
Munich Personal RePEc Archive

Principal Components and Factor

Analysis. A Comparative Study.

Travaglini, Guido

Università degli Studi di Roma "La Sapienza"

13 October 2011

Online at https://mpra.ub.uni-muenchen.de/35486/

MPRA Paper No. 35486, posted 20 Dec 2011 05:46 UTC



 

1 

 

 

Principal Components and Factor Analysis. A Comparative Study. 

Guido Travaglini, Università “La Sapienza”, Roma, Italy. 

Second Draft, October 13, 2011. 

JEL classification: C01, C02, C52.  

Keywords: Principal Components, Factor Analysis, Matrix Norm. 

 

Abstract 

 

A comparison between Principal Component Analysis (PCA) and Factor Analysis (FA) is 

performed both theoretically and empirically for a random matrix ( ):X n p× , where n is the 

number of observations and both coordinates may be very large. The comparison surveys the 

asymptotic properties of the factor scores, of the singular values and of all other elements involved, 

as well as the characteristics of the methods utilized for detecting the true dimension of X. In 

particular, the norms of the FA scores, whichever their number, and the norms of their covariance 

matrix are shown to be always smaller and to decay faster as n → ∞ .  This causes the FA scores, 

when utilized as regressors and/or instruments, to produce more efficient slope estimators in 

instrumental variable estimation. Moreover, as compared to PCA, the FA scores and factors exhibit 

a higher degree of consistency because the difference between the estimated and their true 

counterparts is smaller, and so is also the corresponding variance. Finally, FA usually selects a 

much less encumbering number of scores than PCA, greatly facilitating the search and identification 

of the common components of X. 
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1. Introduction 

Principal Component Analysis (PCA) is a widely used method for dimension reduction of large 

databases in the presence of collinearity. It dates back to the works of Pearson (1901) and has been 

extensively analyzed along several decades (Anderson, 1958, 1963; Cattell, 1966; Jolliffe, 1982, 

2002). Factor Analysis (FA) is a construct that extends the features of PCA to a stochastic 

environment, and stems from the contribution of several authors especially in more recent times 

(Anderson and Rubin, 1956; Stock and Watson, 2002, 2005; Bai 2003; Bai and Ng, 2002, 2006, 

2007, 2008, 2010). 

More recent approaches to either method, e.g. Supervised PCA initiated by Bair et al. (2006), and 

Dynamic FA pioneered by Sargent and Sims (1977), for ease of treatment are not considered here, 

but both authorships supply considerable amounts of proofs as to efficiency and consistency issues 

(e.g. Forni et al., 2004; Kapeitanos and Marcellino, 2007). 

PCA and FA share the search for a common structure characterized by few common components, 

usually known as “scores” that determine the observed variables contained in matrix X. However, 

the two methods differ on the characterization of the scores as well as on the technique adopted for 

selecting their true number.  

In PCA the scores are the orthogonalized principal components obtained through rotation, while in 

FA the scores are latent variables determined by unobserved factors and loadings which involve 

idiosyncratic error terms. The dimension reduction of X implemented by each method produces a 

set of fewer homogenous variables – the true scores – which contain most of the model’s 

information.  

In addition, the true number of scores in FA is determined by means of formal statistical procedures 

different from the classical methods applied in PCA, like screeplot inspection or eigenvalue relative 

magnitudes. The FA procedures consist of information criteria addressed at detecting, within a 

prespecified range, the minimum variance of the error terms plus a penalty for overfitting. 

The main features of the FA and of the PCA models are examined in Sect. 2, together with some 

proofs regarding the relative magnitude of their respective factor scores. The asymptotic properties 

of all of the components of the models and of the singular values are examined in Sect. 3, while 

Sect. 4 offers a comparative overview of the methods utilized for detecting the true number of 

scores. Sect. 5 concludes by showing the results achieved in the previous Sections. 

Briefly, the conclusions report of the advantages in adopting FA as opposed to PCA for component 

evaluation and/or instrumental variable estimation purposes. Under FA, the scores are in fact shown 

to produce more efficient slope estimators when utilized as regressors and/or instruments. Together 

with the factors they also exhibit a higher degree of consistency even for large sample dimensions. 

Finally under FA, dimension reduction is definitely more stringent, greatly facilitating the search 

and identification of the common components of the available dataset. 
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2. The FA and PCA models and factor scores 

In this Section we explain the FA and the PCA models together with the determination of the matrix 

of their scores. From the Abstract, the reader is reminded that the time and space domains of the 

data matrix X are respectively represented by the fields of integers: 1,...,  n < ∞ , and 1,...,  p < ∞ , 

where n p<=> . In addition, for any n and p, the Euclidean norm of a random vector or matrix

( ):A n p×  is denoted as A , which corresponds to its maximum singular value maxs . Similarly for 

the covariance matrix ( )' :AA n n× , whose Euclidean norm is denoted as 'AA . It is worth 

remembering that the singular values of A correspond to the square-rooted eigenvalues (or singular 

values) of 'AA . 

2.1. The FA model. 

The standard FA model may be expressed as follows 

 

1)     ΛX F e= +  

 

where ( ) ( ) ( ): ,  : ,  :X n p F n n n p× × Λ ×  and ( ):e n p× . Matrix X is a user-supplied dataset 

henceforth  posited to be I(0), and F are the estimated factors, Λ  are the estimated factor loadings 

and e the idiosyncratic error matrix. Matrices F and Λ  are generically known as the components of 

eq. (1). 

Assumption 1. The major assumptions regarding eq. (1) are: 

 i) total independence between factors and loadings on the one hand and the idiosyncratic error on 

the other, i.e. ( )E ' 0F e =  and ( )E 0eΛ = ;   

ii) the error matrix is homoscedastic, ( )0,
e

e IID Σ∼ , and is also not autocorrelated, namely, 

( )E ' 0j se e = , , ;  j s n j s∀ ∈ ≠ ;  

iii) the errors are stationary, i.e. the error matrix covariance is bounded from above, namely, 

( )E ' ,  
j j

e e j n∞ ∀ ∈≪ ; 

iv) the statistical distribution of F, for any n and p and for ( )X NID 0,1∼ , is ( )F NID 0,1∼ , where 

0, 1 are n p× matrices of zeros and ones. 

Assumptions 1. (i)-(iii) are typical of classical FA (Anderson, 1984) where in general p is fixed and 

much smaller than n and which estimates the factor loadings by Maximum Likelihood of the 

equation system 

 

 ;  ,  ji i j jiX F j n i pλ ε= + ∈ ∈ .  

 

Recently, the efficiency and consistency of this method has been seriously questioned for panels 

characterized by a large p (e.g. Bai, 2003). 
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Assumption 1. (iv) regarding the factors follows from the distributional properties assumed to hold 

for the dataset X. A similar distribution regards the factor loadings Λ , as will be shown shortly. 

For n p< , which is the data dimensional setting utilized henceforth, let the covariance matrix of 

the non-error part of eq. (1) be 

2)     ( )' :XX np n nΣ = ×  

whose spectral decomposition representation obtained by applying SVD is Σ 'FSF= , where 

'
n

F F n I=  an identity matrix of size n n× , while ( ):S n n×  is the diagonal matrix of real and 

positive singular values or eigenvalues 1,  js j n∀ ∈≪  in descending order (Bai and Ng, 2002, 

2010), which are bounded from above by virtue of the Marčenko-Pastur distribution law (Sect. 3.1). 

In particular, it should be noted that 
1

1
n

i

j

s
=

=∑  (Onatski, 2009). 

By construction, given r p<  the size of the true FA scores or equivalently of the factors, obtained 

by a method to be later described (Sect. 4), we have 

3)      ˆ ˆˆ ˆ ˆ ˆΛ 'C F FF X n= ≡   

where ( )ˆ :C n r×  is a linear transformation of ( )ˆ : ,X n r X× ⊂ and where ( )
1

2ˆ ˆ: ,  F n r n F F F× = ⊂  

are the true factors and ( )ˆ ˆ: ,  r rΛ × Λ ⊂ Λ  are the corresponding true factor loadings. By 

construction, we also have Ŝ S⊂  where ( )ˆ ˆ ˆ: 'S r r p× = ΛΛ
 
is a diagonal matrix and max

ˆ 1S s= < . 

Given Assumption 1. (iv) and eq. (3), there follows that ( )ˆ 0,1jF NID∼ , ( )0,IID SΛ ∼  which 

means that ( ) ( )1 1

1 1 1

n r r

ij j j

j i i

rn r sλ λ
− −

= = =

− =∑∑ ∑ , and finally that ( )ˆ ˆ0,C IID ∆∼ , where the covariance 

matrix ∆̂  is such that ˆˆ1 0S> ∆ > > . 

From eq. (1) there follows that ˆ ˆX C e− = , where ê  is the empirical estimate of e with given 

variance and 
 

( )ˆ :C n r×  is the true factor score (or common component) matrix. For r p<  we have 

ˆX C≠ , but for r p→  we have Ĉ X→  and such that for fixed n at r p=  the reported matrices are 

identical. In practice, the linear transformation process fades away as the true number of factors 

equals the column number of X.  

For n p> , ( )' : 'X X p p FSF
⌣⌣ ⌣

× =  where ( ):S p p×
⌣

 is a diagonal matrix of singular values with the 

same properties as those of  S defined above, and ( ):F p p F× ≠
⌣

. The corresponding factor score 

matrix is ( ) ˆ:C n r C
⌣

× ≡  and, identical to above, for r p→ ,  Ĉ X→ .  

In both cases, and within the context of a stochastic setting, the true factors and factor loadings 

ˆ ˆ,   F Λ cannot be separately identified without previous knowledge of their consistently estimated 
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counterparts ,  F Λ , and a specific transformation matrix ( ):H r r×  is required to produce the 

appropriate estimator F of  F̂H and Λ of ( )
1ˆ H

−
Λ , as described in Theorem 1 of Bai and Ng (2002),   

in Bai (2003) and in Bai and Ng (2008), as well as in Stock and Watson (2005). A succinct 

explanation of this identification problem will be provided in Sect. 3.3. However, the true scores Ĉ  

are uniquely identified and consistently estimated. 

2.2. The PCA model 

The classical PCA true scores, denoted as Cɶ , are obtained by a SVD procedure different from that 

exhibited in  eq. (2). In fact we have the following spectral decomposition of X expressed as: 

4)     'X FDB=  

where F is provided above, while ( ):D n p×  is a diagonal matrix of eigenvalues or singular values, 

and ( ):B p p×  is a unitary matrix such that ' nB B I= .  

If we let eq. (2) utilize the definition of X in eq. (4) for comparative purposes, we have  

 

' ' 'FDB BD F npΣ =   

whereby ultimately ˆ'DD np S=ɶ ɶ
 and ( )

1
2ˆD npS=ɶ  such that ˆ ,  ,D S n p> ∀ɶ . In other words, the 

elements of Dɶ  denoted as ,  jd j n∈ , by construction supersede all of the elements of Ŝ  because 

1
21 ,  j jd s j n> = ∀ ∈  by virtue of the relationship between the singular values of ( ):A n p×  to the 

eigenvalues of its covariance matrix ( )' :AA n n× . 

For r p<  under the assumption that the number of both true scores is identical, we have 

( ):D D r r= ×ɶ  and thus 

5)       ˆC FD=ɶ ɶ  

where ( ):C n r×ɶ  is the matrix of the true PCA scores, under the assumption, later on to be relaxed, 

that r is optimally detected and is the same as that of the FA model. 

There are significant differences between the true factor scores Ĉ  and the true PCA scores Cɶ . By 

consequence, alternate use among them for empirical research is not innocuous with regard to end 

results (e.g. Bernanke and Boivin, 2003, Bernanke et al., 2005; Bai and Ng, 2006; Kapeitanos and 

Marcellino, 2007; Forni and Gambetti, 2008). In practice, use of either as regressors or instrumental 

variables may lead to sizably different parameter estimations. In addition, serious consistency issues 

concerning PCA in the presence of large n and p have been raised by some authors (Bai and Ng, 

2002).  
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By appealing to eqs. (3) and (5), the following theorems illustrate the mean and covariance features 

of Ĉ as compared to those of Cɶ , after assuming they are both stationary processes originated from 

X an I(0) time series. Then we have: 

Theorem 1. For a given dataset ( )I 0X =  and for any n and p, the true PCA scores Cɶ are greater 

than the true FA scores Ĉ , namely, Ĉ C< ɶ .  

Proof: given that ˆ ˆ ˆ ˆ'C FF X n=  and ˆC FD=ɶ ɶ , there follows by the Cauchy-Schwarz Inequality of 

the inner product of two independent sequences that ˆ ˆ ˆ ˆ'C FF n X≤ ⋅  and that 
1

2 ˆC n F D
−

≤ ⋅ɶ ɶ . 

From eq. (3) ' ' ' 'XX np FDB BD F np= ɶ ɶ , whereby ' 'XX D D np= , since 1.F B= =  By 

consequence we have ˆD X X= >ɶ , and since ˆ ˆ ' 1FF n = , there immediately follows that 

Ĉ C< ɶ . This proves that the true PCA scores are always larger than the true factor scores. 

Theorem 2. In addition to what expressed in Theorem 1, Cɶ are orthogonal by construction while Ĉ  

are not orthogonal. Moreover, for any n and p the covariance of the former, ( )'C C np∆ = ɶ ɶɶ , is 

larger than the covariance of the latter, ˆ ˆˆ 'C C np∆ = , as shown in Sect. 2.1. 

Proof: let the r r×  covariance matrices be rewritten as follows 

ˆ ˆ' ' 'D F FD np D D n p∆ = =ɶ ɶ ɶ ɶ ɶ
  

and  

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' ' ' ' ' .X FF FF X np X FF X n p∆ = =
 

Since is a diagonal matrix by virtue of eq. (4), so is 'D Dɶ ɶ  and any linear transform thereof when 

operated by a scalar like np, including ∆ɶ . This proves the orthogonality of Cɶ .  

This orthogonality may also be easily proven by the fact that ∆̂ < ∆ɶ
 

where 

0,  0;  ,
jj ij

i j r∆ > ∆ = ∈ɶ , namely, the off-diagonals of the PCA covariance are all zero, which proves 

by construction the orthogonality of its scores. 

After recalling from eqs. (1) and (4) that the FA and the PCA models share exactly the same factors, 

in order to prove that the first covariance matrix is larger than the second we observe that their 

respective norms are ' 'D D np DD np=ɶ ɶ ɶ ɶ  and ˆ ˆ ˆ ˆ' 'X FF X np . Then we need to prove that 

ˆ ˆ'D X F>ɶ . From eq. (4), we have ˆ 1F F B= = =  and X D= , but ˆD D X= >ɶ   then 

ˆ ˆ'D X F n>ɶ  whereby there immediately follows that ˆ∆ > ∆ɶ . 

Since the FA scores are proven to be asymptotically smaller in magnitude than their PCA 

counterparts, they are definitely preferable in applied work when utilized as regressors and/or 

Dɶ

∆̂ < ∆ɶ
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instruments in large-sample instrumental-variable estimation procedures such as the Generalized 

Method of Moments (GMM) (Hansen, 1982; Newey and Windmeijer, 2009), because they generate 

smaller Jacobians and produce by consequence more efficient slope parameters (Kapeitanos and 

Marcellino, 2007).  

From the inequality Ĉ C< ɶ  there automatically follows that Ĉu Cu< ɶ , where u is any 

nonzero-element stochastic vector or matrix of the same length as that of the scores.  

Let the standard single-equation model of length n be y X uβ= +  where y and  X  are the 

appropriately stacked arguments and z the selected instrument matrix. Then ( ): 1rβ ×  is a 

(consistent) OLS estimator and u  is defined as the first-stage disturbance vector. After defining 0β  

as the population parameter value, and ˆ  or z C z C= = ɶ , the Jacobian matrix is 

( ): ' ,  
j

G r r z X j r× = − ∈
 

and the asymptotic covariance of the GMM-estimated parameter vector is                       

                              (6)  ( ) ( )
1 1

12
0 'GMMn G Gβ β

−−− = Ω  

where  

( )
1

1 1' ' '
GMM

G G G z yβ
−− −= Ω Ω

  

(Hansen, 1982; Newey and Windmeijer, 2009) and ( ): 'r r w w nΩ × =  is the weight matrix,   and 

( ) ˆ:  or w n r Cu Cu× = ɶ  are the sample moments. Simple algebra of eq. (6) implies that for given G 

the following is true: 

                                  ( )
1

1

0
' 0Lim G G

−
−

Ω →
Ω =  

namely, the smaller the norm of the weight matrix the smaller is the norm of the covariance matrix  

of the GMM estimated parameter vector. By consequence: 

(7)   ( )
1

2
0

0
 0

GMM
Lim n β β
Ω →

− =  

which holds insofar as Ĉu Cu< ɶ , as assumed above. 

3. Asymptotic properties of errors, factors, factor loadings and factor scores 

Knowledge of the asymptotic behavior of the true PCA and FA scores, respectively and Ĉ , and 

of the components of the latter, namely , is important especially in large model settings. 

Equally important is knowledge of the distribution properties of the matrix e of the idiosyncratic 

Cɶ

ˆ ˆ and F Λ
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errors, inextricably tied to the components and to the dataset. The limit distribution of most of these 

variables is provided by Bai (2003) and of Bai and Ng (2002, 2008). Other properties remain to be 

analyzed with particular emphasis on convergence/divergence issues in an asymptotic setting. 

Illustration of such properties requires at first a few definitions and some basics in random matrix 

theory (RMT). 

3.1. Theoretical aspects of RMT: matrix norms and singular values 

For the data dimensional feature here utilized, which is n p< , the aspect ratio y p n=  is such that 

1 y< < ∞  and 1
n
Lim y

→∞
=  with p fixed, and 

p
Lim y

→∞
= ∞  with n fixed. Unless the specifications 

,n p → ∞ are required for clarity purposes, y will be henceforth utilized.  

Consider now the random vector or matrix A introduced in the previous Section, whose elements 

are in particular assumed to be N.I.D. real numbers with zero mean and finite fourth moments. For 

n p=  the matrix is real asymmetric. Consider also the matrix ( )' :AA n n×  which in turn is always 

real symmetric.  

Proposition 1. For the sequence 1,...,y = ∞ , the matrix norm of A and of 'AA , for any [ ]1,y ∈ ∞ , is 

respectively denoted as 
y

A and '
y

AA . Then the following apply: 

i) 
y

A and '
y

AA  form each a Cauchy sequence respectively denoted as ( ) { }y y
a A=  or 

( ) { }'y y
a AA= , whose elements  for  belong to the Banach space of real numbers; 

ii) both sequences are monotone and may be stationary (if 1,  i ia a i+≤≥ ∀ )  or increasing (if 

1,  i ia a i+≤ ∀ ) or decreasing ( 1,  i ia a i+≥ ∀ ). In the last two cases, ( )ya  is asymptotically weakly 

convergent in 2
L  to a right-endpoint upper or lower bound, respectively; 

iii) the lower bound is ( )
1
inf

y
y

lb a
≤ ≤∞

= ,
 
such that { } ,  

i
a lb i≥ ∀ , and the sequence exhibits negative-

valued first derivatives for 1 0,  i ia a i+− ≈ ∀ ; 

iv) the upper bound is ( )
1

sup
y

y

ub a
≤ ≤∞

= , such that { } ,  
i

a ub i≤ ∀ , and the sequence exhibits positive-

valued first derivatives for 1 0,  i ia a i+− ≈ ∀ ; 

v) by the uniform boundedness principle, points (iii) and (iv) respectively imply 

             
( )( )

1,
  Lim 1

y
y y
P a lb
→ →∞

= =   and  ( )( )
1,

  Lim 1
y

y y
P a ub

→ →∞
= = ; 

vi) the rate of convergence in probability of ( )ya  for p fixed and n → ∞  is ( )pO n
α , where α  is an 

integer or a fraction, and 0 if  lbα < ∃  while 0 if  ubα > ∃ . Finally, ( ) ( )1y pa O=  if 0α = . The 

{ }ia [ ]1,i ∈ ∞
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same reasoning can be extended to the case of n fixed and p → ∞  whereby we have 

( ) ( )y pa O p
α=  and related values of α . 

Proposition 1 implies that, for changing y, the norms of the two matrices change and form a 

sequence of real numbers that may stay stationary or rise toward an upper bound or decrease toward 

a lower bound. The rates of convergence in probability vary depending on the existence and on the 

magnitude of the bounds. The sequence is monotone and continuous and obeys the fundamental 

laws of such functions (see e.g. Sokal, 2010 and the references cited therein). The upper- or lower-

bound norms are supplied by recent research in RMT which establishes the limit distribution of 

maximum singular values maxs  of the reported random matrices. 

If we let maxs A n=  be the Euclidean norm of A n , for  (or 1),n y→ ∞ →  maxs exhibits an 

asymptotic behavior that obeys the limit Marčenko-Pastur (MP) distribution law whereby 

( )maxs n p n+∼  (Johnstone, 2001; Vershynin, 2011). If instead we let max 's AA n=  be the 

Euclidean norm of the covariance matrix 'AA n , then under mild conditions regarding its 

distribution  and for n → ∞  we have ( ) ( )
2 2

max 1s n p n y+ = +∼ (Geman, 1980). Needless to 

say, if the denominator of A or of 'AA  is np rather than n, the values of maxs  are computed 

accordingly. This happens for example when computing the upper bound of the singular values of 

matrix Σ  in eq. (2), which is ( )
2

maxs n p np+∼ .  

In addition, for n → ∞ , the rate of convergence in probability of the empirical spectral distribution 

(ESD) of maxs  toward its corresponding limit spectral distribution (LSD) is proven to be ( )1
4

p
O n

−
  

(Bai,1993; Bai et al., 2000; Rudelson and Vershynin, 2010).  

Proposition 2.  Any data-based sequence ( )ya  may be empirically estimated over the interval 

1 y< < ∞  and tested for the parameter α  implied by the function ( )n
α  shown in Proposition 1. (vi) 

and by consequence for their convergence in probability implied by Proposition 1.(v).  If  ( )ya  is a 

sequence of matrix norms, the estimation process may better be defined as Empirical Norm 

Estimation (ENE).  

The estimation may be carried through by nonlinear least squares applied to the following equation 

( ) ,  j ja j j n
α υ= + ∈   

where ( )E 0jυ =  with finite variance. If the function ( )p
α is utilized, the same equation may be 

estimated with the index i p∈  replacing the index j.  
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One important application of computing the ENE  regards the series included in eqs. (1) and (4). If 

X is a n-sized random NID vector, for 1,y →  ( )py
X O n

α=  where 1 2
3 3

α≤ ≤ .  At the other 

extreme, for a very large fixed p and for n → ∞  we have ( )1py
X O= , since  

ˆ ˆ ˆ' 1,  [1, ].
y y

FF n F n y= ≡ ∀ ∈ ∞  

Other applications regard the scores and their components, as shown in the following Sections. 

3.2. Asymptotic properties of errors 

Under conditions of normality about the dataset X and for n fixed and p → ∞  ( )or y → ∞ , the two 

following Assumptions hold: 

Assumption 2. The matrix e of the errors exhibits a (close-to) diagonal covariance matrix 

( ) ( ): E 'p p eeΩ × =  under the hypothesis of asymptotic orthogonality; 

Assumption 3. The covariance matrix, diagonal or not, exhibits over [ ]1,y ∈ ∞  the normed 

sequence ( ) ,  0
py

O p
α αΩ = ≤ , which is a decaying process or at least ( )1

p
O  under the 

hypothesis of asymptotic homoscedasticity. 

In other words: ( )E 0;  , ;  ji jke e i k p j n= ∈ ∀ ∈  and 
1 2 2

1

= ; ,  
n

ji i

j

n e i p j nσ−

=

∀ ∈ ∀ ∈∑ , where 2

iσ  is the 

i.th column mean for any given 2n ≥  (Bai, 2003). In other words, for fixed n and p → ∞ , the off-

diagonals of matrix Ω  tend to zero while the mean variance of the errors converges to a constant 

unit value under normality, namely, 1 2 2

1

p

i

i

p σ σ−

=

=∑ , or also ( )
12 2

1 1

ˆ
pn

ji

i j

np eσ
−

= =

= ∑∑  where 2 1σ ≤ . 

3.3. Asymptotic properties of factors and factor loadings 

Two more assumptions hold in probability regarding the true factors and the true factor loadings 

(Assumptions A and B in Bai, 2003; Bai and Ng, 2002, 2008, 2010): 

Assumption 4.  F̂  is stochastic such that ( )4
ˆE F ∞≪  and the true factor covariance matrix is 

1

ˆ

1

ˆ ˆ '
n p

i i F
i

n F F
−

=

→Σ∑ , where ( )ˆ :
F

r rΣ ×  is symmetric p.d.; 

Assumption 5. Λ̂  is deterministic such that ( )ˆE Λ ∞≪  or stochastic such that ( )4
ˆE Λ ∞≪ , and 

the true factor loading covariance matrix is ˆ
ˆ ˆ '

p

p
Λ

ΛΛ →Σ , where ( )ˆ : r r
Λ

Σ ×  is symmetric p.d.  

Assumption 6. Following on from the two previous Assumptions, we have 
1 1

2 2
ˆ ˆ ˆ

ˆ
FΛ Λ

Σ = Σ Σ Σ  which is 

symmetric p.d. of size r r×  and whose eigenvalue diagonal matrix, defined as V, is the asymptotic 

counterpart of Ŝ .  
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The two matrices ˆ ˆ and 
F Λ

Σ Σ  provide consistent estimates of the factors and of the factor loadings 

and are instrumental to the analysis of the asymptotic differences between the estimated and the true 

factors, i.e. the asymptotic approximation of F toward F̂  introduced in Section 2, and fully 

described by Bai and Bai and Ng in the works cited herein.  

The authors show that ˆ ˆ and  F Λ cannot be identified without previous knowledge of their estimated 

counterparts  and F Λ , and that the trivial solution 
1

2 ˆ 0F n F
−

− ≡ , where 
1

2F̂ n F= , must be 

avoided. However, as noted in Sect. 2, the true scores are always uniquely identified and 

consistently estimated. 

Theorem 3. Let ( ):H r r×  be the transformation matrix of F̂  into F such that F̂ FH=  and of Λ̂  

into Λ such that 1ˆ H
−Λ = Λ , as shown in Bai (2003), Bai and Ng(2002, 2008, 2010) and Stock and 

Watson (2002, 2005). Let also 
1

2F̂ n F=  as defined in Sect.2.1. Under these circumstances, neither 

F nor Λ can be identified if H is trivially taken to be the diagonal matrix 
1

2
r

n I  with ( ):
r

I r r×  an 

identity matrix. By consequence, for identification to be achieved H must be sparse and invertible 

and, in its most generic form, made up of a deterministic and of a stochastic component. 

Proof: Assume that  

8)     ( )
1

2 ,  0r r rH n I IID= + Θ Θ Ξ,∼  

where rI  and ( ):
r

r rΘ ×  respectively are the deterministic and the stochastic component, whose 

covariance is Ξ . Then we may have F̂ FH= where the deterministic component is not sufficient 

for identification, but the stochastic component is crucial. Then F̂  is a linear stochastic rotation of 

F where identification is achieved by means of 
1

2
r

H n I≠ . 

There are several different possibilities of computing matrix H, either theoretically or empirically. 

Only two, however, are considered here. The first is 

9)     ( )( )1 ˆ ˆ ˆ ˆ' 'H V FF n p
−= ΛΛ  

where V  is defined in Assumption 6 and the first bracketed expression originates from appropriate 

manipulation of the matrix Σ , as shown by Bai (Appendix A, 2003). Since the limits of the first and 

of the second bracketed expressions in  eq. (9) respectively are 
F̂

Σ  and 
Λ̂

Σ , while the limit of V is 

Λ̂
Σ , we have 

F̂
H = Σ . However, since ˆ 

rFn
Lim I

→∞
Σ = , then 

r
n
Lim H I

→∞
=   (Bai and Ng, 2010). 

The second way of computing H  has been proposed by Stock and Watson (2002, 2005) and stems 

from the OLS model 
ˆ ˆX CH v= + , where ( )ˆ :H r r×  and ˆ,   andX C ν  are all of size n r×  and the 

last is a disturbance matrix. The factors and the factor loadings utilized to produce Ĉ are computed 

by reduced rank regression. The ensuing matrix ˆ
r r

H I= + Θ , where rΘ  is defined above and 
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( )ˆE 0;  , ;  ikH i k r i k= ∈ ≠ . This means that the i.th true factor is determined not only by the i.th 

estimated factor with unit slope on the main diagonal of Ĥ  but also by (at least some) other k 

estimated factors.  

Whichever the method adopted to determine the matrix H, identification of ˆ ˆ and  F Λ directly 

follows through given knowledge of the estimated values of  and F Λ . Their asymptotic properties 

relative to the corresponding true values can now be treated.  

For any p fixed and given r, the following norm regarding the relationship between estimated and 

true factors holds (Bai, 2003):  

10)     ( )
21

2 ˆ 1 ,  
j j p

n F F H O j n− = ∀ ∈  

where ( ): 1
j

F r×  and ( )ˆ : 1jF r× . Eq. (10) implies that, asymptotically, the squared deviation 

between F̂ and F is a stationary process that does not change over the given time span n. In other 

words, the true factors are always sufficiently close to the r-sized matrix of the estimated factors, 

irrespective of the magnitudes of n and p. In addition, the asymptotic distribution of the factor 

differences is (Bai, 2003, Theorem 1): 

11)                                             ( ) ( )
1

1 12 ˆ ˆ0, ,  
j j j

p F F H NID V Q QV j n
− −− Γ ∀ ∈∼  

 where ( )ˆ : 1j nΓ ×  is the estimated mean covariance of ê  and Λ , obtained from the matrix 

( )ˆ ' :e n rΛ ×  and the invertible matrix ( )
1 1

2 2:Q r r V Λ× = ϒΣ , where ϒ are the eigenvectors associated 

to the diagonal matrix V . According to some authors (Connor and Korajczik, 1986), if there is 

heteroskedasticity and autocorrelation, consistent estimation of F̂   for large n is unfeasible and thus 

eq. (10) does not apply. According to other authors (Bai, 2003, Theorem 5) consistent estimation of 

F̂  is still possible via a modification of eqs. (8) and (9), whereby we have 

10)                                             ( ) ( )
1

1 12 ˆ ' 0, ,  
j j

p F F H NID V Q QV j n
− −− Γ ∀ ∈∼  

where ( )
1

2
H HV V σ

−

= −  and ( )ˆ ˆpl im 'Γ = Λ ΩΛ . Obviously, unless 2 0σ = , H H< . In 

practice, the factor matrix deviations for any n are zero-mean and have asymptotic variance 

conditional on the covariance matrices of the factors, of the factor loadings, and of the idiosyncratic 

error, whichever its characterization.  

The asymptotic distribution of the difference between the estimated and the true factor loadings is 

(Bai, 2003, Theorem 2): 

13)    ( ) ( )( )
1 11 12 ˆ 0, ' ,  

i i i
n H NID Q Q i p

−− −Λ − Λ Φ ∀ ∈∼
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where ˆ
i

Λ  is the true factor loading matrix for each p and ( ): 1
i

pΦ ×  is defined as the estimated 

covariance of the mixture of ê  and of the true factors, obtained from the matrix ( )ˆˆ ' :e F p r× and 

precisely is   

( )
1 2 2

1 1

ˆ ˆ
p n

i ji ji

i j

np F e
−

= =

Φ = ∑∑ . 

Several major issues emerge from the reported distributions. As the reader will notice at first, eqs. 

(11) and (12) are a function of the covariance of the factor loadings and the idiosyncratic error, 

while eq. (13) is a function of the covariance of the latter and of the factors. In essence, the 

distribution of each component depends on the mixture of the errors and of the other component. 

Secondly, The expected covariance of the mixing processes involved is zero everywhere, namely, 

( )ˆE 0,  
j

j nΓ = ∀ ∈  and ( )E 0,  
i

i pΛ = ∀ ∈ . Thirdly, the two norms ˆ ,  
j j

F F H j n− ∀ ∈  and 

1ˆ ,  
i i

H i p
−Λ − Λ ∀ ∈  are computed by ENE to be ( )1

p
O , as demonstrated elsewhere (Bai 2003, 

Bai and Ng, 2002, 2008). Finally, the estimated asymptotic distributions of eqs. (11) or (12) and 

(13) respectively, both derived for the entire time and space domain n and p, are  

14)     ( ) ( )
1

2 0,
n n n

F p F F H NID FF pΗ = − ∼  

and  

15)      ( ) ( )
1

12 ˆ 0,
n n p

n H NID n
−

ΗΛ = Λ − Λ ΛΛ∼  

where ( ):
H

F n r× , ( ): p rΛ × , '
n H H

FF F F=  and 'p Η ΗΛΛ = Λ Λ . The last two are r r×  p.d. 

covariance matrices – of which the first will be extensively treated shortly – and both share an 

upper bound as n → ∞  (Chamberlain and Rothschild, 1983; Bai and Ng, 2002) determined by the 

MP rule.  

While eq. (13) does not apply in the PCA model provided by eq. (4) since neither the idiosyncratic 

error nor the loadings exist, the PCA counterparts of eqs. (11) and (12), if of any interest, may be 

obtained by similarity reasoning. In fact, eq. (9) may be rewritten as  

9.1)      ( )1 ˆ ˆ 'H V FF n D
−=ɶ ɶ ɶ  

where Vɶ is the diagonal matrix of the eigenvalues of 
1 1

2 2

F̂
D DΣɶ ɶ . The asymptotic difference 

between the estimated and the true PCA factors is then 

16)     ( ) ( )
1

2 ˆ ' 0,
n n nH

F p F F H NID FF p= −
ɶ

ɶ ɶ ɶ∼   

whose r r×  p.d. covariance matrix  is 
nFFɶ ɶ , which is comparable with 

n
FF . Eqs. (14) and (16) are 

thus respectively the FA and the PCA asymptotic factor estimator distribution functions. It will be 

shown that significant differences exist between the two and that, as with scores, also the PCA 

factors asymptotically fare worse than the FA factors. 



 

14 

 

Theorem 4. Let the Eqs. (14) and (16) be the FA and the PCA asymptotic factor estimator 

distributions. Then we have H H>ɶ  and 
n nFF FF>ɶ ɶ . This means that under PCA not only the 

difference between the estimated factors and their true counterparts is larger in absolute terms, but 

also that its asymptotic variance is larger.  

Proof: it is a well-established fact that both 'D p> ΛΛɶ  and V V>ɶ  whereby, comparing eq. 

(9) to eq. (9.1), there immediately follows that H H>ɶ . The expanded version of each covariance 

matrix, independent of scaling, respectively is 

     
( ) ( ) ' 'ˆ ˆ ˆ ˆ ˆ' ' ' ' 2 '

n n n n r n n n n
F F H F F H I HF F H F F H− − = + −ɶ ɶ ɶ ɶ ɶ

 

 and  

    
( ) ( ) ' 'ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' ' ' ' 2 '

n n n n r n n n n
F F H F F H I HF F H F F H− − = + −  

Since ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' 2 ' ' ' 2 ' 'HF F F F H HF F F F H− > −ɶ ɶ , there follows immediately that  
n nFF FF>ɶ ɶ .    

In practice, the covariance matrix of the asymptotic distribution of the differences between the 

estimated and the true factors under the PCA model is always larger (in norm) than the 

corresponding covariance of the FA model.  

 3.4. Asymptotic properties of factor scores and of singular values 

From Theorem 1 and for r p< , it is demonstrated that the true PCA scores are larger in norm than 

the true FA scores. This is valid for both fixed  p, as 1,y → and for n fixed and .y → ∞ Formally, 

eqs. (3) and (5) respectively produce  

ˆ ˆ ˆ ˆ'
y yy

C FF n X≤ ⋅   

and  

1
2 ˆ

yy
y

C n F D
−

≤ ⋅ɶ ɶ  

such that by Theorem 1 we have ˆ
yy

C C< ɶ . In addition, both ˆ
y

C  and 
y

Cɶ are estimated by ENE 

to be ( )1
p

O .  

For changing y, also the estimated norms of the covariance of the true FA scores and of the true 

PCA scores differ in convergence probability. The covariance matrices respectively are ∆̂  and ∆ɶ

(Sect. 2) and their norms are both decreasing as a function of the sample size, and precisely are 

( )1
2ˆ

p
y

O n
−

∆ =  and ( )1
3

p
y

O n
−

∆ =ɶ . Because the former is steeper than the latter, we can 

comfortably conclude that the score covariance under FA asymptotically approaches, as n → ∞ , its 
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lower bound at a faster rate than that of the score covariance under PCA. For fixed n and p → ∞ , 

instead, both covariance norms are ( )1
p

O . 

Asymptotically, the singular value matrix Ŝ  associated to the true FA factor scores behaves 

differently from the singular value matrix Dɶ  associated to the true PCA scores. In fact, for 

sufficiently large p and n → ∞ , we have ( )1
4ˆ

p
y

S O n
−

=  while ( )1
p

y
D O=ɶ . The latter 

corresponds to the convergence in probability of the norm of X, as implied by Theorem 1, while the 

former corresponds to the reported findings on random covariance matrices pertaining to RMT (Bai, 

1993; Bai et al., 2000; Rudelson and Vershynin, 2010).  

The implications of these findings are far reaching: the asymptotic behavior for fixed p and n → ∞  

of the singular values under FA exhibits a rate of decay that supports by virtue of eq. (3) the 

conclusions achieved in Theorem 1 about the magnitude of the scores Ĉ . In other words, the longer 

the sample size n the smaller the factor scores while the PCA scores remain unprejudiced.  

Finally, the difference between the estimated and the true factor scores, for 1y → , is characterized 

by the following asymptotic distribution 

17)    ( ) ( )
1

2 ˆ 0, ; ,  
ji ji ji

n C C NID W j n i p− ∀ ∈ ∀ ∈∼  

where ( ) 1 1

ˆ ˆ
ˆ ˆ: '

ji iF F
W n p F F n− −× = Σ Φ Σ  as provided in Theorem 1 by Bai and Ng (2002) and Theorem 

3 in Bai (2003). The mean value of this matrix, for all elements enclosed in n and p, is given by 

1 1

1 1

,  
p n

ji j

i j

p n W m j n
− −

= =

 
= ∀ ∈ 

 
∑ ∑ , which decreases for n → ∞  and is ( )1

4
p

O n
−

. In practice, the 

difference between the estimated and the true factor scores exhibits an asymptotically decaying 

variance. 

The asymptotic distribution of the factor scores that matches eqs. (14) and (15) for both ,n p → ∞  

is an extension of eq. (14), namely, 

18)  
     

( ) ( )
1

2 ˆ 0,n C C NID W− ∼  

where ( ):W r r× . In PCA, eqs. (17) and (18) do not apply because there is no measurable distance 

between estimated and true scores. Probably the difference between the scores computed by 

standard PCA methods and the r scores obtained under FA, defined as true, may be the best 

approximation to reproduce eqs. (17) and (18). To save space, while recalling that F̂  is common to 

both PCA and FA, we utilize only the second, namely 

19)
      

( ) ( )
1

2 ˆ 0,n C C NID W−ɶ ɶ∼
 

 
where

  
( ):W r r×ɶ . It is worth noting that for p fixed and n → ∞  the two covariance matrices are 

found by ENE to be  ( ),  1
p

W W O=ɶ . 
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4. Detecting the true number of scores in the FA and PCA models 

Thus far, for expository purposes, the true number of scores r p<   has been assumed to be the 

same for FA and PCA. The assumption is now relaxed since they traditionally differ as to the 

method utilized for detecting r. While modern FA predominantly utilizes formal statistical 

procedures, PCA sticks to classical methods based on screeplot testing (Cattell, 1966) or on other 

eigenvalue- or variance-based methods (Jolliffe, 1982, 2002; Draper and Smith 1981; Myers 2000; 

Loehlin, 2004). 

In FA modeling there are two major strands of analysis for the detection of the number of true 

scores. One method is essentially probabilistic and is based on the search of the minimal estimated 

variance stemming from the difference between the observed dataset and the estimated factor scores 

across different options. The other method is a modernization of Cattell’s method. 

More precisely, the first method is introduced by Bai and Ng (2002) and includes eight formal 

statistical procedures to compute the true number of scores. There are three so-called Panel Criteria 

(PC) and three Information Criteria (IC), to which the standard Akaike and Bayesian Information 

Criteria (AIC and BIC) are added.  

The first method extends to the Eigenvalue Ratio Estimator (ERE) by Ahn and Horenstein (2009), 

while the second method includes the Edge Distribution Estimator (EDE) by Onatski (2009), and 

the Eigenvalue Ratio Test (ERT) by Ahn and Horenstein (2009). 

As for the first method, let maxk  be the maximum number of scores admitted, so as to produce the 

sequence max1,...,k k= . Take also eq. (1) solved for the disturbances: e X F= − Λ , which for each 

max,  j n i k p∈ ∈ ≪  may be written as follows  

20)                ��
�� �� �� �
� � � λ= − ⋅

 

 and define  

21)      ( )
1 2

1 1

ˆmin
pn

k ji

i j

V np e
−

= =

  =    
∑∑   

which is the sum of the squared residuals averaged over both n and p where the bracketed 

expression equals 2
σ  defined in Assumption 3.  

All of the ICs cited by the authors are based on detecting the minimum variance 
k

V  plus a penalty 

for overfitting within the k sequence. Only one IC for ease of space is reported here as it is 

recommended by most users (Bai and Ng, 2007; Alessi et al., 2009): 
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 22)     ( ) ( ) maxln ln ;  
k k

n p
IC V k n k k

np

 + = +  ∀ ∈   
. 

According to Bai and Ng (Theorem 1, 2002), we have for *
r  the population-true number of scores  

23)      ( )
max1

arg min k
k k

r IC
≤ ≤

=  

and      ( )*

,
 lim 1

n p
P r r

→∞
= =  

and also 

( )
,

im ln
n p

n p
L n

np→∞

  +    =∞     
 

An extension of eq. (21) is provided by the following ratio 

24)     1

1

k k
k

k k

V V
ERE

V V

−

+

−
=

−
;  

while the eigenvalue-based method is 

25)     11 ;
k k k

ERT s s += ( ) ( )12 log log
k k k

ERT s s +=  

which is a formal version of the screeplot test, wherein 
k

s  is the k.th singular value of matrix S 

derived from eq. (2). The true number of scores r p<  is detected whenever a maximum is achieved 

in either of them, namely,  

26)     ( )
max1

arg max
k

k k

r ERE
≤ ≤

=   

and 

27)     ( )
max1

arg max ;  =1, 2k
k k

r ERTj j
≤ ≤

=  

whereby  

( )*

,
lim 1

n p
P r r

→∞
= = . 

Eqs. (23), (24) and (25) are shown to produce identical values of r  in most Montecarlo 

experimentations when n and the select value of maxk
 
respectively are sufficiently large (Ahn and 

Horenstein, 2009).  
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Somewhat different results are obtained with Onatski’s EDE which strictly requires nonstationary 

series, i.e. ( )1X I=  and is based on the asymptotic distribution of the eigenvalues of its covariance 

matrix. Some of the eigenvalues are shown by the author to diverge toward infinity, while others – 

the true eigenvalues 
max,  js j k∈ – converge toward a finite value. Therefore their respective first 

differences tend to infinity and to zero. Let δ  be some prespecified threshold value obtained from 

the distribution of 
js  such that 0δ∞ >> >  (Onatski, 2009), then 

(28)
      1 max,  

k k k
EDE s s k kδ+= − − ∀ ∈

 

where
 

                                       { }max 1 maxarg max :  ,  k kr k k s s k kδ+= ≤ − ≥ ∀ ∈  

namely, the number of scores corresponds to the largest of the absolute differences between 

contiguous eigenvalues must and the parameter δ . In such case, 1r ≥ , elsewise 0r = .  

In PCA the criteria for the detection of the true number of scores r  proposed in the literature are the 

outdated screeplot visual inspection and eigenvalue- or variance-based methods, amongst which 

Cross Validation is very popular (Krzanowski, 1987). Briefly, they concentrate on the computation 

of the n singular values and/or of their corresponding shares, fixing the value of r  at some stopping 

time dictated, when using correlation matrices, by the Kaiser-Guttman rule (Draper and Smith, 

1998; Loehlin, 2004) which states that  

29)             ( )
1

arg 1 ,  j
j n

r s j n
≤ ≤

= ≥ ∈  

or more generally by  

30)     
1 1 1

arg
r n

i j r
j n i j

r s s c
≤ ≤ = =

 
= ≥ 

 
∑ ∑   

where rc  is some arbitrary share of the covariance matrix of X such that the cumulative sum 

1

1
r

j

j

c
=

≈∑ . 

Both criteria exhibited in eqs. (29) and (30), and many more with similar constructs (e.g. Myers, 

2000), may select a very large r , definitely larger than that envisaged by the FA authors (Bai and 

Ng, 2002, 2008; Stock and Watson, 2002, 2005). For instance, in the case of eq. (30) approximately 

one half of the singular values of the correlation matrix exceed unity, while over 2 3n  is needed for 

the cumulative sum of shares to exceed 95%.  

Both these occurrences put the stopping time for r   to a rather impressive number for n → ∞ , 

although a recent addition to PCA modeling, Supervised PCA (Bair et al., 2006) by appealing to 

correlations of X with the endogenous variable in a pre-established OLS context, may sizably 
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reduce  this number. By any means, however, the FA methods suggested in eqs. (22), (24), (25) and 

(28) fix r  to very small numbers even in the presence of very large-sized datasets, also in its 

modified dynamic versions (Bernanke et al., 2005; Forni et al., 2004; Stock and Watson, 2002, 

2005). In fact Montecarlo simulations conducted over stationary X matrices (n=50, p=60; n=150, 

p=350) on average respectively put r  between 2 and 3 and between 1 and 3.  

5. Conclusion 

The main distinctive features of the FA and of the PCA models have been examined in this paper. 

By exploiting some important results in the literature (Bai 2003; Bai and Ng, 2002, 2006, 2007, 

2008, 2010), factors, factor loadings and scores, as well as singular values and the FA errors have 

undergone careful scrutiny especially with regard to their asymptotic properties in the presence of 

large datasets and to the magnitude of their norms.  

In sum, FA is shown to largely outperform PCA on several grounds: i) when utilized as regressors 

and/or instruments, the FA scores produce more efficient slope estimators in instrumental variable 

estimation, notably in GMM; ii) both FA scores and factors exhibit substantial consistency, because 

the asymptotic difference between the estimated and their true counterparts and the corresponding 

variances are smaller; iii) the FA procedure of dimension reduction produces a much more limited 

amount of true scores, thereby greatly facilitating the search and identification of the common 

components of large datasets. 
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