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Abstract

In this paper we compare the cyclical features implied by an RBC model with two

technology shocks under several statistical specifications for the stochastic processes

governing technological change. We conclude that while a trend-stationary model

accounts better for the observed volatilities, a difference-stationary model does a rel-

atively better job of accounting for the correlation of the variables of interest with

output. We also explore some counterfactuals to assess the ability of our model to

replicate the volatility slowdown of the mid 1980s. First, we conclude that the stochas-

tic growth model outperforms the deterministic growth model in accounting for the

Great Moderation. Finally, we obtain that even though the neutral technology shock

is the main driving force in the volatility slowdown, allowing for a larger financial flexi-

bility in the form of a smaller volatility for the investment-specific innovation improves

the ability of our model to account for the magnitude of the Great Moderation.
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1 Introduction

Technology driven business cycles have been in the core of the Real Business Cycle literature

from its origins. For example Prescott (1986) claims that technology shocks account for more

than a half of the US business cycle fluctuations over the postwar period. In Cooley and

Prescott (1995), technology shocks account for more than 75% of the volatility of output.

Such an empirical success has been questioned by Gaĺı (1999) and Gaĺı and Rabanal (2004)

among others. They claim that business cycle features are due mainly to non-technology

factors. However, Greenwood, Hercowitz, and Krusell (1997) started a new wave of attention

on technology-driven business cycles by allowing for not only a neutral technology shock,

but also an investment-specific one.

In this paper we want to address the slowdown in volatility of macroeconomic variables

in the US economy1 using a simple model inspired by Greenwood, Hercowitz, and Krusell

(2000). We want to determine whether the slowdown in the volatility of the two shocks

under analysis suffices to explain a significant part of the so called Great Moderation. Arias,

Hansen, and Ohanian (2007) consider a basic RBC model à la Hansen with only one tech-

nology shock. They conclude that such a model can account for a decline of about 50% in

cyclical volatility. They also analyze a model based on Burnside and Eichenbaum (1996)

with endogenous movements in TFP due to labor hoarding and capital utilization. They

explore the explanatory power of different shocks and conclude that the most promising

candidate for understanding the slowdown in volatility is a productivity-like shock.

We are interested in exploring the performance of our simple RBC model under three

specifications for the technology processes. We will consider a general specification allowing

for persistence but without imposing unit roots. Therefore, such a model will be trend

stationary. Then, we will analyze two versions of a difference-stationary model. We want

to determine which specification accounts better for the US business cycle features in the

flavor of the analysis by Hansen (1997). He explores the specifications presented here in an

economy with only one technology shock. He concludes that when technological progress is

difference-stationary, the RBC model does a poor job accounting for features of observed

business cycles.

We think it is challenging to analyze the explanatory power of those statistical models

when the Great Moderation is at hand. In fact, we have found that while the deterministic

1See Appendix F
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growth model accounts better for observed volatilities, the stochastic growth models are

preferable if we want to match correlations or address the slowdown in aggregate volatility

observed in the mid 1980s.

Since Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000) dated the starting

of the Great Moderation2, there has been a growing literature on explaining what is behind

such a phenomenon. Kahn, McConnell, and Pérez-Quirós (2002) claim that the change in

inventory behavior due to improvement in information technology can explain the output

volatility slowdown. Stock and Watson (2002), Kim, Morley, and Piger (2004), Ahmed,

Levin, and Wilson (2004), Leduc and Sill (2006), and Arias, Hansen, and Ohanian (2007) use

different approaches to conclude that the Great Moderation can be explained by ’good luck’

in the form of smaller shocks. Dynan, Elmendorf, and Sichel (2005), Campbell and Hercowitz

(2005), Dynan, Elmendorf, and Sichel (2006), Guerron (2006), Jermann and Quadrini (2006),

and Justiniano and Primiceri (2006) claim that financial innovations are one of the possible

contributing sources to the macro stability observed since mid 1980s. Many of them focus

on financial innovations affecting households. Jermann and Quadrini (2006), however, focus

on innovations that allow for greater financial flexibility of firms. The paper by Justiniano

and Primiceri (2006) is remarkable because they propose the estimation of a DSGE model

with time-varying volatilities. They, as Blanchard and Simon (2001), deny the existence of a

structural break in the first quarter of 1984. However, they consider the volatility slowdown

has been a long term phenomenon initiated in the 1950s and interrupted during 1970s and

early 1980s.

Our results suggest that ’good luck’ in the form of smaller innovations to the technology

processes can account for the bulk of the volatility slowdown in our model. Moreover, we

find that while the neutral technology shock plays the main role in explaining the reduction

in macro volatility, its performance improves when the investment-technology shock is also

at hand. Therefore, in our model economy, the Great Moderation is due not only to smaller

shocks but also to lessened financial frictions. Note that we are considering, as Chari, Kehoe,

and McGrattan (2004) suggest, that investment-specific technology shocks are a proxy for

investment financial frictions.

The paper proceeds as follows. In section 2 we set up our baseline model. In section 3

2Stock and Watson (2002) came up with such an expression to refer to the slowdown in the volatility of

macro variables in the US observed in the mid 1980s
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we proceed with our calibration exercises. We will study the three statistical models under

analysis. Section 4 presents several counterfactuals in order to analyze the Great Moderation

in the framework defined by our model economy. Section 5 concludes.

2 The model

The model is a simplified version of the one proposed by Greenwood, Hercowitz, and Krusell

(2000). In particular, we will abstract from different capital goods and degrees of capital

utilization. We will preserve, however, the existence of both a neutral and an investment-

specific technology shocks.

We will consider three statistical versions of the baseline model in order to assess which

one accounts better for the US business cycle features. First, we will analyze a deterministic

growth version of the model where the stochastic processes are trend stationary. Second, we

will consider a stochastic growth model where the technology processes follow a unit root

with drift. Finally, we will allow for some persistence to the innovation of the investment

specific technology in a stochastic growth model. Therefore, in the first case we will study

an economy where all shocks are temporary. In the second model, all shocks are permanent.

In the last model, we will consider both permanent and transitory shocks. In particular, any

neutral shock will be permanent, while any transitory shock will have both permanent and

transitory effects.

Hansen (1997) performed a similar analysis to the one we propose here but considering

a model with only a neutral technology shock. He concluded that the trend-stationary (but

highly persistent) model does a better job accounting for the business cycle features than

the difference-stationary one.

Since Nelson and Plosser (1982) there has been a large empirical literature about stochas-

tic trends in macro variables. Unit roots and stationary processes differ in their implications

at infinite time horizons, but for any given finite sample, there is a representative from ei-

ther class of models that can account for all the observed features of the data3. In addition,

the lack of power of univariate classical tests for unit roots is well known. Therefore, we

have decided to choose among the three specifications described above using the following

criterion: the most preferred statistical model will be the one able to account for a larger

3For a more detailed discussion on nonstationary time series see Hamilton (1994)
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proportion of the US business cycle properties. Note that we will be performing this test

not only over the whole sample, but also over the two subsamples of interest.

In this economy there is a continuum of households that maximize their lifetime utility

given by

E0

[

∞
∑

t=0

βtU(Ct, Ht)

]

(1)

with

U(Ct, Ht) = lnCt − B
H

1+1/ν
t

1 + 1/ν
(2)

where ν stands for the short-run (Frisch) labor supply elasticity.

We have chosen such a specification because we are not interested in exploring the sta-

tionarity of hours issue4. Therefore, we will use a series for hours that is stationary in levels.

It is well known that the log utility in consumption implies a constant long-run labor supply

in response to a permanent change in technology. Hence, we do not have to worry about

trending hours implied by our model even under the difference-stationary specification.

The representative household maximizes (1) subject to the following budget constraint

Ct +
Kt+1

Vt

= WtHt + (1 − δ + Rt)
Kt

Vt

(3)

where Vt stands for the current level of the investment-specific technology5. In particular,

Vt = 1
P k

t

where P k
t is the (relative) price of investment. Therefore, the budget constraint is

expressed in consumption units.

Optimal behavior requires

1

CtVt

= βEt

[

1

Ct+1Vt+1

(1 − δ + Rt+1)

]

(4)

Ht =

(

1

B

Wt

Ct

)ν

(5)

4See Chang, Doh, and Schorfheide (2007) for an interesting treatment of such an issue and Christiano,

Eichenbaum, and Vigfusson (2003) for an analysis of the implications of different labor input measures in a

SVAR framework.
5Note that a higher V implies a fall in the cost of producing a new unit of capital in terms of output. It

could also be interpreted as an improvement in the quality of new capital produced with a given amount of

resources.
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There is also a continuum of firms that rent capital and labor services from households.

The representative firm solves the following problem6:

max Πt = Yt − WtHt − Rt
Kt

Vt

(6)

s.t. Yt = AtK
α
t H1−α

t (7)

where A is the neutral technology stochastic process.

Optimality requires:

Wt = (1 − α)
Yt

Ht

(8)

Rt = αVt
Yt

Kt

(9)

The capital accumulation equation is given by

(1 + η)Kt+1 = (1 − δ)Kt + Xt (10)

where η is the population growth rate7 and Xt = VtIt. Note that the investment equation is

in efficiency units.

Finally, let us consider the three statistical specifications for the stochastic processes. In

the deterministic growth model the technology processes are modeled as follows:

At = A0e
γat+εat

Vt = V0e
γvt+εvt

The assumptions on the error structure will be explicit in the next section.

In the baseline stochastic growth model, the processes are given by

At = At−1e
γa+εat

Vt = Vt−1e
γv+εvt

Finally, in the last statistical model we will allow for persistence in εv.

6When we proceed with calibration we will introduce an additional parameter µ in the production function

so that output at steady state is equal to 1
7As usual we are considering per capita terms in our model
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Under all the specifications our model economy exhibits long-run growth. Therefore, we

will transform our economy so that we can work with a detrended version of the original

one. Under the first statistical model we know that the following variables are stationary8

Yt

qt
,

Ct

qt
,

It

qt
,

Wt

qt
,

Kt

(qv)t
, Ht, Rt

where

q = e
1

1−α
γa+ α

1−α
γv

and

v = eγv

Let us denote a stationary variable Z by Z̃. Therefore, the stationary equilibrium con-

ditions for this statistical version of the model are given by:

Ỹt = C̃t + Ĩt (11)

Ỹt = A0e
εatK̃t

α
H1−α

t (12)

(1 + η)qvK̃t+1 = (1 − δ)K̃t + V0e
εvt Ĩt (13)

1 = βEt

[

(

eεvt−εvt+1

qv

)

(

C̃t

C̃t+1

)

(1 − δ + Rt+1)

]

(14)

Ht =

(

1

B

W̃t

C̃t

)ν

(15)

Rt = αV0e
εvt

Ỹt

K̃t

(16)

W̃t = (1 − α)
Ỹt

Ht

(17)

Given the detrended version of our economy we can solve for the steady state. Let us

denote the steady state value of a variable Z by Z∗.

Y ∗ = C∗ + I∗ (18)

Y ∗ = A0K
∗αH∗(1−α) (19)

(1 + η)qvK∗ = (1 − δ)K∗ + V0I
∗ (20)

1 = β

(

1

qv

)

(1 − δ + R∗) (21)

8See the appendix for a detailed explanation on obtaining the growth rates for this economy
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H∗ =

(

1

B

W ∗

C∗

)ν

(22)

R∗ = αV0
Y ∗

K∗

(23)

W ∗ = (1 − α)
Y ∗

H∗

(24)

Let us consider now the two difference-stationary models. Beveridge and Nelson (1981)

showed in a model with only one shock that any of the trending variables of these kinds of

models can be decomposed into a permanent component that is a random walk with drift

(a stochastic trend) and a stationary stochastic process. In our case we have to take into

account that the two stochastic processes have a unit root9. Hence, given such a statistical

model, we have that the following variables are stationary

Ct

Qt

,
It

Qt

,
Yt

Qt

, Ht, Rt,
Kt+1

QtVt

,
Wt

Qt

where Qt = A
1

1−α

t V
α

1−α

t .

The stationary equilibrium conditions are:

Ỹt = C̃t + Ĩt (25)

Ỹt =

(

1

qtvt

)α

K̃t
α
H1−α

t (26)

(1 + η)K̃t+1 = (1 − δ)

(

1

qtvt

)

K̃t + Ĩt (27)

1 = βEt

[

(

1

qt+1vt+1

)

(

C̃t

C̃t+1

)

(1 − δ + Rt+1)

]

(28)

Ht =

(

1

B

W̃t

C̃t

)ν

(29)

Rt = α(qtvt)
Ỹt

K̃t

(30)

W̃t = (1 − α)
Ỹt

Ht

(31)

where

qt =
Qt

Qt−1

= e
1

1−α
(γa+εat)+

α

1−α
(γv+εvt) (32)

9For detrending issues there is no difference between having just a random walk with drift or a random

walk with drift plus a moving average component.

7



vt =
Vt

Vt−1

= eγv+εvt (33)

Given that the stationary version of the difference-stationary model satisfies the usual

assumptions, we can solve for the steady-state of this transformed economy. Then,

Y ∗ = C∗ + I∗ (34)

Y ∗ =

(

1

q∗v∗

)

(K∗)α(H∗)1−α (35)

(1 + η)K∗ = (1 − δ)

(

1

q∗v∗

)

K∗ + I∗ (36)

1 = β

(

1

q∗v∗

)

(1 − δ + R∗) (37)

H∗ =

(

1

B

W ∗

C∗

)ν

(38)

R∗ = αq∗v∗
Y ∗

K∗

(39)

W ∗ = (1 − α)
Y ∗

H∗

(40)

where

q∗ = e
1

1−α
γa+ α

1−α
γv

v∗ = eγv

3 Calibration

3.1 Deterministic Growth Model

We will consider the following statistical specification:

lnAt = lnA0 + γat + εat

lnVt = lnV0 + γvt + εvt

While the investment-specific process is approximated by the inverse of the (relative)

price of investment, the neutral technology process is associated with the Solow residual of

this economy. Note that we are assuming a linear time trend for both stochastic processes

which will imply a deterministic trend in many of the variables in our model. Alternatively,
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following Gomme and Rupert (2007) we could have hp-filtered or band-pass filtered {lnAt}

and {lnVt} and assume an autoregressive process on the cyclical component of both series.

In the literature we find different ways of computing the quarterly Solow residual. Cooley

and Prescott (1995) claim that as the BEA produces only annual estimates for the capital

stock, any quarterly series will introduce additional noise in the measure of the Solow resid-

ual. Therefore, they propose a ’conservative’ approach by omitting capital when computing

the neutral technology process. This approach has been widely used in the literature, for a

recent example see Arias, Hansen, and Ohanian (2007). Gomme and Rupert (2007) establish

that another justification for omitting capital could be measurement errors. However, mis-

measurement affects the level of the capital stock but not its time series properties. Thus,

other approaches construct quarterly capital series by iterating on the law of motion for

capital. Note that as Greenwood, Hercowitz, and Krusell (1997) point out, we have to be

careful when constructing our capital stock series since it must be in efficiency units. Figure

1 reports the two alternative measures of the Solow residual10. We will proceed with the

one that takes into account quarterly capital stock series conveniently corrected by qual-

ity improvement. We will be using the database constructed by Vı́ctor Ŕıos-Rull, Raül

Santaeulàlia, and Frank Schorfheide11.

The econometric strategy is as follows:

1. Regress each technology process on a constant and a linear time trend

lnAt = ϕa + γat + εat (41)

lnVt = ϕv + γvt + εvt (42)

2. Generate the corresponding residual series {ε̂at} and {ε̂vt}.

3. Estimate univariate autoregressive processes for those shocks

εat = ρaεat−1 + ξat (43)

εvt = ρv1εvt−1 + ρv2εvt−2 + ξvt (44)

(45)

where ξa ∼ N (0, σ2
ξa

) and ξv ∼ N (0, σ2
ξv

).

10To make easier the comparison we have normalize the first observation for both series equal to 1
11They kindly provided their database. Jonas Fisher also made available his investment price series.
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The estimated parameters are reported in table 1. We observe that in the post-1984 period

there has been a 48% reduction in the volatility of the innovation to the neutral technology

and a 40% reduction in the volatility of the innovation to the investment-specific technology.

We will analyze in section 5 if such a reduction in innovations’ volatilities suffices to explain

the slowdown in the volatility of the macro variables of interest.

In our model the vector of parameters is given by

(α, γa, γv, β, δ, B, ν, η, µ, ϕa, ϕv, ρa, ρv1, ρv2, σξa
, σξv

)

where µ is a scaling parameter. We can estimate (α, γa, γv, η, ϕa, ϕv, ρa, ρv1, ρv2, σξa
, σξv

)

from the data. In order to calibrate the remaining parameters we will consider the following

targets:

Table 1: Calibration Targets

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

H∗ 0.31 0.31 0.31

Y ∗ 1 1 1

(K/V
Y

)∗ 10.288 10.502 9.953

(X
K

)∗ 0.0277 0.0276 0.0279

( I
Y

)∗ 0.28 0.29 0.28
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Given our specification we cannot calibrate both ν and B. In fact, our calibrated B

will be conditional on the choice for the Frisch elasticity parameter. In the literature we

find values for such a parameter ranging from 0.5 to 2. We will simulate our model for

ν = {0.5, 1, 1.5, 2}. The calibrated parameters are reported in table 2.

Table 2: Deterministic Trend: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36

γa 0.000131 0.001413 -0.000824

γv 0.006760 0.005311 0.009438

β 0.995 0.992 0.998

δ 0.0135 0.0131 0.0121

η 0.0034 0.0037 0.0030

µ 0.0086 0.0091 0.0074

ϕa 4.67 4.59 4.83

ϕv -0.16 -0.07 -0.65

ρa 0.98 0.97 0.96

ρv1 1.77 1.71 1.73

ρv2 -0.77 -0.76 -0.73

σξa
0.0073 0.0086 0.0045

σξv
0.0033 0.0037 0.0023

ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}

B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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The ability of our model to account for the US business cycle features is sensitive to the

value of the parameter governing the Frisch elasticity of labor supply. Tables 7, 8, 9, and 10

in appendix B report our results for the grid over ν.

The deterministic trend model, however, is able to account for some relevant features of

US business cycles irrespective of our choice for ν. In particular, the model accounts for

the large fluctuations of investment compared to output, for the small fluctuations of capital

compared to output, and the relatively small fluctuations of hours compared to output.

The volatilities of investment (in efficiency units), output, capital (in efficiency units), and

hours are increasing with the short-run elasticity of labor supply12. The standard deviation

of hours implied by the model is smaller than the standard deviation of labor productivity

which is at odds with the data. This is, however, a typical feature of RBC models with utility

non-linear in hours. Hansen (1997)’s deterministic trend model was able to account for the

pattern in the data by assuming that labor is indivisible and that agents trade employment

lotteries13.

The trend stationary model generates too much volatility in consumption in the first

subsample for any value of the Frisch elasticity. For ν = 1.5 or ν = 2, the model implies

volatilities for investment and capital for the pre-1984 sample that are too large.

Finally, this statistical version of our baseline RBC model cannot generate enough corre-

lation between output and consumption. It generates, however, a large correlation between

labor productivity and output that is at odds with the data. Moreover, the model cannot

account for the change in sign in such a correlation in the second sub-sample.

12See Appendix G for the results when ν = ∞
13The results under this assumptions for our model are reported in appendix G. We conclude that if

the stochastic processes are trend stationary, a model à la Hansen overstates the volatilities of investment,

output, capital, and hours. In such a setting, a model economy with only an investment-specific technology

shock is able to replicate the volatility of hours. Finally, we also conclude that under a difference stationary

framework our model economy is still not able to generate enough volatility for all the variables at hand.
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3.2 Stochastic Growth Model

3.2.1 Random Walk with Drift

Following King, Plosser, and Rebelo (1988) when addressing the difference stationary spec-

ification, we restrict our attention to the following class of parametric forms

Φ(L)(1 − L)log(Xt) = γx + Θ(L)εxt

where Φ(L) and Θ(L) are lag polynomials whose roots are outside the unit circle. The

statistical model to be consider in this section is as follows

lnAt = lnAt−1 + γa + εat

lnVt = lnVt−1 + γv + εvt

which can be rewritten as

lnAt = lnA0 + γat +
t
∑

i=0

εat−i

lnVt = lnV0 + γvt +
t
∑

i=0

εvt−i

Note that any shock to the stochastic trend at time t has a permanent effect in the log-

level of the technology processes. Therefore, we are abstracting from transitory shocks in

this specification which implies that we are just analyzing a lower bound of the effects of

technology shocks.

Following Fisher (2006) and Fernández-Villaverde and Rubio-Ramı́rez (2006) we will

assume
(

εat

εvt

)

∼ N

[(

0

0

)

,D

]

(46)

where D is a diagonal matrix i.e.

D =

(

σ2
a 0

0 σ2
v

)

Our estimates are reported in table 3. Under this specification we also observe a reduction

in the volatility of the innovations to the technology shocks of about 48%.

In this version of the baseline RBC model, our calibration targets are identical to the

ones in the previous subsection. The calibrated parameters are given in the following table:

13



Table 3: Baseline Stochastic Trend: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36

γa 0.000619 0.001489 -0.000734

γv 0.00643 0.00493 0.008762

β 0.9894 0.9897 0.9889

δ 0.01348 0.01401 0.01267

η 0.0034 0.0037 0.0030

µ 0.92443 0.91670 0.93694

σa 0.0074 0.0087 0.0045

σv 0.0054 0.0060 0.0030

ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}

B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}

In tables 11, 12, 13, and 14 of appendix B, we report the results for the different values of

the Frisch elasticity. The results for the volatility of output, investment, capital, and hours

are also sensitive to the value of such a parameter. This statistical specification accounts for

the same qualitative features of the US business cycle as the deterministic trend version.

The difference-stationary model does not overpredict the volatilities of consumption, in-

vestment, and capital. In fact, this statistical version of the model generates lower volatilities

for all the variables than the trend stationary one.

In addition, the stochastic trend model is successful in accounting for the correlation of

consumption and output. But it shares with the deterministic growth model the remaining

unmatched features.

3.2.2 Random Walk with Drift and Moving Average Component

Following Christiano (1988) we will allow for a moving average component in the unit root

specification for the investment-specific technology process. Thus, (46) will be substituted

by

lnVt = lnVt−1 + γv + ρεvt−1 + ξt (47)
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However, we will not modify our statistical specification for the neutral technology pro-

cess since there is no evidence for the inclusion of a moving average component in such a

representation.

Note that (47) allows for both temporary and permanent shocks. In particular, a fraction

1/(1−ρ) of any innovation to the investment-specific shock will be permanent. The remainder

will be temporary.

Our estimation results are reported in table 4. We also observe here a reduction in the

volatility of the innovations to the technology shocks of about 56% for the investment-specific

technology and 48% for the neutral one.

The results over the grid for the elasticity of labor supply with respect to real wage are

reported in tables 15, 16, 17, and 18 in appendix B. This version of the stochastic trend

model shares all the ’virtues’ of the baseline stochastic growth model and improves upon

some of its shortcomings. For example, volatilities of all the variables are larger than in the

baseline case. However, this version of the stochastic growth model also generates too much

correlation with output for consumption and labor productivity.

Table 4: Stochastic Trend with a Moving Average Component: Calibrated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

α 0.36 0.36 0.36

γa 0.000619 0.001489 -0.000734

γv 0.006404 0.004911 0.008739

β 0.9894 0.9897 0.9889

δ 0.01352 0.01404 0.01271

η 0.0034 0.0037 0.0030

µ 0.92439 0.91667 0.93692

ρ 0.618159 0.6359218 0.5071769

σa 0.0074 0.0087 0.0045

σv 0.0025 0.0028 0.0012

ν {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2} {0.5, 1, 1.5, 2}

B {30.02, 9.31, 6.30, 5.18} {30.21, 9.36, 6.34, 5.21} {29.73, 9.22, 6.24, 5.13}
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3.3 Comparing Statistical Models

From our previous analysis we can conclude that irrespective of the value for ν, all the

statistical models are able to qualitatively reproduce the slowdown in volatility. While the

baseline difference-stationary model implies a reduction in the volatility of the variables

at hand of about 50%, the trend-stationary model overpredicts the slowdown for all the

variables but output. Even though the baseline stochastic growth model outperforms the

other two statistical specifications, it over predicts the slowdown in capital, hours, and labor

productivity. The model implies a 50% reduction while in the data we observe about a 35%

slowdown.

To continue our analysis let us set the Frisch elasticity parameter equal to 1. We have

chosen such a value because of the better general performance of our statistical models for

that value of the short-run elasticity of labor supply.

Table 5 reports how much volatility each model is able to account for. We observe that

the trend-stationary model performs better than the difference-stationary models for the

volatility of consumption, investment, output, and hours. However, the stochastic trend

model with a moving average component outperforms the deterministic trend one in ac-

counting for the standard deviation of labor productivity. It is also remarkable that the

stochastic growth model with a moving average component performs relatively better than

the baseline stochastic growth model. Therefore, we conclude that temporary shocks play a

major role in business cycle accounting.

Table 5: ν = 1: σmodel/σdata

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

DT ST ST-MA DT ST ST-MA DT ST ST-MA

c 0.93 0.74 0.74 1.20 0.75 0.75 0.73 0.65 0.65

x 0.76 0.49 0.50 0.98 0.47 0.50 0.66 0.48 0.46

y 0.72 0.63 0.65 0.74 0.62 0.65 0.80 0.66 0.69

k 0.90 0.47 0.98 1.07 0.47 1 0.60 0.48 0.64

h 0.35 0.15 0.16 0.46 0.16 0.18 0.28 0.12 0.14

y/h 0.89 0.91 0.94 0.95 0.96 0.97 0.68 0.71 0.74
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Let us also analyze the performance of the statistical specifications of our RBC model

in terms of accounting for correlation with output. From table 6 we can conclude that the

stochastic growth versions of our model account better for the correlation of all variables but

labor productivity. However, as we concluded in the previous subsections, all the versions of

the RBC model under analysis perform very poorly in matching the low correlation between

output and labor productivity. Moreover, none of them is able to reproduce the change in

sign we observe in the post-1984 period.

Hansen concluded that the deterministic growth model is the best one accounting for

correlations of all the variables with output. Conversely, from our results we conclude that

the stochastic growth model performs significantly better than the deterministic growth one.

Table 6: ν = 1: ρmodel/ρdata

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

DT ST ST-MA DT ST ST-MA DT ST ST-MA

c 0.28 1.13 1.13 0.05 1.15 1.12 0.25 0.99 1.16

x 0.89 0.96 0.99 0.89 0.97 0.98 0.92 1.19 1.01

y 1 1 1 1 1 1 1 1 1

k 0.92 0.86 0.94 0.85 0.79 0.90 1.22 1.19 1.15

h 0.90 0.97 0.98 0.87 0.98 0.98 0.93 0.94 1.01

y/h 7.91 8.91 8.90 3.39 4.26 4.26 -1.93 -2.13 -2.15

Given the above, choosing one specification over the others depends upon what we are

attempting to explain. If we were interested in matching volatilities we would choose, as

Hansen (1997), the deterministic growth model. If we wanted to match correlations, we

would choose a stochastic growth model. Finally, if we wanted to match the magnitude of

the volatility slowdown in the 1980s, we would also choose a stochastic growth model.

4 The Great Moderation

So far we have performed our analysis allowing for changes in the structural parameters over

the two subsamples of interest. In such a way we have shown that any of the statistical
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versions of our RBC model is able to account for a slowdown in macro volatilities. However,

we are more interested in analyzing that part of the performance of our model due only to

’good luck’.

Thus, to better assess the relative importance of each technology shock in explaining the

Great Moderation, we will perform some counterfactuals in the spirit of the ones performed

by Arias, Hansen, and Ohanian (2007). In particular, we will proceed with three experiments.

For all of them we will calibrate the parameters of the model to match the targets for the

whole sample (i.e., we will fix them equal to the first column of tables 2, 3, and 4).

In the first counterfactual we will analyze the explicative power of the neutral tech-

nology shock. To do so, we will set the volatility of the innovation to the investment-specific

technology to match its volatility for the entire sample. Therefore, the only time-varying

parameter is the standard deviation of the neutral innovation. The second counterfactual

is analogous to the first one but we focus on the investment-specific technology shock. Fi-

nally, in the third counterfactual we explore the explicative power of both shocks jointly

by letting their standard deviations vary across subsamples.

The results for the first experiment are reported in table 19 of appendix C. We observe

that while the stochastic growth models can reproduce a large fraction of the slowdown

observed in the data, the trend-stationary model does only an acceptable job of accounting

for the slowdown in output and labor productivity volatilities. Our main conclusion from

this experiment is that smaller neutral technology innovations suffice to explain a large

proportion of the aggregate stability observed in the mid 1980s if the model economy is

difference stationary.

Table 20 in appendix C presents the results of the second counterfactual. We conclude

that the role of the investment-specific shock as a single actor is greatly reduced. For example,

for the deterministic trend case we have that although the investment-specific shock is 62%

as volatile in the second subperiod as the first, this has a very small effect on the volatility

of all the endogenous variables. In fact, it implies only a 2% slowdown in output volatility.

We get similar results for the stochastic growth models.

Finally, table 21 reports the results for the third experiment. Under this scenario we

can quantify the relative importance of the interaction between the two shocks active in our

model economy. Here all the models are able to imply volatility slowdowns relatively similar

to the ones in the data.
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We conclude that while the neutral shock is the main driving force in the slowdown

in volatilities generated by our model, allowing for a larger financial flexibility substantially

improves its ability to reproduce the magnitude of the observed slowdown in macro variability

for the US economy. Therefore, the Great Moderation in our setting is not due only to ’good

luck’ but also to the interaction between the two technology shocks.

We have shown that an economy with only technology shocks is able to reproduce almost

perfectly the slowdown in the standard deviation of consumption, investment, and output.

However, such an economy cannot completely account for the magnitude of the reduction in

the volatility of capital, hours, and labor productivity. In particular, all statistical specifica-

tions of our model economy overstate the mildness of such variables.

5 Conclusion

We have shown that the choice of the statistical model for the stochastic processes in an

RBC model with two technology shocks is not a trivial one. In fact, one model would be

preferred to the others depending on the features of the business cycle the researcher wants

to match.

We have concluded that even though the neutral technology shock is the main driving

force in replicating the Great Moderation, having two technology shocks translates into

a better accounting for such a macroeconomic phenomenon. Therefore, the cross effects

seem to be relevant. However, a bivariate specification of the innovations to the technology

processes does not translate into a significative improvement of the performance of the model

under analysis(see appendix G).

Our model is not able to account for the slowdown in the volatilities of capital, hours,

and labor productivity. In addition, the performance of our model for all the statistical spec-

ifications worsens for the post-1984 subsample both in terms of volatilities and correlations.

In particular, none of our models is able to capture the change in sign for the correlation be-

tween output and labor productivity. It would be interesting to perform the present analysis

with a model rich enough to address the shortcomings of this paper.
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A Balanced Growth Path

From the feasibility constraint we can conclude that output, consumption, and investment

grow at the same rate

Yt = Ct + It

Yt

Yt−1

=
Ct

Ct−1

Ct−1

Yt−1

+
It

It−1

It−1

Yt−1

gY = gC
Ct−1

Yt−1

+ gI
It−1

Yt−1

Therefore, gY is constant if and only if gY = gC = gI .

Let us consider now the investment equation

(1 + η)Kt+1 = (1 − δ)Kt + VtIt

(1 + η)
Kt+1

Kt

= (1 − δ) +
VtIt

Kt

(1 + η)gK = (1 − δ) +
VtIt

Kt

gK is constant if and only if (V I) grows at the same rate as K which requires

gK = gIgV

Let us analyze the production function

Yt = AtK
α
t H1−α

t

gY = gAgα
Kg1−α

H

As we are considering hours are stationary, we have that gH = 1. Hence,

gY = gAgα
K

= gA(gY gV )α

Therefore,

gY = g
1

1−α

A g
α

1−α

V

Let us consider the deterministic growth model. We will have that

gY = e
1

1−α
γa+ α

1−α
γv (48)

gV = eγv (49)
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which implies

gK = e
1

1−α
(γa+γv) (50)

Let us consider the stochastic growth model. Then, we will have

gY = A
1

1−α

t V
α

1−α

t (51)

(52)

and

gK = A
1

1−α

t V
1

1−α

t (53)

B Calibration: Results
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Table 7: Deterministic Trend: ν = 0.5

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.86 0.30 1.07 0.78 1.27 0.14 0.62 0.81 0.44 0.26 0.58 0.35

x 5.77 0.89 3.97 0.74 6.85 0.89 5.92 0.71 3.47 0.92 2.04 0.81 0.51 0.35

y 1.73 1 1.11 1 2.07 1 1.34 1 0.99 1 0.70 1 0.48 0.52

k 0.59 0.36 0.48 0.31 0.68 0.39 0.65 0.32 0.44 0.27 0.23 0.31 0.65 0.35

h 1.88 0.87 0.40 0.72 2.11 0.87 0.57 0.68 1.46 0.90 0.24 0.80 0.69 0.42

y/h 0.94 0.11 0.87 0.95 1.06 0.23 1.04 0.91 0.72 -0.46 0.52 0.96 0.68 0.50
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Table 8: Deterministic Trend: ν = 1

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.86 0.26 1.07 0.78 1.27 0.04 0.62 0.81 0.45 0.20 0.58 0.35

x 5.77 0.89 4.40 0.79 6.85 0.89 6.69 0.79 3.47 0.92 2.30 0.85 0.51 0.34

y 1.73 1 1.24 1 2.07 1 1.53 1 0.99 1 0.79 1 0.48 0.52

k 0.59 0.36 0.53 0.33 0.68 0.39 0.73 0.33 0.44 0.27 0.26 0.33 0.65 0.35

h 1.88 0.87 0.66 0.78 2.11 0.87 0.97 0.76 1.46 0.90 0.41 0.84 0.69 0.42

y/h 0.94 0.11 0.84 0.87 1.06 0.23 1.01 0.78 0.72 -0.46 0.49 0.89 0.68 0.49

Table 9: Deterministic Trend: ν = 1.5

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.86 0.22 1.07 0.78 1.26 0.002 0.62 0.81 0.46 0.16 0.58 0.37

x 5.77 0.89 4.72 0.82 6.85 0.89 7.21 0.83 3.47 0.92 2.48 0.87 0.51 0.34

y 1.73 1 1.34 1 2.07 1 1.68 1 0.99 1 0.85 1 0.48 0.51

k 0.59 0.36 0.57 0.34 0.68 0.39 0.79 0.33 0.44 0.27 0.27 0.34 0.65 0.34

h 1.88 0.87 0.85 0.81 2.11 0.87 1.26 0.80 1.46 0.90 0.54 0.86 0.69 0.43

y/h 0.94 0.11 0.82 0.79 1.06 0.23 1.01 0.66 0.72 -0.46 0.47 0.82 0.68 0.47
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Table 10: Deterministic Trend: ν = 2

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.86 0.20 1.07 0.78 1.26 -0.03 0.62 0.81 0.46 0.14 0.58 0.37

x 5.77 0.89 4.99 0.85 6.85 0.89 7.60 0.85 3.47 0.92 2.64 0.89 0.51 0.35

y 1.73 1 1.43 1 2.07 1 1.78 1 0.99 1 0.91 1 0.48 0.51

k 0.59 0.36 0.60 0.34 0.68 0.39 0.83 0.34 0.44 0.27 0.29 0.34 0.65 0.35

h 1.88 0.87 1.01 0.83 2.11 0.87 1.48 0.82 1.46 0.90 0.64 0.88 0.69 0.43

y/h 0.94 0.11 0.82 0.72 1.06 0.23 1.01 0.55 0.72 -0.46 0.46 0.75 0.68 0.46

Table 11: Baseline Stochastic Trend: ν = 0.5

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.67 0.89 1.07 0.78 0.78 0.90 0.62 0.81 0.40 0.90 0.58 0.51

x 5.77 0.89 2.61 0.84 6.85 0.89 2.96 0.85 3.47 0.92 1.55 0.85 0.51 0.52

y 1.73 1 1.04 1 2.07 1 1.21 1 0.99 1 0.62 1 0.48 0.51

k 0.59 0.36 0.26 0.30 0.68 0.39 0.30 0.30 0.44 0.27 0.16 0.31 0.65 0.50

h 1.88 0.87 0.18 0.82 2.11 0.87 0.20 0.83 1.46 0.90 0.10 0.83 0.69 0.50

y/h 0.94 0.11 0.90 0.99 1.06 0.23 1.05 0.99 0.72 -0.46 0.53 0.99 0.68 0.50
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Table 12: Baseline Stochastic Trend:ν = 1

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.68 0.88 1.07 0.78 0.80 0.90 0.62 0.81 0.40 0.89 0.58 0.50

x 5.77 0.89 2.80 0.85 6.85 0.89 3.19 0.86 3.47 0.92 1.67 0.86 0.51 0.52

y 1.73 1 1.09 1 2.07 1 1.29 1 0.99 1 0.65 1 0.48 0.50

k 0.59 0.36 0.28 0.31 0.68 0.39 0.32 0.31 0.44 0.27 0.17 0.32 0.65 0.53

h 1.88 0.87 0.29 0.84 2.11 0.87 0.33 0.85 1.46 0.90 0.17 0.85 0.69 0.52

y/h 0.94 0.11 0.86 0.98 1.06 0.23 1.02 0.98 0.72 -0.46 0.51 0.98 0.68 0.50

Table 13: Baseline Stochastic Trend: ν = 1.5

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.69 0.88 1.07 0.78 0.81 0.89 0.62 0.81 0.41 0.89 0.58 0.51

x 5.77 0.89 2.96 0.87 6.85 0.89 3.33 0.87 3.47 0.92 1.75 0.87 0.51 0.53

y 1.73 1 1.15 1 2.07 1 1.33 0.87 0.99 1 0.68 1 0.48 0.51

k 0.59 0.36 0.29 0.31 0.68 0.39 0.33 0.31 0.44 0.27 0.17 0.32 0.65 0.52

h 1.88 0.87 0.37 0.85 2.11 0.87 0.43 0.86 1.46 0.90 0.22 0.86 0.69 0.51

y/h 0.94 0.11 0.85 0.97 1.06 0.23 0.99 0.98 0.72 -0.46 0.50 0.97 0.68 0.51
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Table 14: Baseline Stochastic Trend:ν = 2

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.70 0.88 1.07 0.78 0.81 0.89 0.62 0.81 0.41 0.89 0.58 0.51

x 5.77 0.89 3.04 0.87 6.85 0.89 3.47 0.88 3.47 0.92 1.82 0.88 0.51 0.52

y 1.73 1 1.17 1 2.07 1 1.37 1 0.99 1 0.70 1 0.48 0.51

k 0.59 0.36 0.30 0.32 0.68 0.39 0.35 0.32 0.44 0.27 0.18 0.32 0.65 0.51

h 1.88 0.87 0.43 0.86 2.11 0.87 0.50 0.87 1.46 0.90 0.25 0.87 0.69 0.50

y/h 0.94 0.11 0.83 0.96 1.06 0.23 0.97 0.97 0.72 -0.46 0.50 0.97 0.68 0.52

Table 15: Stochastic Trend with Moving Average Component:ν = 0.5

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.66 0.89 1.07 0.78 0.78 0.88 0.62 0.81 0.39 0.95 0.58 0.50

x 5.77 0.89 2.64 0.86 6.85 0.89 3.09 0.86 3.47 0.92 1.46 0.92 0.51 0.47

y 1.73 1 1.06 1 2.07 1 1.24 1 0.99 1 0.64 1 0.48 0.52

k 0.59 0.36 0.60 0.32 0.68 0.39 0.66 0.32 0.44 0.27 0.27 0.30 0.65 0.41

h 1.88 0.87 0.19 0.84 2.11 0.87 0.22 0.83 1.46 0.90 0.10 0.91 0.69 0.45

y/h 0.94 0.11 0.91 0.99 1.06 0.23 1.06 0.99 0.72 -0.46 0.55 0.99 0.68 0.52
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Table 16: Stochastic Trend with Moving Average Component: ν = 1

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.68 0.88 1.07 0.78 0.80 0.87 0.62 0.81 0.40 0.94 0.58 0.50

x 5.77 0.89 2.87 0.88 6.85 0.89 3.37 0.87 3.47 0.92 1.58 0.93 0.51 0.47

y 1.73 1 1.12 1 2.07 1 1.33 1 0.99 1 0.68 1 0.48 0.51

k 0.59 0.36 0.58 0.34 0.68 0.39 0.68 0.35 0.44 0.27 0.28 0.31 0.65 0.41

h 1.88 0.87 0.31 0.85 2.11 0.87 0.37 0.85 1.46 0.90 0.16 0.91 0.69 0.43

y/h 0.94 0.11 0.88 0.98 1.06 0.23 1.03 0.98 0.72 -0.46 0.53 0.99 0.68 0.51

Table 17: Stochastic Trend with Moving Average Component: ν = 1.5

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.69 0.87 1.07 0.78 0.81 0.86 0.62 0.81 0.41 0.94 0.58 0.51

x 5.77 0.89 3.06 0.88 6.85 0.89 3.57 0.88 3.47 0.92 1.65 0.93 0.51 0.46

y 1.73 1 1.18 1 2.07 1 1.38 1 0.99 1 0.70 1 0.48 0.51

k 0.59 0.36 0.60 0.36 0.68 0.39 0.70 0.36 0.44 0.27 0.29 0.32 0.65 0.41

h 1.88 0.87 0.40 0.86 2.11 0.87 0.48 0.86 1.46 0.90 0.21 0.92 0.69 0.44

y/h 0.94 0.11 0.86 0.97 1.06 0.23 1 0.97 0.72 -0.46 0.51 0.99 0.68 0.51
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Table 18: Stochastic Trend with Moving Average Component: ν = 2

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.70 0.86 1.07 0.78 0.82 0.85 0.62 0.81 0.41 0.94 0.58 0.50

x 5.77 0.89 3.18 0.89 6.85 0.89 3.72 0.89 3.47 0.92 1.72 0.94 0.51 0.46

y 1.73 1 1.21 1 2.07 1 1.42 1 0.99 1 0.72 1 0.48 0.51

k 0.59 0.36 0.61 0.37 0.68 0.39 0.71 0.37 0.44 0.27 0.29 0.32 0.65 0.41

h 1.88 0.87 0.47 0.87 2.11 0.87 0.56 0.86 1.46 0.90 0.24 0.92 0.69 0.43

y/h 0.94 0.11 0.84 0.96 1.06 0.23 0.98 0.96 0.72 -0.46 0.51 0.98 0.68 0.52
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C The Great Moderation: Experiments

Table 19: Experiment 1

DT ST ST-MA Data

%σpre %σpost σpre/σpost %σpre %σpost σpre/σpost %σpre %σpost σpre/σpost σpre/σpost

c 0.91 0.79 0.88 0.79 0.47 0.59 0.75 0.41 0.54 0.58

x 4.74 3.90 0.82 3.13 2.19 0.70 2.80 1.64 0.59 0.51

y 1.45 0.83 0.57 1.28 0.70 0.54 1.29 0.68 0.53 0.48

k 0.57 0.50 0.88 0.31 0.22 0.71 0.38 0.30 0.79 0.65

h 0.70 0.59 0.84 0.33 0.23 0.69 0.30 0.18 0.59 0.69

y/h 0.98 0.55 0.56 1.01 0.55 0.54 1.01 0.53 0.52 0.68

Table 20: Experiment 2

DT ST ST-MA Data

%σpre %σpost σpre/σpost %σpre %σpost σpre/σpost %σpre %σpost σpre/σpost σpre/σpost

c 0.94 0.87 0.92 0.70 0.65 0.93 0.69 0.65 0.94 0.58

x 4.78 4.44 0.93 2.93 2.49 0.83 3.05 2.44 0.80 0.51

y 1.26 1.24 0.98 1.10 1.09 0.99 1.14 1.10 0.97 0.48

k 0.59 0.54 0.92 0.29 0.24 0.83 0.66 0.35 0.53 0.65

h 0.72 0.66 0.92 0.31 0.26 0.84 0.33 0.26 0.78 0.69

y/h 0.85 0.84 0.98 0.87 0.86 0.98 0.88 0.87 0.98 0.68

32



Table 21: Experiment 3

DT ST ST-MA Data

%σpre %σpost σpre/σpost %σpre %σpost σpre/σpost %σpre %σpost σpre/σpost σpre/σpost

c 0.98 0.57 0.58 0.80 0.43 0.53 0.79 0.40 0.51 0.58

x 5.07 2.90 0.57 3.23 1.71 0.53 3.35 1.64 0.49 0.51

y 1.47 0.78 0.53 1.29 0.69 0.54 1.32 0.68 0.51 0.48

k 0.62 0.36 0.59 0.32 0.17 0.53 0.68 0.30 0.45 0.65

h 0.76 0.43 0.57 0.34 0.18 0.53 0.36 0.17 0.49 0.69

y/h 0.99 0.52 0.53 1.02 0.55 0.54 1.03 0.53 0.52 0.68
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D Log-linearization around the steady state

D.1 Deterministic Trend Model

Let us define x̂t = ln(X̃t/X
∗), then the log-linearized system of equations is given by:

ŷt =
C∗

Y ∗

ĉt +
I∗

Y ∗

ît (54)

ŷt = αk̂t + (1 − α)ĥt + εat (55)

qvk̂t+1 = (1 − δ)k̂t + V0
I∗

K∗

[eεvt(1 + ît) − 1] (56)

0 = Et

[

ĉt − ĉt−1 + εvt − εvt+1 +

(

R∗

1 − δ + R∗

)

r̂t+1

]

(57)

ĥt = ν(ŵt − ĉt − b̂t) (58)

r̂t = ŷt − k̂t + εvt (59)

ŵt = ŷt − ĥt (60)

D.2 Stochastic Trend Model

Let us define x̂t = ln(X̃t/X
∗), then the log-linearized system of equations is given by:

ŷt = ĉt
C∗

Y ∗

+ ît
I∗

Y ∗

(61)

ŷt = −α(q̂t + v̂t) + αk̂t + (1 − α)ĥt (62)

k̂t+1 = (1 − δ)

(

1

q∗v∗

)

[

k̂t − (q̂t + v̂t)
]

+ ît
I∗

K∗

(63)

0 = Et

[

ĉt − ĉt−1 − (q̂t+1 + v̂t+1) + r̂k
t+1]
]

(64)

r̂k
t =

(

R∗

Rk∗

)

r̂t (65)

ĥt = ν(ŵt − ĉtb̂t) (66)

b̂t = ρbb̂t−1 + εbt (67)

r̂t = ŷt − k̂t + q̂t + v̂t (68)

ŵt = ŷt − ĥt (69)

q̂t =
1

1 − α
εat +

α

1 − α
εvt (70)

v̂t = εvt (71)

34



The above is a system of 11 equations and 11 unknowns: {ĉt, ît, ŷt, k̂t, ĥt, b̂t, r̂t, r̂
k
t , q̂t, v̂t, }. To

proceed with estimation we need to also consider the following conditions:

q∗ = e
1

1−α
γa+ α

1−α
γv

v∗ = eγv

R∗ =
q∗v∗

β
− (1 − δ)

Rk∗ = (1 − δ) + R∗ =
q∗v∗

β
I∗

K∗

= 1 − (1 − δ)
1

q∗v∗

K∗

Y ∗

=
1

αq∗v∗

R∗

C∗

Y ∗

=

(

1 − δ

q∗v∗

− 1

)

K∗

Y ∗

+ 1

I∗

Y ∗

= 1 −
C∗

Y ∗

H∗ =

(

1

B∗

)
ν

1+ν

[

(1 − α)
Y ∗

C∗

]
ν

1+ν
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E Figures

Figure 1: Solow residual

F The Great Moderation: Empirical Evidence
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Table 22: Variables used in the paper: Percentage Standard Deviations

1948:1-2006:4 Pre-1984 Post-1984 σpost/σpre

GNP 1.73 2.07 0.99 0.48

Consumption 0.92 1.07 0.62 0.58

Investment(efficiency units) 5.77 6.85 3.47 0.51

Capital(efficiency units) 0.59 0.68 0.44 0.65

Hours 1.88 2.11 1.46 0.69

Labor productivity 0.94 1.06 0.72 0.68

Source:Ŕıos-Rull, Santaeulàlia, and Schorfheide Data Set. We have HP-filtered the log of

real variables.
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Table 23: Real GDP and components

1950-2006 Pre-1984 Post-1984 Post/Pre

%σx ρ(GDP, x) %σx ρ(GDP, x) %σx ρ(GDP, x)

GDP 1.62 1 1.96 1 0.92 1 0.47

Personal consumption 1.27 0.78 1.52 0.77 7.50 0.82 0.49

Durable goods 5.07 0.66 6.11 0.66 2.89 0.63 0.47

Nondurable goods 1.09 0.73 1.27 0.73 0.75 0.79 0.59

Services 0.69 0.70 0.75 0.72 0.57 0.65 0.76

Gross Domestic Private Investment 7.45 0.86 8.74 0.86 4.96 0.87 0.57

Fixed Investment 4.93 0.81 5.66 0.79 3.60 0.90 0.64

Non residential 4.84 0.75 5.23 0.75 4.22 0.84 0.81

Structures 5.01 0.47 4.84 0.48 5.27 0.59 1.09

Equipment and Software 5.43 0.81 6.10 0.81 4.23 0.87 0.69

Residential 9.58 0.54 11.61 0.55 5.30 0.48 0.46

Exports 5.19 0.38 6.13 0.36 3.38 0.52 0.55

Imports 4.95 0.69 5.83 0.67 3.21 0.79 0.55

Government cons and inv 3.51 0.15 4.46 0.18 1.07 -0.17 0.24

Source: Table 1.1.4 and 1.1.5 from NIPA. We have HP-filtered the log of the real variables.
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Table 24: Gross value added by sector

1950-2006 Pre-1984 Post-1984 Post/Pre

%σx ρ(GDP, x) %σx ρ(GDP, x) %σx ρ(GDP, x)

GDP 1.62 1 1.96 1 0.92 1 0.47

Business 2.03 0.99 2.43 0.99 1.20 0.99 0.49

Nonfarm 2.16 0.99 2.61 0.99 1.21 0.99 0.46

Farm 9.48 -0.08 9.71 -0.14 9.16 0.095 0.94

Households and Institutions 0.79 0.07 0.76 0.04 0.83 0.17 1.09

Households 1.12 0.16 0.89 0.14 1.39 0.30 1.55

Nonprofit institutions 1.31 -0.10 1.50 -0.08 0.98 -0.21 0.65

General government 1.59 0.18 2.02 0.22 0.49 -0.30 0.24

Housing 1.05 0.04 0.71 - 0.05 1.4 0.22 2.00

Source: Table 1.3.4 and 1.3.5 from NIPA. We have HP-filtered the log of the real variables.

G Extensions

G.1 Hansen-Rogerson Preferences

So far our analysis have only considered the intensive margin of the labor input. Here we will

assume another specification for household’s preferences so that we will analyze the extensive

margin of the labor input. To do so let us assume the following:

1. Labor is indivisible.

2. Agents can trade employment lotteries.

3. Households have a constant relative risk-aversion utility function with a coefficient of

risk-aversion equal to 1.

Therefore, (2) will be substituted by

U(Ct, Ht) = lnCt − BHt (72)

39



which implies that the short-run Frisch elasticity of labor supply is infinite.

It is obvious that the (detrended) equilibrium conditions under all the statistical models

are identical but the one associated with the labor supply. In particular, (15) and (29) will

be substituted by
W̃t

C̃t

= B (73)

We need to recalibrate only the parameter linked to the weight of hours in the utility

function i.e. B. In fact, we have that

B = (1 − α)
Y ∗

C∗

1

H∗

(74)

We will stochastic simulate our model only for the deterministic trend case and the

baseline stochastic trend one. We will perform our analysis only for the whole sample.

We will first allow for the presence of both technology shocks. Then, we will perform

two counterfactuals in order to asses the relative importance of each technology shock in

accounting for the business cycles features observed in the US data. On the one hand, we

will shut down the investment specific shock and investigate the volatilities implied by our

model. On the other hand, we will shut down the neutral shock and perform the same

analysis.

Table 25: Deterministic Trend Model: 1948:1-2006:4

Data Both shocks Only N-shock Only I-shock

%σz ρzy %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata

c 0.92 0.78 0.89 0.08 0.97 0.55 0.94 0.60 0.70 -0.84 0.76

x 5.77 0.89 6.99 0.93 1.21 4.01 0.99 0.69 5.72 0.97 0.99

y 1.73 1 2.07 1 1.20 1.68 1 0.97 1.21 1 0.70

k 0.59 0.36 0.81 0.35 1.37 0.39 0.33 0.66 0.71 0.44 1.20

h 1.88 0.87 2.19 0.91 1.16 1.18 0.99 0.63 1.84 0.98 0.98

y/h 0.94 0.11 0.89 0.08 0.95 0.55 0.94 0.59 0.70 -0.84 0.74

From table G.1 we conclude that the volatilities of all the variables at hand are larger

than in the divisible labor economy. Moreover, the Hansen-Rogerson economy overstates
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the volatilities of investment, output, capital, and hours when both shocks are at hand. It

is remarkable that, as in Hansen (1997), the volatility of hours is larger than the volatility

of labor productivity.

The model performs better, in terms of accounting for volatilities, when there is only

an investment-specific shock than when there is only a neutral one. In fact, a model with

Hansen-Rogerson preferences and only an I-shock is able to replicate almost perfectly the

standard deviation of hours.

Table 26: Stochastic Trend Model: 1948:1-2006:4

Data Both shocks Only N-shock Only I-shock

%σz ρzy %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata %σz ρzy σmodel/σdata

c 0.92 0.78 0.75 0.87 0.82 0.72 0.98 0.78 0.21 -0.81 0.23

x 5.77 0.89 3.80 0.91 0.66 3.08 0.99 0.53 2.23 0.99 0.39

y 1.73 1 1.41 1 0.82 1.38 1 0.81 0.32 1 0.18

k 0.59 0.36 0.37 0.33 0.63 0.30 0.35 0.51 0.22 0.38 0.37

h 1.88 0.87 0.85 0.90 0.45 0.69 0.98 0.37 0.50 0.97 0.27

y/h 0.94 0.11 0.75 0.87 0.80 0.72 0.98 0.77 0.21 -0.81 0.22

From the above table we conclude that a stochastic growth model is not able to generate

enough volatility in this scenario either. Under this specification, the neutral shock is the

one able to account for the bulk of the volatility for all the variables at hand.

G.2 Multivariate Analysis

We have performed univariate analysis of the error structure associated to the different

specifications for the technology processes. We are interested here in exploring a multivariate

error structure in order to analyze the interaction between both innovations.

G.2.1 Deterministic Growth Model

We will consider the following specification

lnAt = ϕa + γat + εat (75)
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lnVt = ϕv + γvt + εvt (76)

and we assume
(

εat

εvt

)

= Γ1

(

εat−1

εvt−1

)

+ Γ2

(

εat−2

εvt−2

)

+

(

ξat

ξvt

)

(77)

where
(

ξat

ξvt

)

∼ N (0, Σξ) (78)

We will restrict our attention to the performance of the model under a unit Frisch elastic-

ity. Our estimates are reported in the following table. All the vector autoregressive processes

estimated satisfy the stability condition i.e. there is no root that lies outside the unit circle.

Table 27: Deterministic Trend: Estimated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

γa 0.000131 0.001413 -0.000824

γv 0.006760 0.005311 0.009438

ϕa 4.67 4.59 4.83

ϕv -0.16 -0.07 -0.65

Γ1

(

0.999477∗ −0.200311∗

0.072667∗ 1.791754∗

) (

1.032293∗ −0.161686

0.051353∗ 1.735752∗

) (

0.753032∗ −0.140866

0.075780 1.635421∗

)

Γ2

(

−0.022612 0.197971∗

−0.081605∗ −0.805428∗

) (

−0.075576 0.122759

−0.055663∗ −0.784986∗

) (

0.201175∗ 0.170665

−0.127270∗ −0.644031∗

)

Σξ

(

5.22 · 10−5 −6.80 · 10−6

· 1.11 · 10−5

) (

7.28 · 10−5 −9.98 · 10−6

· 1.40 · 10−5

) (

1.98 · 10−5 −2.89 · 10−6

· 4.73 · 10−6

)

The results obtained from the stochastic simulation of our model economy are summarized

in the following table:
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Table 28: Deterministic Trend: Multivariate Analysis Results

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.97 0.33 1.07 0.78 1.37 0.24 0.62 0.81 0.51 -0.23 0.58 0.37

x 5.77 0.89 4.26 0.71 6.85 0.89 5.99 0.69 3.47 0.92 2.87 0.88 0.51 0.48

y 1.73 1 1.26 1 2.07 1 1.49 1 0.99 1 0.88 1 0.48 0.59

k 0.59 0.36 0.51 0.34 0.68 0.39 0.63 0.15 0.44 0.27 0.42 0.51 0.65 0.67

h 1.88 0.87 0.66 0.71 2.11 0.87 0.89 0.65 1.46 0.90 0.56 0.89 0.69 0.63

y/h 0.94 0.11 0.92 0.86 1.06 0.23 1.13 0.80 0.72 -0.46 0.46 0.84 0.68 0.41
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Let us compare the previous table with table 8. The direction of change for the volatili-

ties of the different variables of interest is not unilateral. For example, while the volatility of

consumption is larger in the multivariate setting, the volatility of capital is lower. The per-

formance of the deterministic trend model, however, improves in accounting for the volatility

slowdown of investment, capital, and hours.

G.2.2 Stochastic Growth Model

Let us consider the following

lnAt = lnAt−1 + γat + εat (79)

lnVt = lnVt−1 + γvt + εvt (80)

and we assume
(

εat

εvt

)

= Γ1

(

εat−1

εvt−1

)

+

(

ξat

ξvt

)

(81)

where
(

ξat

ξvt

)

∼ N (0, Σξ) (82)

The results from the estimation of the above specification are reported in the following

table.

Table 29: Stochastic Trend: Estimated Parameters

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4

γa 0.000619 0.001489 -0.000734

γv 0.00643 0.00493 0.008762

Γ

(

0.024185 −0.205103∗

0.070240∗ 0.805801∗

) (

0.055551 −0.178899

0.065821 0.782526∗

) (

−0.191304 0.017916

0.105430∗ 0.732534∗

)

Σξ

(

5.30 · 10−5 −6.96 · 10−6

· 1.14 · 10−5

) (

7.35 · 10−5 −9.31 · 10−6

· 1.54 · 10−5

) (

1.98 · 10−5 −2.561 · 10−6

· 4.91 · 10−6

)

Our results for this model economy are reported in the following table:
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Table 30: Stochastic Trend: Multivariate Analysis Results

1948:1-2006:4 1948:1-1983:4 1984:1-2006:4 σpost/σpre

%σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel %σdata ρdata %σmodel ρmodel Data Model

c 0.92 0.78 0.68 0.95 1.07 0.78 0.78 0.96 0.62 0.81 0.41 0.95 0.58 0.53

x 5.77 0.89 2.17 0.91 6.85 0.89 2.47 0.91 3.47 0.92 1.34 0.90 0.51 0.54

y 1.73 1 1.05 1 2.07 1 1.22 1 0.99 1 0.63 1 0.48 0.52

k 0.59 0.36 0.22 0.32 0.68 0.39 0.25 0.31 0.44 0.27 0.13 0.32 0.65 0.52

h 1.88 0.87 0.23 0.89 2.11 0.87 0.26 0.90 1.46 0.90 0.14 0.88 0.69 0.54

y/h 0.94 0.11 0.86 0.99 1.06 0.23 0.99 0.99 0.72 -0.46 0.51 0.99 0.68 0.52
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Comparing the previous table with table 12 we conclude that the multivariate specifi-

cation implies even lower volatilities for all the variables at hand for all the periods. The

performance in terms of replicating the magnitude of the Great Moderation, however, does

not change significantly.

From this analysis, we conclude that there is no a significative gain from using a multi-

variate specification for the innovations.
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