
Munich Personal RePEc Archive

Learning, capital-embodied technology

and aggregate fluctuations

Gortz, Christoph and John, Tsoukalas

University of Nottingham, University of Glasgow

June 2011

Online at https://mpra.ub.uni-muenchen.de/35438/

MPRA Paper No. 35438, posted 16 Dec 2011 23:34 UTC



Learning, Capital-Embodied Technology and

Aggregate Fluctuations∗

Christoph Görtz

University of Nottingham

John D. Tsoukalas

University of Glasgow

This version: November 2011.

Abstract

Business cycles in the U.S. and G-7 economies are asymmetric: recoveries and expansions

tend to be long and gradual and busts tend to be short and sharp. Moreover, this type of

asymmetry appears more pronounced in the last two cyclical episodes in the G-7. A large

body of work views the last two cyclical U.S. episodes, namely, the“new economy" boom

in the late 1990s, and the 2000s housing boom-bust as episodes where over-optimistic be-

liefs have played a significant role. These episodes have revived interest in expectations

driven business cycles models. However, previous work in this area has not addressed the

important asymmetry feature of business cycles. This paper takes a step towards addressing

this limitation of expectations driven business cycle models. We propose a generalization

of the Greenwood et al. (1988) model with vintage capital and learning about capital em-

bodied productivity and show it can deliver fluctuations that are asymmetric as in the U.S.

data. Learning, calibrated to match the procyclical forecast precision from the Survey of

Professional Forecasters, is crucial for the model’s ability to generate asymmetries. Fore-

cast errors generated by the model are shown to: (a) amplify fluctuations, and (b) trigger

recessions that mimic in magnitude, duration and depth the typical post WW II U.S. reces-

sion.
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1 Introduction

A stylized fact of business cycles is that recoveries and expansions tend to be long and gradual

and busts tend to be short and sharp. This is referred to in the literature as growth rate (or

steepness) asymmetry (see Sichel (1993)). This feature is observed in many macroeconomic

aggregates, including GDP, investment, consumption and hours worked. Skewness is the sum-

mary statistic for measuring this type of asymmetry. Table 1 reports the skewness statistic

using per capita GDP as a measure of economic activity for post WWII U.S. data; skewness is

negative indicating growth asymmetry.1

Another interesting observation from Table 1 is the fact that cycles seem to have become

more asymmetric in the last 20 years. The last two episodes display significantly higher (in

absolute terms) skewness compared to earlier episodes. Both of these cyclical episodes, namely,

the investment boom and bust (1991 Q1 - 2001 Q4) and the housing “bubble" (2001 Q4 - 2009

Q2) are highly asymmetric episodes as can be seen from Table 1. This feature is not uniquely

related to the U.S. economy. Business cycles have tended to become more asymmetric in all G-

7 countries as can be seen from Table 2. Interestingly, these episodes have been largely linked

with shifts in expectations. Both the investment and housing booms in the U.S. have been

associated with over-optimistic beliefs about profitability of future technologies for the former

and housing capital gains through never ending house price appreciation for the latter (Shiller

(2007)). And in both cases the booms ended abruptly. Fixed capital investment declined by

6.5% during the short 2001 recession whereas house prices and housing investment fell by

approximately 30% and 50% respectively from their peaks in 2006 to 2008 (see Mian and Sufi

(2010)) without an apparent observable negative disturbance.

Partly motivated by the U.S. investment boom in the 1990s and the associated strong link

with expectations, a new literature seeking to explain business cycles based on shifts in ex-

pectations has emerged (referred to as the “news” literature). A revival of the idea, present in

the early writings of Beveridge (1909), Pigou (1926) and Clark (1935), that cycles can occur

without any change in fundamentals has been formalized successfully in the real business cy-

cle (RBC) model by the work of Beaudry and Portier (2004) (henceforth BP) and Jaimovich

and Rebelo (2009) (henceforth JR). In early work, Barro and King (1994) pointed out that

changes in beliefs about the future cannot generate empirically recognizable business cycles

within the standard real business cycle model. Intuitively, news that future productivity will

improve creates a wealth effect where agents finance the consumption of goods and leisure

today from lower investment. Not surprisingly BP, JR and other studies have focused almost

exclusively on aligning the news driven model comovement properties with the pattern of co-

1More specifically, negative skewness implies negative changes in GDP are more extreme than positive changes

in the distribution of GDP changes. Morley and Piger (2011) also document this type of asymmetry as a robust

feature of the U.S. business cycle with the latter measured from non-linear time series methods.
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movements present in the data, whereby consumption, investment and hours worked co-move

with economic activity.2

Thus, previous work has not addressed the important asymmetry feature of business cycles.

This paper takes a step towards addressing this limitation of expectations driven business cycle

(EDBC) models. We show a simple one sector model with capital embodied productivity can

generate business cycles from expectations shifts that are asymmetric as in the data. We con-

sider capital embodied productivity as the sole driving force in the model given the evidence

suggesting it is a major driving factor of U.S. macroeconomic fluctuations (see e.g. Fisher

(2006), Justiniano and Primiceri (2008), Justiniano et al. (2010), Justiniano et al. (2011)). The

two key assumptions in the model are: (1) the vintage view of capital productivity, whereby

each successive vintage has (potentially) different productivity and (2) agents imperfect infor-

mation and (procyclical) learning about this productivity. Moreover, the assumption of vintage

specific productivity, introduces learning in a natural way into the model—thus it takes time

before agents know the true productivity of a specific vintage. Importantly, empirical evidence

finds this type of learning to be significant in plants equipped with new capital equipment as

reported in Bahk and Gort (1993) and Sakellaris and Wilson (2004). Bahk and Gort (1993) con-

clude: ”Industry wide learning appears to be uniquely related to embodied technical change in

physical capital.” Essentially the model we propose can be interpreted as a generalization of

Greenwood et al. (1988) with the incorporation of Bayesian learning. Agents receive news

about the productivity of future capital vintages. However, news can be noisy and agents solve

a signal extraction problem in order to decide on optimal investment, utilization, hours worked

and output produced and consumed.

A procyclical speed of learning (or procyclical forecast precision) is an essential compo-

nent for the model to generate the asymmetry documented above. In the model, forecasts about

capital productivity are more precise near the peak of the cycle than near the trough. Thus an

unfavorable signal about capital productivity is more informative at the peak of the cycle and

leads agents to cut back investment, hours, utilization and output sharply, since agents have

a lot of confidence in their forecast of productivity. By contrast, after the trough and the be-

ginning of the recovery, forecast precision is low and signals are difficult to disentangle from

noise. Agents respond more cautiously and the expansion phase is more gradual. It is important

to note that procyclical forecast precision is documented in surveys that publish forecasts for

macroeconomic aggregates such as the Survey of Professional Forecasters (SPF) or the Liv-

ingston Survey that pool together forecasts from professionals. The assumption that delivers

procyclical forecast precision in the model in line with the survey evidence is the procyclical

2Other recent theoretical work develops models with and without market frictions which overcome the Barro

and King (1994) challenge. See, for example, Beaudry and Portier (2007), Christiano et al. (2008), Karnizova

(2010), Gunn and Johri (2011), Keiichiro et al. (2007), Kobayashi and Nutahara (2010), Den Haan and Kaltenbrun-

ner (2009) and Guo (2008).
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adoption rate of technological innovations as suggested by the evidence in Comin (2009). The

higher adoption rate of innovations during booms generates more precise information about

the productivity of future vintages of capital. A larger share of innovations adopted during

booms, reduces the uncertainty (or increases the confidence in a statistical sense) about future

capital productivity. Agents forecasts about future vintages become more precise because more

adopted innovations increase the likelihood they will diffuse into new capital equipment and

consequently make new vintages more productive.

There are other desirable properties of the model. First, it passes the comovement test that

has been the key focus in the news literature and can replicate fairly well the standard business

cycle statistics. Investment, hours, and consumption move together with output in response to

a positive shift in expectations. It is important to stress comovement is a property of the model

that obtains independently of learning. More specifically, there are three elements in the model

that deliver comovement in the main macroeconomic aggregates in response to news. The type

of preferences proposed by Greenwood et al. (1988) and recently generalized by JR, variable

capacity utilization and the presence of vintage specific productivity. An important difference to

the analysis in JR is the absence of investment adjustment costs (IAC). While IAC are necessary

in the JR model to obtain a procyclical investment response, in our framework the presence of

vintage specific productivity acts to boost investment immediately when agents receive news

that productivity will be higher in the future. Intuitively, this vintage capital channel operates

by affecting the return on investment on the arrival of news. That is, when agents receive news

that capital’s productivity will be higher tomorrow they start investing immediately because

the higher return on investment can only be realized if they invest today and build new capital

that will embody the improved productivity, otherwise, the return is lost. Thus, in a sense, the

vintage capital channel plays the role of IAC to facilitate the rise in investment in response to

good news.

We calibrate the model to match several key properties from the Survey of Professional

Forecasters (SPF) and undertake a number of experiments. Given that fluctuations in the model

are driven by both noise and fundamentals we analyze the impact of the former. The impact of

noise—and the associated forecast errors it produces—in the model is substantial. According

to a measure of forecast errors we adopt, which occurs in approximately 20% of time in the

simulation, agents mistakes in forecasting productivity can give rise to substantial swings in

investment. During periods of pessimism (when agents are underpredicting embodied produc-

tivity compared to the truth) we observe a decline in investment in the order of 4.0 percentage

points below what one would observe in an economy without noise and forecast errors. Dur-

ing periods of optimism (when agents are overpredicting embodied productivity compared to

the truth) we observe a boom in investment in the order of 8.9 percentage points above the

level implied in the economy without noise and forecast errors. We find qualitatively simi-
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lar differences in output, hours worked and utilization rates. Consequently, conditional on the

measure of forecast errors we use, the learning mechanism in the model magnifies changes in

fundamentals. This amplification is consistent with the analysis in Eusepi and Preston (2011)

who show how learning can amplify fluctuations. Noise does not only amplify changes in fun-

damentals but can also trigger recessions (when true productivity rises but agents forecast a

decline) that would not occur in a perfect information economy. We find that noise triggered

recessions can generate declines similar in magnitude to declines driven by un-favorable funda-

mentals. Remarkably, noise can explain a large share of the (average) peak to trough decline in

macroeconomic aggregates observed during post world war II U.S. downturns. It can account

for the entire share in the decline of output and consumption and 57 percent of the decline in

investment and hours worked.

The main difference of our work relative to previous studies from the news literature is that

we address the asymmetry feature of business cycles. Nevertheless our model has similarities

with several earlier studies worth highlighting. We incorporate imperfect signals about produc-

tivity as in Beaudry and Portier (2004), although we go a step forward and allow agents to learn

from signals with time varying precision. Flodén (2007) uses a similar model—and the same

vintage capital interpretation of investment specific technologies—as we do. He demonstrates

how expectation driven cycles can arise naturally in this framework. However an important

difference in our framework compared to his is the concept of learning we introduce: this is

essential in order to capture the asymmetry of cycles and analyze the impact of forecast er-

rors for the economy’s equilibrium. Jaimovich and Rebelo (2009) also develop a one sector

model similar to ours. Their model differs from our setting in that we adopt the vintage view

of capital embodied productivity. Importantly, as we have explained above, this interpretation

allows the model to deliver comovement without the presence of IAC. In addition, relative to

JR, we study in detail the role of procyclical learning for the asymmetry feature of the cycles

and provide a more detailed investigation of noise driven recessions. Our model also shares

similarities with Eusepi and Preston (2011) who focus on learning dynamics as a propagation

mechanism. Similar to theirs, business cycles in our model are driven partly due to fundamen-

tals and partly due to forecast errors. One important difference is that the speed of learning

varies in our model whereas it is constant in theirs. Lorenzoni (2009) develops a theory of

demand (or noise) shocks based on a signal extraction problem about aggregate productivity

and shows they can account for a sizable fraction of demand side volatility. He uses a New

Keynesian framework and focuses on total factor productivity shocks whereas we use an RBC

model and analyze the impact of capital embodied shocks. Nevertheless our approach is sim-

ilar to his, in that noise generates demand-like fluctuations. Finally, Van Nieuwerburgh and

Veldkamp (2006) also analyze learning asymmetries. An important difference in our approach

is: (a) we focus on EDBC and (b) assume agents learn about capital embodied productivity
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rather than total factor productivity. Moreover, while Van Nieuwerburgh and Veldkamp (2006)

rely on noise that occurs in the production process, our learning framework is tightly linked

to evidence on the procyclical adoption of technologies. In addition, we analyze how noise

impacts the equilibrium allocations and its importance in generating recessions.

The remainder of the paper is organized as follows: Section 2 describes the model. Section

3 outlines the calibration and computational details. Section 4 presents results from simulations

and section 5 concludes.

Table 1: GDP Asymmetries of U.S. Business Cycles

U.S. Cycles Skewness

trough to trough

1958Q2 - 1961Q1 -0.14

1961Q1 - 1970Q4 -0.26

1970Q4 - 1975Q1 0.18

1975Q1 - 1980Q3 0.23

1980Q3 - 1982Q4 0.25

1982Q4 - 1991Q1 -0.17

1991Q1 - 2001Q4 -0.53

2001Q4 - 2009Q2 -1.30

Full sample: 1958Q2-2009Q2 -0.27

Notes. Business cycles dates are from the

NBER. Skewness is computed from log first

differences of real GDP per capita. For data

sources see Appendix 1.

Table 2: GDP asymmetries of G-7 Business Cycles

Canada France Germany Italy Japan UK

Cycles Skewness Cycles Skewness Cycles Skewness Cycles Skewness Cycles Skewness Cycles Skewness

trough to trough trough to trough trough to trough trough to trough trough to trough trough to trough

82Q4-92Q1 -0.36 67Q2-75Q3 -0.24 75Q3-82Q4 0.62 83Q2-93Q4 0.24 94Q1-99Q3 -0.78 75Q3-81Q2 0.50

92Q1-09Q3 -1.30 75Q3-82Q4 0.05 82Q4-94Q2 -0.64 93Q4-10Q1 -1.96 99Q3-03Q2 0.15 81Q2-92Q1 -0.28

82Q4-94Q4 -0.04 94Q2-03Q3 0.04 03Q2-09Q1 -2.31 92Q1-10Q1 -2.49

94Q4-03Q3 -0.34 03Q3-09Q1 -2.42

03Q3-09Q1 -1.83

82Q4-09Q3 -0.78 67Q2-09Q1 0.48 75Q3-09Q1 -0.85 83Q2-10Q1 -1.29 94Q1-09Q1 -2.22 75Q3-10Q1 -0.48

Notes. Business cycles dates are from the Economic Cycle Research Institute (ECRI). Skewness is computed from log first differences of

real GDP per capita. For data sources see Appendix 1. The last line of the table shows the skewness of the full sample.
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2 The Model

We develop a model close in spirit to Greenwood et al. (1988) (henceforth GHH) with two

important differences. First, in contrast to GHH, we interpret capital embodied technology

as vintage specific rather than enhancing the productivity of current investment expenditures.

This difference implies that productivity of current investment is unknown until capital is in-

stalled and used in production. Second, agents receive imperfect signals about the productivity

of future capital vintages and use Bayesian learning to form expectations about this productiv-

ity. This concept of learning we implement implies that agents make forecast errors that can

in turn give rise to fluctuations that would not otherwise arise had agents possessed perfect

information.

2.1 Firms

The economy comprises of a continuum of perfectly competitive identical firms with unit mass.

Firms produce output, yt, using a Cobb-Douglas production function with three inputs. The

production function is given by,

yt = (utkt)
αh1−α

t , 0 < α < 1 (1)

where kt denotes the sum of all efficiency units of capital available for production in period t

and is defined by:

∞
∑

s=0

qt−skt,s = kt, (2)

where kt,s is capital of vintage s that is available at time t. This formulation assumes that the

aggregate capital stock contains distinct vintages of capital which are associated with different

levels of productivity, q. In addition, capital can be utilized at different rates. The utilization

rate is denoted by ut and hours worked by ht.

Denoting investment by it, the vintages of capital evolve according to:

kt+1,s =

{

it for s = 0

(1− d(ut))kt,s−1 for s ≥ 1.
(3)

Using (3), the economy’s capital accumulation constraint can be derived from equation (2) as

kt+1 = [1− d(ut)]kt + qt+1it, k0 > 0 is given. (4)

Note that the capital accumulation constraint differs from the standard formulation such
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that capital in period t+ 1 depends on the capital embodied shock qt+1. Thus, the productivity

of investment is unknown until the capital is actually installed.

One can interpret the expression q in the capital accumulation equation as the productivity

of a new vintage of capital, whereas the productivity of installed capital remains constant, or as

the efficiency of the production of investment goods. Both interpretations exist in the literature,

but the timing differs. If q is interpreted as the efficiency of the production of investment goods,

it makes sense to assume that there exists information about the production function of these

investment goods at the time of the actual production. In the vintage specific case however,

q is interpreted as the productivity of a new vintage of capital, the productivity of which is

unknown in the period when investment occurs. The productivity may be known (or at least

can be forecasted more accurately) in the period after the investment has been made, i.e. when

the capital is actually installed and used in production.3

Finally, the depreciation rate of capital, d(ut), depends positively on the degree of capital

utilization as follows,

d(ut) = δ + µ(uωt − 1), µ > 0, ω > 1, 0 ≤ δ ≤ 1.

Since d(ut) is strictly increasing and convex, more intensive use of capital accelerates depreci-

ation exponentially. In this function, ω measures the costliness of varying the capital utilization

in terms of capital depreciation and the elasticity of marginal capital utilization equals ω − 1.

The steady state depreciation rate is given by δ. The parameter µ allows to calibrate utilization

and depreciation in the steady state independently from each other, consistent with steady state

utilization equal to unity.

Firms in this economy maximize profits period by period, that is max
ht,ut,kt

Πt = yt − rkt utkt −
wtht, by renting capital and labor services at the beginning of the period from households in

perfectly competitive factor markets, subject to the production function (1). The rental rate of

capital and the real wage rate are denoted by rkt and wt, respectively.

2.2 Households

The economy is populated by a unit measure of identical, infinitely lived households. The

representative household maximizes the discounted stream of expected utilities over its lifetime

max
ct,kt+1,ht,ut

E0

∞
∑

t=0

βtU(ct, ht, xt), 0 < β < 1. (5)

3These interpretations of q and the associated timing assumptions are widespread in the literature. An exception

is Greenwood et al. (1988). They interpret qt as the productivity of the capital in period t + 1, which is already

known at the beginning of period t.
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subject to a flow budget constraint,

ct + kt+1 = (1− d(ut))kt + wtht + rkt utkt (6)

and the capital accumulation equation, (4).

Households supply labor and capital in perfectly competitive markets and earn a wage rate

wt and a rental rate rkt .

The utility function is given by

U(ct, ht, xt) =
(ct − φh1+γ

t xt))
1−σ − 1

1− σ
, with γ ≥ 0, φ > 0, σ ≥ 1,

where

xt = cχt x
1−χ
t−1 , 0 ≤ χ ≤ 1.

The variable ct denotes consumption and ht denotes hours worked. The parameter γ is the

inverse of the Frisch elasticity of labor supply and σ is the intertemporal elasticity of substitu-

tion parameter. The specification of the utility function follows Jaimovich and Rebelo (2009)

and nests two preference classes. For χ = 0 the utility function has the properties of the class

proposed by Greenwood et al. (1988) and for χ = 1 one obtains preferences as discussed in

King et al. (1988). As long as χ > 0 the utility is time-non-separable in consumption and hours

worked. It further implies stationary hours worked. The household’s optimality conditions will

be presented collectively in the social planner’s problem formulation in section 2.7.

2.3 Technology

We now describe the technology that determines capital productivity. Our goal in this section

is not to develop a fully endogenized model that determines the productivity of future capital

vintages but to use a parsimonious way to make learning about capital embodied productivity

interesting in our one sector framework.4 We assume that the state of productivity of each

future vintage can take on two values, a high value, denoted by ηH and a low value denoted by

ηL. We furthermore assume that the future level of productivity is influenced by the number of

general innovations available for adoption. This assumption can be motivated by the fact that in

the aggregate, sectors that produce capital equipment benefit from general innovations that are

adopted widely across the economy. One such important innovation has been the advent and

4This endeavor would require a fully fledged endogenous multi-sector technological change model which is

beyond the scope of this paper. See for example Comin and Mulani (2009) for a growth theory that endogenizes

productivity based on the general innovations concept.
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widespread use of Information Technology (IT).5 Some empirical evidence for this channel is

provided in Basu et al. (2003). They report that both IT producing and IT using industries in

the U.S. have experienced significant acceleration of total factor productivity (TFP) growth in

the post-1995 period, coinciding with the IT equipment investment boom of the 1990s.6 We

parameterize these considerations in the process below,

qt+1 = ηt+1v
κt

t + ǫt+1, with 0 < κt < 1. (7)

where, vt is the number of new general innovations available for adoption in period t and

ηt+1 is an ergodic two-state Markov process with ηt+1 ∈ {ηL, ηH}. The term ǫt+1 is i.i.d. with

mean zero and constant variance σ2
ǫ . This latter term constitutes noise in our model.

The number of new general innovations available for adoption follows the process:

vt = (1− ρ) + ρvt−1 + ξt, with v0 = 1, 0 < ρ < 1,

where ξt is i.i.d. with mean zero and variance σ2
ξ . We assume only a fraction, κt, of the

available innovations, vt, are adopted since there may be innovations that will not improve

capital’s productivity. We therefore require that κt ∈ (0, 1) and assume that it is given by:

κt =
1

1 + exp{−(τ vt−vt−1

vt−1
)}
, τ > 0. (8)

Comin (2009) suggests that the adoption behavior of general innovations is pro-cyclical over

the business cycle. The formulation for κt above is consistent with this consideration. The

productivity of future vintages of capital, qt+1 can thus change either (a), as a result of a state

change, (b), a change in the number (or the rate of adoption) of new innovations and (c), noise.

The framework we adopt above is similar in flavor to Comin et al. (2009) who endogenize

procyclical technology adoption in a multi-sector model.

2.4 Information and Forecasting

We now turn to describe the information assumptions and the expectation formation mechanism

in this economy. Agents enter period t with information set It ≡ {kt, qt, vt, κt, xt−1, ct−1, it−1,

ut−1, ht−1, yt−1, wt−1, rt−1}, where zt denotes the infinite history of any variable z that belongs

to the information set above. The agents in this economy face a simple signal extraction prob-

5Some have argued that the advent of IT (the computer revolution) and its incorporation into production has

slowly pushed the average rate of embodied technological change higher (see Greenwood and Yorukoglu (1997),

Helpman and Trajtenberg (1994) among others), especially after 1973.
6Of course this acceleration of TFP assumes that the official price indices do not fully reflect quality embodi-

ments. Examples of general innovations include, personal computers, internet search engines, the Ford assembly

line, management practices, financial innovations and others.
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lem. They observe the whole history of q but do not observe the state, η, or noise, ǫ, separately.

Agents know the distribution of the noise, ǫ, and are aware that the signal, η, follows an ergodic

two-state Markov process with states ηL and ηH and a transition matrix Π. For the agent’s

investment decision today it is essential to forecast tomorrow’s capital productivity. At the be-

ginning of period t agents—conditional on It—form expectations about productivity in period

t+ 1 using Bayesian updating.

Specifically, agents evaluate the posterior probability of ηt to be in a high state as follows:7

P (ηt = ηH |It) =
Ψ(qt|ηt = ηH , It)P (ηt = ηH)

Ψ(qt|ηt = ηH , It)P (ηt = ηH) + Ψ(qt|ηt = ηL, It)(1− P (ηt = ηH))
. (9)

Here, Ψ(·) denotes a normal probability density function. The probabilities of a state change

are described in the transition matrix

Π =

[

pHH pLH

pHL pLL

]

, (10)

where pij denotes the probability that the economy transits from state i to state j. From the

ergodicity of the Markov chain it follows that pij ∈ (0, 1) and piH + piL = 1. We further

assume the transition matrix Π to be symmetric in order to ensure that all asymmetry in the

resulting dynamics is endogenous. This assumption and the previous equality implies that

pHL = pLH and pHH = pLL.

The product of the posterior probabilities that productivity was in state ηL, ηH in period t

as computed in (9) above, with the transition matrix imply a prior belief about the probability

of η to be in a certain state in period t+ 1:

[P (ηt = ηH |It), P (ηt = ηL|It)]Π = [P (ηt+1 = ηH |It), P (ηt+1 = ηL|It)]. (11)

Finally, this prior belief allows agents to form an expectation for the productivity of capital in

period t+ 1. Since Etǫt+1 = 0, using (7) the expectation is given by

q̃t+1 = Etη̃t+1v
κt

t , (12)

with η̃t+1 = [P (ηt+1 = ηH |It), P (ηt+1 = ηL|It)]

[

ηH

ηL

]

,

where z̃t+1 denotes the forecasted value in period t for the realization of any variable, z in t+1.

7Derivations of the elements of the Bayesian updating formula are shown in Appendix 3.
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2.5 Procyclical learning

The key ingredient of the model is learning capital’s productivity. Evidence of learning em-

bodied productivity in different vintages of capital is documented in Bahk and Gort (1993) and

more recently in Sakellaris and Wilson (2004). Using data from 1973 to 1986 consisting of

2,000 firms from 41 industries, Bahk and Gort (1993) find that a plant’s productivity increases

by 15 percent over the first fourteen years of its life due to learning effects.8

The learning mechanism in the model has several different components that are essential

to deliver procyclical forecast precision. Here, we explain the role played by each component.

Equation (7) implies that the productivity of a new capital vintage is determined by the amount

of adopted innovations vκt

t , a signal component, η and a noise component, ǫ. Agents cannot

separately observe the signal and noise components but use the Bayesian updating process de-

scribed in (9) – (12) to make forecasts for η and therefore next period’s productivity. These

three components play different roles in the learning mechanism. More specifically, the signal,

ηt and noise, ǫt, components create the signal extraction problem for the agent (with constant

learning over the cycle) while vκt

t serves to amplify the signal, ηt. This latter component in-

troduces a varying speed of learning and is the key element that delivers procyclical forecast

precision and consequently the asymmetries in the model. In detail it works as follows. From

equation (7) (since the amount of adopted innovations (vκt

t ) is multiplied with the signal, η),

an increase in the amount of adopted innovations amplifies the signal relative to the noise and

subsequently accelerates the precision of agent’s forecast for productivity. The degree of ac-

celeration depends on the stage of the cycle. Given our assumption of procyclical adoption of

innovations, at the peak of the cycle the amplification of the signal is strong (due to the rise in

vκt

t ) and hence one obtains a relatively precise forecast for next period’s productivity. At this

stage of the cycle, agent’s forecasts react sharply to a negative signal compared to the reac-

tion (to an identical signal) near the trough where precision is low. At the peak of the boom,

agents learn much faster and therefore a negative signal can potentially trigger a quick and

sharp adjustment of the economy. By contrast, at the beginning of an expansion, following a

trough, the degree of amplification is small and forecast precision low.9 These features make

the boom phase more gradual than the bust phase. Note from equation (8) the degree of change

8The idea here is that the installation of new vintages of capital equipment is often associated with comple-

mentary investments in training workers as well as implementation of new organization structures or management

practices and these take time to become fully productive. This process was coined by Arrow (1962), “learning by

doing". These considerations suggest learning about the productivity of future vintages as a natural assumption

to incorporate in the model. In the model it also takes time for agents to learn the productivity of a new vintage,

although there are no explicit “learning by doing" effects. Agents learn over time and asymptotically know with

certainty the true productivity of a specific vintage.
9Its important to note, in the vκt

t
function, κt (described in equation (8)) has to vary in order to deliver the

procyclical variations forecast precision (or equivalently procyclical speed of learning). Had κt been constant for

example, amplification of the signal, η, in booms would not be strong enough to generate procyclical learning in

line with the survey evidence.
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in κt is controlled by τ which is calibrated (discussed in section 3.1 below) such as to deliver

a procyclical share of adopted innovations, vκt

t , in line with the evidence reported in Comin

(2009).

Procyclical learning and forecast precision from the Survey of Professional Forecast-

ers (SPF). The SPF publishes one to five quarters ahead forecasts for GDP.10 An analysis of the

forecast errors from this survey suggests they are negatively related with detrended GDP, in-

dicative of a procyclical forecast precision. This fact has been documented in previous studies,

most notably, Van Nieuwerburgh and Veldkamp (2006).11 A key requirement for generating

procyclical forecast precision in the model as in the SPF data is a pro-cyclical signal-to-noise

ratio. This requires that the variance of the noise term (ǫt+1) rises at a slower rate than the vari-

ance of the signal, amplified by the amount of adopted innovations (ηt+1v
κt

t ) when productivity

increases. In other words, during a boom, the impact of the noise on next period’s productiv-

ity becomes relatively smaller compared to the impact of the signal and vice versa during a

recession. The signal-to-noise ratio from (7) equals

var(ηt+1v
κt

t )

var(ǫt+1)
= var(vκt

t )
σ2
η

σ2
ǫ

.

Since both the variance of the Markov process σ2
η and the noise variance are constant, the signal-

to-noise ratio is pro-cyclical if var(vκt

t ) increases in a boom and decreases in a recession.12

Our assumptions on learning imply a faster rate of innovation adoption improves the quality

of forecasts. While the rate of adoption is exogenous in the model a plausible interpretation

of this relationship can be provided based on the idea that observing the actions of others re-

leases information. Examples and formalizations of this idea can be found in the information

aggregation (or social learning) literature (see for example Caplin and Leahy (1994)). A stan-

dard set-up in this literature is the presence of noisy private and public information that affects

decisions by agents. Observing actions from other agents can potentially release useful infor-

mation on unobserved states of nature. In our context, the observation that the adoption rate

of innovations rises in booms, may release information that some agents undertake (or have

undertaken) investment to develop new technologies. This can potentially make other agents

who observe this adoption to infer with higher precision the arrival of new capital vintages that

are expected to be more productive. In this context, adoption can be interpreted as an informa-

tive (public) signal (through the process of aggregation of information) conferring a positive

information externality, that helps agents make more precise forecasts about the productivity

10For a description of the survey see, Croushore (1993).
11A similar finding about procyclical forecast precision from the Livingston survey is reported in Jaimovich and

Rebelo (2009).
12Our calibration procedure ensures that var(vκt

t
) is procyclical. The noise variance is restricted to be constant

only for simplicity. This restriction can be relaxed: The noise variance can vary over time as long as it is guaranteed

that the signal-to-noise ratio remains pro-cyclical.
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of capital. By contrast, in recessions, the information flow is scarce because very few agents

undertake adoption of new technologies. Consequently, a low adoption rate makes agents more

uncertain about the quality of new capital equipment.

2.6 Equilibrium

Equilibrium in the decentralized economy described above is a sequence of quantities and

prices that solve: (1) firms’ problem, (2) households’ problem and (3) satisfy market clearing.

Market clearing implies the aggregate resource constraint,

yt = ct + it. (13)

2.7 The Social Planner Problem

The decentralized economy has a social planner analog. We work with this formulation. A

benevolent social planner maximizes the utility of the representative agent (5), subject to the

capital accumulation constraint (4) and the resource constraint (13). The planner’s problem

can be formulated in a recursive way. At the beginning of period t, ηt and ǫt are realized but

cannot be observed. However, the social planner observes the productivity of capital installed

in period t, qt. The planner uses the forecasting mechanism described in (9) – (12) to form an

expectation about the productivity of the vintage in period t+1, q̃t+1. Hence, the social planner

enters the period with state variables st = (kt, xt−1, q̃t+1). The state variables determine the

choice of ht, kt+1 and ut. Since the choice of investment depends on q̃t+1, the value of the

state variable kt+1 can differ from the realized capital stock in period t + 1. This depends on

the difference between q̃t+1 and qt+1 and hence on forecast precision. Consumption in turn is

determined from the recourse constraint. Formally, the planner solves:

V (kt, xt−1, q̃t+1) = max
ht,ut,kt+1

U(ct, xt−1, ht) + βEt|kt,xt−1,q̃t+1 [V (kt+1, xt, q̃t+2)]

s.t. kt+1 = (1− d(ut))kt + itqt+1

ct = (utkt)
αh1−α

t − it

xt = cχt x
1−χ
t−1

with x−1, q1 and k0 given. V denotes the value function.

This yields the first-order conditions:

(ct − φh1+γ
t xt)

−σ − χψtc
χ−1

t x1−χ
t = λt, (14)
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ψt − (ct − φh1+γ
t xt)

−σφh1+γ
t = βEtψt+1(1− χ)Etc

χ
t+1x

−χ
t . (15)

(ct − φh1+γ
t xt)

−σφ(1 + γ)hγt xt = λt(1− α)(utkt)
αh−α

t , (16)

πt
λt

=
1

Etqt+1

, (17)

αuα−1

t kαt h
1−α
t =

πt
λt
µωuω−1

t kt, (18)

πt = βEt

{

λt+1αu
α
t+1k

α−1

t+1 h
1−α
t+1 + πt+1(1− δ − µ(uωt+1 − 1))

}

, (19)

where πt is the multiplier on the capital accumulation equation, λt is the multiplier on the

resource constraint, and ψt the multiplier on the equation that defines the auxiliary variable xt.

Equations (14) and (15) determine optimal consumption. Equation (16) sets the household’s

marginal rate of substitution between consumption and hours worked equal to the real wage

and determines labor supply. Note that for χ > 0, the intertemporal decision for optimal hours

worked depends on the real wage rate as well as on consumption. Equation (17) determines

the real price of investment and is given by the ratio of the two multipliers. Equation (18)

determines the optimal rate of capital utilization by setting the marginal user cost equal to the

marginal benefit of capital services. The marginal user costs of capital on the right hand side of

the equation consists of the partial derivative of d(ut) with respect to ut, which represents the

marginal cost in terms of increased depreciation of using capital at a higher rate. This cost is

scaled by 1/Etqt+1, which determines current replacement costs of old capital in terms of new

capital. Finally, equation (19) determines optimal investment.

It is important to note that the planner’s problem described above is based on the assumption

that the planner does not take into account the effect of optimal choices on the evolution of

beliefs. Thus there is no feedback between actions and beliefs in this economy and learning is

passive. This is similar to Van Nieuwerburgh and Veldkamp (2006) but different from Eusepi

and Preston (2011) who allow actions to affect beliefs. The possibility of active learning would

invalidate the Welfare theorems in the social planning economy and hence there will be no

decentralized counterpart to the planner’s equilibrium.13 The passive learning is reflected in the

iteration process of the social planner described above: Expectations of capital’s productivity

13In an economy with active learning the provision of information is a public good and information externalities

emerge in this case. This implies that the provision of information will collapse as no agent will have an incentive

to confer benefits on other agents.
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are formed at the beginning of the period. Based on these expectations and the endogenous

state variables (kt, xt−1), optimal actions are chosen. Given these, expectations are updated at

the beginning of the next period. This process is repeated until the expectations coincide with

the actual policies.

3 Calibration and computation

3.1 Calibration

Table 3 reports the parameter values used for calibrating the model. The model is calibrated

on a quarterly basis. We assume the depreciation rate of capital, δ = 0.025, quarterly discount

factor, β = 0.99 and the capital share of production, α = 0.36. These are all standard values in

the literature.

Our calibration of the inverse of the Frisch labor supply elasticity and the parameter which

determines the costliness of varying the capital utilization are based on the values used in

Jaimovich and Rebelo (2009). Setting the inverse of the Frisch labor supply elasticity γ = 0.4

is a value widely used in the literature implying an intertemporal elasticity of substitution for

labor supply of approximately 2.5. In general there are no widely accepted guidelines in the

empirical literature about the magnitude for the parameter which determines the costliness of

capital utilization. Setting ω = 1.15 implies an elasticity of marginal capital utilization of 0.15.

We set σ = 1.0 corresponding to logarithmic utility. The parameter that determines the wealth

effect on labor supply, χ is set equal to 0.001, (almost) corresponding to GHH preferences,

following recent econometric estimates reported in Schmitt-Grohe and Uribe (2008). Finally,

φ and µ are free parameters and we calibrate these to guarantee that capital utilization is equal

to unity and hours worked are equal to one third of the total time endowment in the steady

state.14

The following parameters are specific to the learning and the productivity process. In or-

der to compute the probability of a state change in productivity we first re-write the ergodic

two-state Markov chain as an AR(1) process. Since the transition matrix is symmetric the au-

toregressive parameter is given by (2pHH − 1). The relative price of investment (i.e. the price

of investment relative to consumption goods) should provide a good empirical measure of the

quality improvements embodied in new capital. Hence we use this relative price in order to

calibrate the parameters of the productivity process. Specifically, we use the (detrended) mea-

sure of relative price of investment constructed by Fisher (2006) which has an autocorrelation

of 0.99. There are other estimates (e.g. Greenwood et al. (2000) using a different relative price

series) indicating a first-order serial correlation equal to 0.64. We give more weight to Fisher’s

14The derivation of the expressions for φ and µ can be found in Appendix 2.
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measure and set pHH = (0.9 + 1)/2 = 0.95. It then follows from the structure of the transition

matrix that the probability of a state change equals 0.05.

The parameter τ in the equation that describes κt (equation 8) governs the impact of the

growth rate of general innovations on their adoption rate. While the empirical literature pro-

vides indications about the qualitative changes (see Comin (2009)) in the adoption behavior of

general innovations over the business cycle, it is silent about the quantitative changes. The role

played by τ is to control the amplification of the signal (η) over the business cycle, enabling

agents to learn faster during booms but slower during recessions. Calibrating τ = 45 guarantees

that the degree of amplification varies continuously from the trough to the peak and thus con-

trols the precision of information over the cycle. Specifically for τ ∈ (40, 50) the distribution

of κt approximates a uniform distribution which guarantees that κt visits all values in the (0,1)

domain equally during the simulation. By contrast with a high or low value of τ outside the

bounds specified above, the degree of amplification either switches instantly from very low to

very high (high values for τ ) and vice versa—and stays there for some time— or is almost con-

stant over the business cycle (low values for τ ). Both cases generate a speed of learning that is

mostly constant over the business cycle and imply time series properties of forecast errors from

the model inconsistent with the SPF data. Only τ ∈ (40, 50), in combination with the cali-

bration of volatilities described below, guarantees a procyclical adoption rate and consequently

procyclical forecast precision as in the data.

The next objective is to calibrate the standard deviations of the three processes, namely,

ση, σǫ, σε, and the autocorrelation parameter of the adoption process, ρ. Ideally we want to

strike a balance between the size of the noise variance and the variance of the signal such that

learning about capital productivity is difficult. The relation between these variances implies a

certain signal precision since it determines the difficulty to learn: the noise variance must be

high enough to make a boom look like a recession. If it is very low, learning is trivial. However,

if the noise variance is very high, estimates about the current state of η will be quite inaccurate

and this makes learning almost impossible. Estimates for the signal precision of investment-

specific technological change are not available due to a lack of forecast data for this variable.

We calibrate ση, σǫ, σε and ρ in order to match as close as possible three moments from the

SPF: forecast precision (mean absolute forecast error), standard deviation and serial correlation

of forecast errors for GDP. This choice guarantees the average “difficulty" of learning in the

model is similar to that observed in the SPF.15

The calibration above implies a standard deviation for the noise, σǫ = 0.01. As we compare

percentage deviations in the model the absolute values of ηH and ηL are not relevant. However,

the distance is important since it has an impact on the volatility of the Markov chain. Assigning

15The targeted/model moments are: signal precision (0.39/0.32), standard deviation (0.85/1.05), serial correla-

tion (-0.023/-0.035). For this calculation we use the one quarter ahead forecasts for nominal GDP from 1968:4 to

2009:2. This is the longest forecast series available from this survey.
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Table 3: Parameter values—baseline calibration

β = 0.99 ω = 1.15 τ = 45

α = 0.36 χ = 0.001 ρ = 0.8

δ = 0.025 φ = 0.5822 σξ = 0.035

γ = 0.4 µ = 0.0305 ση = 0.07

σ = 1.00 pHH = 0.95 σε = 0.01

the values [0.93, 1.07] to ηL and ηH implies a standard deviation ση = 0.07. Finally, this calibra-

tion procedure implies σξ = 0.035 and ρ = 0.8.16 The calibration of these parameters guarantees

that the model generates procyclical rate of adoption consistent with Comin (2009).17

3.2 Computational details

The model is solved using value function iteration. We use the policy functions to simulate

the model 500 times over 255 periods. The first 50 periods of each simulation are discarded

to avoid influences due to the choice of the starting values. Statistics are calculated over the

remaining 205 periods corresponding to the sample size (1958 Q2 to 2009 Q2). Second mo-

ments are calculated from HP filtered series. Since the model is calibrated on a quarterly basis

the smoothing parameter is 1600. Skewness is calculated from first-differenced series.

4 Results

Our first task is to check the model’s ability to generate comovement as stressed by the news

literature and highlight the channel that delivers it. In section 4.2 we evaluate the model’s

ability to account for the asymmetry of cycles documented in the introduction. Business cycle

asymmetry is measured by the skewness of macroeconomic aggregates. The more gradual the

boom and the sharper the recession, the more negative is the skewness measure. We also inves-

tigate whether the model can match a standard set of business cycle statistics. We then evaluate

the effects of learning and focus on, (a) the effects of forecast errors and (b) characteristics of

recessions. We are particularly interested in the effects of noise on fluctuations. To do this we

compare the outcomes of a model which allows agents to learn over the business cycle with the

outcomes of a model without learning (i.e. perfect information case).

16We also run simulations of the model with ρ = 0.9 or ρ = 0.7 without any material change in our results.
17In the simulations of the model with the learning mechanism, the correlation between output and the number

of adopted general innovations is 0.61.
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4.1 A simple model without learning: how comovement obtains

In this section we briefly analyze the model’s ability to generate comovement in response to a

shift in expectations. This exercise shows that the vintage capital interpretation of productivity

is crucial, but that the learning mechanism does not play any role for the model’s ability to

generate comovement. For this purpose we analyze a simple version of the model where agents

possess perfect information and there is no learning.18 Figure 1 presents impulse response

functions (IRFs) from this model. The responses are plotted for one period ahead news shock,

i.e. agents receive a perfect signal today there will be a rise in productivity from next period

onwards. Figure 1 shows that investment, hours worked, utilization, consumption and output

immediately rise in response to good news.

For comparison purposes, the responses from a model with the conventional interpreta-

tion of embodied productivity are also presented (model without vintage capital and without

learning).19 In this case, investment moves countercyclically so this version does not deliver co-

movement. This is not surprising given the absence of investment adjustment costs (IAC) from

both models.20 As JR demonstrate, IAC is an essential element in a one sector RBC model to

obtain comovement. In the absence of costs in changing the flow of investment, agents can wait

until the actual realization of the shock to start investing. But in the vintage capital model IAC

are not necessary. The vintage capital specification allows for a channel that affects the return

on investment. That is, when agents receive a signal that capital’s productivity will be higher

tomorrow they start investing immediately because the higher return on investing can only be

realized if they invest today and build new capital that will embody the improved productivity,

otherwise, the return is lost. The key difference that makes the vintage capital channel impor-

tant is the timing of capital embodiment in the capital accumulation equation, as in equation

(4) (i.e. kt+1 = [1− d(ut)]kt + qt+1it), which differs from the conventional interpretation only

in the timing of embodiment (i.e. kt+1 = [1− d(ut)]kt + qtit).

4.2 Asymmetries and business cycle statistics

In this section we evaluate the ability of the model to match business cycle statistics computed

from U.S. data. We focus on the growth asymmetry, relative volatilities, serial correlations and

co-movement. We compute second moments from HP filtered series. We evaluate asymmetry

by computing a variable’s skewness from its log first difference. If negative changes are larger

18We log-linearize the model’s equilibrium conditions as given in equations (14) – (19) abstracting from learn-

ing and solve the model with DYNARE.
19Since we abstract from learning and to sustain comparability of the IRFs, we use, for both model versions,

a simple AR(1) process for productivity with an anticipated component. This process has persistence 0.64 and a

standard deviation of 0.035 as estimated by Greenwood et al. (2000). All other parameter values are the same as

in Table 3.
20When we add IAC in the no vintage capital model we obtain comovement.
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than positive changes then variables will exhibit negative skewness.21 We simulate two versions

of the model: a no-learning, perfect information version and the full version which incorporates

learning about productivity. In the no-learning version, agents observe the state of ηt at the

beginning of period t and hence have a perfect signal about productivity (except for the i.i.d.

noise), whereas in the learning version the state of ηt is not revealed.22

Table 4 reports various moments from the data (panel A) and the two versions of the model

(panel B and C). Both versions of the model match reasonably well the relative volatilities

and correlations with output thereby generating comovement. Moreover, both correctly rank

investment to be more volatile than output and consumption to be less volatile than output.

However, they under-predict the volatility of hours worked which is more volatile than output

in the data.23 They also match reasonably close the serial correlations, although the full model

generates slightly lower serial correlations compared with the data. This is a direct consequence

of the difference in the serial correlation between the actual, q, and forecasted productivity, q̃.

In the learning version, the latter’s serial correlation is markedly lower compared to the true

process; for learning to be realistic (i.e. neither impossible nor trivial) the noise shock has to

be big enough to make a boom look like a recession. This however implies that agents’ may

wrongly infer a state change in capital’s productivity when none has occurred. Thus conceptu-

ally, agents’ forecasted productivity is “changing state" more often than true productivity and

this imparts a lower autocorrelation in forecasted productivity, q̃.

The main difference between the two versions of the model in Table 4 is with respect to the

generated asymmetry. In particular, only the learning version can generate asymmetry in all

variables in line with the data (panel C)—the no-learning version fails in this dimension. More

precisely the point estimate in the data skewness measure is within two standard deviations

of the model’s skewness. This can be seen in the last column of Table 4. In panel B, without

procyclical learning, the skewness of output is close to zero, indicating that boom and recession

phases are symmetric. Moreover the future productivity of capital, q, has skewness close to

zero. Since agents perfectly observe the signal— as the state of ηt is revealed at the beginning of

period t—their forecast for productivity, q̃, differs from q only by the additive noise shock, ǫt+1.

This noise shock on its own is not a source of asymmetry which explains why the skewness

of q̃ is close to zero and very similar to the one for q. Since there is no other mechanism in

21Since the HP filter is a two-sided filter, information from the past as well as the future are used. De-trending

with this filter implies that agents have information about the future which can have an impact on their decision

today. Using a two-sided filter diminishes the filtered values prior to a downturn. This reduces the magnitude of

the bust and influences our evaluation of business cycle asymmetry. To avoid this distortionary effect of two-sided

filters – such as the commonly used HP or bandpass filter – we calculate the variable’s skewness from the log

first-differences.
22The no learning version of the model differs from Greenwood et al. (1988) only by the fact that productivity

of the newly installed capital is subject to the additive i.i.d. shock ǫ which cannot be observed by the agents.
23The low relative volatility of hours is a well known problem of RBC models. It can be addressed by introduc-

ing for example the Hansen (1985) indivisible labor approach into the utility function.
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the model to make booms longer and more gradual than recessions, all other macroeconomic

aggregates exhibit skewness which is close to zero as well. The main reason for the generated

growth asymmetry in the learning version is the skewness of agent’s forecast for productivity,

q̃, which is negative in contrast to the no-learning version. The introduction of agent’s learning

over the business cycle is the crucial mechanism to generate growth asymmetries in line with

the data. Booms tend to be more gradual than recessions because agent’s speed of learning

varies procyclically over the business cycle. Intuitively, during booms forecast precision is high

and thus a negative signal about productivity can trigger a quick and sharp adjustment of the

economy. By contrast, at the beginning of an expansion, following a trough, forecast precision

is low and agents react more cautiously to a positive signal. The asymmetry in agent’s forecast

for productivity imparts negative skewness in the remaining macroeconomic aggregates in the

learning version as this constitutes the only driving force in the model. This effect is very strong

for output, investment, hours worked and capital utilization while it is less so for consumption.

These results demonstrate the importance of the learning mechanism to generate the growth

asymmetries present in the data. It is interesting to highlight a difference in our results in

comparison to Van Nieuwerburgh and Veldkamp (2006) who also analyze asymmetries. A

key difference is that in our model asymmetries arise entirely due to procyclical learning. By

contrast in Van Nieuwerburgh and Veldkamp (2006) there is built-in asymmetry, i.e. even

without learning (see Table 2, page 764) and learning helps to amplify this asymmetry.

4.3 The role of forecast errors: optimism and pessimism

This section provides a more detailed analysis about the functioning of the learning mecha-

nism by evaluating the role of forecast errors. Specifically we wish to examine the effects

of optimism and pessimism on the cyclical fluctuations of the model. We define an agent as

pessimistic (optimistic) when we observe a “large" (to be defined below) negative (positive)

forecast error in the simulation. A negative (positive) forecast error implies that agents under-

predict (overpredict) capital’s productivity relative to the truth.

We examine the distribution of forecast errors obtained from the simulation and choose to

examine forecast errors that exceed one standard deviation above or below the average forecast

error.24 We label those errors as ”large”. This threshold generates forecast errors that occur in

approximately 19% of time in the simulation. We observe large negative forecast errors in 10%

of the simulation and large positive forecast errors in 9% of the simulation.25 We calculate the

24We use the simulation set-up described in section 4.2 and simulate the learning and no-learning economies

using an identical sequence of the shocks that determine the productivity of next period’s capital (signal, noise and

adoption process shocks).
25Using the forecast errors for GDP (one through four quarters ahead) from the SPF we compute that forecast

errors exceeding the mean by one standard deviation occur in approximately the same range as in the simulation,

from 20% to 25% of the sample period.
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Table 4: Key moments of macroeconomic aggregates

Relative First-order Correlation Skewness

std deviation autocorrelation with y

Panel A: U.S. Data

y 1.00 0.85 1 -0.27

i 4.62 0.79 0.90 -0.76

h 1.16 0.91 0.87 -0.74

c 0.80 0.87 0.87 -0.69

Panel B: Model without learning

y 1 0.824 1 0.004

(0.000) (0.042) (0.000) (0.332)

i 3.537 0.782 0.948 -0.036

(0.276) (0.047) (0.021) (0.394)

h 0.746 0.811 0.992 0.022

(0.009) (0.044) (0.002) (0.331)

c 0.387 0.813 0.772 0.026

(0.052) (0.066) (0.047) (0.319)

u 1.488 0.818 0.991 0.019

(0.016) (0.044) (0.002) (0.333)

q 0.707 0.817 0.944 0.018

(0.018) (0.041) (0.015) (0.318)

q̃ 0.692 0.832 0.970 0.012

(0.015) (0.039) (0.008) (0.332)

Panel C: Model with learning

y 1 0.708 1 -0.171

(0.000) (0.078) (0.000) (0.312)

i 3.499 0.670 0.954 -0.170

(0.260) (0.079) (0.017) (0.335)

h 0.747 0.695 0.993 -0.157

(0.008) (0.078) (0.002) (0.297)

c 0.379 0.742 0.771 -0.043

(0.052) (0.090) (0.043) (0.341)

u 1.485 0.701 0.991 -0.194

(0.016) (0.078) (0.002) (0.322)

q 0.686 0.812 0.885 0.011

(0.038) (0.045) (0.031) (0.334)

q̃ 0.689 0.710 0.972 -0.189

(0.013) (0.078) (0.006) (0.337)

Notes. Sample is 1958 Q2 to 2009 Q2. See Appendix 1 for data sources. Values

reported in parentheses are standard deviations. The model is simulated 500

times over 255 periods. The first 50 periods are discarded. Second moments

are calculated from HP filtered series. Skewness is calculated from (log) first-

differenced series. Variables included: Output (y), investment (i), hours worked

(h), consumption (c), capital utilisation (u), productivity (q) and the forecast for

productivity (q̃).
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mean growth in variables from the two economies. These results are summarized in Table 5.

We draw attention to the following facts from Table 5. First, agents are pessimistic when

the true growth rate of productivity is negative and optimistic when the true growth rate of

productivity is positive. The presence of noise makes it difficult for agents to accurately pre-

dict true productivity when the latter is changing and agents make substantial forecast errors

when trying to predict the true process. Second, agents in the no learning economy always

forecast capital productivity perfectly—no forecast errors occur in this economy. Changes in

fundamentals cause fluctuations in macroeconomic aggregates in both economies but errors in

forecasting productivity amplify those fluctuations. The magnitude of amplification is quite

substantial. In order to demonstrate this we look at the absolute distance, for each variable,

between the learning and no-learning economies—this is reported in the columns labeled ”Ab-

solute distance”. This distance quantifies by how much equilibrium allocations differ due to

forecast errors, conditional on observing a ”large” forecast error.

The distance in investment growth rates is larger among all variables followed by utiliza-

tion, output and hours. The distance in investment growth is equal to 4.0% for negative forecast

errors and 8.9% for positive forecast errors. In the learning version, pessimistic agents cut in-

vestment on average by 6.2% relative to a modest 2.2% when they possess perfect information.

When agents are optimistic they raise investment by 25.4% compared to 16.5% in the perfect

information economy. In this case agents over-invest. This is an interesting finding because

it has a parallel with the boom in investment rates observed during the IT boom-bust cycle in

the 1990s, thought to be driven by excessive optimism about future returns on new investment.

When agents are pessimistic, output in the learning economy declines by 3.5% compared to

1.6% in the no learning economy, while in periods of optimism output in the learning economy

rises by 6.0% compared to 4.0% in the no learning economy. Similar differences occur in uti-

lization rates and hours worked, while the difference in consumption allocations is relatively

small.26

4.4 Characteristics of recessions

We also want to examine the nature of recessions in the model economy. We define recessions

in the model as periods with at least two quarters of negative output growth. Table 6 reports

26Our results on the effects of forecast errors illustrated in this exercise is related to two recent studies. Loren-

zoni (2009) characterizes the size of noise driven volatility that can be generated from a model with private and

public signals and dispersed information about aggregate productivity. Although our exercise is made condi-

tional on the notion of ”large” forecast errors (and our calibration of noise is different), our simulation results are

broadly consistent with his findings that noise can generate a sizable fraction of demand volatility. Eusepi and

Preston (2011) calibrate the process of forecast errors to the SPF–as we do–and compute the impact of learning

on propagation and amplification. In their model, learning amplifies technology shocks by around 10-20%. We

obtain a lower degree of amplification because in our model beliefs do not feed back into the data generation

process.
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Table 5: The impact of large forecast errors

Large negative FE Large positive FE

Pessimism Optimism

Absolute Absolute

No-Learning Learning distance No-Learning Learning distance

∆y/y -0.016 -0.035 0.019 0.040 0.060 0.020

∆i/i -0.022 -0.062 0.040 0.165 0.254 0.089

∆h/h -0.012 -0.027 0.015 0.029 0.043 0.014

∆c/c -0.006 -0.012 0.006 0.010 0.016 0.006

∆u/u -0.023 -0.049 0.026 0.060 0.093 0.033

∆q/q -0.013 -0.013 0.000 0.028 0.028 0.000

Forecast error 0.000 -0.091 0.091 0.000 0.092 0.092

Notes. Variables included: Output (y), investment (i), hours worked (h), consumption (c), capital utilisation (u),

productivity (q) and the forecast error for productivity, computed as Et−1qt − qt. The model is simulated 500

times over 255 periods each. The first 50 periods are discarded and the mean growth in variables of the economy

with and without learning is calculated over the remaining periods. Forecast errors for productivity are defined to

be large when their absolute value exceeds one standard deviation of the average forecast error.

characteristics of recessions from the model and compares them with recessions from the U.S.

data. Several findings are worth highlighting. First, the average length of the recession in the

model is four quarters, very similar to that in the data (4.25 quarters). Second, recessions in the

model can be driven by noise (with no change in fundamentals) in addition to un-favorable

fundamentals. The share of recessions in the model that occur purely due to noise equals

15%. The remaining 85% of recessions are caused by unfavorable fundamentals. The noise

triggered episodes coincide with agents mistakenly forecast productivity to be declining when

true productivity is actually rising at the onset of the recession. A similar exercise on the nature

of recessions is reported in JR. A key difference of our exercise however is that while in their

experiment recessions can only arise from bad news about the future, in ours, recessions can

also arise due to forecast errors triggered by noise (agents expect productivity to be declining

when it is actually improving). Thus our approach can provide a more detailed separation

between unfavorable news and noise driven recessions.

Table 6 reports two measures from the model and U.S. recessions: the average growth and

the peak to trough changes in various aggregates. There are two interesting findings. First,

both noise and fundamental triggered recessions generate declines that are very similar in mag-

nitude. For example, output declines on average by 1.7% in the noise triggered compared

to 1.8% in the fundamentals triggered recession. Investment declines on average by 4.9% in
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the noise triggered compared to 5.2% in the fundamentals triggered recession. Second, the

model’s average growth declines match reasonably well the average growth declines in macro-

aggregates observed during U.S. recessionary episodes.27 For example, the model generates

very similar average growth declines in hours worked, consumption and investment although

overpredicts to some extent the output growth decline. We view these findings as a success of

the model given it is driven by a single disturbance.

The declines from peak to trough are also similar for the two types of recessions in the

model. For example, the decline in output is 3.7% in the noise triggered compared to 3.8%

in the fundamentals triggered episode, whereas the peak to trough decline in investment is

10% and 10.3% in the noise and fundamental triggered episodes respectively. Interestingly,

the noise driven recession can explain a large fraction of the peak to trough change in macroe-

conomic aggregates computed from the data. The last column of Table 6 reports the share of

peak to trough decline in the data that can be accounted for by noise in the model. A noise

triggered recession can account for all of the decline in output and consumption (arithmeti-

cally it accounts for over 100% of the decline in those aggregates) and 57% of the decline in

investment and hours worked. This is a remarkable finding given that the model’s exogenous

processes were calibrated to match the time series behavior of forecast errors for GDP and

not calibrated to match any statistic from Table 6 or statistics from aggregate macroeconomic

variables (e.g. volatility and persistence of GDP) that could potentially overweight the model’s

ability to match recessions observed in the data.

5 Conclusions

Business cycles in the U.S. and G-7 economies are asymmetric: recoveries and expansions tend

to display a long and gradual phase and busts tend to be short and sharp. Moreover, this type

of asymmetry appears more pronounced in the last twenty years. Specifically, in the U.S. the

last two cyclical episodes have been more asymmetric relative to earlier episodes. Both the

investment (in the 1990s) and housing booms and busts (in the 2000s) in the U.S. have been

associated with over-optimistic beliefs about profitability of future technology for the former

and housing capital gains through never ending house price appreciation for the latter. These

episodes have sparked interest in expectation driven business cycles (EDBC), where a sudden

shift in agents’ expectations (with no observable change in current fundamentals) can generate

aggregate fluctuations as observed in the data. Earlier work in EDBC models have tended

to focus in analyzing the model elements that generate comovement (see e.g. Beaudry and

27We have identified 8 recessions from the U.S. data, based on the NBER procedure in the sample 1958 Q2 to

2009 Q2: 1960 Q2 to 1961 Q1, 1969 Q4 to 1970 Q4, 1973 Q4 to 1975 Q1, 1980 Q1 to 1980 Q3, 1981 Q3 to 1982

Q4, 1990 Q3 to 1991 Q1, 2001 Q1 to 2001 Q4, 2007 Q4 to 2009 Q2.
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Table 6: Recession statistics

Average share of recessions in the model

Recessions due to Recessions due to U.S. data Share explained

noise (0.15) fundamentals (0.85) average recession† by noise

(a) (b) (c)

average growth peak to trough average growth peak to trough average growth peak to trough |
(a)
(c)

|

change change change

y -0.017 -0.037 -0.018 -0.038 -0.007 -0.034 1∗

i -0.049 -0.100 -0.052 -0.103 -0.048 -0.176 0.57

h -0.012 -0.028 -0.013 -0.029 -0.011 -0.049 0.57

c -0.007 -0.016 -0.007 -0.016 -0.003 -0.011 1∗

u -0.020 -0.041 -0.021 -0.042 n.a. n.a.

q -0.003 0.003 -0.003 0.003 n.a. n.a.

q̃ -0.007 -0.014 -0.007 -0.014 n.a. n.a.

Notes. Variables included: Output (y), investment (i), hours worked (h), consumption (c), capital utilisation (u), productivity (q) and the

forecast for productivity (q̃). Share explained by noise is defined as peak to trough change (due to noise) over peak to trough change in U.S.

data. †: growth and peak to trough declines computed as the average from all U.S. recessions. ∗ Shares that exceed one in the Table above are

set equal to one.

Portier (2004) and Jaimovich and Rebelo (2009) among others) patterns in line with the data

comovement properties, whereby consumption, investment and hours worked move together

with economic activity.

Thus, previous work has not addressed the important asymmetry feature of business cycles.

This paper has demonstrated how a simple one sector model with capital embodied productivity

can generate aggregate fluctuations from expectations shifts that are asymmetric as in the data.

The model introduces two key assumptions that naturally complement each other, namely:

(1) the vintage view of capital productivity, whereby each successive vintage has (potentially)

different productivity and (2) agents imperfect information and (procyclical) learning about this

productivity. The main findings from simulations of the model are as follows. First, it delivers

business cycle asymmetries in line with the data. Second, noise amplifies fundamentals in both

directions, upward and downward. Fluctuations in the model are larger when agents make

forecast errors compared to the perfect information case. Third, recessions can arise purely due

to noise, i.e. even without a change in fundamentals. Fourth, pure noise can trigger recessions

that mimic in magnitude, duration and depth the typical post WW II U.S. recession.

25



6 Appendix

Appendix 1: Data

The U.S. data for output is real GDP (GDPC96). Investment is defined as gross private do-

mestic investment (GPDIC96) and consumption is real personal consumption expenditures

(PCECC96). These series are quarterly, seasonally adjusted and in billions of chained 2005 dol-

lars from the U.S. Department of Commerce, Bureau of Economic Analysis (BEA). The series

of civilian non-institutional population (CNP16OV), is used to derive per-capita time-series.

Hours worked is measured as hours of all persons in the non-farm business sector (HOANBS).

The hours and population measures are from the U.S. Department of Labor, Bureau of Labor

Statistics.

The forecast error statistics we use for nominal GDP (NGDP) are from the Survey of Pro-

fessional Forecasters. This survey pools professional forecasters to obtain one to five quarter

ahead predictions for different variables and are available from 1968 Q4. We use forecasts from

1968 Q4 to 2009 Q2 to calculate the forecast errors. The forecast error for a given quarter is

the log absolute difference between the median of all forecasters predictions for nominal GDP

and the final revised value of nominal GDP as it appears today.

Skewness in Tables 1 and 2 are calculated from first differences of real GDP per capita. Real

GDP data for all G7 countries (except U.S. and Germany) are from the Organisation for Eco-

nomic Development and Cooperation (OECD). Real GDP for Germany is from the Deutsche

Bundesbank. All series are quarterly, seasonally adjusted and in chained values. Due to data

availability sample size varies by country: Canada (1982Q4 to 2009Q3), France (1967Q2

to 2009Q1), Germany (1975Q3 to 2009Q1), Italy (1983Q2 to 2010Q1), Japan (1994Q1 to

2009Q1), UK (1975Q3 to 2010Q1). The start and end dates correspond to troughs as reported

by the Economic Cycle Research committee. Time series for total population are from the

World Bank for all G7 countries except the U.S.. We used linear interpolation to transform this

data form annual to quarterly frequency.

Appendix 2: Determination of the Parameters φ and µ

The steady state value for hours worked is unity. This choice is based on the fact that the total

amount of time per period is normalised to 3, and that agents use about 1/3 of their amount of

time to work. Under the assumption that h = 1, the steady state capital stock can be derived
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from the steady state Euler equation (19):

1 =[β(αuαkα−1q + (1− d(u))]

⇔ k =

{

[

1

β
− (1− (δ + µ(uω − 1))

]

1

αuαq

}
1

α−1

.

We want to calibrate the model in a way that u = 1 when h = 1. Considering the steady state

expression for capital utilisation — which can be derived from the first order condition (18)

— and using the equation above, one can derive a formulation of steady state utilisation solely

depending on parameters:

u =

{

α

µω
kα−1q

}
1

ω−α

⇔ u =

{

αq

µω

[{(

1

β
− (1− (δ + µ(uω − 1)))

)

1

αuαq

}
1

α−1
]α−1

}
1

ω−α

⇔ u =

{

(

1

β
− (1− δ)− µ

)

1

µ(ω − 1)

}
1
ω

. (.1)

From this equation one can derive an expression for µ as the steady state utilisation is chosen

to equal unity:

1 =

[

1

µ(ω − 1)

(

1

β
− (1− δ)− µ

)

]
1
ω

⇔ µ =
1

ω

(

1

β
− (1− δ)

)

.

Note that the choice of u to equal unity allows to calibrate capital utilisation and depreciation

in the steady state independently form each other, as d(u) = δ + µ(uω − 1) = δ.

A steady state capital utilisation of unity and a steady state productivity of q = 1 implies

that the steady state capital stock can be expressed as:

k =

{

1

βα
− (1− δ)

α

}
1

α−1

. (.2)

Given u = 1, q = 1 and the steady state capital stock, one can numerically solve the steady

state versions of equations (14) – (16) for φ, λ and ψ so that h = 1. Note that steady state
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capital utilisation and steady state employment are independent of the value of steady state

productivity q. For capital utilisation this is shown in the derivation of equation (.1). The fact

that steady state employment is unaffected by the value of q follows from the properties of the

chosen utility function which guarantee stationary employment.

Appendix 3: Derivation of the Elements of the Bayesian Updating Formula

The Unconditional Probability of η to be in a Certain State:

The stochastic process for η is designed to be an ergodic two-state Markov process. By def-

inition, an ergodic Markov chain has exactly one eigenvalue which equals unity. All other

eigenvalues lie inside the unit circle. The eigenvector which is associated with the unit eigen-

value is therefore unique and can be interpreted as the vector of unconditional probabilities.

For the above described ergodic two-state Markov chain the eigenvector associated with the

unit eigenvalue turns out to be

P

{

ηt = ηH

ηt = ηL

}

=

(

1−pLL

2−pHH−pLL

1−pHH

2−pHH−pLL

)

. (.3)

The assumptions of a symmetric transition matrix and an ergodic two-state Markov chain imply

that pHH = pLL. It follows from expression (.3) that the unconditional probability of η to be

in a high (low) state is 0.5. Thus, the formula for Bayesian updating (9) depends solely on the

probability of qt conditional on ηt = ηH and ηt = ηL, respectively.

The Normal Probability Density Function:

There is always some uncertainty about the state of η. Therefore, all inference about η takes the

form of statements of probability. Uncertainty is described in terms of the normal probability

density function Ψ(·). Given the mean E(qt|ηt = ηH) and the variance V (qt|ηt = ηH) the

normal probability density for every outcome qt, given ηt being in a high (low) state, can be

calculated according to

Ψ(qt|ηt = ηH) =
1

V (qt|ηt = ηH)
√
2Π

exp

(

− (qt − E(qt|ηt = ηH))2

2(V (qt|ηt = ηH))2

)

. (.4)
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As Etǫt = 0, the mean and the variance can be derived by using the formulation for productivity

(7):

E(qt|ηt = ηH) = Et[η
Hv

κt−1

t−1 + ǫt]

= ηHv
κt−1

t−1 .

V (qt|ηt = ηH) = Et[(η
Hv

κt−1

t−1 + ǫt)
2]− (Et[η

Hv
κt−1

t−1 + ǫt])
2

= Et[(η
Hv

κt−1

t−1 )2 + 2ηHv
κt−1

t−1 ǫt + ǫ2t ]− (ηHv
κt−1

t−1 )2

= σ2

ǫ .

Knowing the unconditional probability of η to be in a certain state as well as the normal prob-

ability density (.4), allows — by using the Bayesian updating formula (9) — to derive the

posterior probability for ηt to be in a high (low) state.
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Figure 1. Responses to an economy with and without vintage capital (and without learning) to

news in period 1 about higher productivity that materializes in period 2.
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capital utilisation (u), productivity (q) and the news about productivity (q − news)).
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