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Abstract

I provide a theoretical model for two empirical phenomena observed in the NYSE and

Nasdaq markets. First is the bid-ask bounce recently studied by Heston, Korajczuk and

Sadka (HKS, 2008) for high-frequency data. Second is a temporary liquidity squeeze ob-

served by Madureira and Underwood (2008) in the event studies. The model I invoke to

explain empirical observations of those two groups of authors, is based on Easley, Kiefer,

O’Hara and Paperman (EKHP, 1996) equations for informed trading. The estimation was

performed by maximizing correlations between MCMC-generated paths and empirical

time series, which also maximizes the entropy. 

My modeling rejects the rational expectation paradigm on a short-to-medium (15 min.

to 2 days) time scale. I conclude that, given statistical uncertainty, roughly half of the bid-

ask spread can be attributed to the arrival of new economic information and the other

half to microstructure friction.
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■ 1. Introduction

Normally, one would expect that a “buy” order gets executed close to an ask price and

a “sell” order near the bid price. If this were the case, the bid-ask spread would stay al-

most constant for quite some time until the next macroeconomic event. However, buy-

ers frequently trade near a bid price, while sellers might sell near the offer. Because the

orders get lumped together in reporting, it appears as though the market price oscillates

between bid and ask bounds. This phenomenon is called bid-ask bounce (Harris, 2002).

Furthermore, when news is released, market prices find a new level, sometimes monot-

onously but sometimes in a see-saw pattern (Plott and Smith, 2008, Chapter 1). Do

market participants re-learn something they forgot in the course of the previous few

minutes of trading? A related question of why market returns are autocorrelated even

for very liquid markets has been extensively studied both theoretically and empirically

(see Hasbrouck, 2007 for an extensive review). Another problem is the reaction of a

bid-ask spread to a market event. Supply and demand of liquidity go to the core of eco-

nomic foundations of financial economics. However, the theoretical description of the

bid-ask bounce and event response remains sketchy and is discussed mostly in heuristic

terms. The goal of this paper is to develop a stylized quantitative theory of the bid-ask

bounce and autocorrelation that can, at least in principle, be calibrated. 

My proposed method of estimation of the pricing model is close to the version of

Bayesian inference long used in signal processing (Candy, 2009). This method is

based on the fact (Granger and Lin, 1994) that the correlation coefficient can be

interpreted in terms of entropy or Kullback-Leibler distance between distributions

(Lawler, 2006, Hong, 2006). The structure of the paper is as follows. In Section 2

I remind the reader of the Easley, Kiefer, O’Hara and Paperman (EKHP, 1996) ver-

sion of the Glosten-Milgrom model (1985) of informed trading. In the third section,

I outline the empirical results of Heston, Korajczuk and Sadka (HKS, 2008). In the

fourth section, I provide an outline of the results from signal processing theory,

which were used for estimation in my paper. In Section 5, I provide the estimation

of my model using empirical results of the HKS collaboration. Sections 3-5 represent

an expanded and corrected version of the model provided in my book (Lerner,

2009). In Section 6, the reaction of the bid-ask spread to market events as described

by Madureira and Underwood (2008) is explained in terms of the three-agent

model. In Section 7, I discuss the limits of applicability for the proposed model. 

■ 2. EKHP equations

Glosten and Milgrom (1985) formulated their model of Bayesian updates independently

and probably slightly ahead of Kyle (1985). However, their approach is economic
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(game-theoretic) and does involve explicit dynamic equations. It was modified into po-

tentially solvable form by Easley, Kiefer, O’Hara and Paperman, further quoted as EKHP

(1996) and I shall restrict myself to that approach. 

Below, I formulate and derive the Easley, Kiefer, O’Hara and Paperman (EKHP, 1996)

modification of the Glosten-Milgrom model from the Bayes theorem. These equations

can be derived in a purely algebraic fashion. Price evolution depends on update of beliefs

in subsequent acts of trading. 

Proposition 1.1 In a two-period, three-agent, one-asset market, the bid and ask prices a1, b1

obey the following system of equations:

a1=E(V1|0)+e+mPg,0
(V
–
1–E(V1|0))

( 1 )

b1=E(V1|0)+e+mPb,0
(V–1–E(V1|0))

In Equation (1), Pb, Pg are the respective probabilities of bad and good news, and e and

m are the rates of arrival of liquidity and insider traders on the market. V
–
1 and V–1 are the

prices of an asset contingent on good and bad news, and E(V1|0) is an expected asset

price given all the information preceding t=1. Equation (1) determines, in principle, dy-

namics of the bids and offers, if the processes for updates of prices and probabilities

are known. From (1), for the period t+1, we get 

at+1=E(Vt+1|t )+ e+mPg,t
(V
–
t+1–E(Vt+1|t ))

( 2 )

bt+1=E(Vt+1|t )+ e+mPb,t
(V– t+1–E(Vt+1|t ))

In this model of sequential trades, individuals trade a single risky asset, whose true value

depends on the “good,” “bad,” and “neutral” states of nature. At the end of the trading

period, the information about the true value of an asset is fully incorporated into prices.

Equations (1) and (2) are derived in Appendix A. 

If we substitute past ask and bid prices at time t into Equations (2), we obtain: 

at+1=Vt(1–e+mPg 
)
2

+(e+mPg
–(e+mPg
)
2

)V–t+e+mPg   
ut+1

( 3 )

bt+1=Vt(1–e+mPb 
)
2

+(e+mPb
–(e+mPb
)
2

)V– t+e+mPb   
vt+1
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where ut+1=V
–
t+1–V

–
t ,

(4)

vt+1=V– t+1–V– t ,

are the asset price innovations at time t+1. From now on we consider the frequency of

good and bad events as exogenously given constants. If we define new constants, ac-

cording to the rule: 

h =
e+mPg 

,    h̃=
e+mPb 

(5)

the resulting equations obtain the form: 

at+1=E(Vt+1|t )(1–h )2⁄2 +(2h–h 2)V
–
t+1+hut+1

(6)

bt+1=E(Vt+1|t ) (1–h )2⁄2 +(2h̃–h̃2)V– t +h̃ut+1

The EKHP equations in the form (5-6) will be used to demonstrate the bid-ask bounce

and the event reaction in Sections below. 

■ 3. Survey of empirical results of Heston, 

Korajczuk and Sadka (2008) 

Here, I compare the model of Equations (6) with the empirical results of Heston,

Korajczuk and Sadka (2008), further quoted as HKS. One advantage of their em-

pirical methodology is that they analyze four years of returns of all NYSE-listed

stocks in 16,261 half-hour intervals. HKS start their sample in January 2001 so as

to coincide with the end of decimalization and end it in December 2005. The fol-

lowing model of excess returns was analyzed: 

ri,t =at+gt,k ri,t–k +uit (7)

where ri is the return of stock i and t’ s are half-hour intervals throughout the period.

In Equation (7), k is a lag index, 1≤k≤65, indicating a position of lag within a tra-

ding week.

In the opinion of the authors of HKS, possible alternative hypotheses for the serial

correlations in the bid-ask spread, in order are: a) non-uniform release of financial

information throughout the day, b) scheduling of the index funds trades at the end

of the day to minimize tracking error, c) less liquid stocks and more liquid stocks

are traded in different parts of the day, d) price pattern follows a pattern in volume,
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e) intraday periodicity in volatility, f) fluctuations in imbalance, g) the difference

between transaction and bid-ask prices and h) pre-decimalization results. 

The authors rule out explanation a) by eliminating the market risk. The oscillations

do not disappear. Stocks that are members of an index demonstrate a pattern with

much smaller amplitude, which rules out explanation b). HKS measured size and

transaction costs and established that if there were preferences for high- and low-

liquidity stocks in different parts of the day, they would have been large enough to

stimulate cross-trading. This cross-trading would eliminate the pattern. 

HKS made a cross-sectional regression of volume on volume:

vit =atk+gtk vi,t–k +uit (8)

where v is the volume, i is the stock number, t is a moment of time and k is a lag.

Serial correlations in volume were not statistically significant to explain the price

autocorrelation. The authors did not find periodicity in volume except on a daily

frequency basis. 

To eliminate the influence of the difference between the bid and ask, and transac-

tion price, respectively, the authors computed returns with a) bid prices only, b)

ask prices only and c) mid-price quotes. The results were similar. 

Finally, HKS noticed that intraday periodicity increased after decimalization. To

mitigate the results of shrinking quotations (1/8 for the period 1993-1997, 1/16

for 1997-2000 and decimals for 2001-2005), the authors introduced portfolio re-

turns, from which the top and bottom 1% results were removed. Again, the auto-

correlation results were similar for “raw” and truncated (winsorized) portfolios.

The authors of HKS conclude that the above due diligence statistics “document

pronounced intraday reversals due to bid/ask bounce.” 

■ 4. Entropy-based estimation of the time series 

A standard application of entropy in financial time series is a description of the affinity

of distributions (Y. Hong, 2006). This application is based on the notion of Kullback-

Leibler Distance (KLD, see e.g. Lawler, 2006) between two alternative distributions:

f0(x,y), which we consider baseline and f1(x,y):

I01=E[log( f0(x,y))]= ∫ log( f0(x,y))f1(x,y)dxdy (9)
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The intuitive meaning of the KLD is the information we obtain if, instead of the ex-

pected f0(x,y), the observed distribution is f1(x,y). Granger and Lin (1994) proposed a

normalized entropy measure:

e201=1– exp(–2I01) (10)

Normalized entropy (10) has obvious properties resulting from the properties of the

KLD (e.g. Hong, 2006):

(a)  e01= 0 if and only if f0(x,y)=f1(x,y);

(b)  e01=1 if and only if y is functionally dependent on x;

(c)  e01 is invariant under transformation x’=h1(x), y’=h2(y) where h1and h2 are  

smooth monotonic functions;

(d)   If f1(x,y,ρ) is Gaussian and f0=f1(x,y,ρ=0), then e01=|ρ|. 

My optimization procedure in Section 5 is based on property (d). Namely, if one has

a random sample {Xi} with parameters θi then one can use normalized entropy as a

distribution function. Optimizing this distribution, according to Granger and Lin

(1994), will be equivalent to maximizing entropy. 

This method has a computational advantage because rather than extracting distri-

butions from the time series, then calculating the integral (8) and, finally, maximizing

I01, one can compute the correlation between the empirical sample and the simulated

sample and then weigh observations according to|ρ|in a single swoop.

■ 5. Sticky prices in the presence of 

the bid-ask bounce 

I will not speculate on the economic reasons for the bid-ask bounce, which are usually

explained by the hard-to-define concept of “immediacy” (O’Hara, 1995). Yet, from the

modeling perspective, as in the original model of Section 2, it suffices that the agents

are segmented into knowledgeable insiders, who can time the favorable moment for an

execution, and liquidity traders who mostly act as price-takers. Bid-ask bounce can be

simulated on the basis of the extended EKHP equations (A.1), which we derived in Ap-

pendix A. Because, in the absence of informed traders, the coefficient for E[Vt+1|t] is

equal to 1 and the coefficients for V– t+1, V
–
t+1 are equal to zero, one can crudely identify

the first term with the impact of liquidity and the second term with the impact of in-

formed trading. Note that, in the absence of the informed traders EKHP equations pre-

dict empirical martingale evolution of prices in accord with naive intuition. 

Generally speaking, the rule under which market agents predict the price can be arbi-

trary, but we can use the efficient market convention that the best estimator for the

next transaction’s price is the current (mid-) price:
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E[Vt+1|t]=Vt = (11)

where ut+1,vt+1~N(0,σ 2
1 ), see Appendix A. As far as Equations (6) and (11) are con-

cerned, we still do not know the price process that determines the upper and lower

bounds of the future price. On a relatively short time scale, we can assume that the

upper and lower bounds of asset price stay approximately constant, changing ran-

domly in small increments in sync with positive and negative events: 

V
–
t =V

–
0+√u max[et,0]

(12)

V–t =V–0+min[et,0]

where et~N(0,σ 2
2), u is an adjustable parameter, indicating asymmetry of reaction to

positive and negative news. A typical random path of the price evolution is shown in

Figure 1. I must caution that at a large number of lags our model becomes inaccurate

because simple approximation for the asset prices (12) fails. However, at a large num-

ber of daily lags, one may expect that all autocorrelations die out or overlap with the

price movements from new information. 

I do not know the exact solution of the model provided by Equations (6) and (11-12).

Hence, any educated guess of the MLE is impossible. To estimate model parameters

for the empirical situation of HKS, I use the method of Bayesian inference (Tsay, 2002),

a variation of which I previously implemented for pricing of the EU pollution quotas

(Lerner, 2008). Imagine that Markov Chain Monte Carlo (MCMC) simulations generate

an empirical sample X(θ) for a distribution of model parameters θ. For a given value of

parameter vector θ0, I can generate a set of the model paths similar to Figure 1. 

■ Figure 1. Ask prices from the model of Equations (6) and (11) for an arbitrary

(not estimated) value of parameter vector θ0 for 65 days
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If one postulates the criteria for the likelihood of the model path and the empirical tra-

jectory of the asset, in this case, a correlation coefficient, one may form an expression: 

ρ(θ0|X(θ))=  = (13)

where X is an empirical sample, expectation sign with a hat means an average over

computer-generated paths, while the expectation sign without hat means the mean

of the empirical sample. As is usual with Bayesian methods, we must select a prior

P(θ), which can be any reasonable parametric distribution. In this case, I choose a

gamma distribution. We can estimate a parameter vector from the Bayes formula:

θ̂=arg max ∫ |ρ(θ0|θ|P(θ)dθ (14)

The logic behind Equation (14) is that we estimate a true vector of parameters as

maximizing the posterior distribution of the correlation coefficient between the em-

pirical sample and the model-generated paths. In actuality, I do not solve Equation

(14), but estimate a vector of parameters by the mode of the posterior distribution

of the vector of parameters:

θ̂≈Eρ,B [θP(θ)]= (15)

where index B in the expectation sign means “Bayesian”, i.e. the expectation according

to prior distribution. Here, I am not concerned with the exact shape of the posterior

distribution because I lack the HKS data to compare. 

To estimate the integral in Equation (15) in the case of few parameters (5÷7, in our

case), I use a suitable version of the Monte Carlo integration. Of course, this estima-

tion method can work only if the simulated model sometimes produces paths that

resemble the actually observed trajectory. Otherwise, the expression of Equations (14-

15) will be random across simulation panels and numerically small1. 

Table 1 shows a preliminary list of estimation parameters. Even for a relatively small

number of simulated panels (several hundred), the Student t-factor for the estimation

is within 5% of significance for all but 1÷2 parameters. The entire Monte Carlo sim-

ulation, though, runs through 105 return-days providing a significant statistics.  
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Cov[X(θ0),X]

Var[X(θ0)] Var[X]

θ0∈Q

1 I.e., EB[θ]≤Var[θ]1/2. Practically, in that case EB[θ]~1/Np
1/2, where Np is a number of panels assumed to be large. 

∫∫|ρ(θ0|θ)|P(θ)dθ
∫θ|ρ (θ0|θ)|P(θ)dθ

Ê[X(θ0)–Ê[X(θ0)],X–E[X]]

Ê[(X(θ0)–Ê[X(θ0)])
2]  E[(X–E[X])2]



Given the simplicity of the model of Equations (6) and (11), this is truly remarkable.

Comparison of the empirical data from HKS, Table 1, is shown in Figure 2. 

■ Figure 2. Approximation of empirical data of Heston et al. (dark line) by the

model of Section 5 (light line) 

a) The sample with best-fitted values of parameter vector θ, r2≈30%. 

b) Sample weighted according to posterior distribution, r2≈70%. The graph for model dynamics is shifted upwards for clarity of

presentation 

This estimation allows me to determine h, which is roughly the response of the market

price to news (conversely, 1-h is a share of predictable information). It turns out that

30-50% of the price reaction happens in response to news and 50-70% in response

to already existing information. The statistic is insufficient to distinguish this from

the “half-and-half” rule, so I presume that, given the crudity of my model, approxi-

mately half of the bid-ask spread on NYSE (or any generic stock market) is formed on

the basis of predictable information and the other half because of news. 

● Table 2. Estimated parameters of the informed trading model

σ1 σ2 h h~ a0=–b0 V
–
0=–V–0 u

0.6211 0.6559 0.3508 0.3402 0.6817 0.6721 0.5264

(2.59) (2.12) (3.38) (3.44) (3.38) (2.23) (3.24)

To explain the bid-ask bounce of Heston et al., Equations (3) and (6) were estimated using Bayesian MLE of Equations (13-15) for

the N=192 panels. Student t-coefficients are given in parentheses. The parameters significant at 1% are boldfaced. 

■ 6. Temporary liquidity squeeze in the course of 

the price adaptation to a market event 

In 2008, Madureira and Underwood produced another, quite striking, empirical

demonstration of the short time scale failure of the rational expectations paradigm in

event studies (Madureira and Underwood, 2008). Namely, they produced statistics oft
he

o
re

ti
ca

l a
na

ly
si

s 
o

f 
th

e 
b

id
-a

sk
 b

o
un

ce
 a

nd
 r

el
at

ed
 P

he
no

m
en

a.
  

Le
rn

er
, P

.

152 A E S T I M AT I O

THE  I E B

2

1

-1

-2

2

1

10        20        30        40        50        60 

-1

-2

Statistic

(arb. units) 

Statistic

(arb. units) 

b)      a)      

period period



the bid-ask spread adjustment to a market event. If the rational expectations paradigm

is a scientific principle rather than an article of faith, then the adjustment of the bid-

ask spread to an event can only be analogous to the adjustment of the statistics of cu-

mulative abnormal returns already established in the mid-to-late 1970s (Mandelker,

1974, Keown and Pinkerton, 1981). Namely, if an event is viewed by the market as liq-

uidity squeeze, the bid-ask spread must build up to the time of the event and then return

to its baseline value almost immediately. Conversely, if the event is viewed as liquidity

enhancing, the bid-ask spread should shrink up to the time of the announcement and

then jump upwards to the baseline (Figure. 3). 

■ Figure 3. Hypothetical shape of the reaction of the bid-ask spread on a market

event in the case of strict conformity to the efficient market hypothesis

The curves behave similarly to the derivative of the CAR function in Mandelker (1974) or Keown and Pinkerton (1981). The upper

drawing shows a negative market event (liquidity squeeze); the lower drawing is a positive market event (liquidity enhancement).

Practically all the action happens before the event. 

Yet, what Madureira and Underwood observed was at complete variance with the ra-

tional expectations ( Figure 3). First, they divided brokers into two groups: “affiliated”

and “unaffiliated.” The first group is affiliated with banks, which provide extensive sell-

side research coverage for the stocks in question. The second group is sell-side brokers,

who are not associated with research-intensive banking firms. I assume that the second

group can be viewed as a proxy for the general public, which executes their orders

through them. 

Neither group reacted in accordance with rational expectations. First, most of the action

happened after the moment of announcement, not before it as would be predicted from

the efficient market hypothesis. If liquidity adjustment were a result of a pre-announce-

ment leakage of news about the fundamental value of a company, then after the an-

nouncement there would be simply no news to leak. Furthermore, if the markets were

strongly efficient there would be few differences in the behavior of research-affiliated

and research non-affiliated brokers. There is no heuristic reason for information from
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the research analysts of investment banks to leak to the market any differently than the

inside financial data of industrial firms, which comprise the index. Yet, the reaction of

the two groups was strikingly different. 

The affiliated group reacted as follows. Bid-ask spread shrank up to and through the

time of the announcement, when the relative liquidity crunch was detected and then it

subsided in a much deeper and longer right wing. Research-affiliated brokers increased

liquidity before the event, then the liquidity squeeze spiked at the event time in a highly

asymmetric fashion. Another stage of liquidity enhancement followed the market event.

Research-unaffiliated brokers started to squeeze out liquidity at the time of the event

and it returned to normal very slowly and in monotonic fashion. 

This behavior was independent of the overall direction of liquidity in anticipation of the

event. The second group adapted to the market change in a way diametrically opposite

to market efficiency, in a retarded pattern: the event, the reaction and slow relaxation

to a pre-event level. This behavior is analogous to the reaction to a lottery announce-

ment: at the announcement, winning tickets are mostly removed from circulation,

sharply diminishing liquidity. Hence, we can equate the reaction of the general public

to market event to gambling.

The explanation of this phenomenon using microstructure concepts is quite straight-

forward. Liquidity, or uninformed, traders start to arrive in anticipation of the event

and the crest of their arrival rate follows the time stamp of the announcement because

they are, well, uninformed. From a practical standpoint, though, it would be a mistake

to represent uninformed traders as unsophisticated. These may be large buy-side insti-

tutions such as mutual, hedge funds or insurance companies. The only assumption is

that their collective behavior is statistically independent of the expected price movements

and is dictated by considerations such as portfolio rebalancing, statutory requirements

and servicing of contributions and redemptions. 

The arrival of “uninformed” agents increases liquidity and shrinks the spread independ-

ently of whether the event itself is viewed as liquidity enhancing or reducing. Then in-

formed traders arrive on, or around the time of the announcement and their activity,

buying or selling, temporarily squeezes the liquidity out. If the actions of informed and

liquidity traders were independent and the insiders were perfectly informed, the adjust-

ment picture would be like the one shown in Figure 4. However, the majority of liquidity

traders are delayed in their reaction to informed traders’ behavior and the right wing of

the adjustment curve is much longer and deeper than the left wing in full concordance

with the observations of Madureira and Underwood.  
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■ Figure 4. Hypothetic reaction of the market formed by independent liquidity and

informed traders to the liquidity event 

Both groups of agents arrive around the event, which is accompanied by a short and almost symmetric liquidity squeeze. 

Functionally, this narrative represented in a language of EKHP equations (From Easley,

Kiefer, O’Hara and Paperman, 1996), appears as follows. In the original EKHP model,

the rates of arrival of liquidity and informed traders are exogenous constants, e and m,

respectively. Near the event time, the arrival rate of liquidity as well as informed traders

is modified according to the law: 

e(t)=e0+e1 f1(t)=e0+ 2pσ2
u
exp(– 2pσ2

u
)

(16)

m(t)=m0+m1 f2(t)=m0+ 2pσ2
i
exp(– 2pσ2

i
)

I have chosen the Gaussian form for the distribution of trader arrivals because of its an-

alytic simplicity but it can be proven in a number of simple probabilistic models (see

Appendix B), though it is by no means unique. 

The behavior of the bid-ask spread according to the above model is shown in Figure 5. 

■ Figure 5. Simulations of the reaction of a bid-ask spread to a market event 

occurring at T=512 using the model of Equations (6), (11-12) with time-changing

rates of arrival of traders provided by Equation (16)

We observe clear asymmetry typical for the results of Madureira and Underwood (2008). The parameters were chosen for the

simulation as follows: σ1=1E–3, σ2=1.2E–3, a0=–b0=0, V–0 =V
–

0 =0.2, u=1, e0=0.25, e1=4., m0=0.1, m1=0.25, Pb=0.35, Pg=0.65. Below, 

the bid-ask spread adjustment figure from the paper of Madureira and Underwood (2008) is sketched for comparison. 

t
heo

retical a
nalysis o

f the b
id

-a
sk b

o
unce and

 r
elated

 P
heno

m
ena.  Lerner, P.

155A E S T I M AT I O

e1 (t–tu)
2

m1 (t–ti)
2

0.002

-0.002

-0.004

0.004

200 400 600 800 1.000

-0.002

31-3-5-7-9-11-13-15-17-19-21-23

D (Bid-ask)

Bid-ask

spread

Time

Event period (15 minute intervals)

Affiliated            Unafiliated



While Madureira and Underwood (2008) do not provide sufficient statistics to calibrate

my model from their data, the comparison of model trajectory seems to represent their

empirical behavior reasonably well. 

Figure 5 was simulated with the following parameters: σ1=1E–3, σ2=1.2E–3, a0=–b0=0,

V–0=V
–
0=0.2, u =1, e0=0.25, e1=4., m0=0.1, m1=0.25, Pb=0.35, Pg=0.65. All these are 

inessential parameters, which affect only the scale of the picture. In particular, 

σ1, σ2≠0 are needed only to produce realistic looking “squiggles”. The only parameters

that influence qualitative features of the trajectory are the ones describing the time delay

between the maximums of arrival of uninformed and informed traders, respectively: 

(tu–ti)/σu=1, and σi /σu=0.125. The first ratio means that the duration of delay is similar

to the dispersion of arrival times of liquidity traders, and the second that the informed

traders arrive and exit the market much faster than the liquidity traders. 

■ 7. Limits of applicability 

of the informed trading model 

Recently, Easley, Lopez de Prado and O’Hara (2010) produced an empirical break-

through by defining a quantity, VPIN (volumetric probability of informed trading), which

is 1) relatively easy to measure, 2) dynamically approximates the factors h(t), h~(t) in

the Equation (6). Moreover, the method of estimation of VPIN from the high frequency

data bears a striking resemblance to the “toy” model formulated by the author in the

Appendix B. Direct comparison of the two approaches is difficult for the following rea-

son: VPIN is extremely volatile, much more so than even the high frequency returns

(Easley, Prado and O’Hara, 2010, Figures 9-13). Yet, in the model of Equations (6), it

is implicitly assumed that the time-dependent coefficients change slowly with respect

to the prices. It is hard to see from the equations themselves but the stochastic behavior

of the coefficients obviates the applicability of the Ito calculus, while Equations (3) are

essentially the discrete version of Ito derivatives. 

This, by itself, does not invalidate the comparison because one can always use low-pass

filter (Mallat, 1999) to smooth down excess volatility of the coefficients. However, to

design such a filter on the ultrashort time scale used to calculate VPIN presents a sig-

nificant econometric challenge (see e.g. Lerner, 2009, Chapter 7 and op. cit.). 

Second limitation of my approach is the simplistic modeling of the asset price process

in Equation (12). A “true” asset price is a martingale only at a reasonably short time

scale. In principle, the model can be appended by any asset process of choice. 
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■ 8. Conclusion

In my paper, I use a modified Easley-Kiefer-O’Hara-Paperman (EKHP, 1996) model

to explain two independent sets of empirical results. One set is the results of Heston,

Korajczuk and Sadka (HKS, 2008) on the high-frequency bid-ask bounce of NYSE

stock. Heston, Korajczuk and Sadka performed econometric analysis of a very large

sample of data to rule out other possible explanations of the bid-ask bounce. 

First, I develop the model into a form that can be empirically estimated. Second, I

describe my method of Bayesian estimation. The data provided in Table 1 of HKS

allow me to calibrate my model. The estimation is performed through the maxi-

mization of the absolute value of the averaged correlation coefficient between a

single empirical trajectory of the bid-ask spread provided by HKS and a number of

the MCMC-generated paths. The posterior distribution inferred by this method has

r2≈70%. 

Another phenomenon explained through the informed trading model is the reaction

to the market event. A strict constructionist interpretation of the rational expecta-

tions would predict no after-event adjustments of the bid-ask spread, but quite ag-

gressive dynamics of the spread before the actual event. Yet, nothing of the kind

was observed by Madureira and Underwood (2008). Instead, they observed that

the arrival of research-affiliated brokers increases liquidity a little before the event.

The announcement is followed by an asymmetric liquidity squeeze. Subsequently,

we have another, longer round of liquidity enhancement. 

By comparing quantitatively the bid-ask bounce and the temporary liquidity squeeze

with the empirical data from the HKS and Madureira and Underwood (2008) we

can hypothesize that at short- to medium time scales (from 15 minutes to 1-2 days),

the price evolution is inefficient and incorporates both the new economic informa-

tion and old prices. 

I explain this behavior on the basis of the agent-based, or strategic trading (Has-

brouck, 2007) microstructure theory by the interaction between liquidity and in-

formed traders. Uninformed, or liquidity, traders observing a price fluctuation have

no possibility to distinguish between a real economic event and a “microstructure

event”, e.g. a large trade performed for hedging or regulatory reason. Only contin-

ued observation of a trading pattern eventually leads to this information being re-

vealed (Kyle, 1985). 

Liquidity traders start to arrive even before the expected event to conduct trades.

Informed traders squeeze liquidity out in the immediate aftermath of a market
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event. The process of learning by the liquidity traders begins when they observe bids

and asks by the combined trading community (liquidity + informed traders) and

continues afterwards. 

The group of research-unaffiliated brokers follows the pattern of asymmetric liq-

uidity squeeze at the event time and very slow relaxation of the bid-ask spread to

the pre-event levels. This picture is not symptomatic of a rational reaction but is

rather reminiscent of gambling behavior when lottery tickets quickly lose liquidity

after a playing round. 
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■ Appendix A.

Derivation of the EKHP equations 

The value of the asset conditional on good news on day i is V
–
i 

and conditional on

bad news is V–i 
. On any day, uninformed buyers and uninformed sellers both arrive

at a rate e. On the day with an informational event, informed traders also arrive.

The arrival rate for this process is m. Thus, on good days, the arrival rate is e+m for

buyers and e for sellers. On bad days, the sellers dominate buyers at the rate e+m

to e. The market maker determines the price given the information on the total

order flow and trading history. 

Let P(t)=(Pn(t), Pb(t), Pg(t)) be the market maker’s prior belief about the events “no

news” (n), “bad news” (b), and “good news” (g) at time t. Let St denote the event

of an arrival of a “sell” order and Bt the event of a “buy” order arriving at time t.
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The offer price at time 1 is then equal to

a1=E[V|B1] =V– Pr{V=V–|B1}+V
–
Pr{V=V

–
|B1}+V0Pr{V=V0|B1} (A.1)

and the bid price is 

b1=E[V|S1] =V– Pr{V=V–|S1}+V
–
Pr{V=V

–
|S1}+V0Pr{V=V0|S1} (A.2)

The Bayesian update at time t=1 for the buy order yields the following formula:

Pr{V=V–|B1}=

Pr{V=V–}Pr{B1|V=V–}

Pr{V=V–}Pr{B1|V=V– }+Pr{V=V
–
}Pr{B1|V=V

–
}+Pr{V=V0}Pr{B1|V=V0} (A.3)

The posterior probability is equal to 

Pb(1|B1)= e+Pg(0)m
(A.4)

Similarly, all other probabilities are computed. Substituting them into the formula

for the ask price, we have:

a1=
Pn(0)eV0+Pb(0)eV–+Pg(0)(e+m)V–

(A.5)

For the bid price, the following formula is valid: 

b1=
Pn(0)eV0+Pb(0)(e+m)V–+Pg(0)eV

–
(A.6)

One can express an expected value prior to the trade at time t=1: 

E[V|t<1]=Pn(0)V0+Pb(0)V–+Pg(0)V
–

(A.7)

Hence, we obtain 

a1=E(V1|0)+
e+mPg,0

(V
–
1–E(V1|0)) (A.8)

b1=E(V1|0)+
e+mPb,0

(V–1–E(V1|0))
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By induction, one can propagate these equations up to time t, thus deriving the sys-

tem of Equations (2) of the main text.  

The EKHP equations use only the Bayes formula for their derivation. Consequently they

are very general. Their dynamic can incorporate an arbitrary trading strategy, i.e., the

measure according to which one computes the expectations in (A.8), as well as an ar-

bitrary asset process (the rules of change forV
–
t ,V–t and Pg, Pb with time) and the sto-

chastic rates of arrival of informed m and liquidity traders e to the market. The last

opportunity was already explored in the first paper on the subject, EKHP (1996). How-

ever, with a few simplifying assumptions, one can cook up a continuous-time market

learning theory, which can be exactly solved and has attractive features, such as conver-

gence of the expectations of liquidity traders to the true price. 

If we substitute ask and bid prices at time t into Equation (A.8), we obtain:  

at+1=Vt(1–e+mPg)
2

+(e+mPg
–(e+mPg)

2

)V–t+e+mPg
ut+1

(A.9)

bt+1=Vt(1–e+mPb)
2

+(e+mPb
–(e+mPb)

2

)V–t+e+mPb
vt+1

where

ut+1=V
–
t+1–V

–
t ,

(A.10)
vt+1=V–t+1–V–t ,

are the asset price innovations at time t+1. Intuitively, we can identify the first co-

efficient in each of the Equations (A.9) with the probability of the “stale” prices,

the second coefficient with the probability of the asset price movement and the

third coefficient with the strength of the microstructure noise. From now on we

consider the frequency of the good and bad events as exogenously given constants.

From Equations (A.9), the expectations of the bid and ask prices conditional on

the price history observed up to time t are

E(at+1|t)=Vt (1–h)2+(2h–h2)V
–
t

(A.11)

E(bt+1|t)=Vt (1–h~ )2+(2h~–h~ 2)V–t

because and E(ut+1|t)=0, E(vt+1|t)=0. 
2 In (A.11),

h=e+mPg
,     h~=e+mPb
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mPg mPg mPg2mPg

mPb mPb mPb2mPb

mPg mPb

2 In statistical parlance microstructure noise is represented by MDS (Martingale Difference Sequences).
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■ Appendix B.

Descriptive example of a model with a Gaussian envelope

Because of the Central Limit Theorem the emergence of Gaussian distributions in

statistics is ubiquitous. However, examples when the envelope of a statistical func-

tion has a Gaussian profile in time, though numerous, are much harder to find out-

side of physics. In this Appendix, I describe one possible model in the trading

context. 

We have N/2 portfolios (N is large) of securities/commodities: “the short buckets,”

which are filled by the buy/sell orders coming according to a Poisson distribution

with a random frequency obeying some statistical distribution. This may be, for in-

stance, a uniform distribution between 0 and 1. When the bucket is filled, there is

no more activity in a given stock. 

A similar set of buckets is set for the long portfolios, namely they are depleted by

the buy/sell orders also coming with a random frequency chosen separately for each

of the N/2 portfolios in a Poisson distribution. Activity ends when there are zero

stocks in the portfolio. Then, in the compound “market,” the average number of

orders per unit time has an approximately Gaussian shape.  

The result of the model described above for N=480 portfolios and T=2048 mo-

ments of time is shown in Figure 6 together with the Gaussian approximation of

the envelope. 

■ Figure 6. Plot of the envelope of the trading volume for the model being 

described in the Appendix B

The plot of the envelope of the trading volume for the model being described in the Appendix B. Best fit by the Gaussian curve is

shown as a guide to the eye. We plot the number of orders on the vertical axis as a function of the moments of time on the

horizontal axis.

200

500 1.000 1.500 2.000

400

600

800

1.000

1.200



163A E S T I M AT I O

■


