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Abstract 

This paper applies a probabilistic approach in order to develop conditional and 
unconditional Data Envelopment Analysis (DEA) models for the measurement of 
sectors’ input oriented technical and scale efficiency levels for a sample of 23 Greek 
manufacturing sectors. In order to capture the Averch and Johnson effect (A-J effect), 
we measure sectors’ efficiency levels conditioned on the number of companies 
competing within the sectors. Particularly, various DEA models have been applied 
alongside with bootstrap techniques in order to determine the effect of competition 
conditions on sectors’ inefficiency levels. Additionally, this study illustrates how the 
recent developments in efficiency analysis and statistical inference can be applied 
when evaluating the effect of regulations in an industry. The results reveal that sectors 
with fewer numbers of companies appear to have greater scale and technical 
inefficiencies due to the existence of the A-J effect. 
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1. Introduction 

Regulatory actions on monopoly firms and deregulatory actions towards 

competitive markets are two interrelated issues which have been addressed 

extensively by the literature in the scope of capital utilization (Kim 1999). The most 

frequently used regulations are the rate-of-return and the price-cap (Blank and Mayo 

2009). The regulations are imposed by a regulatory agency often prompted by a court 

(Sherman 1985). In theory, a regulatory agency targets to improve general welfare by 

imposing regulations in order to correct market anomalies but this may not always be 

the case (Klevorick 1966). Joskow (2005) provides different results derived from 

regulation and deregulation cases. Sectors like airlines, railroads, electric power, gas 

and oil were imposed with some sort of regulation. The process of deregulation has 

been completed in a number of cases while in other cases the deregulation process is 

on-going. 

In their seminal work, Averch and Johnson (1962) study a monopoly firm 

which seeks to maximize its profits under rate-of-return regulation. The monopoly 

firm employs capital and labor to produce one output. The availability of capital and 

labor is assumed to be unlimited and the price per unit fixed. The regulatory agency 

imposes a “fair rate of return” on the firm through the rate-of-return regulation. If the 

firm’s unrestricted rate of return is smaller than the “fair rate of return” then the firm 

is allowed to act as if there was no regulation and for example raise the price. 

Otherwise if the firm’s unrestricted rate of return is bigger than the “fair rate of 

return” then the firm will be compelled to lower the price. After that, according to the 

Averch-Johnson effect (A-J effect) and under the assumption of no regulatory lags 

(Johnson, 1973), if the cost of “fair rate of return” is greater than the cost of capital 

but less than the unrestricted rate of return, the firm is expected to produce at a point 
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where the capital-labor ratio is not optimum. Although the firm will not minimize the 

cost of production, the excessive use of capital will allow the firm to achieve greater 

profits through a bigger “fair rate of return”.  

Our paper applies for the first time conditional full frontiers, based on the 

probabilistic approach of efficiency measurement developed by Daraio and Simar 

(2005, 2007a, 2007b) and in order to investigate the A-J effect for the Greek 

manufacturing sectors. Furthermore it applies the statistical inference framework 

developed by Simar and Wilson (1998, 2000a, 2000b) on the conditional efficiency 

measures obtained in order to create biased free estimates. The structure of the paper 

is the following. Section 2 presents the literature review, while section 3 discusses the 

data used and the proposed methodology. Section 4 comments on the empirical results 

derived while the last section concludes the paper. 

2.  A brief review of the literature 

Takayama (1969) following the study by Averch and Johnson (1962) 

presented an alternative mathematical formulation of the problem and obtained 

similar results about the overcapitalization of a regulated monopolistic firm. In 

addition, Westfield (1965) examined the possibility of conspiracies among buyers and 

sellers of plant, machinery and electrical equipments. He demonstrated that a private 

power generating company which is under regulation is willing to pay more for the 

capital equipment. This capital waste can lead the monopoly firm to achieve greater 

profits. Klevorick (1966) suggested an inverse relation among the “fair rate of return” 

and amount of capital employed in order to deal with the A-J effect. Thus, if the firm 

raises its capital, the “fair rate of return” will be reduced.  

Furthermore, Stigler and Friedland (1962) are the first to investigate A-J effect 

among firms from different states and compare the results from states with and 
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without regulations. In addition, Spann (1974) applied a translog production function 

in order to study the regulated electric utilities. He relied on Stigler and Friedland 

(1962) study where the effect of regulation is assumed to be uniform across the states, 

and allows the effect to vary. The results appeared to verify the A-J effect. 

Additionally, the A-J effect is validated by Petersen (1975) who marks that a more 

tightened regulation leads to an increase of the firm’s unit costs.  

Moreover, Sherman (1972) notes that rate-of return regulation will drive the 

firm to continue behaving as a monopoly for every input except capital, but it will 

make choices about capital as if it was in a competitive market.  The rate-of-return 

regulation has additional negative effects which in fact may be more significant than 

input distortions, like the absence of motivation for innovative actions and efficient 

operation. Another negative effect of rate-of-return regulation is the technological 

advancement and R&D (Frank 2003a).  

Rumbos (1999) introduced the variable utilization rate of capital stock in the 

profit maximization problem of the monopolistic firm and proposed the measurement 

of the inefficiency of the production of total services of capital instead of the ratio of 

capital and labor. On the other hand, Maloney (2001) employed a variable cost 

function in order to measure electricity generation industry. In addition, Kolpin (2001) 

introduces a dynamic model, which incorporates among others, multiple inputs and 

outputs, periods of production and uncertainty, in order to test and verify the A-J 

effect. Finally, Caputo and Partovi (2002) defined four conditions under which the A-

J effect is present. 

A number of authors challenge the traditional assumptions and results of the 

A-J effect. Baumol and Klevorick (1970) argued that in practice regulatory lags exist. 

Thus, the monopolistic firm can achieve greater returns from the “fair” for a short 
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time period. Also, the authors note that every tax leads to input distortion and rate-of-

return regulation has not an additional effect in practice. Zajac (1970) exhibited the 

geometrical presentation of the A-J effect and questioned some of the original 

model’s assumptions. Among others, the author came in line with Baumol and 

Klevorick (1970) about regulatory lags and he has found no solid evidence about the 

regulated monopolistic firms’ optimum strategy between the minimization of the cost 

or the overcapitalization. 

One of the most famous cases of a regulated monopolistic firm is in the US 

telephone industry, the American Telephone and Telegraph Company (AT&T). Irwin 

(1997) presented the internal story of the investigation about the firm. The author 

provided evidence that the AT&T was purchasing the equipment from Western 

Electric in a very high price, confirming the A-J effect in practice. The natural 

monopoly of AT&T was ended in 1984 when the company was divested from the Bell 

operating companies, a move which is now considered as a pro-competitive change 

(Ying and Shin 1993). Oum and Zhang (1995) investigated the US telephone industry 

after the transformation towards competition. The authors find evidence that 

introduction of competition has increased productive efficiency and reduced A-J 

effect.  

They also demonstrated that introducing competition in a previously regulated 

monopolistic industry may result in multiple benefits like innovations and improved 

quality. In general, competition appears to be the solution in order to reduce 

inefficiencies from monopoly and especially regulated monopoly. Dixon and Easaw 

(2001) studied the UK gas industry for the period 1986-1996 including the 

privatization period. The authors argue that competition is necessary in order to 

benefit from the privatization. Similarly, Christopoulos and Tsionas (2001) using 
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heteroscedastic stochastic frontier models for the Greek bank sector found evidences 

that increased competition after the privatization period reduced the allocative and 

technical inefficiencies associated with the previous regulated industry conditions.   

Frank (2003b) investigated the electric utilities in Texas for the period 1965-

1985, ten years before and ten years after the rate-of-return regulation. He has found 

that before 1975 technological progress results in decreasing costs while after 1975 

the negative effect of regulation on technological progress results in greater costs.  

Finally, in contrast to the previous mentioned studies examining separate 

sectors and different industries’ competitive conditions, our study for the first time 

applies a different approach analysing twenty three manufacturing sectors based on 

the new advances of efficiency analysis as has been introduced by several authors 

(Daraio and Simar 2005, 2007a, 2007b; Bădin et al. 2010; Jeong et al. 2010) and in 

order to investigate the A-J effect. 

 

3. Data and Methodology 

3.1 Data description 

Our analysis uses data of the Greek manufacturing sector as has been provided 

from ICAP (2007). The data are based on the balance sheets of income statements of 

2006. More analytically, consolidated income statements of every Greek 

manufacturing sector have been used for the companies which are listed in Athens 

Stock Exchange. In addition table 1 provides a description of the manufacturing sector 

alongside with information regarding the number of companies competing in each of 

them. In our analysis and in order to model in a nonparametric context the A-J effect 

the number of companies in a sector are used as a proxy of the competitive structure 

of each sector (Oum and Zhang 1995). From table 1 it can be seen that the sectors of 



7 

‘tobacco products’, ‘office machinery, computers’ and ‘recycling’ are the sectors with 

the lowest competition and oligopoly conditions where as the sectors of ‘food and 

beverages’,  ‘non-metallic mineral products’ and ‘Publishing-printing’ appear to have 

increased competition.   

In terms of the Data Envelopment Analysis (DEA) context the measurement of 

each sector’s efficiency levels must be measured after defining the proper 

inputs/outputs. Since the A-J effect describes that monopoly firms tend to use more 

capital than the economic efficient level in order to produce their outputs (Averch and 

Johnson, 1962), this study uses total assets and inventories (measured in thousands of 

€) as the two inputs. In addition the outputs used are sales and gross profit levels (also 

measured in thousands of €).  

Table 2 provides the descriptive statistics of the variables used. As it is 

revealed from the high standard deviation values there are several dissimilarities 

among the sectors indicating the different nature and structure of the sectors under 

examination. Since the efficient input utilisation is the subject of the A-J effect, our 

DEA formulation uses input orientation due to the fact that that input quantities 

appear to be the primary decision variables (Coelli et al. 2005). In our DEA context 

the input-oriented technical efficiency is used enabling us to model the ability of the 

sectors to use minimum input quantities given their level of output quantities.  

Finally, by applying the methodology introduced by Daraio and Simar (2005, 

2007a, 2007b) we conditioned in a second stage analysis the effect of competition on 

sectors’ input–oriented technical efficiency levels. As explained earlier the number of 

companies competing in every sector has been used as an external variable in our 

analysis.  
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Table 1: Number of companies listed in the Athens Stock  
                               Exchange Market per manufacturing sector 

Manufacturing Sectors Number of Companies 

Food-beverages 1,214 

Tobacco products 4 

Textile 301 

Clothing 369 

Leather 73 

Wood 125 

Paper 127 

Publishing-printing 459 

Oil refining 31 

Chemicals 286 

Rubber-plastic products 316 

Non-metallic mineral products 500 

Basic metals 94 

Metal products 457 

Machinery, equipment 278 

Office machinery, computers 9 

Electrical machinery 120 

Radio, television and communication equipment 36 

Precision instruments 54 

Vehicles 31 

Other transport equipment 63 

Furniture and other products 336 

Recycling 10 

 

Table 2: Descriptive statistics of the variables used  

  

Number of  

Companies 

Total Assets  

(1000 €) 

Inventories  

(1000 € ) 

Sales  

(1000 €) 

Gross Profits  

(1000 €) 

Mean 230.130 2481699.174 415794.826 2002898.130 432042.304 

Std 269.213 3068654.956 472310.005 2769825.576 643519.695 

Max 1214.000 14150226.000 1919614.000 10061793.000 2839887.000 

Min 4.000 15605.000 1946.000 10921.000 2661.000 
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3.2 DEA models and bias correction 

Following the notation from Daraio and Simar (2007a), Koopmans (1951) and 

Debreau (1951) definition of production technology can be characterized as a set of 

pRx   inputs which are used to produce 
qRy   outputs. Then the feasible 

combinations of  yx,  can be defined as: 

 
 







  

 yproducecanxRyx qp,
       (1) 

By assuming free disposability of inputs and outputs then  ,x y   and at 

the same time  ' ',x y  when 'x x  and 'y y . As suggested by several authors 

(Førsund and Sarafoglou 2002; Førsund and Sarafoglou 2005; Førsund et al. 2009), 

Hoffman’s (1957) discussion regarding Farrell’s (1957) paper was the first to indicate 

that linear programming can be used in order to find the frontier and estimate 

efficiency scores, but only for the single output case. Later, Boles (1967) developed 

the formal linear programming problem with multiple outputs identical to the constant 

returns to scale (CRS) model in Charnes et al. (1978) who named the technique as 

Data Envelopment Analysis (DEA). Later, Banker et al. (1984) introduced a DEA 

estimator allowing for variable returns to scale (VRS model)1.  

As such, based on the Farrell (1957) measure for a unit operating at the level 

 ,x y  the input oriented efficiency score can be defined as: 

    , inf ,x y x y            (2) 

                                                
1 For information regarding the history of the origins of efficiency measurements see Cooper and 
Lovell (2011). 
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Then the efficiency measurement of a given country ( , )i ix y  defines an individual 

production possibilities set  ,i ix y , which under the assumption of free 

disposability of inputs and output can be expressed as: 

    , , ,p q
i i i ix y x y x x y y 

          (3). 

As such the union of these individual production possibilities sets provides the 

Free Disposal Hull (FDH) estimator (introduced by Derpins et al. 1984) of the 

production set   which can be written as: 

    
1

, , , , 1,...,
n

p q
FDH i i i i

i
x y x y x x y y i n







          (4) 

It follows that the DEA estimator2 DEA


  is obtained by the convex hull (CH) 

of FDH


 and can be calculated as: 
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     (5) 

Next and in order to obtain the corresponding input oriented DEA estimators 

of efficiency scores we need to incorporate DEA


  in equation (2). In addition by 

applying the methodology introduced by Simar and Wilson (1998, 2000a, 2000b) we 

perform the bootstrap procedure for DEA estimators in order to obtain biased 

corrected results (see the Appendix for details). The main applications of bootstrap 

are: the DEA estimator bias correction and the construction of confidence intervals 
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(Simar and Wilson 1998; 2000a; 2000b), test procedures to assess returns to scale 

(Simar and Wilson 2002), the criterion for bandwidth selection (Simar and Wilson 

2002; 2008), statistical procedures for comparing the efficiency means of several 

groups (Simar and Wilson 2008), statistical procedures for testing the equality of 

distribution of the efficiency scores (Simar and Zelenyuk 2006) and for statistical 

inference for aggregate efficiency measures (Simar and Zelenyuk 2007)3.  

Thus, following Simar and Wilson (1998, 2000a, 2000b) procedure the bias 

corrected efficiency score is given by: 

1
,

1
( , ) ( , ) ( , ) 2 ( , ) * ( , )

B

DEA DEA DEA DEAB DEA b
b

x y x y bias x y x y B x y    

     





     
 

   (6)  

After that and by expressing the input oriented efficiency in terms of the Shephard 

(1970)) input distance function as 1( , )
( , )

DEA

DEA

x y
x y






   we can construct bootstrap 

confidence intervals for ( , )DEA x y


 as:  

1 / 2 / 2( , ) , ( , )a aD EA D EAx y x y   

       
     (7). 

Furthermore, following the bootstrap test developed by Simar and Wilson 

(2002) we test whether the CRS or VRS formulation is appropriate in our analysis. 

The null hypothesis of the test can be developed as 

  :0H   is globally CRS    against  :1H  is VRS.  

Subsequently the test statistic mean of the ratios of the efficiency scores is provided 

by: 

                                                                                                                                       
2 We consider here only the VRS case; however CRS can be obtain by dropping the constraint in (5) 
requiring s to sum to one. 
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iinCRS
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                    (8).  

Similarly, the p-value of the null-hypothesis can be obtained as: 

))(( 0 trueisHTXTprobvaluep obsn        (9) 

where obsT  is the value of T computes on the original observed sample nX . It follows 

that the p-value can be approximated by the proportion of bootstrap values of bT *  less 

the original observed value of obsT  such as: 

 





B

b

obs
b

B
TT

valuep
1

*

        (10). 

3.3 Calculating the conditional measures of efficiency 

Daraio and Simar (2005, 2007a, 2007b) by extending the ideas developed by 

Cazals et al. (2002) developed a probabilistic formulation of the production process. 

This probabilistic approach allowed the introduction of external-environmental factors 

( Z ) directly in the production process4. In contrast to the traditional two-stage 

approaches, the probabilistic approach introduced by Daraio and Simar (2005, 2007a, 

2007b) does not impose a reparability assumption between Z  values and the input-

output space (De White and Verschelde 2010)5. By denoting rZ   as the external 

                                                                                                                                       
3 For an empirical application of bootstrapped DEA investigating firms’ and sectors’ efficiency levels 
see Halkos and Tzeremes (2010, 2011) 
4 For the theoretical background of the statistical properties of the conditional estimators see Jeong et 
al. (2010). 
5 For a critique of two-stage approaches when using DEA and FDH estimators see Simar and Wilson 
(2007, 2011).  
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factors, the joint distribution of  ,X Y conditional on Z z defines the production 

process if Z z . In this way the attainable production set z is defined by: 

   , , Prob ,X Y ZH x y z X x Y y Z z                (11). 

Then the input oriented conditional efficiency measure can be defined as: 

     , ,, F ,X Y Z X Y Z Y ZH x y z x y z S y z              (12).  

In addition the input oriented efficiency score can be obtained from: 

  0,inf),(  zyxFzyx X                 (13).  

It follows that a kernel estimator can be calculated as:  

  
      

    hzzKyyI

hzzKyyxxI
zyxF

i
n

i i

n

i iii
nZYX

/

/,
,

1

1
,,














            (14)  

where K(.) is the Epanechnikov kernel6 and h  is the bandwidth of appropriate size. 

Following, Bădin et al. (2010) we use a fully automatic data-driven approach 

for bandwidth selection based on the work of Hall et al. (2004)  and Li and Racine 

(2004; 2007)  least-squares cross-validation criterion (LSCV) which leads to 

bandwidths of optimal size for the relevant components of Z . This method is based 

on the principle of selecting a bandwidth that minimizes the integrated squared error 

of the resulting estimate7. Li and Racine (2007) suggest that we have also to correct 

the resulting h  by an appropriate scaling factor, which equals to 
  4 4

q
q r rn


  

 where 

                                                
6 Other kernels from the family of continuous kernels with compact support can also be used. 
7 See Bădin et al. (2010) for a Matlab routine that computes the bandwidth based on the LSCV 
criterion. 
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q is the dimension of Y  and r is the dimension of Z 8. Therefore, we can obtain a 

conditional DEA efficiency measurement defined as: 

   






 



0,inf, ,, zyxFzyx nZYXDEA 
                                   (15).      

Then in order to visualize the influence of an environmental variable on the 

efficiency scores obtained, a scatter of the ratios 

 
 

,

,

n

z

n

x y z
Q

x y









 against z  (the number 

of companies competing in a sector) and the smoothed nonparametric regression lines 

would help us to analyze the effect of Z on the sectors’ efficiency scores obtained. 

Similarly, the effect of competition on sectors’ scale efficiency can be visualized if we 

use a scatter of the ratios
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CRS n

VRS n

Scale z
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Q

x y

x y


















 against z . For this purpose we use the 

nonparametric regression estimator introduced by Nadaraya (1965) and Watson 

(1964) as: 

1

1

( )
( )

( )

n i
i

n i
i

z ZK Q
hg z z ZK

h

 











                           (16).

  If this regression line is increasing it indicates that Z  is unfavorable to the 

sectors’ efficiency levels whereas if it is decreasing then it is favorable. When Z  is 

unfavorable then the number of companies acts like an extra undesired output to be 

produced demanding the use of more inputs in the production activity. In the opposite 

case the external factor plays a role of a substitutive input in the production process 

                                                
8 For more information regarding LSCV criterion and its properties see Silverman (1986), Hall et al. 
(2004) and Li and Racine (2004, 2007). 
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giving the opportunity to save inputs in the production activity. This of course is very 

crucial when investigating the A-J effect.  

An increasing regression line in our case will indicate that competition has a 

negative effect on sectors utilization of capital, whereas a decreasing line will indicate 

that sectors use their inputs in an economical efficient way. Even though the 

visualization framework of the effect of the environmental variable Z  (Daraio and 

Simar 2005, 2007a, 2007b) provides us with useful information, it does not give us 

any indication of the significance of the observed effect. For that reason our study 

adopts a significance test for nonparametric regression as has been introduced by 

several authors (Racine 1997; Racine et al. 2006; Li and Racine 2007) in order to 

compute a significance level of the observed effect of the external variable on sectors’ 

input oriented technical efficiency levels.  

If the conditional mean  zE Q z
is independent from z then the vector of 

partial derivatives of  zE Q z
 with respect to z  will be equal to zero. Thus: 

   
0z

z

E Q z
E Q z z

z


  
                          (17).  

From equation (17) we can derive the null hypothesis as: 

   0 0zE Q z
H g z

z


  
                           (18). 

In this way the test statistic the estimator of 
  2I E g z

 and can be 

obtained by forming a sample of average of I  replacing the unknown derivatives with 

 ig z


 as: 
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1

1 n

n i
i

I g z
n





 
                   (19).  

Finally, the distribution of the statistic can be obtained by applying the bootstrap 

procedure described in Racine (1997). 

4. Empirical results 

 Following the methodology proposed by Simar and Wilson (2002) our paper 

tests the model for the existence of constant or variable returns to scale. In our 

application we have two inputs and two outputs and we obtained for this test a p-value 

of 0.028 < 0.05 (with B=2000) implying rejection of the null hypothesis of CRS. 

Therefore, the results adopted in our study are based on the BCC model (Banker et al. 

1984) assuming variable returns to scale9. 

Table 3 provides the results of VRS analysis10 adopting the bias correction 

method using the methodology proposed by Simar and Wilson (1998, 2000a, 2000b). 

For the sample of 23 manufacturing sectors under the VRS assumption seven sectors 

appear to be efficient (efficiency score = 1). These are the sector of ‘Food’, 

‘Publishing-printing’, ‘Oil refining’, ‘Chemicals’, ‘Office machinery, computers’, 

‘Precision instruments’ and the ‘Recycling’ sector. The last seven performers are 

reported to be the sectors of ‘Metal products’, ‘Vehicles’, ‘Machinery and 

equipment’, ‘Textile’, ‘Radio, television and communication equipment’, ‘Wood’ and 

‘Other transport equipment’.  

However, when looking at the bias corrected efficiency results (VRSBC), we 

realize that the efficiency scores are in many cases considerably lower. For instance in 

                                                
9 Due to size inequalities among the Greek manufacturing sectors the most appropriate assumption for 
efficiency measurement is the variable returns to scale (Halkos and Tzeremes 2011)   
10 The results obtained under the hypothesis of CRS are also available upon request. 
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the case of the ‘Food’ sector the biased corrected (BC) efficiency score is 0.736 

(original VRS score equals to 1) with lower bound (LB) of 0.566 and upper bound 

(UB) of 0.977 in a confidence interval of 95%. Almost identical results are reported in 

the case of ‘Office machinery, computers’ where the biased corrected (BC) efficiency 

score is 0.735 with a lower bound (LB) of 0.581 and an upper bound (UB) of 0.974 in 

a confidence interval of 95%. Daraio and Simar (2007) suggest that when the bias 

(BIAS) is larger than the standard deviation (STD) then the bias corrected efficiencies 

(BC) must be preferred compared to the original estimates. 

 

Table 3: Results of the conditional and unconditional measures of the original and the 
biased corrected efficiency scores. 

Sectors VRS VRSBC BIAS STD LB UB VRS|Z VRSBC|Z BIAS STD LB UB SE SE|Z 

Textile 0.384 0.331 -0.413 0.038 0.293 0.376 0.894 0.781 -0.161 0.009 0.672 0.880 0.913 0.551 

Vehicles 0.478 0.412 -0.338 0.024 0.364 0.468 0.795 0.700 -0.171 0.010 0.614 0.785 0.997 0.998 

Food 1.000 0.736 -0.359 0.039 0.566 0.977 1.000 0.766 -0.305 0.042 0.550 0.982 0.633 0.338 

Tobacco products 0.703 0.593 -0.264 0.021 0.511 0.690 1.000 0.831 -0.203 0.009 0.737 0.985 0.960 0.899 

Clothing 0.730 0.615 -0.256 0.016 0.538 0.717 1.000 0.791 -0.264 0.023 0.650 0.987 0.999 0.903 

Electrical machinery 0.663 0.567 -0.255 0.013 0.502 0.646 1.000 0.802 -0.247 0.017 0.683 0.983 0.958 1.000 

Publishing-printing 1.000 0.760 -0.316 0.023 0.637 0.980 1.000 0.784 -0.275 0.025 0.643 0.981 0.773 0.477 

Oil refining 1.000 0.735 -0.361 0.038 0.575 0.975 1.000 0.768 -0.301 0.037 0.584 0.982 1.000 0.349 

Chemicals 1.000 0.744 -0.344 0.031 0.609 0.982 0.173 0.151 -0.848 0.165 0.134 0.170 1.000 0.935 

Rubber, plastic products 0.696 0.592 -0.253 0.013 0.521 0.680 1.000 0.816 -0.226 0.013 0.699 0.982 0.847 0.598 

Non, metallic mineral products 0.821 0.664 -0.289 0.017 0.565 0.798 0.526 0.446 -0.342 0.048 0.367 0.519 0.708 0.458 

Basic metals 0.576 0.471 -0.388 0.040 0.396 0.564 0.386 0.339 -0.363 0.040 0.295 0.381 0.791 0.509 

Metal products 0.561 0.470 -0.343 0.025 0.409 0.550 0.626 0.544 -0.239 0.014 0.481 0.615 0.900 0.647 

Machinery, equipment 0.441 0.378 -0.379 0.033 0.333 0.431 0.735 0.620 -0.252 0.024 0.517 0.724 0.999 0.851 

Office machinery, computers 1.000 0.735 -0.361 0.037 0.581 0.974 1.000 0.776 -0.289 0.035 0.596 0.983 0.567 0.692 

Radio, television and communication equipment 0.379 0.328 -0.407 0.034 0.291 0.371 0.562 0.503 -0.208 0.011 0.454 0.552 0.996 0.989 

Precision instruments 1.000 0.734 -0.363 0.040 0.565 0.973 1.000 0.772 -0.296 0.038 0.551 0.982 1.000 1.000 

Other transport equipment 0.216 0.189 -0.666 0.112 0.167 0.212 0.371 0.325 -0.383 0.073 0.269 0.367 0.885 0.833 

Furniture and other products 0.599 0.498 -0.339 0.030 0.432 0.589 1.000 0.857 -0.166 0.007 0.750 0.983 1.000 0.817 

Recycling 1.000 0.739 -0.353 0.034 0.600 0.977 1.000 0.776 -0.288 0.033 0.603 0.985 1.000 1.000 

Leather 0.592 0.514 -0.256 0.013 0.456 0.579 0.824 0.736 -0.146 0.004 0.671 0.808 0.995 0.964 

Wood 0.359 0.309 -0.458 0.042 0.273 0.350 0.597 0.517 -0.259 0.021 0.452 0.589 0.964 0.995 

Paper 0.671 0.584 -0.222 0.009 0.524 0.654 1.000 0.822 -0.216 0.012 0.703 0.984 0.901 0.904 

Mean 0.690 0.552 -0.347 0.031 0.466 0.674 0.804 0.662 -0.280 0.031 0.551 0.791 0.913 0.551 

Std 0.250 0.169 0.092 0.020 0.128 0.244 0.256 0.195 0.139 0.034 0.161 0.252 0.997 0.998 

Max 1.000 0.760 -0.222 0.112 0.637 0.982 1.000 0.857 -0.146 0.165 0.750 0.987 0.633 0.338 

Min 0.216 0.189 -0.666 0.009 0.167 0.212 0.173 0.151 -0.848 0.004 0.134 0.170 0.960 0.899 
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  In addition table 3 provides the analytical results obtained following the 

conditional measurement approach by Daraio and Simar (2005, 2007a, 2007b) and the 

statistical inference framework by Simar and Wilson (1998, 2000a, 2000b) in order to 

measure sectors’ efficiency when accounting for the effect of the number of 

companies competing within a sector. According to De White and Marques (2007, p. 

25) integrating these two frameworks can help us to avoid main drawbacks of 

efficiency analysis and have some attractive features such as  

1) The absence of separability condition,  

2) The avoidance of the need for priory assumptions on the functional form of  

the model and  

3) The allowance of the exploration of the effect of environmental variables.  

Furthermore, table 3 presents the results estimated from the conditional 

measures under the VRS assumption taking into account the effect of the number of 

companies competing within a sector (VRS|Z). The results indicate that twelve sectors 

appear to be efficient. These are ‘Food’, ‘Publishing-printing’, ‘Oil refining’, ‘Office 

machinery, computers’, ‘Precision instruments’, ‘Recycling’, ‘Clothing’, ‘Tobacco 

products’, ‘Rubber, plastic products’, ‘Paper’, ‘Electrical machinery’ and ‘Furniture 

and other products’.  

However as previously stated the biased corrected results need to be adopted 

(VRSBC|Z) since the bias is larger than the standard deviation (Daraio and Simar 

2007a). Again great differences are reported between the biased corrected and the 

original conditional efficiencies. Taking into consideration these biased corrected 

conditional efficiency scores the highest five performers in a descending order are 

reported to be ‘Furniture and other products’, ‘Tobacco products’, ‘Paper’, ‘Rubber, 

plastic products’ and ‘Electrical machinery’. Similarly, the five sectors with the 
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lowest biased corrected conditional efficiency scores are reported to be ‘Radio, 

television and communication equipment’, ‘Non metallic mineral products’, ‘Basic 

metals’, ‘Other transport equipment’ and ‘Chemicals’. 

Finally, the last two columns of table 3 report the original and the conditional 

scale efficiency scores.  The top five performers of  scale efficiencies are ‘Chemicals’, 

‘Clothing’, ‘Oil refining’, ‘Furniture and other products’ and ‘Machinery, equipment’. 

Under the conditional measures the top five performers of scale efficiencies are 

‘Electrical machinery’, ‘Clothing’, ‘Vehicles’, ‘Radio, television and communication 

equipment’ and ‘Wood’. According to Balk (2001, p.168) increased scale efficiency 

means that the sector has moved to a position with a better input-output quantity ratio 

at the frontier. 

In addition, Figure 1 presents the density estimates using the “normal 

reference rule-of-thumb” approach for bandwidth selection (Silverman 1986) and a 

second order Gaussian kernel. Subfigure 1a, indicates the differences between sectors’ 

input oriented technical efficiency scores against the conditional input oriented 

technical efficiency scores (VRS|Z). It appears that the original estimates under the 

VRS assumption (solid line) are platykurtic compared to the original VRS conditional 

estimates (dotted line) which appear to be leptokurtic. The leptokurtic distributions 

indicate that there is a rapid fall-off in the density as we move away from the mean.  

Furthermore, the pickedness of the distribution suggests a clustering around 

the mean with rapid fall around it. In addition subfigure 1b indicates high differences 

between the densities of the biased corrected efficiency scores (VRSbc-solid line) and 

the biased corrected conditional efficiency scores (VRS|Zbc-dotted line). As can be 

realised the conditional estimates (original and biased corrected) are reported to show 

higher efficiency estimates compared to the unconditioned efficiencies (original and 
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biased corrected). This in turn indicates that when we account for the effect of 

competition on sectors’ efficiency scores, this results on increasing sectors’ efficiency 

levels. Moreover, subfigure 1c indicates the differences between sectors’ original and 

conditional scale efficiencies. As can be realized the unconditional scale efficiencies 

are leptokurtic, whereas the conditional scale efficiencies are platykurtic. Finally, it 

appears that the original scale efficiencies are higher compared to the conditional 

ones.  

 

Figure 1: Kernel density functions of sectors’ efficiencies derived from unconditional 
and conditional VRS and biased corrected VRS DEA models using 
Gaussian Kernel and the appropriate bandwidth 

 

[1a]  [1b]  

[1c]  
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    In these lines, Figure 2 provides a graphical representation of the effect of the 

number of companies on sectors’ input oriented technical and scale efficiency. For 

this task we use the ‘Nadaraya-Watson’ estimator, which is the most popular method 

for nonparametric kernel regression proposed by Nadaraya (1965) and Watson (1964). 

For both the cases the significance of the effect of Z (number of companies –NC) in 

the nonparametric regression setting was based on the procedure described previously 

(Racine 1997; Racine et al. 2006; Li and Racine 2007). For the scale efficiencies a p-

value of 0.029 was attained, while for the input orientated technical efficiencies a p-

value of 0.032 was obtained, indicating significance at 5% level. 

As such subfigure 2a illustrates the nonparametric estimate of the regression 

function using the conditional and unconditional biased corrected scale efficiency 

estimates. Moreover it presents their variability bounds of point wise error bars using 

asymptotic standard error formulas (Hayfield and Racine 2008). When the regression 

is decreasing, it indicates that ‘Z’ factor (i.e. the number of companies competing 

within a sector) is favorable to sector’s scale efficiency levels. In our case subfigure 

2a illustrates a decreasing nonparametric regression line indicating that the high 

number of companies competing within a sector increase sector’s scale efficiency 

levels. Therefore, the number of companies acts as a substitutive input in the 

production process of sectors’ scale efficiency providing the opportunity to “save” 

inputs in the activity of production.  

In addition when we looking at subfigure 2b the regression line has a steeper 

and increasing shape for a lower number of firms competing within a sector, 

indicating a highly negative effect on sectors’ input oriented technical efficiency 

levels. However, for higher number of companies the regression line has a decreasing 

shape indicating a positive effect. Our results comply with the empirical results found 
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by Christopoulos and Tsionas (2001) indicating that during the deregulation period 

the Greek banking sector decreased its allocative and technical inefficiencies. In 

addition they have reported that through the intensification of cross-country 

competition the efficiency has been increased.   

Finally, our results confirm the findings of Oum and Zhang (1995) indicating 

that increased competition affects positively firms to use efficiently their capital 

inputs and therefore to reduce the allocative inefficiency caused by the A-J effect. 

Therefore it appears that Greek manufacturing sectors with higher competition tend to 

have higher scale and input oriented technical efficiency levels compared with the 

sectors with monopolized/oligopolized conditions which induce an economically 

inefficient use of capital.   

 

 

Figure 2: The global effect of competition on sectors’ input-oriented technical and 
scale efficiency levels. 

[2a]  [2b]  
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5. Conclusions 

This paper applies the probabilistic approach in a sample of 23 Greek 

manufacturing sectors and in order to construct conditional efficiency measures taking 

into account the effect of competitive conditions within the sectors. Then by applying 

an inferential approach on DEA efficiency scores it measures the bias corrected 

sectors’ input oriented technical efficiency levels. Furthermore, the biased corrected 

results and 95% confidence intervals have been produced indicating major 

inefficiencies among the sectors.  

At a second stage of the analysis our paper uses nonparametric regressions in 

order to quantify the effect of competitive conditions on sectors’ scale and input 

oriented technical efficiency levels by calculating their conditional measures. In 

addition and in order to establish if the effect is statistical significant, our paper 

applies a nonparametric statistical test. The results reveal that the increased 

competition has a positive effect on sectors’ scale and input oriented technical 

efficiency levels reducing the inefficiencies caused by the A-J effect. 

Finally our contribution to the existing literature with respect to the 

methodology used is that we provide evidence of how the new advances and recent 

developments in efficiency analysis and statistical inference can be applied and 

directed towards an effective evaluation of industrial policies, providing in such a way 

a vital tool to industrial policy makers for analyzing the effects of their policies on 

industry regulation problems. 
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APPENDIX 

This appendix synoptically illustrates the bootstrapped based algorithm introduced by 

Simar and Wilson (1998, 2000a, 2000b). Specifically, the following steps are 

followed: 

 

Step 1: Transform the input-output vectors using the original efficiency estimates 
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Step 2: Generate smoothed resampled pseudo-efficiencies *
i  as follows: 

2.1 Given a set of estimated efficiencies






 

in , use the “rule of thump” (Silverman, 
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where *
i is drawn i.i.d. from a standard normal distribution. 
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2.4 Generate the smoothed pseudo-efficiencies  *
i  using the following formula: 
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resampled original efficiencies. 

 

Step 3: Let the pseudo-data be given by 
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Step 4: Estimate the bootstrap efficiencies using the pseudo-data as: 
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Step 5: Repeat steps (2)-(4) B  times to create a set of B bank specific bootstrapped 

efficiency estimates Bbni
bSW

in ,..,1,,...,1,
*




 , According to Simar and Wilson (1998, 

2000) a proper B = 2000 replications.
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