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MONTE CARLO EXPERIMENTS ON THE OLS ESTIMATOR
IN PANEL DATA WITH STATIONARY AND
NONSTATIONARY REGRESSORS

Abstract.

This paper investigates the behaviour of the pooled ols estimator in a panel
data model with stationary and nonstationary regressors as both n and T go to
infinity. The nonstationary regressor is assumed (1), the stationary regressor is
set 1.i.d. The investigation is carried through four Monte Carlo experiments. The
experiments show that in a model with no endogeneity,the pooled ols estima-
tor of the I(1) regressor is \/nT consistent and asymptotically normal and the
estimator of the I(0) regressor is vnT consistent and asymptotically normal.If
a correlation between the I(1) regressor and the regression disturbance is intro-
duced, both estimators are inconsistent for small n but vnT consistent and
asymptotically normal for large n and T.When an individual random effect is
added to the basic model the results for the I(0) regressor coefficient do not
alter,whereas the estimator of the I(1) regressor loses in efficiency and becomes

vnT consistent and asymptotically normal.

1.Introduction

The advantages of panel data sets over cross-sectional and time series data

have long been established in econometric research.



Panel data sets usually give the researcher a larger number of data points
than conventional cross-section and time series data, thus increasing the de-
grees of freedom and reducing collinearity among explanatory variables. This
results in more reliable parameter estimates and,most importantly,enables the
researcher to specify and test more sophisticated models with less restrictive be-
havioural assumptions. These data sets make it possible to identify and measure
effects that are simply not detectable in pure cross-section or time series data
and to eliminate or reduce the estimation bias.

The initial focus of panel data research has been on identifying and estimat-
ing effects form stationary panels with a large number of cross section data (n)
and few time series observations (T).A limiting theory for the pooled ordinary
least squares estimator(pooled ols) in this setting has been well established since
the works of Hsiao(1986) and Chamberlain(1984).

However more recently empirical work in econometrics has used panel data
for which the time series component is nonstationary with both large n and
T available. Examples of this literature range from testing growth convergence
theories in macroeconomic to estimating long run relations between interna-
tional financial series such as relative prices and exchange rates. These works
have been facilitated and enhanced by the availability of a number of important
panel data sets covering different individuals,regions and countries over a rel-
atively long period of time, for example the Penn World table. Nonstationary
panels provide a further instance of the ability of panel data to identify effects

that time series or cross section data alone cannot identify.



When the time series component of the model is allowed to be non stationary
and both large n and T are taken into account the traditional limiting theory for
the pooled ols estimator is no longer valid. Phillips and Moon (1999) investigated
regressions with non stationary panel data for which the time series component is
an integrated of order one process, I{1) and where both n and T are large. They
have shown that, under a variety of different cointegrating relations between
the regressors and the regressand, the pooled ols estimator is consistent and
asymptotically normal.

The limiting theory developed by Phillips and Moon for non stationary pan-
els does not allow for the presence of both stationary and non stationary regres-
sors in the same model.In practise however this framework is very relevant.In
the economic literature there are many cases of models with data that are mixed
stationary weekly dependent ,I(0), and unit root processes, I(1).A quite impor-
tant one is the analysis of demand systems where budget shares or quantities
are regressed on relative prices and real income for different countries over time.
Typically some relative prices are quite stable, 1(0), and some other are trending
I{1).Money demand equations offer a similar mixture of stationary and nonsta-
tionary variables, with real income trending over time for most countries but
stationary interest rate,

A comprehensive limiting distribution theory for the pooled ols estimator in
this framework has not yet been developed.Very recently Baltagi,Kao and Liu
(2008) have developed a limit theory for the pooled ols estimator in a simple

panel regression model with random error component disturbances. They assume



that both the regressor and the remainder disturbance term are autoregressive
and possibly non stationary and derive asymptotic distribution results for the
pooled ols estimator when T— oo followed by n—» oc.They show that in a
model with random error components the ols estimator has a normal asymptotic
distribution and different rate of convergence dependent on the non stationarity
of the regressors and of the remainder disturbance. When the disturbance term
is assumed I(0) and the regressor I(1) or viceversa.The limit theory they develop
is specific for random error component disturbance models. While the random
error component model is the most largely used in micro panel data research,
a more general framework is required for macro panel data models. The results
of Baltagi, Kao and Liu cannot be extended to a different panel structure, thus
further investigation into the asymptotic behaviour of the pooled ols estimator
in a less specific panel model is desirable.

The aim of this paper is to develop such an investigation.The paper wants to
provide insight into the behaviour of the pooled ols estimator when n and T are
allowed to go to infinity simultaneously a very general panel data model with
both integrated of order one and stationary regressors. Results of a Monte Carlo
experiment on the consistency and asymptotic normality of the ols estimator
in this setting are presented. I then investigate the behaviour of the estimator
under circumstances that in traditional panel data limit theory would gener-
ate inconsistency in the estimates. T'wo potential sources of inconsistency for
the ols estimator are separately added to the model by introducing correlation

between the regression error and, respectively, the stationary and nonstation-



ary regressor. Interesting enough when the potential source of inconsistency is
introduced trough a correlation between the regression error and the I(1) re-
gressor, | find that the pooled ols estimator is still consistent as T is allowed to
go to infinity.Finally I extend the model to allow for individual heterogeneity
in a random effect framework, with no correlation between the regression error
and the individual effect. Individual heterogeneity is introduced allowing the
intercept of the model to vary across individuals. The als estimator is found to
be consistent and asymptotically normal but with some losing in efficiency with
respect to the initial case.

The structure of the paper is as follows.Section 2 presents a brief overview
of the literature on non stationary panel data model with large n and T. Sec-
tion 3 lays out the basic model and assumptions and presents Monte Carlo
simulation results on the behaviour of the ols estimators of the I(1) and I(0)
regressors.Section 4 gives insight into the behaviour of the estimator when the
regression error and one of the regressors are correlated. Section 5 discuss the

individual effect model .Section 6 draws conclusions.

2.Literature review.

Since the beginning of the 1990’s there has been much ongoing research on
nonstationary panel data.

Quah(1994), Levin and Lin(1993) consider unit root time series regressions
with non stationary panel data and propose test statistics for unit roots .Pe-

droni(1995) studies some properties of cointegration statistics in pooled time



series panels,Robertson and Symons(1992)study the bias that are likely to arise
in practise with nonstationary panel data .Baltagi and Kramer(1997) and, more
recently Kao and Emerson(2004) investigate the case of a panel time trend
model.

Pesaran and Smith (1995) examine the impact of nonstationary variables on
cross section regression estimates with a large number of groups (n) available
and a large number of time periods(T). Assuming that the parameter of interest
is the average effect of some exogenous variable on a dependent variable, they
argue that when T is large enough it is sensible to run separate regression for
each cross-section group. In phrti(:ular they examine the impact of nonstationary
variables on the cross-section estimates. Under some quite strong assumptions
such as exogeneity of the regressors and iid disturbances,they show that no
spurious correlation will arise between two I(1) variables and that the cross-
section ols estimator of the average effect will be consistent for large T.

Phillips and Moon (1999) extend the work of Pesaran and Smith to a very
general setting and present a fundamental framework for studying asymptotic
behaviour of the ols estimator in non stationary panel data models with large
n and T.Their work investigates the behaviour of the pooled ols estimator in
panel data models where all the regressors are non stationary under four possi-
ble panel structure: when there is no cointegrating relation between regressors
and regressand, when there is a heterogeneous cointegration relation, when the
cointegrating relation is homogenous and near-homogenous.

When there is no cointegrating relation between the regressors and the re-
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gressand, the model is know in the literature as spurious regression. If panel
observations with both large cross-sectional and time series components are
available,then, even if the noise is quite strong,it can be characterised as inde-
pendent across individuals. By pooling the cross section and the time series
observations, Phillips and Moon attenuate the strong effect of the residuals in
the regression while retaining the strength of the signal . They show the exis-
tence of a very interesting long run average relationship between the regressors
and the regressand and they prove that the pooled ols estimator of such relation
is both /nconsistent and asymptotically normal.

When the existence of a cointegrating relations between regressors and re-
gressand is assumed across all the individuals,the limiting distribution of the
pooled ols estimator is derived for three cases:heterogenous, homogenous and
near homogenous cointegration. A cointegrating relation between the regres-
sors and the regressand exists when their conditional long run variance matrix
has deficient rank. If different cointegrating relationships are allowed across
individuals the model is know as a heterogeneous cointegration model. When
the cointegration relation is the same for all individuals the model is said to
be a homogenous cointegration model,if only slightly different conintegrating
relations exist across individuals the model is a near homogenous panel coin-
tegration model. In the first case Phillips and Moon show that the pooled ols
estimator consistently estimates the long run average coefficient between re-
gressors and regressand. By the same logic of the spurious regression model,the

consistency is obtained because, by pooling the panel data,cross section pooling



attenuates the strength of the noise relative to the signal of the regression. The
ols estimator is found to be \/n consistent and asymptotically normal. The
same estimator is proved nv/T consistent and asymptotically normal both in
the homogenous and in the near homogenous cointegration model.

The development of a limiting distribution theory in panel data with both
large n and T requires deriving the limiting behaviour of double indexed processes.
In general this limiting behaviour depends on the treatment of the two indexes,n
and T. Different approaches are available. One approach is to fix one index,n
.and allow the other,T,to pass to infinity,giving an intermediate limit. By letting
n pass to infinity subsequently a sequential limit theory is obtained. A second
approach is to let the indexes pass to infinity along a specific diagonal path
determined by a monotonically increasing function relation of the type T=T(N)
where n— oo. This approach: is known as diagonal path limit theory. A third
approach is to allow both indexes to pass to infinity simultaneously without
pacing any restriction on the path of divergence. This approach is known as
joint limit theory.Diagonal path limit theory requires assuming a very specific
expansion path and thus may fail to provide an appropriate approximation for
a given (N, T) situation. Joint limit theory requires stronger conditions than se-
quential one but ,on the other hand,sequential limits can give asymptotic results
that are misleading in cases where both indexes pass to infinity simultaneously.

The limit theory developed by Phillips and Moon allows for both sequential
and joint limits. To derive the latter they impose the rate condition n\T

—» (,thus in practise their limit theory is most likely to be useful when n is



moderate and T is large. Such data configuration can be expected in multi-
country macroeconomic data,for example, when attention is restricted to group
of countries such as OECD nations or developing countries. The results stated
above on the asymptotic normality and consistency of the ols estimator are
derived in all four panel structure, using both sequential limit theory and,
under some strengthening of the conditions, joint limit theory as well.

The work of Phillips and Moon provides a very exhaustive investigation
about the limiting behaviour of the pooled ols estimator panel data with large n
and T when all the regressors are assumed to be nonstationary, I(1). At present
the only work in the literature about the asymptotics of the ols estimator in
panel data model with large n and T and with mixed I(1) and I(0) regressors
is Baltagi,Kao,Liu(2008).This paper studies the asymptotic properties of the
ols estimator in a simple panel data model with random error component dis-
turbance. Both the regressor and the remainder disturbance term are assumed
to be autoregressive and possibly non stationary.Baltagi, Kao and Liu present
results for the case of one regressor, but their results could easily be extended

to the multiple regressor case. They consider the following model:

Y=o+ xv\iﬁ + Uy

withi=1,.....n and t=1,..... T and where u;;=p, +v,, and

o and 3 are scalars. The individual effect ; is assumed to be random and i.i.d
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N(0,52).{v:/} is set to be an AR(1) process:
Vg = pty + &5

with |p| <1 and ¢;;, white noise process. The y; are assumed independent
of the v, for all 1 and T.This is the random effects error component model with

serial correlation. They further assume that
T = Az + &y

with  |A| <1 and ¢, white noise process, and that E(u,|x;)=0 for all
i and T ( the usual fixed effect model assumption).

The pooled ols estimator of 3 is given by:

fﬂ B Za Z,(xﬂ v i}('y,: =i ﬁ)
Hols T Z* E.‘.(x”- - j})

where =33 =y and =53, Y, var.

All the asymptotic results of Baltagi, Kao and Liu are based on a sequential
limit theory, in particular they assume that T— oo followed by n— oo.They
do not provide any joint limit distributional results . Their work shows that the
asymptotic properties of the ols estimator depend crucially on the serial correla-
tion properties of the regressor and the error component in the disturbance term
(v:).When the regression error and the regressor are both stationary ( |p| < 1

and |A] < 1) the ols estimator is found to bev'nT consistent and asymptoti-



cally normal.If the disturbance and is I(1) and the regressor is 1{0) (p = 1 and
[A| < 1) the ols estimator isy/nconsistent and asymptotically normal. The noise
is so strong that it dominates the signal. It is interesting to notice that, when
only few time series observations are available for this case ,the ols estimator
is inconsistent. When the disturbance is I(0) and the regressor is I(1) ( |p| < 1
and A =1) the model is cointegrated:the ols estimator is +/nTconsistent and
asymptotically normallf both the disturbance and the regressor are I(1) (p=1
and A = 1) the regression is spurious and the estimator is \/nconsistent and

asymptotically normal.

3. A panel model with stationary and nonstationary regressors.

In this section I extend the model of Baltagi,Kao and Liu to a more general
panel data setting and present results from a Monte Carlo simulation to gain
insight into the behaviour of the pooled ols estimator in this model. The model

I consider is the following:

Vi = a+ Bz + vz + ui

where i=1,.....,n and T=1,...... ,I.In the model a, § and ~ are scalar, however
the results can be easily extended to the case of vector regressors. The regression

disturbance u;, is 1.i.d ,z;, is a stationary weakly dependent process(e.g. i.id)
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and x;; is a unit root process:

Ty = Tjp—1 + Ny

where 7,, is white noise, independent from u;,.

The pooled ols estimator of the model is given by

9= Za Za_ Tyt
2\'. Zf, 'T:!l'.

¥, is thus a(3*1) vector of estimates whose first and second components
are respectively the pooled estimator of the coefficient of the I(1) regressor (8)

and the pooled ols estimator of the coefficient of the 1(0) regressor (%).

In the Monte Carlo experiment the true value of ¥=(a, 8. v) isset at (1,1,1)".
zi, X; and 7, are generated as independent Normal(0,1). The values of n
and T range from 10 to 500, and for each possible combination of n and T the
reported results are the outcome of 10000 simulations.

The range of values of T and n and the number of simulations have been
set according to the common practise of Monte Carlo simulation for panel data
models.

In this setting any inconsistency of the estimators can be clearly detected
within the set range of variation of T and n.

For consistency of the estimators a sufficient and, almost close to necessary,

condition is the decrease of the standard deviation and the mean of the difference
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between the true and the simulated value of the estimators. When both std(

9 — ) and E( f:’ — f3) decrease as n and T increase, the evidence from the

experiment is in favour of consistency.

Results for the std( 8- ) and E(B — ) are reported below:

T
10 100 200 300 500
10 | 0.00485 | 0.0028 0.0024 0.0013 9.3891x 101
n | 100 | 0.0136 | 0.0014 7.1200x 107" | 4.4321x10°* | 2.8198x 10 *
200 | 0.0096 | 9.9293x10~" | 5.0075x10~" | 3.8790x10~1 | 1.9894x10~1
300 | 0.0052 | 8.4368x107" | 3.2165x10* | 2.0813x10~* | 1.5168x 10"
500 | 0.0061 | 6.2840x10~" | 3.1422x10~" | 2.0093x10~* | 1.2632x10~*
Std(A—p)
T
10 100 200 300 500
10 | 0.0357 | 0.0038 0.0019 0.0008 7.3626x 10"
n | 100 | 0.0108 | 0.0011 566571071 | 4.0351x1071 | 2.2446x 10"
200 | 0.0077 | 7.9293x107* | 3.9931x10~* | 2.6139%x10~* | 1.5855%x 10 *
300 | 0.0059 | 6.9821x10~* | 3.0803x10™* | 2.5444x10* | 1.4982x10~*
500 | 0.0048 | 5.0199x10™* | 2.5133x10~* | 2.0075x10™% | 1.0105%x10"*

F(A=3)

From the reported results there are evidences to argue for consistency of the

estimator of coefficient of the 1(1) regressor,

When T is small and fixed, say T=10, and n is allowed to go to infinity

14




the evidence of consistency is coherent with the theoretical results developed by
Phillips(1986) and Granger and Newbold(1974).

Furthermore the experiment brings evidences for consistency of the estima-
tor for the case of small, fixed n as T is allowed to go to infinity; and for the
case where both n and T go to infinity simultaneously.

To assess the rate of consistency of the estimator I regress the logarithm
of the variance of the simulated estimator on the logarithm of n and of T.The

regression equation is the following:

log(Var(B)) = log(C) — ¢log(n) — wlog(T)

where C is the constant term.
After discarding the values of the variance of 3 for all the cases where n=10,
and for all the cases where T=10 the following least squares estimates of

and ¥ are obtained

é = 1.0310

¥ = 1.9919

R? = 0.9998
pralue = 0.000

Fstatistic = 62.2499
5% = 0.5458
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Figure 1: Q-Q plot 3 experiment one

For asymptotic normality I make use of a very common graphical statis-
tic device: a Q-Q plot.A Q-Q plot is the most widely used graphical method
for diagnosing difference between the probability distribution of the statistic of
interest and a normal distribution. The plot on top of the page is the Q-Q
plot of 3 for the case of (n,T)=(500,500).The sample size is of 10000 observa-
tions. The plot reports the quantile of the normal distribution on the horizontal
axis and the order statistics of the simulated sample on the vertical axis. When
the distribution of the simulated sample is the same of the comparison normal
distribution the plot approximates a straight line.

From the above results the experiment brings evidences for /n'T consistency

and asymptotic normality of 3.the coefficient of the I(1) regressor.
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Results for the standard deviation of (% — +) and for the E(§ — «) are

reported below:

T

10 100 200 300 500

10 | 0.1024 | 0.0313 | 0.0223 | 0.0201 | 0.0141

n | 100 | 0.0315 | 0.0099 | 0.0071 | 0.0063 | 0.0045

200 | 0.0222 | 0.0071 | 0.0049 | 0.0041 | 0.0032

300 | 0.0217 | 0.0065 | 0.0042 | 0.0033 | 0.0027

500 | 0.0142 | 0.0045 | 0.0032 | 0.0028 | 0.0020

Std(&—)

T

10 100 200 300 500

10 | 0.0816 | 0.0250 | 0.0179 | 0.0161 | 0.0112

n | 100 | 0.0251 | 0.0078 | 0.0056 | 0.0046 | 0.0036

200 | 0.0177 | 0.0057 | 0.0040 | 0.0036 | 0.0025

300 | 0.0141 | 0.0048 | 0.0031 | 0.0027 | 0.0023

500 | 0.0113 | 0.0035 | 0.0025 | 0.0021 | 0.0016

25—~}

The least square estimates of v and v in the regression of the logarithm of



the variance of #on the logarithm of n and the logarithm of T are the following:

$ = 1.0053
W = 1.0059
R? = 09998
pvalue = 0.000

Fstatistic = 62.2499

%2 = 0.5458

The Q-Q plot of % against the Normal distribution for (n,T)=(500,500) is

reported on top of next page.

According the evidences presented above the coeflicient of the stationary

regressor,v. is vnT consistent and asymptotically normal.

4.Introducing possible sources of inconsistency.

All the above results have been derived assuming that:

1) the regression error u;, and the exogenous shock of the AR(1) process
generating the non stationary regressor, 7),,, are independent;

2) the regression error u;; and the I(0) regressor z;; are independent

According to the conventional limit theory of the pooled ols estimator of
panel models,any correlation between the regressors and the regression distur-

bance will result in an inconsistency of the estimator. However these conclusions
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Figure 2. Q-Q plot 4 experiment one

are derived under the assumption of a small number of time series observa-
tions, T, as the number of cross section observations ,n ,goes to infinity.

In other settings than the one under consideration it has already be shown
that when the number of time series observations is allowed to go to infinity,
the conventional results of inconsistency may no longer hold. Baltagi,Kao and
Liu(2008) have proven that in a model with random error component distur-
bances when the regressor is I(0) and the disturbance is I(1) the ols estimator is
still consistent if large and and T are available, whereas the traditional result of
inconsistency continues to hold if only few time series observations are available.

It thus appears quite relevant to investigate the behaviour of the ols estima-
tor when some correlation between the regressors and the regression disturbance

is introduced in the basic model.
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Recall the model;

Y=+ By + vz + ui

for i=1,.....n and t=1........ T and

Ty = Tip—1 + 75,

where n;, and u;, are generated as independent Normal(0,1) but z,, is gen-

erated as

Zip = PuUg + Xm

where x ~ N(0,1) . A correlation of p is now introduced between the
regression disturbance and the I(0) regressor.

The tables below show the results for the E( 3—3) and E( F—) for p=0.2.

The results are robust to higher values of p .Both the E( 3 — B) and the
E(% — ) fail to decrease along all the dimensions of the experiment. There are

clear evidences of inconsistency.

20



T

10 100 200 300 500

0.1210 | 0.0131 | 0.0130 | 0.0132 | 0.0131

100 | 0.1193 | 0.0129 | 0.0128 | 0.0133 | 0.0133

n | 200 | 0.1196 | 0.0134 | 0.0134 | 0.0134 | 0.0134

300 | 0.1198 | 0.0132 | 0.0129 | 0.0131 | 0.0131

500 | 0.1198 | 0.0133 | 0.0133 | 0.0132 | 0.0132

B(B~3)

10 100 200 300 500

10 | 0.4952 | 0.4953 | 0.4962 | 0.4977 | 0.4991

n | 100 | 0.4551 | 0.4952 [ 0.4975 | 0.4984 | 0.4991

200 | 0.4552 | 0.4952 | 0.4976 | 0.4985 | 0.4992

300 | 0.4554 | 0.4953 | 0.0976 | 0.4984 | 0.4991

500 | 0.4554 | 0.4952 | 0.4976 | 0.4984 | 0.4990

=)

The results of the experiment are quite different when the potential source
of inconsistency is introduced trough a correlation between the regression error

and the I(1) regressor.In the above model the regression error u;, and the I{0)

regressor x,, are now generated as independent Normal(0,1).But #;, is now

generated as:

My = Py + X/1—p

21



where x ~ N(0,1). A correlation of p is now introduced between the regres-

sion disturbance and the shock of the AR(1) process generating the nonstation-

ary regressor.Clearly this brings in the model a correlation between the error

and the I(1) regressor.

Results for the standard deviation of ( B—8) and for the E(8—8) for p =08

.The results are robust to lower values of p.

T
10 100 200 300 500
10 | 0.0411 | 0.0049 0.0022 0.0015 9.1871x10™1
n | 100 | 0.0112 | 0.0009 6.1787x1071 | 4.1625% 10~ | 2.4681x10~"
200 | 0.0078 | 8.6225e-004 | 4.3374x10~" | 2.9828%10~1 | 1.7634x10~*
300 | 0.0064 | 7.0626e-004 | 3.9421x10~* | 2.3663x10~1 | 1.4067x10~"
500 | 0.0056 | 5.4675e-004 | 2.7225x10~% | 1.1811x10~* | 1.1029%10 *
std(F—#)
T
10 100 200 300 500
10 | 0.1210 | 0.0131 | 0.0066 | 0.0043 | 0.0026
n | 100 | 0.1130 | 0.0120 | 0.0060 | 0.0040 | 0.0024
200 | 0.1128 | 0.0120 | 0.0060 | 0.0040 | 0.0024
300 | 0.1125 | 0.0119 | 0.0060 | 0.0040 | 0.0024
500 | 0.1125 | 0.0119 | 0.0060 | 0.0040 | 0.0024

12(A—4)

Not surprisingly the standard deviation of B~ decreases as the number of
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observations increases along any dimension. However the reported results show
an interesting behaviour of the bias in the experiments. When T is fixed at any
value of the range and n is allowed to go to infinity, the estimator is inconsis-
tent as we would expect from the conventional limit theory.But when n is fixed
at any value of the range ,and T is allowed to go to infinity the bias decreases:
there are evidences for consistency of the estimator. Analogously if both n and T
are allowed to go to infinity simultaneously,providing thus a sort of experimen-
tal evidence for a joint limit theory,the bias decreases. The evidences support
consistency. When a regression of the log of the variance of the estimator on the

log of n and T is run the following estimates are obtained:

& = 009183
@ = 0.8921
R? = 0.8907

pvalue = 0.000
Fstatistics = 60.0033

6% = 0.5998

For the asymptotic normality of the estimator as n and T go to infinity si-
multaneously the Q-Q plot on top of next page is obtained for (n,T) =(500,500).
Interesting enough the experiment brings evidences for v/nT' consistency and

asymptotic normality of the ols estimator of the coefficient of the I(1) regressor
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Figure 3: Q-Q plot 3 experiment 3

when the number of cross section observations and the number of time series

observations are allowed to go to infinity simultaneously.

The behaviour of the estimator of the coefficient of the I(0)

regressor 1s

analogous.Results for the standard deviation of ( % — +) and for the E{ 5 — «)

are reported below:

T
10 100 200 300 500
10 | 0.0448 | 0.0051 0.0026 0.0017 0.0011
n | 100 | 0.0125 | 0.0014 7.0786x1071 | 4.7339%x1071 | 2.9213x1071
200 | 0.0086 | 7.9162x10* | 4.9539x10~* | 3.2350x10~* | 2.8812x 10"
300 | 0.0070 | 6.9226x10~* | 4.0631x10™1 | 2.9398x10~* | 1.6378x101
500 | 0.0057 | 2.9815x10™* | 2.0761x10~* | 1.9864x10~" | 1.3004x10*

Std(7—)
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T

10 100 200 300 500
10 | 0.1531 | 0.0168 | 0.0085 | 0.0057 | 0.0034
n | 100 | 0.1436 | 0.0156 | 0.0079 | 0.0052 | 0.0031
200 | 0.4130 | 0.0154 | 0.0078 | 0.0052 | 0.0030
300 | 0.1429 | 0.0156 | 0.0079 | 0.0052 | 0.0031
500 | 0.1429 | 0.0156 | 0.0078 | 0.0052 | 0.0031
B3

For the rate of consistency the following estimates are obtained:

]

"

R2
pualue

Fstatistics

=2
o

0.9999

0.9981

0.8907

0.000

60.0033

0.5998

The asymptotic normality is supported by the Q-Q plot of 4 for (n,T)=(500,500)

on top of next page.

The experiment brings evidences for vnT consistency and asymptotic nor-

mality of the ols estimator of the stationary coefficient.
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Figure 4: Q-Q plot 4 experiment 3

5.Introducing individual effect.

One of the advantages of panel data sets is that they enable the researcher to
allow for the presence of individual heterogeneity in the model. There is no single
specification of individual heterogeneity which is universally valid:in fact the
choice of the appropriate specification depends on the problem on hand and on
the nature of the data.In macroeconomic panel data models it is quite a common
practise to assume that the reaction coefficients are the same for all individuals
and to account for individual heterogeneity by allowing a different intercept
across individuals.In this section I introduce an individual effect in the basic
model by allowing for different intercepts across individuals .I then investigate
the behaviour of the pooled ols estimator once this extra source of generality

is allowed. As soon as individual heterogeneity, in any form, is introduced in
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the model, an assumption on the correlation between the regression error and
the individual effect must be made. In this section I assume that the model is
random effect, in the sense that there is no correlation between the unobserved
component and the regression error.

Consider the model:

Y=oy +xi B+ iy +un

for i=1,..........,n and t=1,..........T. Where gz, is a stationary I(0) regressor
generated as a N(0,1) and independent of u;;. a;is an individual effect generated

as a N(0,1) independent of u;, . And the I(1) regressor is

Ty = Tig—1 + Ny

where 1), is generated as a Normal(0,1) independent from u;; and from a;.
In the experiment the range of n and T and the number of simulations have
been chosen as in the previous two.

The tables below reports results for the standard deviation of (,ﬁ — /) and

for E(8 - )



T

10 100 200 300 500

10 | 0.1148 | 0.0352 | 0.0251 | 0.0211 | 0.0157

n | 100 | 0.0359 | 0.0112 | 0.0079 | 0.0050 | 0.0033

200 | 0.0253 | 0.0079 | 0.0056 | 0.0046 | 0.0028

300 | 0.0219 | 0.0061 | 0.0043 | 0.0035 | 0.0021

500 | 0.0160 | 0.0050 | 0.0035 | 0.0029 | 0.0012

std(f—3)

T

10 100 200 300 500

10 | 0.0914 | 0.0281 | 0.0251 | 0.0211 | 0.0157

n | 100 | 0.0286 | 0.0089 | 0.0063 | 0.0052 | 0.0044

200 | 0.0202 | 0.0063 | 0.0044 | 0.0041 | 0.0033

300 | 0.0167 | 0.0058 | 0.0054 | 0.0039 | 0.0022

500 | 0.0128 | 0.0040 | 0.0028 | 0.0023 | 0.0019

F(3-3)

Both statistics decrease along all the dimensions of the experiment: there are

evidences for consistency. For the rate of convergence the following estimates



are obtained

¢ = 0.9983
¥ = 1.0341
R* = 09154

pualue = 0.000
Fstatistic = 63.4478

&2 = 0.4915

The Q-Q plot of 8 for (n,T)=(500,500) reported on top of next page gives

evidences for asymptotic normality.

On the ground of the above results it appears that in this case the ols estima-
tor of the coefficient of the I(1) regressor is vnT consistent and asymptotically
normal.

When comparing this results with the first case presented in the paper it is
evident that the introduction of an individual effect has determined a loss in
efficiency in the estimator of the I(1). This result is coherent with the founding
of Baltagi, Kao and Liu for the case of a I(1) regressor and of a 1(0) remainder
disturbance. However in the random error component model they investigate
the I{0) component is introduced as the remainder disturbance and thus has no
coefficient to estimate. In the model presented above the I(0) component is in-

troduced as one of the regressors, thus further investigation into the asymptotic
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behaviour of its estimator is possible.
The table below reports the results of the Monte Carlo experiment for the

standard deviation of (5% — ~) and for the E(§ — ~) :
T

10 100 200 300 500

10 | 0.0944 | 0.0313 | 0.0222 | 0.0180 | 0.0139

n | 100 | 0.0153 | 0.0098 | 0.0080 | 0.0057 | 0.0044

200 | 0.0210 | 0.0071 | 0.0048 | 0.0041 | 0.0031

300 | 0.0171 | 0.0056 | 0.0040 | 0.0033 | 0.0025

500 | 0.0130 | 0.0044 | 0.0031 | 0.0029 | 0.0020

sted(5—=)
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T

10 100 200 300 500

10 | 0.1393 | 0.0931 | 0.0457 | 0.0321 | 0.0189

100 | 0.0153 | 0.0856 | 0.0344 | 0.0311 | 0.0111

n | 200 | 0.0132 | 0.0675 | 0.0311 | 0.0299 | 0.0099

300 | 0.0125 | 0.0649 | 0.0298 | 0.0273 | 0.0054

500 | 0.0118 | 0.0432 | 0.0276 | 0.0218 | 0.0032

E{5=)

There are evidences for consistency of the estimator along all the dimen-
sions of the experiment.For the rate of consistency the following estimates are

obtained:

¢ = 1.1109
v o= 09978
R? = 09154

pvalue = 0.000
Fstatistic = 63.4478

62 = 0.4915

The Q-Q plot of 4 when (n,T)=(500,500) on top of next page gives evidences

for asymptotic normality.

The estimator of % is therefore found v'nT consistent and asymptotically

normal.
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6. Conclusions

This paper presents results from four Monte Carlo experiments on the lim-
iting behaviour of the ols estimator in panels with mixed stationary and unit
root regressors.

The investigation has been conducted allowing both the number of cross
section observations and the number of time series observations to go to infinity
simultaneously.

Evidences from the experiments indicate that,in a general panel model with
no endogeneity, the ols estimator of the I(1) regressor is /n1" consistent and
asymptotically normal,whereas the ols estimator of the stationary regressor is
VnT consistent and asymptotically normal.

Once endogeneity is introduced in the model trough a correlation between
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the regression error and the shock of the unit root process, the estimator of
the I(1) regressor is found inconsistent for fixed T,but nT consistent and
asymptotically normal as n and T go to infinity simultaneously .The estimator
of the 1(0) regressor is as well inconsistent for fixed T, and /nT consistent and
asymptotically normal as n and T go to infinity.

If individual heterogeneity is introduced in the model by allowing for a dif-
ferent intercept across individuals in a random effect panel framework both
estimator are found vnT consistent and asymptotically normal.

The paper presents no results for individual heterogeneity model with fixed
effect. Further investigation on this case would be desirable.

More importantly the paper presents no theoretical results . Monte Carlo
experiments cannot provide more than some insight into the behaviour of the
estimator. Since no theoretical results are yet available in the literature it is to
be hoped that further studies on the properties of the ols estimator in panels

with stationary and nonstationary regressors will be undertaken.
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