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Abstract 

 

 

The goal of this paper is to test on a millennial scale the magnitude of the recent warmth period, 

known as the “hockey-stick”, and the relevance of the causative anthropogenic climate change 

hypothesis advanced by several academics and worldwide institutions. A select batch of ten long-

term climate proxies, included in the NOAA 92 PCN dataset all of which running well into the 

nineties, is updated to the year 2011 by means of a Time-Varying Parameter Kalman Filter SISO 

model for state prediction. This procedure is applied by appropriately selecting as observable one 

out of the HADSST2 and of the HADCRUT3 series of instrumental temperature anomalies 

available since the year 1850. The updated proxy series are thereafter individually tested for the 

values and time location of their four maximum non-neighboring attained temperatures. The results 

are at best inconclusive, since three of the updated series, including Michael Mann’s celebrated and 

controversial tree-ring reconstructions, do not refute the hypothesis, while the others quite 

significantly point to different dates of maximum temperature achievements into the past centuries, 

in particular those associated to the Medieval Warm Period. 
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1. Introduction 

 

 More than a decade ago some climatologists, after performing past temperature 

reconstructions on a millennial scale, have come up with the conclusion that the recent warming 

period (RWP) is an unprecedented phenomenon in the climatic history of planet Earth (Mann et al., 

1998, 1999). The unusual behavior exhibited by temperatures in the late 20th century was attributed 

by the authors to anthropogenic influences, and chiefly to the increases in recorded greenhouse gas 

concentrations caused by the worldwide expansion of industrial and commercial activities.  

The statistical evidence produced by the authors is graphically shaped as the well renowned 

“hockey stick” that has been prominently featured in the Intergovernmental Panel on Climate 

Change (IPCC) activity since the Third Assessment Report (IPCC, 2001). Hence on, a worldwide 

dispute has emerged on both the validity of the empirical evidence and on its causes, thereby 

actively involving popular media, scientists, corporations, governments and political organizations. 

By consequence, the purported dramatic rise of recent temperatures and the associated 

anthropogenic origin have found advocates and skeptics still to date igniting the “hockey-stick 

curve” controversy (Montford, 2010), culminated in the “Climategate” and “Amazongate” affairs, 

and in the Wegman Report (2006).  

Criticism of the anthropogenic origins of global warming includes studies questioning the 

methodology utilized for the temperature reconstructions (e.g. Baliunas and Soon, 2003; McIntyre 

and McKitrick, 2005, 2009), and other studies pointing to the prevalence of long-run evolving 

natural causes such as solar activity (Abdussamatov, 2004; Alanko-Huotari et al., 2006; Fouka et 

al., 2006), cosmic rays  (Shaviv, 2005; Svensmark and Frijs-Christensen, 2007; Bard and Frank, 

2006, Usoskin et al., 2004a, 2004b, 2006), ocean currents (Gray et al., 1997; Trouet et al., 2009), 

and volcanic activity (Shindell et al., 2004).  

In this context, probably the only consensus among the opposing sides is couched in terms 

of the available evidence of climate changes on a millennial scale that may inform on the role of 

anthropogenic forcing in the RWP (e.g. Folland et al. 2001). In fact, the lack of widespread 

instrumental surface temperature estimates prior to the mid-19
th

 century ( Jones et al., 2001) has 

placed particular emphasis on the need to track the history of climate changes accurately, which can 

be achieved by utilizing carefully reconstructed long-term empirical evidence (von Storch et al., 

2004; Rutherford et al., 2005; Mann et al., 2008, 2009a). 

Such evidence consists of proxy data which may afford scientists with clues from the past 

climate changes to be compared with more recent instrumental data observations in order to enable 

statistical inferences on millennial-scale anomalies, such as the Medieval Warming Period (MWP) 

and the RWP. Many regional or global sea and/or surface temperature reconstructions have been 

available, customarily utilizing proxies of climate variability derived from the environment itself 

and from documentary evidence (Crowley and North 1991; Bradley 1999; Jones et al. 2001). 

Particularly useful are found to be the high-resolution proxies such as tree rings (e.g., Fritts et al. 

1971; Fritts 1991; Briffa et al. 1994, 2001, 2003), corals (e.g., Evans et al. 2002; Hendy et al. 2002), 

ice cores (O’Brien et al. 1995; Appenzeller et al. 1998), and lake sediments (Hughen et al. 2000). 

More recently, following the suggestions of a National Research Council (NRC) report 

(NRC, 2006) and of the IPCC Fourth Assessment Report (IPCC, 2007)
1
, several scientists under the 

                                           

1
 The IPCC acknowledged in the Fourth Assessment Report (2007) that the MWP was: “the warmest period prior to the 

20
th

 century very likely occurred between 950 and 1100….[however] only very large-scale climate averages can be 

expected to reflect global forcings over recent millennia…..[so that], in order to reduce the uncertainty, further work is 

necessary to update existing records, many of which were assembled up to 20 years ago, and to produce many more, 

especially early, paleoclimate series with much wider geographic coverage”.  



3 

 

auspices of the National Oceanic and Atmospheric Administration (NOAA) Paleoclimatology 

Program have gathered in an organic and easily accessible manner a large set of studies producing 

reconstructed proxy data on surface and sea temperatures at hemispheric, regional and global scales 

for much of the last 2,000 years (Wahl et al., 2010). The proxy data are contained in the NOAA 

Paleoclimate Network including 92 high-resolution temperature reconstructions and 

proxy/instrumental data available online (http://www.ncdc.noaa.gov/paleo/recons.html).   

Of these proxy data (henceforth denoted as NOAA), the longest time series with nonempty-

cell observations 
2
 are selected in the present paper for testing on a millennial scale the issues raised 

in the “hockey stick” controversy and the relevance of the MWP. Details and sources of the full 

dataset are contained in the Data Appendix. Most series are longer than one millennium but all of 

them end well before the year 2011 and thus require updating by means of instrumental variables. 

The Best Estimated Anomaly (BEA) of the updated HADSST2 (Rayner et al., 2006) and 

HADCRUT3 (Brohan et al., 2006) global averages and Northern Hemisphere data are the 

appropriate candidates for playing this role, as their availability strides the period 1850-2011 and 

can be utilized for updating the proxy data by means of Kalman filtering (Kalman, 1960). All of the 

BEA data series are downoadable from the web at the same site as above, and include also Southern 

Hemisphere records, which we chose not to employ for updating purposes because of their 

relatively low reliability
3
. By consequence, the BEA series selected for usage amount to six out of 

the nine available. 

Sect. 2 introduces both the selected BEA and NOAA series by displaying their timelines and 

their major characteristics such as descriptive and stationarity test statistics. Sect. 3 tackles the 

updating properties of the Time-Varying Parameter (TVP) Kalman Filter (KF) SISO model for state 

prediction. Sect. 4 produces the updated NOAA series, their characteristics and especially the dates 

associated to the maximum achieved proxy-measured temperatures. Sect. 5 concludes. 

 

 

2. The selected BEA and NOAA datasets 

  

 The time-series performances of the six selected BEA series are depicted in Fig. 1 and their 

major statistical features are shown in Table 1. The suffix NH and GL respectively refers to data 

records collected in the Northern Hemisphere and globally. Both analytically and graphically, the 

series show no significant differences one another. In fact, means and standard deviations are not 

sizably different (cols. 1-2) and all of the series exhibit level nonstationarity within a marginal 

significance (p-value) of 10% of the Augmented Dickey Fuller (ADF) t-test statistic for unit root 

(Dickey and Fuller, 1979), as well as full stationarity for the corresponding first differences (cols. 5-

8)
4
. Finally, the BEA series share similar minimum and maximum level dates, the former (latter) 

striding the 19
th

 and the 20
th

 (the 20
th

 and the 21
st
) centuries. 

                                           

2
 Many more NOAA series straddle the MWP but for certain years the observations are unavailable. In order to avoid 

arbitrary interpolation procedures, they must misfortunately be excluded from the sample presented. Among these, the 

millennial-scale series introduced by Loso (2008) with interesting inferences about the MWP. 

3
 The Climatic Research Unit that is responsible for handling the data admittedly declares that: “Over land regions of 

the world over 3000 monthly station temperature time series are used [as the basic raw data]. Coverage is denser over 

the more populated parts of the world, particularly, the United States, southern Canada, Europe and Japan. Coverage is 

sparsest over the interior of the South American and African continents and over the Antarctic”. 

4
 The z-tests for mean inequality of the series, given the observed standard deviations (Table 1, cols. 1-2), produces the 

following p-values: 0.925, 0.9338, 0.926, 0.927, 0.925, and 0.902, all of which reject the null of no equality below the 
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The ten selected NOAA series are long enough to include the MWP (~900-1350 AD), and in 

some cases also previous likely warmings, to be compared with the RWP (Crowley and Lowery, 

2000; Bradley et al., 2001; Baliunas and Soon, 2003; Loso, 2008; Esper and Frank, 2009; Trouet et 

al., 2009; Graham et al., 2010). The series obviously include for comparative purposes the Maunder 

Minimum, also known as the Little Ice Age (LIA) that has occurred in Europe (~1645-1715 AD) as 

a relevant event of the climatic cyclical pattern recognized by several authors (Baliunas and Soon, 

2003; Bürger, 2007). By symmetry, the longest series may as well include more ancient unrecorded 

coolings and warmings. 

Table 2, whose keynames and sources are expounded in the Data Appendix, reports 

important length features of the NOAA series. Most of these end in the late nineties (col. 5) and 

some require a substantial amount of updation steps (s) to fill in affordable values until the year 

2011 via the proposed updation procedure (col. 8). Unreported test statistics for normality (Jarque-

Bera and KPSS) indicate that none of the series is normally distributed.  

Table 3 supplies major descriptive statistics and ADF test statistics for unit root of the 

NOAA series. Means and standard deviations (cols. 3-4) sizably differ among them and so does the 

volatility index (col. 5) measured as the absolute ratio of the former to the latter. Finally, the ADF 

test statistics and their p-values indicate that only four series are stationary within the 5% 

significance level: Hant, Mann1, D’Arrigo and Moberg.  

Cointegration is important for testing the trustworthiness of the instrumental variable(s) as a 

predictor of the NOAA series. Lack of any common trend among the two is likely to determine 

biased forecasts once the variables implied were significantly orthogonal one another. Table 4 

reports the Engle-Granger t-statistic and the Johansen trace test statistic (Engle and Granger, 1987; 

Johansen, 1988, 1991) of the NOAA with a randomly selected BEA series in the interval comprised 

between 1850 and the AD yearends. Because there are six available BEA series and the 

cointegration tests with the NOAA series are almost all identical, the BEA series selected is 

HADCRUT3NH, namely, the temperature anomaly records collected in the Northern Hemisphere, 

which is possibly the most consistent with the provenance of the original dataset.  

The first test statistic, denoted as EG (cols. 3-4), is large enough in absolute terms to reject 

the null o no cointegration with BEA at the 1% marginal significance level for all series but 

Moberg, whose marginal significance is somewhere lower than 10%. The second test statistic, 

denoted as JO (cols. 5-6), essentially reinforces the previous results by producing enough high test 

statistics that are unable to reject both implied null hypotheses except for Crow
5
.  

In Fig. 2, panes a and b show the entire NOAA series since their beginning and including 

the updations to year 2011 performed in Sect. 4. The left-hand side of each figure separated by a 

vertical bar shows the original series and simple eyeballing may suggest that the updated 

observations constitute a mere blip as compared to their millennial-scale length. However, these 

blips may be relevant enough – at least – to test if the warming appears to have accelerated towards 

the present day.  

 

 

 

 

                                                                                                                                            
10% significance level. The ADF test for unit root of the series is performed with lags of the first differences optimally 

selected by the Bayesian Information Criterion (BIC). 

5
  The null hypothesis in JO assumes intercepts and linear trends in the cointegrating relations and quadratic trends in 

the data. Moreover, one lag is assumed in the underlying Vector Error Correction model. The p-values of the two JO 

test statistics are unreported for ease of space, and they hover below 1% except for the series Crow (line 6, col. 9),  
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3. The Time-Varying Parameter Kalman Filter SISO model for state prediction 

 

 3.1. Description of the method 

 

 The TVP-KF model for state prediction is a combination of the standard KF Linear Time 

Invariant (LTI) model and of the Time-Varying KF (e.g. Hamilton, 1994; Grimble, 2006). Kalman 

described the KF as a series of recursive linear equations in a continuous or in a discrete-time 

context addressed at predicting position and time of a moving target by progressively increasing 

accuracy of the filter’s prediction at each position coordinate. The KF has enjoyed many 

applications in physics, engineering and in other scientific fields, and also in applied statistics 

(Aoki, 1990; Anderson and Moore, 2005). 

Standard KF modeling (both LTI and TVP) requires utilizing the state variables (“states”) 

and the measurable or observable variables (“observables”) (Aoki, 1990; Anderson and Moore, 

2005). In the present context, each of the NOAA series is treated as a state, while any of the six 

available BEA series is the observable, namely, the instrumental variable. In the field of statistical 

applications, the KF has received much attention as a forecasting procedure of the state(s) and of 

the observable(s), usually in competition with other methods such as Autoregressive Moving 

Average (ARMA), Vector Autoregression (VAR), Bayesian VAR (BVAR), Vector Error 

Correction Method (VECM) and Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH). The KF is shown to outsmart GARCH (Choudry and Wu, 2008) but too little is 

produced in the literature to comparatively evaluate its efficiency with respect to the other methods. 

 TVP-KF is a tracking method that is expected to improve the accuracy of the state 

prediction by providing the operator with ongoing information about the timely magnitudes of the 

parameters involved. In order to avoid stepwise explosive behaviour of the state sequence, it may 

contain a self-correcting mechanism addressed at further stationarizing the time series involved if 

they are ( )2I . It may as well inform on matrix non-invertibility, on the performance of error 

covariances and help integrating the differenced series for correct in- and out-sample forecasting
6
. 

To perform updation of the states until the year 2011, the procedure utilized in the paper 

requires two steps: (i) estimation by LTI-KF of all the parameters involved with both states and 

observables sharing the same time length, and departing from year 1850; (ii) forecasting the states s 

steps ahead of the remaining years (Table 2, col. 8) by TVP, exploiting all the parameter results of 

step (i) to perform initializations. Essential to time saving and correct model identification is the 

choice of the most efficient parameter initialization method and the related instrumental variable 

among the six available BEA series. This is achieved after comparing on a grid basis the LTI first-

step performance of each candidate series in terms of state covariance. The least covariance 

produces the desired result. 

 

3.2. First-step Estimation of the KF State-Space Model 

 

In State-Space (SS) discrete-time terms, after defining t a time notation of integers 

where t−∞ ∞≪ ≪ , we have the following constructs applicable to the states and to the observables. 

Let , ,1,  [ , ],  [1,6]
t k y k

y t T T k∈ ∈  be each of the six BEA series shown in Table 1 and graphed in Fig. 

1. Their AD year of commencement is ,1 1850
y

T = , while their common endpoint is 2011,  
k

T k= ∀ . 

Let also [1, 10]j N∈ =  be the NOAA series order included in Table 2 (col. 1), and 

                                           

6
 The ®Matlab software containing the dataset and the TVP-KF applications is available upon request from the author. 

It may be utilized for replication purposes. 
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, ,1 ,,  [ , ]
t j j j f

X t T T∈  each characterized by a specific timespan of length ranging from ,1j
T  (col. 4) to 

,j f
T  (col. 5). For instance, the series keynamed Hant (Hantemirov and Shiyatov, 2002) includes 

4,063 observations commencing in the year ,1 2066 BC
j

T = and ending in year , 1996,  1
j f

T j= = . 

Then, the s steps ahead necessary to reach the year 2011 are 13 (col. 8). 

From the given time notations we have: ,1 ,1 , ,  ,
j y j f k

T T T T j k< < < ∀ , namely, every .j th  

NOAA series begins (terminates) before (beyond) the year 1850 and before the year 2011. The SS 

LTI model representation for the first-step estimation is given as follows 

 

(1)       
1, , ,

, , ,

 A B

     C

t j t j t j

t k t j t k

X X u

y X e

+ = +

= +
 

 

where ,1 ,[ , ]
y j f

t T T∈ , and the state estimate error is ( ), 0,Rt ju N∼ , the innovation of the observable 

is ( ), 0,Qt ke ∼ , and ( ), ,E ' 0
t j t j

u e = , where ( )E .  is the expectational operator. The first and the 

second expressions of eq. (1) respectively are the state equation of motion and the observable 

equation. Here, the state variable is measurable, so that estimation of the underlying model may be 

performed by MLE if the series are normal or any other linear-quadratic optimization methods e.g. 

recursive subspace identification (or prediction-error) algorithms (Aoki, 1990; Ljung, 1999). 

Since the model is SISO , ,j k∀ the parameter matrices R and Q, as well as A, B and C are 

scalars, henceforth denoted simply as “parameters”. Eq. (1) is solved for them in a recursive way 

over the entire time span provided. Briefly, given the assumed initial parameters at 1t = , eq. (1) is 

solved with the aim of minimizing overtime the state-covariance Riccati matrix P, i.e. to attain 

P 0t
t
Lim

→∞
=  and to obtain a converging Kalman gain in the form of K 0t

t
Lim

→∞
= , both of which are 

subject to the root(s) of A to be enclosed in the unit circle. Therefore, the states and the observables 

need stationarization if ( )1I  originally, so that the stabilizing conditions apply, namely, ( )E A 1< , 

( ),
E P 0

j fT ≃ , and ( ),

ˆE
jTX

∞
<< ∞ . These conditions specify that the norm of A must be smaller 

than unity, that the expected nonlimit norm of P is close to zero and that the expected estimated 

value of the state(s) is below infinity. Also, controllability and observability must be ensured, 

although in the present context the first condition is more relevant
7
. 

                                           

7
 In standard KF (e.g. Kalman, 1960; Aoki, 1990), R and Q respectively are defined as the state and as the observable 

error covariance matrices. A is the state transition matrix, B the state-to-error matrix and C the state-to-observable 

transformation matrix. Customarily, for a state and an observable matrix respectively of size p and q 

( )1; 1;p q p q≥ ≥ >=< , and same discrete-time length T, we have: A, B, Q, P  of size ( )p p× , ( )R : q q× , ( )C : q p×  

and ( )K : p q× . We have the state equation covariance 
1, 1,

P= '
t j t j

X X
+ +

 such that P APA' + B'QB= , and  

( )
1

K=APC' CPC'+R
−

, where the last bracketed expression derives from the observable equation covariance 

, ,
' CPC'+R

t k t k
e e = . Controllability amounts to having the sequence { } [ ]1

A B 0,  1,
n

n pq
−

→ ∈  and observability the 

sequence { } [ ]1
CA 0,  1,

n
n pq

−
→ ∈ . 
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The “Kalman Triplet” that merges prediction and updating of the state(s) as well as of the 

Riccati matrix and of the Kalman gain in eq. (1)
 8

 produces the following results for ,1 ,[ , ]
y j f

t T T∈  

 

(2)    

( )

( )

1, , , , ,

1

1

ˆ ˆ ˆ ˆ A B K - C

ˆ ˆ ˆP B'QB AP A' - KCP A'

ˆ ˆ ˆK  AP C' R+CP C'

t j t j t j t t k t j

t t t

t t t

X X u y X+

+

−

= + +

= +

=

 

where 1, j
X  is known, and 1 1P B'QB+AP A'=  and ( )

1

1 1 1K AP C' R+CP C'
−

= are initial arbitrary values 

associated to the key parameters at .1j
T

9
. The first equation represents the typical state prediction-

error module (Hamilton, 1994; Ljung, 1999), while the other two are the parameter recursive matrix 

equations. If the stabilizing conditions apply to these equations, the process 1,
ˆ

t jX
+

 is covariance-

stationary and estimation is minimum-variance and therefore efficient. 

 

3.3. Second-step Estimation of the KF State-Space Model 
 

Define the steps-ahead sequence as ,[1, ]
j k j f

s T T∈ − , or better as ,j j f j
S T s= +  to mark the 

beginning date of the recursion. Then, the SS representation of the second-step estimation with 

TVP-KF, to be compared with eq. (1), is the following 

 

(3)     
1, , ,

, , ,

 A B

     = C  

j j j

j j

S j S j S j

S k t j S k

X X u

y X e

+ = +

+
 

 

where all the parameters involved are time-varying over the 
j

s  interval and include ,  ,  
j j js s s

A B C , 

,  ,  P
j j js s s

Q R  and 
js

K . Here, the state variables are unobservable except for the first observation, 

and initialization of the variables and parameters departs from the end results obtained from eqs. (1) 

and (2). Specifically, , ,
ˆ

j f T jX X= , , ,j f T j
P P=  and so on. Finally, the observable acts as a leading 

indicator in common econometric forecasting methods (Marcellino, 2006; Banerjee et al., 2005). 

As advanced in Sect. 3.1, TVP parameter estimation keeps the operator informed about the 

dynamics of state updation in order to avoid explosive behavior caused by non-converging Riccati  

and Kalman gain matrices or non-invertibility. Moreover it enables the operator to add, if desired, 

noisy observations to the predicted states in order to preserve the standard deviation exhibited 

                                           

8
 The KF distinguishes between prediction and update, respectively known in Bayesian terms as the a priori and the a 

posteriori state estimation. They alternate one another during the recursion: prediction produces the state estimate based 

on the transition matrix and the Lyapunov solution to the Riccati matrix. The state update incorporates the observed 

innovation while the Riccati update includes the changes occurred in the Kalman gain. 

9
 Parameter initialization is no easy task in standard LTI-KF as it may rely on too restrictive and arbitrary assumptions 

imposed on the data and/or on the parameters themselves. Guess-based approximations, however, are frequent and in 

most cases inevitable and definitely shared with similar recursive methods, such as the Newton-Raphson derivative 

algorithm. For instance, positing 
1

P  and A as identity matrices respectively forces the data to be Gaussian and to follow 

an AR(1) process when either or both may not be so, while assigning zero values to matrix B forces the equation of 

motion to exhibit no error structure.  
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during the last period of LTI estimation. Finally, while the estimation method is identical to the 

previous, the initializing conditions are made to change at each forecast step and are by 

consequence no longer arbitrary but are instead data-based (see fn. 8). This ensures provision of 

consistent prior information on all parameters as no guess is involved (see fn. 8). 

 The analog of eq. (2) in a TVP-KF context is expressed by the following system 

 

(4)                         

( )

( )

1, , , , ,

1

1

ˆ ˆ ˆ ˆ A B K - C

ˆ ˆ ˆP B 'Q B A P A ' - K C P A '

ˆ ˆ ˆK  A P C ' R +C P C '

s j t s j s s j t s k s s j

s s s s s s s s s s s

s s s s s s s s

X X u y X+

+

−

= + +

= +

=

     

 

where the time step notation is for simplicity [ ] ,1, ,  for s s k j fs T T T T∈ = − . and where the first 

equation originates from the LQG controller with optimal feedback by the observable(s). 

Initialization of the Riccati and Kalman gain equations at each step ahead is given by the following 

formulas:  

 

(5) 
( )

( )

1

1
' ' ' ' '

1 1 1 1 1 1 1 1 1 1 1 1 1

P B'QB+APA'-KCPA', K AP C ' R+CP C' ; for =1

P B Q B +A P A -K C P A , K A P C R +C P C ;  for 1

s s s s

s s s s s s s s s s s s s s s s s s s

s

s

−

−

− − − − − − − − − − − − −

= =

= = >
 

 

where P in the first equation is the Riccati matrix evaluated at time , ,  
j f

T j∀ , the end of the LTI 

estimation of the jth. state series, and similarly for the parameters A, B, C, Q and R. The subscripted 

parameters in the second equation are obtained from previous step estimations. By applying eqs. (3) 

to (5) sequentially, the parameters can be recovered and tested for the implied stabilizing conditions 

over the steps-ahead timespan. Some of these are identical to those of the LTI model, like those 

regarding the Riccati and Kalman gain matrices, i.e. P 0
s

s
s T
Lim

→
=  and K 0

s

s
s T
Lim

→
= , others are new 

like 1,sA < ,sQ << ∞  sR << ∞ , [ ]1, ss T∀ ∈ .   

 

4. Estimation Results of the LTI and TVP-KF SISO models  

  

In this paper, three different initializing methods of eq. (5) are utilized and tested for the 

smallest state-covariance matrix in conjunction with the [1,6]k ∈  available BEA series,. The target 

is to find the best performers on this account by applying a grid search at the end of the first-step 

LTI estimation and along the updating process. We alternatively posit three initialization methods 

of the Riccati matrix P: (1) the identity matrix; (2) the state measured covariance; (3) the steady 

state solution of the first equation in eq. (5). The last method is obtainable, given knowledge at time 

,j f
T  of the parameters A, B, C, Q and R, by finding the value of P that ensures the following 

equality 

 

(6)    ( )
1

0 B'QB-P+APA'-APC R+CP C' C 'PA'
s

−
=  
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which is the steady-state representation of the Riccati matrix in the first line of eq.(5). In all cases, 

the initialization of the Kalman gain is consequential
10

.  

 Let the mean values of P  for each NOAA/ BEA series combination utilized for LTI 

estimation be expressed as  

 

[ ]
10

,

1

P 10,  1,6k j k

j

m k
=

 
= ∀ ∈ 
 
∑ .  

 

There are six of these mean norms for each of the initialization methods. The combination of 

the kth. series and the ith. initialization method ( )1,...,3i =  that achieves the minimal state 

covariance is found by grid search to be HADCRUT3vNH with 3i =
11

. The same approach is 

utilized for TVP estimation with identical end results which are shown in Table 5, where the real 

number therein are the step-by-step means of the NOAA series for each BEA series, sequentially 

exhibited by initialization method:  

 

[ ] [ ], , ,

1

P ,  1,10 , 1,  and 1,6
js

s j s k j j k j f

s

m s j s T T k
=

 
 = ∀ ∈ ∀ ∈ − ∀ ∈    

 
∑ . 

 

Also the series means are included, and all results confirm that use of HADCRUT3vNH 

with the third initialization method is optimal (box 3, col. 5). By consequence, this prefered 

combination of instrumental variable and initializing method is adopted to perform all the updatings 

of the NOAA series. Noisy data simulating the standard deviation of the latest first-differenced 

original observations of each series is added to the forecasted trends, as advanced in Sect. 3.3. 

Therefore, multiple replications of the updation process of each NOAA series by TVP-KF may 

produce different forecasted values proportional to the standard deviation.
12

. The implied volatility 

indexes, however, are found to stay substantially below those reported in Table 3 (col. 5) and to 

average .502, with a maximum of Hant’s being 3.36 and a minimum of Tand being .012. 

The averages of 1,000 Gaussian noise-added Monte Carlo replications of each NOAA series 

are produced for the updatings. The graphical and the quantitative mean results are exhibited in 

Fig.2 and Table 6, respectively. Graphically, the updates of most of the series appear no more than 

blips on the right-hand side of the red-marked line that splits them from the original data, and reveal 

little crucial by simple eyeballing. Quantitatively, instead, they shed much light on the millennial-

scale analysis regarding the “hockey stick” hypothesis. Four non-neighboring local maxima, 

                                           

10
 The first two initializations are arbitrary and equivalent to those that may be imposed at 

,1j
T  (see fn. 8). The last 

initialization is based on prior information of the estimated parameters and may produce interesting results if they are 

stabilizing because also the ensuing P matrix will be stable. The solution of P obtains by solving the nonlinear 

differential eq.( 6)  at its steady state. 

11
 The first two methods produce 1

k
m = and .358

k
m =  for all BEA series, while for the third method the following  is 

obtained: { }0.0042,   0.0072,   0.0033,   0.0061,   0.0736,   0.0340 ,  
k

m k= ∀ . Clearly the latter result is prefered on 

magnitude grounds, and within the sequence, the third value associated to the third BEA series is the smallest. 

12
 The amount of first-differenced observations utilized for extracting the standard deviation utilized in noisy 

simulations is set to be , ,, ,  j j f j j fd T s T j ∈ − ∀  , i.e. the last observations of the original data, quantitatively equal to 

the steps-ahead forecasting time span of each NOAA series (Table 2, col. 8). 
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separated by a minimal distance of 150 years, are identified for each fully updated series
13

. Their 

achievement dates and values are sequentially reported (Table 6, cols. 4-7, and 8-13) together with 

the ratio of the achieved value of the first local maximum, which is also the global maximum (col. 

8), evaluated with respect to the other maxima (cols. 14-16). Many of these are very close one 

another so that, in a noisy environment (von Storch et al., 2004; Brohan et al., 2006; McIntyre and 

McKitrick, 2009) the primacy might be reversed: in other words, the first local maximum may 

become second or third in order of magnitude due to data replications, although several 

climatologists may not agree on this occurrence (Mann et al., 2009b). As easily seen, only two 

series – Mann, and Crow – exhibit a sizable jump in the ratio that compares the first to the second 

achieved local maxima (col. 14), and even more so further on (cols. 15-16). Similar, albeit not so 

dramatic, are the jumps in D’Arrigo and maybe Moberg. The first two series place the highest 

achieved proxy temperatures in the year 2009, while the other two in the years 1943 and 1105, 

respectively. 

In order to dissipate noisy-environment uncertainties on the local/global maximum achieved 

dates and values exhibited in Table 6, the same 1,000 Gaussian noise-added Monte Carlo 

replications of each NOAA series have been tested for the probabilities with which such maxima 

occur. Table 7 produces this outcome by reporting the ranked years of maxima and their sample 

probabilities, excluding those close to zero
14

. Three series (Mann, Mann1 and Crow) unmistakably 

espouse the “hockey stick” hypothesis by putting the maximum achieved temperatures in the years 

striding the 20
th

 and the 21
th

 centuries. One series (D’Arrigo) goes fifty-fifty between the RWP and 

the MWP. All of the other six series (Hant, Salz, Tand, Esper, Moberg and Moore) put heavy 

probability weights on the MWP and even somewhere else in the more or less distant past. For these 

series, therefore, the RWP never scores more than one third of the probabilities. 

 

5. Conclusion 

 

Several climatologists and the IPCC have since long maintained that the RWP is an 

unprecedented phenomenon in the climatic history of the Earth by featuring the “hockey stick” 

hypothesis and the associated anthropogenic origin. This purported evidence is put to test by 

utilizing a select batch of ten millennial-scale climate proxies, included in the NOAA 92 PCN 

dataset, and updated to the year 2011 by means of a TVP-KF model for state prediction. The 

observable utilized therein is the HADCRUT3vNH series of instrumental temperature anomalies 

available since the year 1850.  
Out of ten series, only three significantly do not refute the hypothesis, while the others point 

to different maximum temperature dates, mostly included in the MWP. By consequence, from an 

outsider’s viewpoint, the scenario mostly favorable to the “hockey stick” hypothesis would render 

both warming periods on the same footing (e.g. Baliunas and Soon, 2003) given Gaussian noise, 

                                           

13
 Local non-neighboring maxima (and minima) may be identified by splitting the millennial series into equally spaced 

subperiods or by other procedures, e.g. moving averages or golden section. Unreported tries of shorter (100 years) or 

longer (200 years) gaps produce very similar results. The selected length of 150 years also fits the maximal length of the 

RWP thereby adequately tracing a dividing line with the previous climate epochs like the MWP and the LIA. 

14
 The results shown in Table 7 are obtained as follows: for each series and for each simulation the four largest non-

neighboring values and associated dates (years) are computed. Then the dates are stored in matrix ( )D : 1,000 4× . The 

relative frequencies of each date there included are then evaluated and posted as ranked probabilities, labeled P in the 

table and tallying unity by column. The approximation in the percentage shares is due to the use of date integers. 
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contrary to the claims of the IPCC in the Fourth Assessment Report (2007) and of some authors 

(Jones et al., 2001; D’Arrigo et al., 2006; Mann et al., 2009a)
15

. The mostly unfavorable scenario 

would instead require shedding further light on the data collection and processing executed by the 

authors of the claim, thereby justifying the validity of I. Jolliffe’s trenchant comment at Tamino 

appeared on the web: “I am by no means a climate change denier. My strong impressive is that the 

evidence rests on much more than the hockey stick. It therefore seems crazy that the … hockey 

stick has been given such prominence and that a group of influential climate scientists have 

doggedly defended a piece of dubious statistics”. 

 

 

Data Appendix 

 

Two datasets are available: NOAA and BEA. The first includes ten selected series from the 

NOAA Paleoclimatology Reconstructions Network including 92 high-resolution temperature 

records over the past 2+ millennia. The keynames reported in the Tables are subsequently 

associated to the respective bibliographical source. BEA includes six out of nine series. 

 

i) NOAA: 

1) Hant (Hantemirov and Shiyatov, 2002): Yamal Peninsula Multimillennial Summer Temperature 

Reconstruction 

2) Salz (Salzer and Kipfmueller, 2005):  Southern Colorado Plateau Temperature and Precipitation 

Reconstructions  

3) Tand (Tand et al., 2003): Shihua Cave, Beijing Stalagmite Temperature Reconstruction 

4) Mann (Mann et al., 2008): 2,000 Year Hemispheric and Global Surface Temperature 

Reconstructions: Global: Land and Ocean: Error-In-Variables Method 

5) Mann1 (Mann et al., 1999):  Northern Hemisphere Temperatures during the Past Millennium 

6) Crow (Crowley, 2000): Northern Hemisphere Temperature Reconstruction: with instrumental 

records after 1860 

7)  Esper (Esper et al., 2002): Northern Hemisphere Extratropical Temperature Reconstruction 

8) D’Arrigo (D’Arrigo et al., 2006): Northern Hemisphere Tree-Ring-Based Temperature 

Reconstruction: Regional Curve Standardization 

9) Moberg (Moberg et al., 2005): 2,000-Year Northern Hemisphere Temperature Reconstruction 

10) Moore (Moore et al., 2001):  Baffin Island 1250 Year Summer Temperature Reconstruction 

                                           
15

 The first authors declare that: “Average temperatures during the last three decades were likely the warmest of the last 

millennium, about 0.2C warmer than during warm periods in the 11th and 12th centuries”, while the others declare that 

their data: “reconstruction suggests that MWP temperatures were nearly 0.7C cooler than in the late twentieth century, 

with an amplitude difference of 1.14C from the coldest (1600-1609) to warmest (1937-1946) decades”. Finally, Mann et 

al. declare that: “The Medieval period is found to display warmth that matches or exceeds that of the past decade in 

some regions, but which falls well below recent levels globally”. 
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ii) BEA: HADCRUT3, HADCRUT3v and HADSST2 all updated to 2011 and containing both 

global (GL) and Northern Hemisphere (NH) records. HADSST2 is sea surface temperature 

anomalies (Rayner et al., 2006), HADCRUT3 is combined land and marine sea surface temperature 

(SST) anomalies from HADSST2 (Brohan et al., 2006), HADCRUT3v is the variance adjusted 

version of HADCRUT3. 
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Table 1.  

Descriptive statistics of BEA series and ADF test statistics for stationarity. 

BEA series 
1. 

Mean 

2. 

Standard 

deviation 

3. 

Minimum 

level year 

4. 

Maximum 

level year 

5.  

ADF 

Level t-

test 

statistic 

6.  

ADF 

level p-

value 

7.  

ADF 

first-

difference 

t-test 

statistic 

8.  

ADF first 

difference 

p-value 

Hadcrut3NH -0.111 0.288 1862 2005 -0.836 0.344 -9.086 0.001 

Hadcrut3GL -0.160 0.265 1911 1998 -0.963 0.298 -8.634 0.001 

Hadcrut3vNH -0.112 0.283 1862 2005 -0.765 0.370 -8.786 0.001 

Hadcrut3vGL -0.162 0.262 1911 1998 -1.664 0.091 -8.173 0.001 

Hadsst2NH -0.115 0.245 1910 2004 -1.626 0.098 -9.696 0.001 

Hadsst2GL -0.168 0.242 1910 1998 -1.273 0.187 -10.093 0.001 

 

Table 2.  

NOAA original series timelines. 

1.  

Series 

order 

2.  

Series 

keyname 

3.  

Total 

length of 

series 

(years) 

4.  

AD/BC 

year of 

series 

beginning 

5.  

AD year 

of end of 

series 

6.  

Number of 

observations 

corresponding 

to year 1850 

7.  

Total 

number of 

years. 

available 

for BEA 

estimation 

8.  

Number of 

steps 

ahead (s) 

required 

for 

updating 

until 2011 

1 Hant 4063 -2066 1996 3917 147 15 

2 Salz 2248 -251 1996 2102 147 15 

3 Tand 2651 -665 1985 2516 136 26 

4 Mann 1507 500 2006 1351 157 5 

5 Mann1 981 1000 1980 851 131 31 

6 Crow 994 1000 1993 851 144 18 

7 Esper 1162 831 1992 1020 143 19 

8 D’Arrigo 1283 713 1995 1138 146 16 

9 Moberg 1979 1 1979 1850 130 32 

10 Moore 1241 752 1992 1099 143 19 
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Table 3.  

NOAA original series basic statistics and ADF test statistics for stationarity. 

1.   

Series order 

2.  

Series 

keyname 

3.  

Mean 

4.  

Standard 

deviation 

5.  

Volatility 

index 

6.  

ADF t-test 

statistic 

7.  

ADF p-value 

1 Hant 0.000 1.089 3538.597 -47.600 0.001 

2 Salz 15.256 0.479 0.031 -0.345 0.526 

3 Tand 22.705 0.783 0.034 -0.161 0.593 

4 Mann -0.262 0.197 0.752 -1.178 0.220 

5 Mann1 -0.112 0.131 1.169 -3.746 0.001 

6 Crow -0.071 0.110 1.544 -1.203 0.211 

7 Esper 0.998 0.138 0.139 -0.401 0.505 

8 D’Arrigo -0.385 0.207 0.538 -2.414 0.015 

9 Moberg -0.354 0.220 0.622 -3.397 0.001 

10 Moore 2.917 0.893 0.306 -1.175 0.222 

 

 

Table 4. 

Engle-Granger (EG) and Johansen (JO) cointegration tests between the BEA series HADCRUT3NH and 

the NOAA original series. 

 

1.  

 Series 

order 

2. 

Series keyname 

3. 

EG t-test 

statistic 

4. 

EG p-value 

5. 

JO trace test 

statistic for  zero 

cointegrating 

vectors 

6. 

JO trace test 

statistic for 

zero against 

one 

cointegrating 

vectors 

1 Hant -149.252 0.001 73.380 20.381 

2 Salz -47.930 0.001 38.742 11.897 

3 Tand -60.945 0.001 40.404 18.445 

4 Mann -105.133 0.001 147.992 26.138 

5 Mann1 -85.734 0.001 49.347 18.180 

6 Crow -39.419 0.003 48.210 0.958 

7 Esper -84.359 0.001 45.452 21.215 

8 D’Arrigo -54.594 0.001 36.458 12.444 

9 Moberg -23.004 0.085 66.189 17.443 

10 Moore -86.619 0.001 55.095 22.210 
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Table 5.  

 

Grid of s steps-ahead Riccati matrix (P) norms of NOAA series as a function of different BEA       

series with three different initialization methods of P. 

 

BEA/NOAA series 

1. 

Hadcrut3 

NH 

2.  

Hadcrut3 

GL 

3. 

Hadcrut3v

NH 

4. 

Hadcrut3

vGL 

5.  

Hadsst2 

NH 

6.  

Hadsst2 

GL 

Method 1: P identity matrix 

1 2 3 4 5 6 7 8 

1 Hant 0.177 0.546 0.074 0.439 1.378 1.987 

2 Salz 0.010 0.035 0.004 0.027 0.095 0.200 

3 Tand 0.005 0.043 0.001 0.033 0.325 0.140 

4 Mann 0.000 0.000 0.000 0.000 0.001 0.001 

5 Mann1 0.001 0.048 0.000 0.038 2.068 0.111 

6 Crow 0.001 0.001 0.001 0.001 0.002 0.001 

7 Esper 0.004 0.010 0.003 0.009 0.027 0.057 

8 D’Arrigo 0.003 0.009 0.002 0.008 0.079 0.025 

9 Moberg 0.001 0.002 0.001 0.002 0.010 0.006 

10 Moore 0.064 0.195 0.016 0.106 0.650 1.479 

11 Mean 0.266 0.890 0.102 0.663 4.634 4.007 

Method 2: P state measured covariance 

1 2 3 4 5 6 7 8 

1 Hant 0.115 0.360 0.048 0.288 1.118 1.423 

2 Salz 0.018 0.060 0.007 0.046 0.281 0.281 

3 Tand 0.008 0.072 0.001 0.054 0.441 0.216 

4 Mann 0.002 0.004 0.001 0.003 0.016 0.010 

5 Mann1 0.002 0.051 0.001 0.040 2.379 0.119 

6 Crow 0.006 0.013 0.004 0.012 0.013 0.009 

7 Esper 0.005 0.015 0.003 0.013 0.115 0.077 

8 D’Arrigo 0.006 0.018 0.003 0.015 0.110 0.049 

9 Moberg 0.001 0.007 0.001 0.005 0.020 0.014 

10 Moore 0.059 0.180 0.015 0.098 0.669 1.399 

11 Mean 0.221 0.780 0.083 0.574 5.161 3.596 
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Method 3: P steady state solution 

1 2 3 4 5 6 7 8 

1 Hant 0.005 0.028 0.002 0.020 0.373 0.448 

2 Salz 0.000 0.002 0.000 0.001 0.101 0.059 

3 Tand 0.000 0.006 0.000 0.006 0.248 0.029 

4 Mann 0.000 0.000 0.000 0.000 0.000 0.000 

5 Mann1 0.001 0.044 0.000 0.036 1.677 0.104 

6 Crow 0.001 0.001 0.001 0.001 0.001 0.001 

7 Esper 0.004 0.008 0.003 0.008 0.019 0.050 

8 D’Arrigo 0.000 0.002 0.000 0.002 0.049 0.004 

9 Moberg 0.000 0.000 0.001 0.000 0.003 0.001 

10 Moore 0.002 0.007 0.001 0.003 0.677 0.507 

11 Mean 0.013 0.097 0.008 0.077 3.148 1.201 
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Table 6. 

Updated NOOA series timelines, four maximum achieved dates, values and ratios.  

Results obtained from averaging 1,000 Monte Carlo replications of each series. 

 

1. 

Series 

order 

2.  

Series 

keyname 

3.  

Total 

number of 

observations 

(years) 

4.  

First 

achieved 

maximum 

date 

5. 

 Second 

achieved 

maximum 

date 

6.  

Third 

achieved 

maximum 

date 

7.  

Fourth 

achieved 

maximum 

date 

8.  

First 

achieved 

maximum 

value 

1 Hant 4078 994 554 791 370 3.500 

2 Salz 2263 404 1981 1786 -164 17.090 

3 Tand 2677 32 1964 715 1100 24.757 

4 Mann 1512 2009 968 587 786 0.485 

5 Mann1 1012 1944 1249 1086 1772 0.278 

6 Crow 1012 2009 1087 1304 1515 0.581 

7 Esper 1181 995 1958 842 1327 1.529 

8 D’Arrigo 1299 1943 895 1434 1763 0.370 

9 Moberg 2011 1105 896 1940 704 0.372 

10 Moore 1260 1468 1300 1907 1095 7.093 

9. 

Series 

order 

Mean 

11.  

Second 

achieved 

maximum 

value 

12.  

Third 

achieved 

maximum 

value 

13.  

Fourth 

achieved 

maximum 

value 

14.  

Ratio of 8 

to 11 

15.  

Ratio of 8 

to 12 

16.  

Ratio of 8 

to 13 

1 Hant 3.130 3.130 3.070 1.118 1.118 1.140 

2 Salz 17.040 16.990 16.900 1.003 1.006 1.011 

3 Tand 24.402 24.257 24.248 1.015 1.021 1.021 

4 Mann 0.163 0.112 0.008 2.969 4.323 60.128 

5 Mann1 0.272 0.190 0.122 1.024 1.465 2.281 

6 Crow 0.130 0.040 -0.020 4.469 14.525 -29.050 

7 Esper 1.338 1.249 1.199 1.143 1.224 1.275 

8 D’Arrigo 0.280 0.080 0.080 1.321 4.625 4.625 

9 Moberg 0.357 0.248 0.051 1.042 1.502 7.360 

10 Moore 6.611 6.249 6.201 1.073 1.135 1.144 
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Table 7. 

Updated NOAA series. Years of achieved local maxima ranked by probability.  

Results from 1,000 Monte Carlo replications of each series and for subperiods of 150 years. 

 

Rank/ 

Series 

 

1. 

Hant 

 

 

2. 

Salz 

3. 

Tand 

4. 

Mann 

5. 

Mann1 

6. 

Crow 

7. 

Esper 

8. 

D’Arrigo 

9. 

Moberg 

10. 

Moore 

Rank  Y P   Y P   Y P   Y P   Y P   Y P   Y P   Y P   Y P   Y P  

1 994 0.33 1786 0.33 715 0.33 2009 0.26 1944 0.85 2009 0.25 995 0.33 1943 0.50 1105 0.50 1907 0.33 

2 554 0.33 404 0.33 32 0.33 2007 0.25 2004 0.02 2010 0.17 842 0.33 895 0.50 896 0.23 1468 0.33 

3 791 0.13 2005 0.04 1964 0.14 2010 0.23 1996 0.02 2007 0.12 2008 0.03     2004 0.03 1300 0.33 

4 2010 0.03 2002 0.03 1998 0.02 2008 0.20 1983 0.02 2008 0.09 1993 0.03     2007 0.02     

5 2002 0.02 2003 0.03 1988 0.02 2006 0.06 1981 0.02 2004 0.09 1995 0.02     1994 0.02     

6 2009 0.02 2001 0.03 1999 0.01     2006 0.01 2005 0.07 1994 0.02     2002 0.02     

7 2003 0.02 2000 0.03 1996 0.01     2005 0.01 2003 0.07 2007 0.02     1999 0.02     

8 2008 0.02 2007 0.02 1986 0.01     1999 0.01 2001 0.05 2006 0.02     1998 0.02     

9 2001 0.02 1999 0.02 2010 0.01     1993 0.01 2006 0.04 2001 0.02     1990 0.02     

10 1999 0.02 2010 0.02 2008 0.01     1992 0.01 1996 0.02 1998 0.02     2008 0.01     

11 1998 0.01 2008 0.02 2005 0.01     1988 0.01 2002 0.01 1996 0.02     2006 0.01     

12 1997 0.01 2004 0.02 2004 0.01     1987 0.01 1998 0.01 2009 0.02     2000 0.01     

13 2006 0.01 2009 0.02 2002 0.01         1997 0.01 2005 0.02     1997 0.01     

14 2005 0.01 1997 0.02 2000 0.01             2004 0.02     1996 0.01     

15 2007 0.01 1981 0.02 2007 0.01             1999 0.02     1995 0.01     

Y: Year, P: Probability. 

 



23 

 

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
−1

−0.5

0

0.5

1
Hadcrut3NH

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
−1

−0.5

0

0.5

1
Hadcrut3GL

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
−1

−0.5

0

0.5

1
Hadcrut3vNH

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

−1

−0.5

0

0.5

Hadcrut3vGL

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

−0.5

0

0.5

Hadsst2NH

Figure 1
BEA Hadcrut3 and Hadsst2 level temperature anomaly series, 1850−2011
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Fig. 2b.
Fully updated paleoclimate time series.
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