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abstract

This paper proposes a new model called Fourier-GARCH that is a modification of the

popular GARCH(1,1). This modification allows for time-varying first and second moments

via means of Flexible Fourier transforms. A nice feature of this model is its ability to capture

both short and long run dynamics in the volatility of the data, requiring only that the

proper frequencies of the Fourier transform be specified. Several simulations show the

ability of the Fourier series to approximate breaks of an unknown form, irrespective of the

time or location of breaks. The paper shows that the main cause of the long run memory

effect seen in stock returns is the result of a time varying first moment. In addition, the

study suggests that allowing only the second moment to vary over time is not sufficient to

capture the high persistence observed in lagged returns.
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■ 1. Introduction

Recently there has been an upsurge interest in modeling the nonstationarities present

in the volatility of financial data. The clustering and the persistence of volatility of

asset returns have been well documented. The IGARCH model of Engle and Bollerslev

(1986) for instance, describes in a parsimonious way the high persistence in the con-

ditional volatility of stock returns while the underlying process remains strictly sta-

tionary. Alternatively, Granger (1980) and Granger and Joyeux (1980) model the long

memory or the long range dependence of a series of log-returns as a fractionally in-

tegrated process to allow the autocorrelation functions to decay very slowly, in a fash-

ion characteristic of stock returns. However, seminal papers from Granger and Joyeux

(1986) and Lamoureux and Lastrapes (1990) and more recently from Diebold and

Inoue (2001), Mikosch and Starica (2004), Starica and Granger (2005), and Perron

and Qu (2007) argue that the high persistence close to unit root and long memory

both in the first and the second moments may actually be caused by structural

changes in the level or slope of an otherwise locally stationary process of the long-

run volatility. Diebold and Inoue (2001) argue that this is due to switching regimes

in the data. Mikosch and Starica (2004) provide theoretical evidence that changes in

the unconditional mean or variance induce the statistical tools (e.g., sample ACF, pe-

riodogram) to behave the same way they would if used on stationary long-range de-

pendent sequences. Starica and Granger (2005) also deliver evidence against global

stationarity. Finally, Perron and Qu (2007) conclude that the S&P 500 return series

is best described as a stationary short memory process contaminated by mean shifts.

These results imply that a good model for volatility should take into account the pos-

sibility of a time varying unconditional second-moment and possibly, of a time varying

first moment as well.

Engle and Rangle (2008) propose the Spline-GARCH to model long-run volatility non-

parametrically using an exponential quadratic spline. However, they do so only for the

second moment. Further, Starica and Granger (2005) use step functions to approximate

nonstationary data locally by stationary models. They apply their methodology to the

S&P 500 series of returns covering a period of seventy years of market activity and find

that most of the dynamics are concentrated in shifts of the unconditional variance.

However, these models pose several problems. While spline functions may lead to over

fitting, step functions may not give smooth approximations. Even major breaks, such as

the stock market crash of 1929 and the oil price shocks of the 1970s did not display their

full impact immediately. Structural changes may take longer to extinguish which suggests

they need to be modeled as smooth or gradual changing processes. These arguments mo-

tivate the present study to propose a new approach to model the long-run first and second
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moments as smooth processes. The paper denotes the new process Fourier-GARCH be-

cause it uses the Flexible Fourier transform of Gallant (1981) (i.e., an expansion of a pe-

riodic function in terms of an infinite sum of sines and cosines). The basic model can be

extended to incorporate the long-run volatility in the mean model. Flexible Fourier trans-

forms have been used in the literature to approximate nonlinear structures in several ways.

For instance, Becker et al. (2001) use Fourier transforms to model inflation and money

demand as having smooth changes in the intercept. Also, Enders and Lee (2006) and

Becker et al. (2006) propose new unit root and stationarity tests that use the Fourier ap-

proximation to model the unknown shape of the structural breaks in macro time series.

The main advantage is that the issue of estimating the shape and location of the breaks

reduces to selecting the proper frequency of the Fourier sine and cosine terms. A section

below details how Fourier transforms can be used to approximate various types of breaks.

The study applies the new model to several of the largest stocks from S&P 500 to esti-

mate volatility persistence in stock returns. Based on the discussion above, the paper

considers several competing models. The basic Fourier-GARCH model specifies a con-

stant first-moment, while the second-moment changes smoothly over time. A first ex-

tension to the basic model allows both the first and the second moments to vary over

time, while a second extension incorporates the long run volatility in the model for the

mean. The paper checks for each model the sum of the estimated coefficients in the

equation for conditional volatility to assess the so called long-memory effect. The results

show that allowing only the second moment to vary over time does not significantly re-

duce the persistence effect. In fact, the difference between this model and the simple

GARCH(1,1) is negligible. However, the extended model that allows the first moment

to vary over time as well, reduces the persistence effect by more than half of the value

suggested by GARCH(1,1). The evidence suggests that the persistence effect seen in

stock returns is mainly a result of the misspecification of the model for the mean.

The paper is structured as follows. Section 2 discusses in more detail the performance of

the Fourier series to approximate various types of structural breaks. Section 3 introduces

the basic Fourier-GARCH model and its extensions. Section 4 discusses the empirical es-

timates of the long memory effect using four different models and section 5 concludes.

■ 2. Nonlinear Trend approximation with Fourier Transforms 

The general approach to account for breaks is to approximate them using dummy vari-

ables. However, this approach has several undesirable consequences. First, one has to

know the exact number and location of the breaks. These are not usually known and

therefore need to be estimated. This in turn introduces an undesirable pre-selection bias

(see Maddala and Kim, 1998). Second, use of dummies suggests sharp and suddenu
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changes in the trend or level. However, for low frequency data it is more likely that struc-

tural changes take the form of large swings in the data which cannot be captured well

using only dummies. Breaks should therefore be approximated as smooth processes

(see Leybourne et al., 1998 and Kapetianos et al., 2003).

Flexible Fourier transforms, originally introduced by Gallant (1981), are able to cap-

ture the essential characteristics of one or more structural breaks using only a small

number of low frequency components. This is true because a break tends to shift the

spectral density function towards frequency zero. Below is illustrated the ability of

Fourier transforms to capture nonlinear trends.

Using a simple form for the mean model, one can allow the intercept mt to be a de-

terministic function of time:

yt=mt+gt+et (1)

where the drift term is written as:

mt=c0+ 
s

∑
k=1

cksin(2pkt/T )+ 
s

∑
k=1

dkcos(2pkt/T ),   s≤T/2 (2)

In the above formulation et is a stationary disturbance term with variance  s 2
e , s is the

maximum number of frequencies, k is a particular frequency and T is the total number

of observations. The drift term represents the Fourier approximation written as a de-

terministic function of sine and cosine terms. Note that by imposing  ak = bk = 0,

one gets the constant mean or trend return specification. In contrast to other possible

series expansions (e.g. Taylor series) the Fourier expansion has the advantage of acting

as a global approximation (see Gallant, 1981). This property is obtained even if one

specifies a small number of frequencies. In fact, Enders and Lee (2006) argue that a

large value of s in a regression framework uses many of the degrees of freedom and

leads to an over-fitting problem.

To illustrate the approximation properties of a Fourier series, the paper considers first

a single frequency in the Data Generating Process (DGP):

mt=c0+cksin(2pkt/T )+dkcos(2pkt/T ) (3)

where k is the single frequency selected in the approximation, and ck and dk represent

the magnitudes of the sinusoidal terms.

This study considers several possible patterns for the occurrence of a break. Thus, for

T=500, the paper simulates one break, two breaks, and trend breaks both in the mid-
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dle and towards the extremes. The paper illustrates the cases for temporary, perma-

nent, and reinforcing breaks. We display the results below in Panels 1 through 9 (i.e.,

Figure 1). As in Enders and Lee (2006), Panels 1 and 2 illustrate approximations for

breaks towards the end of a series. In Panel 3 the series has a temporary, though long-

lasting break. Panels 4 and 5 display permanent breaks in opposite directions while

in Panel 6 the breaks are in the same direction. Finally, Panels 7-9 depict breaks in

the intercept and slope of a trending series. The paper estimates the coefficients of

the sinusoidal terms by performing a simple regression of yt on mt and a time trend.

■ Figure 1. Approximation of Structural Breaks with Fourier Transforms
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One can draw several conclusions based on the visual inspection of the graphs. First, a

single frequency k=1 or two cumulative frequencies n=2, can approximate a large variety

of breaks. Second, the Fourier transform approximates well even when the breaks are

asymmetric (see Panels 1 and 2). Third, a Fourier series works best when the break is

smooth over time which means it may not be suited for abrupt and sharp breaks of

short duration (see Panel 5). An additional frequency of k=2 can improve the fit in this

situation. Interested readers are referred to Enders and Lee (2006) and Becker et al.

(2006) who have a longer discussion on the properties of the Fourier approximations.

The next section introduces a new model to approximate long-run volatility.

■ 3. a New Model for Unconditional Volatility 

As the introductory part suggested, the simple GARCH(1,1) may not be appropriate

because it implies a long-run level of the volatility that is constant. However previous

research regarding the presence of various shifts in stock returns suggests that struc-

tural changes in the second moment induce global nonstationarity. This invalidates

the use of the simple GARCH(1,1). It is known that breaks shift the spectral density

function towards frequency zero. This indicates that the frequencies to be used are

towards the low end of the spectrum (see Enders and Lee, 2006). A simple visual

inspection of the autocorrelation function and periodogram of absolute returns of

S&P 500 confirms this fact:

■ Figure 2. S&P 500
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As you can note from the top graph, the most important frequencies that have an

impact on the absolute returns are at the low end of the sample spectrum which is

indicative of structural breaks. Both graphs confirm the presence of long memory in

financial returns - slow decay with lags still significant at the 200th lag. These findings

suggest the use of the following model whose aim is to capture various unknown shifts

in long-run volatility. The paper denotes it the basic Fourier-GARCH:

rt=m+vt ut ht ,   where vt |It-1~iid(0,1)

ht=(1–a–b)+a( )+bht -1

mt=exp[a0+ 
s

∑
k=1

(aksin 2pkt+bkcos2pkt)],   s≤T/2

The model preserves the parsimony of the GARCH(1,1) model while it allows the

unconditional expectation of the volatility to be a function of time and of  cycles of

different frequencies. A simple extension allows the unconditional mean to be a

function of time as well - higher unconditional variance certainly requires higher

unconditional mean. The time varying first moment is also approximated using a

Fourier representation:

mt=c0+ 
s

∑
k=1

(cksin
2pkt+dkcos2pkt)

Given its flexible setup, the Fourier-GARCH captures both short and long-run dynam-

ics. Note that:

E (rt–m)2=E (vt
2utht )=utE (ht)= ut

The study uses an exponential representation of the Fourier transform to ensure its

positivity. Goodness of fit measures like the BIC or AIC criterions are employed to

choose the proper number of frequencies exogenously. They are computed as follows:

AIC= –lnL+2n,    L=–
T

∑
t=1
[ln(htut)+         ]

BIC= –lnL+nln(T ),    L=–
T

∑
t=1
[ln(htut)+       ]
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Here n denotes the number of parameters estimated by the model. The advantage of

using the AIC and BIC criterions is that they include a penalty for the additional estimated

parameters. Throughout the estimation the criterions employ only integer frequencies.

The advantage of using a time varying first moment for a sample of forty years of

daily data of S&P 500 absolute returns is highlighted below:

■ Figure 3. Graphs of the Conditional and Unconditional Volatility of S&P 500 

Note the better fit of the second model which augments the basic Fourier-GARCH

representation with a time varying intercept as in equation (7). However, given the

presumption that a higher long run volatility requires a higher long-run return, the

paper proposes the Fourier-M model that includes the unconditional time-varying

volatility in the equation for the mean:

rt=gut+vt   utht ,  where vt |It–1~iid(0,1)

In this way, both the first and the second moment change over time while the under-

lying model ensures a parsimonious representation.u
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One way to assess the persistence or long memory in stock returns is to compute the

sum of the slope coefficients in conditional volatility. If the sum is close to one, then

conditional volatility is said to be almost integrated and it displays very slow time

decay. However the support for long-memory is weakened if one finds that a changing

first and/or second moment is responsible for the persistence effect. If the sum of the

coefficients is significantly less than one after one accounts for shifts in the uncondi-

tional mean or volatility, then one can conclude that the volatility process is stationary

but suffers from structural shifts (see Perron and Qu, 2007).

A sample of daily returns on S&P 500 from 1963:01:02 to 2005:2:30 illustrates this

discussion. The best representation is the one that specifies a single frequency both

for the mean and for the unconditional volatility:

■ Figure 4. Graphs of the Conditional and Unconditional Volatility of S&P 500

Note the slow and gradual increase of long run volatility from the 1960’s until the

1980’s. Also note that the estimated long run volatility of the 1990’s is lower than

the one for previous decades, which is consistent with market facts.
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■ 4. Model Validation and Persistence Effects 

The paper uses several representative stocks of S&P 500 to assess the long memory

effect of stock returns using the new models. The first 12 stocks of the index are

selected according to their market percentage participation as of March 2005. Table

1 shows their ticker, sector classification and percent of total assets. 

● Table 1. Market Capitalization of 13 Companies on S&P 500 as of 2/28/2006

Ticker Issue Name Sector % of Total Assets

XOM Exxon Mobil Corp. Energy 3.19

GE General Electric Co. Industrials 3

MSFT Microsoft Corp. Industrials 2.12

C Citigroup Inc. Financials 2.03

PG Procter & Gamble Consumer Staples 1.73

PFE Pfizer Inc. Health Care 1.67

AIG American Intl. Group Inc. Financials 1.49

JNJ Johnson & Johnson Health Care 1.48

MO Altria Group Inc. Consumer Staples 1.29

CVX Chevron Corp. New Energy 1.09

IBM International Business Mach. Information technology 1.09

INTC Intel Corp. Information technology 1.07

The data has been obtained from the Center of Research in Security Prices made avail-

able through the WRDS database. The longest sample period available is 1926:01:02

- 2005:12:30 and corresponds to Exxon, IBM, Chevron, Phillip-Morris and General

Electric. Other stock returns have shorter sample periods (i.e. Procter & Gamble from

1929:01:02 onwards, Pfizer and Johnson & Johnson start in 1944; Intel from 1972,

while the rest start in 1986). For each stock return, the study chooses exogenously an

integer or cumulative frequencies according to the AIC and BIC criterions. According

to Enders and Lee (2006), a frequency greater than 5 uses many of the degrees of

freedom and leads to an over-fitting problem.

Table 2 displays the results from applying the AIC and BIC criterions to identify the

best in sample fitting model. The above mentioned criterions indicate that in most

cases the best representation is the basic Fourier-GARCH(1,1) model. The coefficients

of the sine and cosine terms with up to 5 frequencies are significant at the 5% level

both for the basic and for the extended models. However, given that in the model for

the mean each additional frequency requires the estimation of two more coefficients,u
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● Table 2. AIC, BIC, and the Log-Likelihood

AIG Chevron Citigroup Exxon General Electric

Frequencies AIC BIC (l ) AIC BIC (l ) AIC BIC (l ) AIC BIC (l ) AIC BIC (l )

1 0.989 40.287 11.011 0.044 47.720 11.956 1.609 40.512 10.391 0.003 47.679 11.997 0.048 47.724 11.952

2 4.987 61.217 11.013 4.035 67.603 11.965 5.634 57.505 10.386 4.005 67.574 11.995 4.076 67.643 11.924

3 8.987 79.275 11.013 8-034 87.495 11.965 9.617 74.456 10.383 8.005 87.465 11.995 8.046 87.506 11.954

4 12.987 97.332 11.013 12.035 107.387 11.965 13.614 91.420 10.387 12.005 107.357 11.995 12.047 107.398 11.953

5 16.987 115.390 11.013 16.035 127.278 11.965 17.615 108.389 10.385 16.005 127.249 11.995 16.046 127.290 11.954

1 (mean shifts) 5.132 61.363 10.868 4.645 68.213 11.354 5.936 57.807 10.064 5.488 69.056 10.512 4.375 67.943 11.625

1 (Fourier-M) 1.002 43.174 10.985 0.039 47.714 11.961 4.757 43.660 7.243 0.008 47.683 11.992 0.074 47.750 11.926

IBM Intel Johnson & Johnson Microsoft Pfizer

Frequencies AIC BIC (l ) AIC BIC (l ) AIC BIC (l ) AIC BIC (l ) AIC BIC (l )

1 0.028 47.704 11.972 1.142 48.818 10.858 0.334 46.290 11.666 1.532 40.631 10.468 0.361 46.396 11.639

2 4.026 65.594 11.974 5.153 61.383 10.847 4.334 65.609 11.666 5.629 57.762 10.371 4.379 65.759 11.621

3 8.027 87.487 11.973 9.153 79.441 10.847 8.334 84.927 11.666 9.615 74.558 10.385 8.362 86.087 11.638

4 12.026 107.378 11.974 13.152 97.498 10.848 12.334104.246 11.666 13.507 91.706 10.493 12.361 104.431 11.639

5 16.026 127.270 11.974 17.150 115.554 10.850 16.333 123.565 11.666 17.539 108.771 10.461 16.360 123.775 11.639

1 (mean shifts) 4.930 68.498 11.070 5.366 61.597 10.634 5.257 66.532 10.743 5.696 57.829 10.304 6.810 68.190 9.190

1 (Fourier-M) 0.029 47.705 11.971 1.162 43.335 10.838 0.335 46.291 11.665 1.494 40.593 10.506 0.364 46.399 11.635

Phillip-Morris Procter & Gamble 

Frequencies AIC BIC (l ) AIC BIC (l )

1 0.074 47.750 11.926 0.043 47.718 11.957 

2 4.077 67.645 11.923 4.041 67.240 11.959 

3 8.076 87.537 11.924 8.041 87.039 11.959 

4 12.077107.428 11.923 12.041106.839 11.959 

5 16.077 127.320 11.924 16.041 126.639 11.959 

1 (mean shifts) 4.611 68.179 11.389 4.962 68.161 11.038 

1 (Fourier-M) 0.079 47.755 10.921 0.047 47.446 11.953

A

B

C



the additional penalty increases the values of the AIC and BIC criterions relative to

the ones for the basic model. This is not surprising given that the BIC criterion favors

more parsimonious representations. Several exceptions to the finding above are note-

worthy. In the case of Microsoft for instance, both criterions select the Fourier-M

model to be the optimal representation. Also, the Fourier-M model gives the best fit

for Chevron as well. Note that the basic Fourier-GARCH(1,1)  and the Fourier-M mod-

els have very close values for the BIC and SBC criterions. This is true because they es-

timate the same number of parameters (i.e. six coefficients). In rest, the increased

penalty due to the additional coefficients that are estimated in the models with two

or more cumulative frequencies is greater than the better fit that is obtained. There-

fore, the single frequency representation fits the data best for all models. Figures 5

through 7 show several graphs of the conditional and long-run volatilities obtained

using both a constant and a time varying first moment. Note that for all series the

long run volatility changes smoothly over time. 

■ Figures 5, 6 and 7. 

Conditional and Unconditional Volatility from Fourier-GARCH(1,1)

5(a) AIG:
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PANEL 1: Fourier-GARCH(1,1) with

constant first moment

PANEL 2: Fourier-GARCH(1,1) with 

varying first moment

LCVAR = conditional volatility  

LUVAR1 = unconditional volatility for AIG

LCVAR = conditional volatility  

LUVAR2 = unconditional volatility for AIG
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LUVAR1 = unconditional volatility for Exxon
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LCVAR = conditional volatility  

LUVAR1 = unconditional volatility for Chevron

LCVAR = conditional volatility  

LUVAR2 = unconditional volatility for Chevron

PANEL 1: Fourier-GARCH(1,1) with

constant first moment

PANEL 2: Fourier-GARCH(1,1) with 

varying first moment

5(b) Chevron:

PANEL 1: Fourier-GARCH(1,1) with

constant first moment

PANEL 2: Fourier-GARCH(1,1) with 

varying first moment

6(a) Exxon:
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LCVAR = conditional volatility  

LUVAR1 = unconditional volatility for IBM

LCVAR = conditional volatility  

LUVAR2 = unconditional volatility for IBM

LCVAR = conditional volatility  

LUVAR1 = unconditional volatility for GE

LCVAR = conditional volatility  

LUVAR2 = unconditional volatility for GE

PANEL 1: Fourier-GARCH(1,1) with

constant first moment

PANEL 2: Fourier-GARCH(1,1) with 

varying first moment

6(b) GE:

PANEL 1: Fourier-GARCH(1,1) with

constant first moment

PANEL 2: Fourier-GARCH(1,1) with 

varying first moment

7(a) IBM:



Next the paper investigates whether the selected returns display the long memory

property that is usually observed in financial data. To this end, the study estimates

four competing models:

■ the common GARCH(1,1) developed by Bollerslev (1987) denoted M0 ;

■ the basic Fourier-GARCH(1,1) with constant first moment, denoted M1 ;

■ the Fourier-GARCH(1,1) with a time varying first moment, denoted M2 ;

■ the Fourier-M(1,1) with long-run volatility in the mean, denoted M3 .

Table 3 shows the results. Clearly, model M2 provides the best reduction of the per-

sistence effect for most series. For 10 of the 12 stock returns considered, the long

memory effect is dramatically reduced in many instances by half or even more (i.e.

GE, Pfizer, IBM, Phillips-Morris, Chevron, Intel, Procter & Gamble, Exxon, Johnson

& Johnson, and Citigroup). 
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PANEL 1: Fourier-GARCH(1,1) with

constant first moment

PANEL 2: Fourier-GARCH(1,1) with 

varying first moment

7(b) Intel:



● Table 3. Persistence of financial volatility

M0: GARCH(1,1) M1: Fourier-GARCH(1,1) M2: Fourier-GARCH(1,1) M3:  Fourier-GARCH(1,1)

with constant mean with time-varying mean

Companies a + b a + b a + b a + b

AIG 0.98024 0.98034 0.97753 0.96798

Chevron 0.98704 0.98373 0.75108 0.96577

Citigroup 1.00104 0.98388 0.57667 0.99360

Exxon 0.98333 0.95727 0.54307 0.95894

General Electric 0.99256 0.99013 0.80713 0.99261

IBM 0.99180 0.96291 0.51090 0.95930

Intel 0.99185 0.99206 0.64818 0.98175

Johnson&Johnson 0.95222 0.88250 0.01595 0.90133

Microsoft 0.06820 0.10247 0.22565 0.09550

Pfizer 0.97707 0.90421 0.40066 0.85240

Phillip-Morris 0.99877 0.99251 0.75108 0.98887

Procter&Gamble 0.99595 0.96786 0.29293 0.96698

Note that the basic representation (i.e. the M1 model above) has only little impact

on overall persistence in the short-run volatility. In most cases, its persistence is

only slightly lower than the one of the GARCH(1,1) representation. 

This is surprising given that this model gives the best fit according the AIC and BIC

criterions in 10 out of the 12 stocks considered. Note that model M3 clearly out-

performs model M1 in terms of reduced long memory effect as well. The main con-

clusion is that allowing only for the second moment to vary over time is not enough

to account for the strong persistence effect observed in financial returns. However,

in contrast to the basic model, a time-varying first moment in the equation for the

mean reduces significantly the persistence in short run volatility.

■ 5. conclusion 

The paper proposes a new model to estimate the short and long run dynamics in

financial data that takes into account the possibility of a time varying first and sec-

ond moment. The Flexible Fourier transform of Gallant (1981) approximates the

unknown date and shape of any structural break in the first and second moment

as smooth processes. The study shows that Fourier series are able to approximate

a wide variety of breaks of an unknown form. The basic Fourier-GARCH represen-

tation modifies the popular GARCH(1,1) to include a time varying unconditionalu
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variance. The paper proposes two extensions to the basic model. The first extension

specifies a time varying first moment, while the second extension includes the long-

run volatility in the equation for the mean. The results suggest that persistence still

remains significant in the short run volatility for the basic model. However, the so

called long memory effect disappears if one includes a time varying first moment

in the model for the mean. This suggests that conditional volatility persistence is

an artifact of the misspecification of the model for the mean.
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