Taylor, 1986).  

However, dependency in the ordinary returns is found to be usually very small (Ding 

and Granger, 1996).  In this study we conclude with this finding by examining the 

sample correlation of returns for all the futures contracts.  An example of the general 

lack of dependence is shown in figures 6 - 9 for the CAC40 contract where 

autocorrelation coefficient is plotted over thirty lags for the full series returns as well 

as three subsets.  The subsets involve similar time periods broken down by the 

number of observations: 0 - 900 (figure 7), 901 - 1800 (figure 8), and 1801 - 2672 

(figure 9).  While the pattern of dependency is not uniform across the subsets, the 

relatively weak first order dependence is common for the different time periods 

analysed.  Further analysis of futures returns dependency looking at squared and 

absolute values indicate very strong volatility persistence, and these findings provide 

a source of the non-normality present in European stock indexes (Cotter, 1999).  

These findings, the first and second order dependence, should not be underestimated 

as the margin measures computed using the commonly applied gaussian assumptions 

do not take account of these characteristics.  The effects of these attributes are 

analysed by comparing normal and extreme value estimates in the empirical findings 
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section.  In addition, the lack of independence suggests benefits from conditional 

modelling of short run returns.  The dynamics are introduced in the GARCH 

specification.   

INSERT FIGURES 6 - 9 HERE 

 

Summarising these stylised facts, we find that stock index futures exhibit significant 

skewness, kurtosis and non-normality.  In addition, the contracts all have a fat-tailed 

characteristic, that becomes more apparent when focusing explicitly on the tail 

returns.  Finally, first moment dependence is not the cause of the stylised facts, as 

shown by the sample autocorrelation of the full sample of futures returns, and 

substantiated by sub-sample results.  Rather, it is more likely that second moment 

dependence causes volatility persistence that is synonymous with fat-tails. 

 

4. Empirical Findings  

4.1. Non-Parametric Tail Estimates 

In order to determine the probability of a margin level being exceeded, non-

parametric tail estimates are generated with the Hill index, and these are given in table 

2.  The table shows the optimal number of tail returns and non-parametric Hill index 

estimates for lower, upper and both tails, corresponding to the shape parameter used 

in the calculation of a long, short and common margin requirements.  The optimal 

number of returns in each tail appears to be reasonably constant, hovering around the 

five percent mark for each contract.  For example, the number of returns in an optimal 

sequence for the lower tail (100) of the CAC40 index represents 3.74 percent of all 

returns analysed.  
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INSERT TABLE 2 HERE   

 

All the tail estimates range between two and four with the exception of the lower tail 

estimate for the Portuguese PSI20 contract.  These values correspond to the general 

conclusions made for time series of financial returns, namely that they have fat-tail 

characteristics.  The goodness of fit of each equity index being associated with the 

Frechet distribution is confirmed in table 2 using a difference in means statistic given 

in Koedijk and Kool (1992).  Specifically all tail values are significantly positive, 

corresponding to the requirement that γ = α-1
 > 0.  In addition previous studies on 

financial returns have distinguished different fat-tailed distributions on the basis of the 

tail estimates.  For example, Hill estimates with a value less than or equal to two have 

stable paretian characteristics of which the cauchy and normal distributions have 

values of one and two respectively, whereas, GARCH related specifications have 

values greater than 2 (Ghose and Kroner, 1995).  Formally, this is tested using the 

difference in means statistic for a number of hypotheses including belonging to the 

stable paretian family of distributions (Ho < 2), and having GARCH characteristics 

(Ho > 2).  Results for the common tail estimate indicate that there is support for the 

stable paretian hypothesis being rejected for all of the futures contracts with the 

exception of the PSI20 index, whereas the GARCH hypothesis is never rejected.  

 

The most important finding presented in table 2 is the statistic examining whether 

there is any significant difference in the lower and upper tail estimates.  These tail 

estimates are compared to determine whether the policy of imposing a single margin 

requirement regardless of trading position is fair to operators of each exchange.  

Using (9), the findings indicate that while the right tail estimators are always greater 
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than their left tail counterpart, a common margin requirement is sufficient based on a 

five percent significance level in each case with the exception of the OBX index.  

Regardless of this conclusion, margin requirements are calculated separately for the 

tails to emphasise any differences that do exist in these measures.  Whereas, the Hill 

estimates are reasonably stable across the tails of a contract, they differ significantly 

between contracts, implying that the margin requirements should be distinct for 

different indexes.  Taking the widest divergence of the common Hill estimate as an 

example, CAC40's 3.89 estimate is significantly different (test statistic 3.47) from 

PSI20's 2.32 estimate using (9).  The implications of this are that there should be size 

differences in the margin requirements of these respective contracts. 

 

4.2. Extreme Value Margins 

Rather than discuss the attributes of margin requirements for each futures contract 

analysed, the rest of the results focus on two questions.  First, what is the probability 

of price movements exceeding a certain percentage given the risk inherent in each 

contract?  A range of very large price changes are presented and these can be thought 

of as margin levels that would be violated at certain probabilities.  Second, what are 

the margin levels required to cover a range of extreme price changes under the 

assumptions of a normal and Frechet distribution?  This will demonstrate the 

statistical development of margin levels using normality vis-à-vis extreme value 

theory.  The latter method explicitly assumes the existence of fat-tail returns for stock 

index futures.  

 

Table 3 presents findings for the probability of common extreme price movements 

ranging from ten to fifty percent being exceeded.  The related findings for the long 
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and short positions are in appendix 2.  The results indicate a number of characteristics 

about the risk inherent in futures contracts.  For instance, if a very large margin level 

of fifty percent is imposed, the probability of it being violated on any individual is 

very low.  For example, the probability of exceeding a price change of fifty percent in 

table 3 is 0.009 for the PSI index, the contract with the most inherent risk.  As we can 

see, the probability of violating a price movement increases as the price change 

decreases, as with the PSI index, a ten percent change would be exceeded involving a 

probability of 0.3750.  This may appear to be negligible but over a trading year, the 

probability of such a price movement is 98.25 percent assuming there are 262 trading 

days.  Notwithstanding the other considerations such as open interest that are used by 

clearinghouses in the development of margin levels, consideration of this issue using 

statistical analysis of price movements alone indicates that large margin levels can be 

exceeded albeit at a low probability.  Similarly, to put the analysis of large price 

movements in the context of extreme value theory, Gumbel (1958) describes a 

motivation for examining these changes of random variables as a consideration to the 

event that:          

"Il est impossible que l'improbable n'arrive jamais"  

(It is impossible that the improbable will never happen) 

   (quote taken from Gumbel (1958), pp. 201) 

 

Another result that can be deduced from table 3 is that margin levels should diverge 

for the respective contracts given that the risk characteristics differ.  Continuing with 

the example of the CAC40 and PSI20 indexes mentioned in terms of the Hill 

estimates, the probability of violating a ten percent price change (regardless of it 

occurring on a long or short position over a year's trading) is significantly greater for 
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the Portuguese (98.25%) contract than for its French counterpart (6.90%).  This 

implies that margin requirements should not be imposed on the basis of contract type, 

but rather, further analysis must be undergone to diagnose the risk characteristics of 

each futures contract.  Related to this is the comparison of margin requirements based 

on trading positions.  In appendix 2, the probability of extreme returns being exceede d 

on a long position is greater than for a short position.  Thus, downside risk is greater 

than its upside counterpart.  Taking the case where there are significant differences 

between the risk inherent in long and short positions using the tail index as an 

example, the probability for the OBX contract of exceeding a return of ten percent 

over a year is almost twenty four percent for a negative price change, in comparison 

to almost six percent for a positive price change.  This implies that in the interests of 

equity for traders, the margin requirements of a long position should be greater than 

that of a short position.  

 

4.3. Extreme Value and Gaussian Margins Compared 

Turning to the analysis of distributions that may be applied in the context of margin 

setting.  The comparison of the margin levels required for a range of price changes 

under the assumption of normality, and after making allowances for the fat-tail 

characteristic of stock index futures using extreme value theory, are presented in table 

4.
7
  The results incorporate the common margin requirement, so ninety eight percent 

covers all eventualities with the exception of a two percent default, that is one percent 

long and short respectively.  In order to demonstrate other fat-tail measures, the 

commonly cited fat-tailed distribution, the student-t, is used to generate margin 

requirements with degrees of freedom equalling the respective Hill estimates.  These 

                                                                 
7 Statistical margin estimation assuming normality is the standard benchmark process.   
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student -t results are larger than the other measures due to parsimonious degrees of 

freedom.  

 

Dealing with a gaussian and extreme value comparison, it is clear that the former 

method underestimate the true margin requirement for any price movement, and that 

this becomes more pronounced as you try to cover the possibility of smaller 

exposures.  This indicates that the fat-tailed characteristic has greater implications as 

you move to greater extremes.  Taking the DAX contract as an example to illustrate 

this point, we can see that the requirement to cover ninety eight percent of the price 

movements calculated under the assumption of a normal (Frechet) distribution is 

2.97% (4.20%), and that this increases to 4.75% (16.98%) in order to protect the 

investor from 99.98 percent of all price changes that could occur for this contract.    

 

4.4. Conditional Margin Requirements 

Moving away from Extreme Value Theory, conditional margin requirements based on 

a GARCH (1, 1) model are presented in table 5.  The use of the stochastic volatility 

models incorporates dynamics into the margin setting procedure, thereby reflecting 

the current volatility levels in the trading environment.  In general, the margin 

requirements are calculated taking account of respective future’s exchange volatility 

surrounding February 28, 1999.
8
  In table 5, the respective volatility environment at 

this time is indicated in terms of the margin levels needed to protect the exchanges 

against default.  The profile of the margin requirements for each contract changes 

from switching to conditional from the unconditional trading environment.  For 

example, in contrast to the Extreme Value findings in table 4, the Portuguese PSI20 

                                                                 
8
 In the case of the Danish KFX and Swiss contracts, the GARCH model examines conditional 

volatility levels around 19 December 1998 and 1 July respectfully.  
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contract is no longer the most volatile contract analysed at the 99.98% confidence 

interval.  In its place, the trading environment for the Norwegian OBX contract is 

such that it incurs the most volatility, requiring margin levels in excess of 20%.  Thus, 

the benefits of incorporating dynamics into margin setting is illustrated as the 

respective exchanges have distinct factors influencing their trading environment and 

these are reflected in their current volatility structure.   

 

Finally, in terms of size, the conditional margin requirements in table 5 are between 

those of the Gaussian and Extreme Value measures in table 4.  The underestimation 

vis-à-vis the Extreme Value measures is because a GARCH (1, 1) model is 

unconditionally normal, thereby suffering from the same misspecification as the pure 

gaussian estimates.  However, the GARCH estimates are an improvement on the 

gaussian measures, as they update the margin requirements according to the current 

volatility levels.  The extent of this improvement over gaussian measures is more 

pronounced at the more common volatility levels, for example within 98 percentiles.   

      

5. Summary and Conclusion 

This paper examines the calculation of margin requirements for a range of 

circumstances for European stock index futures.  Each exchange's clearinghouse must 

impose margins given the relationship of securing the safety of the exchange against 

large price movements for contracts and encouraging investor participation in trading. 

Low margins discourages (encourages) the former (latter), whereas high margins 

discourages (encourages) the latter (former).  The emphasis is on the statistical 

calculation of margin levels focusing on extreme price movements that are located in 
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the tail rather than in the entire distribution as it is these price changes that margin 

requirements are meant to combat against.   

 

Given previous findings of futures price changes being associated with fat-tails, 

extreme value theory and the limiting Frechet distribution is applied in the calculation 

of the risk characteristics of the futures analysed.  The tail indexes are measured using 

the non-parametric Hill estimates and this is appropriate given the semi-parametric 

nature of the relationship of a set of futures price changes and the Frechet distribution.  

Using the Hill estimate, two questions in relation to margin requirements are 

addressed.  First, what is the probability of exceeding a range of margin levels on an 

individual day or over a year?  Second, what margin requirement would be imposed 

to protect investors from a range of extreme price movements under the assumption of 

the normal and Frechet distributions? 

 

The paper makes a number of interesting findings.  First, common margin 

requirements are sufficient for each stock index futures with the exception of the 

OBX contract.  For the Norwegian contract, the risk characteristics of the upper tail is 

different from that of the lower tail to such a degree, that in the interest of fairness to 

traders, long margins should be greater that short ones.  Second, the margin 

requirements of stock index futures varies across contracts with the PSI contract being 

the most risky, and the CAC40 being the least.  Again, separate margins should be 

imposed for these contracts reflecting the risk inherent in the respective indexes.  

Third, assumptions of normality impose smaller margins that using extreme value 

theory, and this becomes more pronounced as you try to protect aga inst returns further 

out on the tail of a distribution.  These normal based measures underestimate the 
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margin requirements as they assume an exponential tail decline and they should not 

be used in the statistical calculation of margin requirements of futures sequences.  

Fourth, conditional margin requirements differ from unconditional ones as they reflect 

the current volatility environment facing each of the stock index futures.     
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Figure1: Margin Requirements for a Short Position and a Distribution of Returns  
 

 

 

 

This figure illustrates a distribution of futures returns with special emphasis on the 

short position.  At the upper tail of the distribution, a certain margin requirement is 

identified.  Any price movement in excess of this margin requirement, given by the 
shaded area, represents a violation or default by the investor. 
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Figure 2: Time Series Plot for CAC40 Futures Log Return Series  
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This Figure shows a time series plot of one of the futures index returns, namely the 
CAC40 contract.  The vertical axis measures returns with a possible range between –

10 and +10 percent, and the horizontal axis measures time between December 1988 

and February 1999. Whilst returns throughout the time period of analysis tend to be 

close to zero, there are periods where the returns more fluctuate more widely.  For 

example during the Gulf crises in 1991, some of the return spikes are in excess of 5 

percent.  
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Figure 3: Q-Q Plot of DAX Log Returns Series 
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This figure plots the quantile of the empirical distribution of the full set of DAX 

futures index returns against the normal distribution.  The plot shows whether the 

distribution of the DAX returns match a normal distribution.  The straight line 

represents a gaussian quantile plot whereas the curved line represents the quantile plot 

of the empirical distribution of the DAX contract.  If the full set of DAX returns 

followed a normal distribution, then its quantile plot should match the gaussian plot 

and also be a straight line.  The extent to which these DAX returns diverge from the 

straight line indicates the relative lack of normality.   



 33 

 
Figure 4: Q-Q Plot of Lower Tail DAX Log Returns Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure plots the quantile of the empirical distribution of the lowest 10 percent of 

DAX futures index returns against the normal distribution.  The plot shows whether 

the distribution of the DAX returns match a normal distribution.  The straight line 

represents a gaussian quantile plot whereas the curved line represents the quantile plot 

of the empirical distribution of the DAX contract.  If the lower set of DAX returns 

followed a normal distribution, then its quantile plot should match the gaussian plot 
and also be a straight line. The extent to which these DAX returns diverge from the 

straight line indicates the relative lack of normality. 
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Figure 5: Q-Q Plot of Upper Tail DAX Log Returns Series  
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This figure plots the quantile of the empirical distribution of the highest 10 percent of 

DAX futures index returns against the normal distribution.  The plot shows whether 

the distribution of the DAX returns match a normal distribution.  The  straight line 

represents a gaussian quantile plot whereas the curved line represents the quantile plot 

of the empirical distribution of the DAX contract.  If the highest set of DAX returns 

followed a normal distribution, then its quantile plot should match the gaussian plot  

and also be a straight line. The extent to which these DAX returns diverge from the 

straight line indicates the relative lack of normality. 
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Figure 6: Sample Autocorrelation for full set (RETURN) of French CAC40 Returns 
Figure 7: Sample Autocorrelation for first subset (Q1) of French CAC40 Returns  

Figure 8: Sample Autocorrelation for second subset (Q2) of French CAC40 Returns 

Figure 9: Sample Autocorrelation for third subset (Q3) of French CAC40 Returns 

 

Figures 6 – 9 represent the plots of the autocorrelation function for 30 lags of the 

CAC40 index returns.  Whilst figure 6 deals with the full sample of the contract’s 

returns, the other plots show subsets of the full sample focusing on consecutive 

returns.  Specifically, these are returns numbered 0 – 900 (Q1 – figure 7), 901 – 1800 

(Q2 - figure 8) and 1801-2672 (Q3 - figure 9) from the full data set.  Confidence 

limits are provided to determine whether any particular lag is significantly different 

from zero.  Any autocorrelation value in excess of the confidence interval indicates a 

significantly dependent lag.     
 

 

 
RETURN

Lag Number

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

AC
F

.06

.04

.02

0.00

-.02

-.04

-.06

Coefficient

Confidence Limits

Q1

Lag Number

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

AC
F

.1

0.0

-.1

C o e f f i c i e n t

Conf idence L imi ts

Q2

Lag Number

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

AC
F

.1

0.0

-.1

Coefficient

Confidence Limits

Q3

Lag Number

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

AC
F

.1

0.0

-.1

Coefficient

Confidence Limits



 36 

Table 1: Summary Statistics for Stock Index Futures 
Contract Meana Minimuma Maximuma Interquartile 

Range a 

Skewness Kurtosis Normality 

BEL20 0.06 -5.26 5.48 0.99 -0.11† 4.40 0.07 

Lower -1.66 -5.26 -0.95 0.64 -2.07 5.27 0.18 

Upper 1.65 1.08 5.48 0.57 2.94 10.62 0.22 

KFX 0.04 -7.80 6.65 1.11 -0.33 5.19 0.08 

Lower -2.09 -7.80 -1.22 0.86 -2.61 9.41 0.20 

Upper 2.06 1.30 6.65 0.73 2.39 7.18 0.19 

CAC40 0.04 -7.74 8.63 1.41 -0.08† 3.36 0.05 

Lower -2.27 -7.74 -1.40 1.02 -2.07 5.97 0.17 

Upper 2.23 1.49 8.63 0.93 3.01 13.41 0.20 

DAX 0.06 -12.85 8.38 1.24 -0.56 8.31 0.08 

Lower -2.30 -12.85 -1.27 1.10 -3.91 26.24 0.20 

Upper 2.29 1.48 8.38 0.87 2.85 11.98 0.19 

AEX 0.06 -7.70 7.28 1.06 -0.33 5.94 0.08 

Lower -2.04 -7.70 -1.09 1.11 -2.04 5.12 0.19 

Upper 1.98 1.21 7.28 0.84 2.71 9.54 0.20 

MIF30 0.08 -7.84 7.07 1.78 -0.06† 2.27 0.06 

Lower -2.96 -7.84 -1.84 1.11 -2.07 5.25 0.17 

Upper 3.14 2.12 7.07 1.04 1.80 3.11 0.18 

OBX 0.04 -19.55 21.00 0.66 0.32 97.69 0.18 

Lower -1.93 -19.55 -0.97 0.80 -6.91 64.85 0.29 

Upper 1.92 1.11 21.00 0.66 9.06 97.95 0.32 

PSI20 0.13 -11.55 6.96 1.34 -0.87 7.95 0.11 

Lower -2.89 -11.55 -1.45 1.80 -2.49 7.79 0.22 

Upper 2.96 1.78 6.96 1.53 1.46 1.93 0.18 

IBEX35 0.07 -10.84 7.25 1.54 -0.49 4.72 0.07 

Lower -2.68 -10.84 -1.60 1.03 -2.67 9.29 0.21 

Upper 2.62 1.76 7.25 0.90 2.26 5.81 0.19 

OMX 0.06 -11.92 10.81 1.61 -0.27 8.93 0.07 

Lower -2.75 -11.92 -1.60 0.99 -3.23 12.31 0.24 

Upper 2.75 1.68 10.81 1.00 3.11 11.74 0.23 

SWISS 0.08 -9.09 7.08 0.95 -0.50 9.30 0.06 

Lower -1.58 -9.09 -0.93 0.75 -4.65 34.45 0.22 

Upper 1.65 1.08 7.08 0.69 3.61 21.65 0.21 

FTSE100 0.05 -16.72 8.09 1.21 -1.18 18.78 0.05 

Lower -1.89 -16.72 -1.13 0.75 -6.84 71.49 0.26 

Upper 1.90 1.24 8.09 0.66 2.98 14.81 0.19 

The summary statistics are presented for each future’s index as well as the lower and 

upper 10 percent of that contract’s returns.  The mean, minimum and maximum 
values represent the average, lowest and highest returns respectively.  The 

interquartile range gives the spread between the 75th and 25th percentiles.  The 

skewness statistic is a measure of distribution asymmetry with symmetric returns 

having a value of zero.  The kurtosis statistic measures the shape of a distribution vis-

à-vis a normal distribution with a gaussian density function having a value of zero.  

Normality is formally examined with the Kolmogorov-Smirnov test which indicates a 

gaussian distribution with a value of zero.          
a) statistics are expressed in percentages. 

b) † represents insignificant at the five percent level whereas all other skewness, 

kurtosis and normality coefficients are significant different from zero.  
 



 37 

Table 2: Optimal Tail Estimates for Stock Index Futures 

Contract m- γ-
 m+ γ+

 m* γ*
 γ+

 - γ-
 

BEL20 63 2.81 68 2.85 92 3.20 0.07 

  (0.35)  (0.35)  (0.33)  

KFX 72 2.65 78 3.01 111 2.98 0.78 

  (0.31)  (0.34)  (0.28)  

CAC40 100 2.97 103 3.33 137 3.89 0.83 

  (0.30)  (0.33)  (0.33)  

AEX 95 2.72 95 2.93 141 2.95 0.51 

  (0.28)  (0.30)  (0.25)  

DAX 83 2.92 83 3.07 116 3.30 0.33 

  (0.32)  (0.34)  (0.31)  

MIF30 55 3.31 55 3.66 77 3.41 0.53 

  (0.45)  (0.49)  (0.39)  

OBX 71 2.04 70 2.89 113 2.47 2.02
•
 

  (0.24)  (0.35)  (0.23)  

PSI20 41 1.91 43 2.38 57 2.32 0.99 

  (0.30)  (0.36)  (0.31)  

IBEX35 74 2.62 78 3.35 118 3.21 1.50 

  (0.30)  (0.38)  (0.30)  

OMX 88 2.59 98 2.77 177 2.67 0.46 

  (0.28)  (0.28)  (0.20)  

FTSE100 126 2.99 134 3.36 204 3.21 0.93 

  (0.27)  (0.29)  (0.22)  

SWISS 72 2.81 84 2.89 103 3.12 0.17 

  (0.33)  (0.32)  (0.31)  

Hill tail estimates,γ are calculated for lower, upper and both tails for each stock index 

future.  The symbols -, +, * represent the lower, upper and both tails respectively.  

The optimal number of values in the respective tails, m, is calculated following the 

method proposed by Phillips et al (1996).  Standard errors are presented in parenthesis 

for each tail value.  Tail stability is calculated in the last column with the symbol • 

representing significant different upper and lower tail values at the five percent level.  
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Table 3: Exceedence Probability for Different Common Margin Levels 

Contract 50% 40% 30% 20% 10% 

BEL20 0.0002 0.0004 0.0009 0.0031 0.0267 

KFX 0.0005 0.0010 0.0024 0.0079 0.0622 

CAC40 0.0001 0.0001 0.0004 0.0018 0.0263 

AEX 0.0006 0.0011 0.0025 0.0084 0.0646 

DAX 0.0003 0.0006 0.0015 0.0058 0.0574 

MIF30 0.0005 0.0010 0.0028 0.0110 0.1172 

OBX 0.0017 0.0030 0.0062 0.0168 0.0932 

PSI20 0.0090 0.0151 0.0294 0.0752 0.3750 

IBEX35 0.0005 0.0011 0.0028 0.0101 0.0940 

OMX 0.0025 0.0046 0.0100 0.0294 0.1875 

FTSE100 0.0002 0.0004 0.0009 0.0034 0.0316 

SWISS 0.0001 0.0003 0.0007 0.0026 0.0229 

The values in this table represent the probability of each contract’s returns exceeding 

a certain margin requirement, for example, 10 percent on any single day.  Values are 

expressed in percentages.   
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Table 4: Common Margin Requirements to cover Extreme Price Movements 

Contract Method 98% 99% 99.80% 99.90% 99.98% 

BEL20 Normal 2.15 2.38 2.86 3.04 3.45 

 Student-t 4.20 5.40 9.44 11.95 20. 52 

 Extreme 3.10 3.88 6.52 8.16 13.72 

KFX Normal 2.47 2.73 3.27 3.48 3.95 

 Student-t 7.37 10.51 23.63 33.45 74.84 

 Extreme 3.93 4.96 8.53 10.76 18.48 

CAC40 Normal 2.93 3.25 3.89 4.14 4.70 

 Student-t 5.72 7.36 12.86 16.28 27.96 

 Extreme 3.92 4.69 7.09 8.48 12.83 

AEX Normal 2.61 2.89 3.46 3.69 4.18 

 Student-t 7.80 11.12 25.01 35.40 79.20 

 Extreme 3.95 5.00 8.62 10.91 18.82 

DAX Normal 2.97 3.28 3.93 4.19 4.75 

 Student-t 5.78 7.44 13.00 16.45 28.26 

 Extreme 4.20 5.19 8.45 10.43 16.98 

MIF30 Normal 3.88 4.30 5.15 5.48 6.22 

 Student-t 7.57 9.73 17.02 21.54 37.00 

 Extreme 5.34 6.54 10.48 12.83 20.56 

OBX Normal 2.83 3.14 3.76 4.00 4.54 

 Student-t 8.47 12.08 27.17 38.45 86.03 

 Extreme 3.83 5.07 9.72 12.86 24.66 

PSI20 Normal 3.78 4.19 5.02 5.34 6.06 

 Student-t 11.31 16.11 36.25 51.31 114.80 

 Extreme 6.55 8.83 17.68 23.85 47.74 

IBEX35 Normal 3.46 3.83 4.58 4.88 5.53 

 Student-t 6.73 8.66 15.15 19.17 32.93 

 Extreme 4.79 5.94 9.81 12.17 20.09 

OMX Normal 3.67 4.07 4.87 5.19 5.88 

 Student-t 10.53 15.00 33.74 47.76 106.86 

 Extreme 5.35 6.93 12.65 16.40 29.95 

FTSE100 Normal 2.56 2.83 3.39 3.61 4.09 

 Student-t 4.98 6.41 11.20 14.17 24.35 

 Extreme 3.41 4.23 6.99 8.67 14.31 

SWISS Normal 2.13 2.36 2.83 3.01 3.42 

 Student-t 4.16 5.35 9.36 11.84 20.34 

 Extreme 2.99 3.73 6.24 7.79 13.04 

The values in this table represent the margin requirements needed to cover a range of 

extreme price movements for each contract, for example, 98% of all movements.  The 

associated margin requirements are calculated rely ing on extreme value theory, 

gaussian and student -t distributions. Student -t degrees of freedom are given by the 

Hill tail estimates, γ*
, which are also incorporated in the extreme value estimates. 

Values are expressed in percentages.  
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Table 5: Common Conditional Margin Requirement to cover Extreme Price 
Movements 

Contract 98% 99% 99.80% 99.90% 99.98% 

BEL20 2.61 3.15 4.82 5.29 5.39 

KFX 3.30 3.89 5.80 7.03 7.62 

CAC40 3.28 4.10 5.70 6.43 8.16 

AEX 3.11 3.95 5.91 6.59 7.49 

DAX 3.51 4.13 6.09 7.18 10.93 

MIF30 4.56 5.35 6.94 7.83 7.94 

OBX 2.94 3.93 6.61 11.63 20.51 

PSI20 4.60 5.55 8.28 9.32 10.44 

IBEX35 3.88 5.38 7.05 7.50 9.96 

OMX 4.32 5.63 9.97 10.69 11.47 

FTSE100 2.77 3.43 5.01 6.88 11.01 

SWISS 2.33 2.87 3.87 5.57 8.43 

The values in this table represent the margin requirements needed to cover the price 

movements accounting for current volatility levels.  A GARCH (1, 1) specification 

describes the time-varying volatility and is given as σ2
t = α0 + α1ε t - 1

2
 + βσ2

t - 1.  
Values are expressed in percentages. 
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Appendix 1: Details of Futures Contracts Analysed 

Contract Exchange  Time Period 

BEL20 Belgium - Futures and Options Exchange Dec. 1993 - March 1999 

KFX Denmark - Guarantee Fund for Options & 

Futures 

June 1992 - Dec. 1998 

CAC40 France - Marche a Terme International de 
France 

Dec. 1988 - March 1999 

AEX Holland - Amsterdam Exchange  Dec. 1988 - March 1999 

DAX German - Eurex Dec. 1990 - March 1999 

MIF30 Italy - Italian Derivatives Market Dec. 1994 - March 1999 

OBX Norway - Oslo Stock Exchange Dec. 1992 - March 1999 

PSI20 Portugal - Bolsa de Dernados de Porto Oct. 1996 - March 1999 

IBEX35 Spain - Mercado De Futuros Financieros June 1992 - March 1999 
OMX Sweden - The OMLX exchange  Mar. 1990 - March 1999 

FTSE100 United Kingdom - London International 

Financial Futures Exchange  

June 1984 - March 1999 

SWISS Switzerland - Swiss Options and Financial 

Futures Exchanges 

Dec. 1990 - June 1997 

This table outlines the origin and time period of the futures contracts analysed.  

Datastream provided the data.   
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Appendix 2: Exceedence Probability for Different Long and Short Margin Levels 

Long Margin Level      

Contract 50% 40% 30% 20% 10% 

BEL20 0.0002 0.0004 0.0010 0.0030 0.0209 

KFX 0.0007 0.0012 0.0027 0.0078 0.0492 

CAC40 0.0003 0.0007 0.0016 0.0053 0.0416 

AEX 0.0006 0.0011 0.0025 0.0074 0.0487 

DAX 0.0005 0.0009 0.0021 0.0070 0.0526 

MIF30 0.0003 0.0006 0.0017 0.0064 0.0633 

OBX 0.0034 0.0054 0.0097 0.0221 0.0909 

PSI20 0.0130 0.0200 0.0346 0.0750 0.2820 

IBEX35 0.0014 0.0026 0.0055 0.0159 0.0980 

OMX 0.0016 0.0028 0.0060 0.0171 0.1028 

FTSE100 0.0002 0.0003 0.0008 0.0028 0.0219 

SWISS 0.0002 0.0004 0.0008 0.0025 0.0179 

      

Short Margin Level      

BEL20 0.0002 0.0003 0.0008 0.0025 0.0181 

KFX 0.0002 0.0004 0.0010 0.0034 0.0276 

CAC40 0.0001 0.0002 0.0006 0.0023 0.0229 

AEX 0.0003 0.0005 0.0012 0.0038 0.0288 

DAX 0.0002 0.0005 0.0012 0.0040 0.0340 

MIF30 0.0001 0.0003 0.0009 0.0038 0.0482 

OBX 0.0002 0.0004 0.0010 0.0031 0.0228 

PSI20 0.0039 0.0066 0.0131 0.0344 0.1791 

IBEX35 0.0002 0.0004 0.0009 0.0036 0.0371 

OMX 0.0010 0.0018 0.0040 0.0125 0.0852 

FTSE100 0.0001 0.0001 0.0003 0.0012 0.0127 

SWISS 0.0002 0.0003 0.0007 0.0023 0.0167 

The values in this table represent the probability of each contract’s returns exceeding 

a certain margin requirement on any single day, for example, 10 percent.  Long and 

short margin levels are calculated separately incorporating the respective optimal tail 

values, m- and m*.  Values are expressed in percentages. 


