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Abstract

This paper considers estimation of short dynamic panel data models with error cross-sectional
dependence. It is shown that under spatially correlated errors, an additional, generally non-
redundant, set of moment conditions becomes available for each ¢ — specifically, instruments
with respect to the individual(s) which unit ¢ is spatially correlated with. We demonstrate that
these moment conditions remain valid when the error term contains a common factor component,
in which situation the standard moment conditions with respect to individual 4 itself are invalid-
ated, and thereby the standard dynamic panel GMM estimators are inconsistent. The resulting
estimators are computationally attractive and do not require estimating the number of unob-
served factors. Simulated experiments show that the resulting method of moments estimators
perform well in terms of both median bias and root median square error.

Key Words: Dynamic Panel Data, Spatial Dependence, Factor Structure Dependence, Generalised
Method of Moments.
JEL Classification: C13; C15; C33.

1 Introduction

In developing the theory of GMM estimation of short dynamic panel data models, it is commonly
assumed that the residuals are independently distributed across individuals (see e.g. Anderson and
Hsiao, 1981, pg. 598, Arellano and Bond, 1991, pg. 278, Arellano, 1993, pg. 88, Ahn and Schmidt,
1995, pg. 7, Blundell and Bond, 1998, page 118, and others). This assumption is usually made
for identification purposes rather than descriptive accuracy with the hope, presumably, that by
conditioning on a sufficient number of explanatory variables, what is left over can be treated as
a purely idiosyncratic disturbance that is uncorrelated in the cross-sectional dimension. On the
other hand, this rather strong assumption is somewhat relaxed in empirical applications involving
dynamic panels by allowing for common variations in the dependent variable at any given point
in time using a two-way error components disturbance (e.g. Arellano and Bond, 1991, pg. 288,
Blundell and Bond, 1998, pg. 137, Bover and Watson, 2005, pg. 1975). In practice, however, this
formulation is unlikely to be adequate to remove all correlated behaviour in the residuals and this
may invalidate the point estimates of the parameters, as well as inferences; see e.g. Sarafidis and
Robertson (2009).

Error cross-sectional dependence may arise for various reasons in practice; for example, it may
be due to the presence of spatial correlations specified on the basis of economic and social distance
(Conley, 1999) or relative location (Anselin, 1988), as well as due to the presence of unobserved
components that give rise to a common factor specification in the disturbances with a fixed number
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of factors (e.g. Goldberger, 1972, and Joreskog and Goldberger, 1975). Methods that account for
spatial dependence in panel data models have been proposed by Mutl (2006), Kapoor, Kelejian
and Prucha (2007), Lee and Yu (2010) among others. Methods that deal with a multi-factor error
structure have been proposed by Robertson and Symons (2007), Phillips and Sul (2003), Moon and
Perron (2004), Bai (2006), Pesaran (2006), Sarafidis and Yamagata (2010) among others. These
methods are theoretically justified in panels where the number of time series observations (7') is
large and/or (some of) the covariates are strictly exogenous with respect to the purely idiosyncratic
disturbance. Valid methods for fixed T" and weakly exogenous, or endogenous regressors have been
proposed by Ahn, Lee and Schmidt (2006), Bai (2010), Robertson, Sarafidis and Symons (2010).
These methods are non-linear and require estimating the number of unobserved factors as well as
the factors themselves. An overview of recent developments in the literature is provided by Sarafidis
and Wansbeek (2012).

The present paper investigates the effect of spatial dependence in dynamic panel data models. It
is shown that an additional set of moment conditions becomes available — in particular, instruments
with respect to the individual(s) which unit 7 is spatially correlated with. In many practical circum-
stances these moment conditions are not redundant in the sense that the asymptotic variance of the
GMM estimator from the enlarged set of moment conditions is smaller than the GMM estimator
that uses the smaller set of moment conditions, i.e. those instruments with respect to individual 4
only. We develop two GMM estimators. One is based on first-differenced equations and is similar to
the Arellano and Bond (1991) GMM estimator. The other one combines equations in first-differences
and in levels, yielding a system GMM estimator. Unlike the standard system GMM, however, this
estimator remains consistent even if the process is not mean-stationary. This is important because
mean-stationarity cannot be theoretically founded in a large number of applications.

Most notably, it is demonstrated that the spatial moment conditions remain valid even when
the error term contains a common factor component, in which case the standard moment conditions
with respect to lagged values of the endogenous regressor are invalidated. The resulting estimators
are computationally attractive since the moment conditions are linear in the parameters, and they
do not require estimating the number of unobserved factors or the factors themselves (assuming that
theory suggests a particular number of factors to exist) for consistent estimation of the structural
parameters. In addition, the set of regressors can be strictly exogenous, or endogenous, while T
can be either fixed or large, provided that the number of moment conditions utilised does not grow
with 7. The main requirement is the specification of a spatial weighting matrix, which is common
practice in the spatial literature.

The structure of the paper is as follows. The following section specifies the panel regression
model, discusses the basic assumptions employed and derives the consistency and asymptotic normal-
ity of the standard first-differenced and system GMM estimators under spatial dependence. Section
3 analyses the properties of the spatial instruments that become available. Section 4 demonstrates
that these instruments remain valid even if the error contains a common factor component. The
performance of the resulting estimators is investigated in Section 5 using simulated data. A final
section concludes.

2 Model Specification and Standard Moment Conditions

This section investigates the effect of spatial dependence on dynamic panel data estimation. Without
loss of generality and for easy of exposition we will consider the following panel AR(1) model:

Yit = Yip—1+up, o/ <1l,i=1,.,N,t=1,..,T,
N

U = N;+ Eit, Eix = 0 E Wi, NVjt + Vit,
i=1



where the initial observation is given by

N
Yio = 0on; + 0140, €i0 = 0 Z Wi, NVjo + Vip- (1)
i=1

For §p = 1/ (1 — «) the process is mean-stationary, and if, in addition, §; = +/1/(1 — @?) the
process is covariance-stationary. We do not necessarily want to impose these restrictions at this
stage.

Stacking the model over ¢ yields

ye=ayi 1+ w=ayi1+n+e =ayr1+n+ Pyug, (2)
where y; = (ylty--wyNt)/a yi—1 = (yltfla---ayNt—l),, ur = (ult,---,UNt),, n = (7717---,771\[),, € =
(e1ty rent)’s v = (V1t, ..., UNt), Wi is an N x N matrix and Py = Iy + 0Wy. y; can be written
as

1o t—1
yi = a'yo+ (1—(1) n+ PNZQT’Ut—n (3)
=0

and from (1) we have yg = dom + d1 Pyvo . Therefore, y; can be expressed as a linear form of the
innovations, 7 and v,

y: = (8;® Py v +05, M, 4
N>fl (NiN(T+1))N(T+1)><1 0’tN><1 @
where, following a similar approach to Mutl (2006), 3, = (61af,a'™1,...,a0,01x7—) isa 1x (T +1)

row vector, v = (U, ..., ’U/T)/ isa N (T + 1) x 1 column vector that contains all the elements of the
purely idiosyncratic error component, while 58715 = [ﬁ +at <50 — ﬁ)} Observe that Ae; can

also be expressed as a linear form of v as follows:

Aegy=(di®@Py) v (5)
Nx1 N><N(T+1)N(T+1)><1

where d; is a 1 x (T' + 1) row vector and consists of the (¢ — 1)th row of (O7_1x1, D), while D is the
(T'— 1) x T matrix first-difference operator (see e.g. Arellano, 2003, pg. 15) defined as

-1 1 0 0 0
0 -1 1 0 O
D=
0 0 O -1 1
Similarly, u; can be expressed as
u = (€., ® Py v + n, 6
Nx1 (A?EV(TH))N(TH)N Nx1 ©)

where e, denotes the elementary (T'+ 1) x 1 vector with 1 in the (£ + 1) position.
Taking first-differences in (2) yields

Ay: = aAy 1+ Aey = aAys 1+ PvAvg, t =2,...,T. (7)
One can express Ay; as a linear form of the innovations as follows:

Ay = (7 @Pn) v +65; M, 8
Nx1 (N;N(TH))N(TH)XI S| ®)



with v,y = [01 (@ —1)a' 2 (a—1)a" 3, . (a=1)a®,1,01p__1)] is a 1 x (T'+ 1) row vector,
0t—1 = (a2 — 69 (1 — @) '72], while v, 1 have been defined above. Stacking (2) and (7) over
t=2,..,T yields

y = y-1 + u, (9)
N(T-1)x1 N(T-1)x1  N(T—1)x1
and
Ay =a Ay_1 + Ae, (10)
N(T-1)x1 N(T-1)x1 N(T—1)x1

respectively, where y = (y5, ...,y’T)', y_1= (y’l, ...,yép_l),, u = (uj, ...,ui[)/, Ay = (Ayl), ...,Ayif)',
Ay_1 = (AY}, .., AV ), Ae = (Aéh, ..., Al

Let Zp = diag (Y%, Y, .. ,YT"2) be a N (I' — 1) x T (T — 1) /2 block-diagonal matrix, where a
typical block is Y* = (y0.y1,, -, ¥s), a N x (s + 1) matrix, where y, = (Y1r,Y2r, -, Un+), @ N x 1
vector. Also, let Z;, = diag (Ay1, Ays,...,Ayr_1) be a N (T —1) x (T — 1) matrix, where each
block is given by Ays = (Ayis, Ayas, ..., Ayns)', a N x 1 vector. The following assumptions are
maintained:

Assumption 1 (error components): (i) The random variables {v;; : 1 <i < N,0<t < T} are
independently distributed with zero mean and finite variance 0. Furthermore, sup;;« NO<t<T
E |Uit’4+6 < oo for some § > 0. (ii) The random variables {n; : 1 <i < N} are independently
distributed with zero mean and finite variance 0,27. Furthermore, sup; ;< £ ]m!4+6 < oo for
some § > 0. (iii) The processes {v;} and {n,} are totally independent.

Assumption 2 (weighting matrix and space of MA parameter): (i) All diagonal elements
of Wy equal zero. (ii) The spatial moving average parameter satisfies § € (—cj g, c2) with
0 < c1,9,c20 < cp < oo. (ili) The matrix Wy is non-singular and Py = Iy + §Wy is non-
singular for all # € (—c19,c24). (iv) The row and column sums of Wy and (Iy + 6Wy) are
bounded uniformly in absolute value.

The assumptions above are standard in the spatial literature, see e.g. Kelejian and Prucha (2010).
Notice that Assumption 1 permits cross-sectional heteroskedasticity in €;, through the weighting
matrix Wy. Serial independence in the error can be relaxed by allowing &;; to follow a finite MA
process. An AR process can be accommodated using further lags of y on the right-hand side of
the model. Assumption 2(i) is just a normalisation of the model and implies that no individual
is viewed as its own neighbour. Assumptions 2(ii)-(iiii) concern the parameter space of 6 and are
discussed in detail by Kelejian and Prucha (2010, Section 2.2). Assumption 2(iv) implies that there
is no dominant unit in the sample, i.e. an individual unit that is correlated with all remaining
individuals. We will study the factor structure case, which violates this scenario, in Section 4.
Notice that the assumptions above do not depend on a particular ordering of the data, which can
be arbitrary. For reasons of generality the elements of Wy, and by implication of y with a slight
abuse of notation, are permitted to depend on N, that is to form triangular arrays. This is due to
the fact that for “boundary” elements the connectedness structure may change as new data points
are added. This implies that the asymptotics require the use of a CLT for triangular arrays (see e.g.
Davidson, 1994, Ch. 24).

The following proposition shows that the following moment conditions remain valid for the panel
autoregressive model with spatially correlated errors.

Proposition 1 Under Assumptions 1-2, the following T (T — 1) /2 moment conditions are valid in
the first-differenced model (10):
my p (o) = N1 ZpAe 2 0. (11)

Furthermore, under mean-stationarity, 6o = 1/ (1 — ), the following T — 1 moment conditions are
valid in the levels model (9):

my (@) =N"'Zjubo. (12)



Proof. See Appendix A. m

The above proposition demonstrates that instruments with respect to lagged values of the en-
dogenous regressor remain valid under spatial dependence. Therefore, under certain regularity
conditions it will be shown that Generalised Method of Moment estimators making use of these
moment conditions are consistent and asymptotically normal with mean zero. In particular, define

_|“%p O | _ _|Ay|. _ | Ay-1 |, _ | Ae
Zs—[o ZL],ys—[y},yLs—[yl jus =1 |-

Also, let A1 p v and Aq sy be sequences of possibly random, non-negative definite matrices of order
C1.p X Cy.p and ¢ g X (y g, respectively, where ¢, p =T (T —1) /2 and ¢, g =T (T — 1) /2+T — 1.
The following assumption is employed for the identification of the autoregressive parameter, «.

Assumption 3(i) (identification of a): N'Z,,Zp % Qz,, N ZLAy 1 2 azpny. s N~ 2575
2, Qzg, N_IZ/Sy_LS 2, dzsy_, s, all finite matrices (vectors) with full column rank (non-zero

entries). Al,D,N and AI,S,N have full rank and AI,D,N £> Al,D> AI,S,N £> AI,S'

The first-differenced (FD) GMM estimator is defined as the minimiser of the following quadratic
form:

Op(a, py) = 8rgminmy p (@) A p ymyp (). (13)

Combining (11) and (12) yields
my s (a) = N"'Zug 2 0. (14)

The system (SYS) GMM estimator is defined as the minimiser of the following quadratic form:

~

Ug(a,qy) = AGMINMys (@) A s Nvmys (@), (15)

Setting the first-order conditions equal to zero and solving for the unknown value of « in (13) and
(15) yields

aD = [AyLIZDALD’NZ/DAy_l]_l [Ay/,lZDALD,NZbAy] y (16)
and .
as = [y 152sA1snZsy-1,5]  [¥ 1525A1,5nZ5Ys] (17)

respectively. The following theorem establishes the consistency and asymptotic normality of the
above estimators.

Theorem 2 Suppose Assumptions 1-3(i), and (11) hold true. Let Qy p v = var [\/NmMD (a)} be
a sequence of symmetric, non-negative definite matrices with rank greater than or equal to ¢ p, such
that Amin (1,p,8) > ¢ >0, and Q1 p N 2, O p = asy.var {\/]VmN,D (a)]. The GMM estimator in
(16) is consistent and
~ d
VN (%( )~ 04) — N(0,Vp), (18)

Aip,N
where

1 1
Vp = QZDAy_lAﬁ,Dq/ZDAy,l} Azpay_ AU, DALDAZ, Ay, [CIZDAy_lAl,Dq/ZDAy,l} - (19)

In addition to the assumptions above, suppose that (12) holds true and let 1 s n = var [\/Nm]\ﬂs (a)}
be a sequence of symmetric, non-negative definite matrices with rank greater than or equal to (; g,
such that Amin (1,5,8) > ¢ >0, and Qg N ER O g = asy.var [\/ﬁm]\w (oz)}. The GMM estimator
in (17) is consistent and

VN (@s — o) 5 N (0,Vs), (20)



where
/ -1 / , -1
Vs = |azsy_1sA1,5925y_, 5|  AzZsy-1,sA1,501,541,575y | o qzsyfl,sAl,Squy,l,s] - (21)
Proof. See Appendiz A. m
A first-stage choice for A; p v can be such that

Ay p=N"'Z, (DD ®In) Zp,

which takes into account that the first-differenced operator creates serial correlation in the errors
but ignores spatial correlation. Similarly, for A; g one can choose

(D®In)(D®Iy) 0

Aig=N"1Z Zs.
L3 o [ 0 (It—1 ® IN) ] s

The optimal GMM estimators are obtained by replacing Ay p n and A; g n by Ql_}:) N and Ql_}g N
respectively, in which case (19) and (21) reduce to

—1
—1
Vp = [qZDAy—lngq/ZDAy—l} ?

and

—1
. -1 7/
Vs = [quyfl,SQLSquyfl,S} :

The distributional results hold as well if the unobserved Ql_}:) N (21_}9 y are replaced by consistent
estimates. In particular, notice that {; p y can be partitioned as follows:

MoapN - QiorDN
M,pnN = ;
Q1208 - SrT.DN

where Q145 p Ny = NTTEY'""2Aeg;Ae’Y* 2. Letting the pg'" element of Q4 p y be denoted by
w17PQ7t57D7N7 We ha.ve

Wipgts,pn = N EylAeAely,
= N[V (Bydi ® PiPy) v+ 85, (dy @ Py) ]
x [v' (d,B8, ® PyPn) v+ 65 ' (ds ® Py)v]
= N~ '2tr [(B,d; ® Py Py) S0 (diB, ® Py Py) E0]
100,004t [(d: @ Pn) By (ds @ Pn) 2]

where ¥, = o021 N(T+1)s 2n = O'%I ~ and the remaining variables have been already defined.! There-
fore, an expectations based operator for wi ,q¢s,p,nv Will replace the true value of the parameters
above by their consistent estimates, obtained from the first stage. A consistent estimate for 6,
required to compute Py, can be obtained based on the estimator proposed by Fingleton (2008),
applied on the residual vector u =y — ay_1; see also Kapoor, Kelejian and Prucha (2007).

An alternative estimator for £ 45 p, v can be obtained by ignoring the fact that the instruments
are stochastic variables, based on

_ e
M pN=N "ZpYXa.NZD,

'This expression easily follows from the expectation of wg’ts’N in the proof of Proposition 3 in the Appendix with

Wy replaced by In.



where fJAE, N is a consistent estimate of
E [AeA€'] = E[(D® Py)vv' (D' ® Py)] =02 (D® Py) (D' ® Py) |

with unknown parameters a% and 0. This is sub-optimal in the sense that 517 D,N is not a consist-
ent estimator for {4 p n, however, it is computationally simpler and results in a consistent GMM
estimator of o. Similar analysis applies to €21 g n. Block bootstrapping procedures for spatially
dependent observations are also available; see e.g. Hall (1985) and Anselin (1990). We will explore
this alternative in Section 3.1.

3 Spatial Instruments: Validity, Relevance and Redundancy

It turns out that under spatially correlated errors, an additional set of moment conditions becomes
valid and is relevant in the sense that it is correlated with the endogenous regressor. This is

demonstrated in the proposition below. In particular, let ZD = diag (WNYO, WNYl, ey WNYT_2>
bea N (T'— 1) xT (T — 1) /2 block-diagonal matrix, where Wy =Wy + W}, is a symmetric matrix,
and Y has been defined above. Effectively Wy is a matrix the " row of which contains non-zero
values at the entries corresponding to the individuals which unit ¢ is spatially correlated with. Also,
let Z1, = diag (WNAYl,WNAYQ’ ...,WNAyT_l) be a N (T — 1) x (T — 1) matrix, where Ay has
been defined previously.

Proposition 3 Under Assumptions 1-2, the following T (T — 1) /2 moment conditions are valid in
the first-differenced model (10):

myp(2) = N1 ZhAe L0, (22)

with ~
gnp (@) =N"'"ZpAy s B ag , - (23)

where Apny , = (qLD, ---7QT(T—1)/2,D)/ denotes a T (T — 1) /2 x 1 column vector with q; p # 0, in
general. Furthermore, the following T — 1 moment conditions are valid in the levels model (9):

my (o) =N 'Ziuo, (24)

with B
gn(e)=N"1Zjy | 5 az,, .- (25)

where qz =(qi.n,.qr—1.1.) denotes a (T — 1) x 1 column vector with g, # 0, in general.
Zry- ; ; :

Proof. See Appendix A. =
The above proposition shows that the spatial instruments are valid and relevant as well, so long
as 0 # 0, as shown in the appendix.

Remark 4 Observe that unlike Proposition 1 we have not imposed mean stationarity for the equa-
tions in levels. Intuitively, this is because Emn; = 0 Vi # j, under the maintained assumptions.
Therefore, the spatial moment conditions in the equations in levels are valid in this case even if
the standard moment conditions are not. We will investigate the consequences of this result in
simulations.

Define
- - 7= 0
Zs E{ZD,ZD}; 7 E[ZL,ZL}; Zs z{ ] Z~],
N(T—1)xT(T—1) N(T—1)x2(T—1) N(T—1)x[T(T—1)+2(T—1)] I



m 5 (

)

a) = N71Z5A€,
and
my s () = N‘lZgAug.
Let Az p v and Az s n be sequences of possibly random, non-negative definite matrices of order
Ca.p X Cop, and (g g X (g g, Tespectively, where (o = T(T' = 1), (o6 = T (T —1) +2(T - 1).
!/ /
Furthermore, let qz_ay , = (qIZDAy—l’qIZDAy_l) AZgy 45 = (qIZ[jAy,l’q/ZZy,l) with qz_y , =

!/
q’ =~ . The following assumption is employed for the identification of «:
2LY-1 2 Zy

Assumption 3(ii) (identification of «): N*12525 2, Qz5, NﬁlZ%)Ay_l 2, AZ5Ay 15 N*lzézg
20 Zz s N _1Z’§y,1,g 2 4zgy , s all finite matrices (vectors) with full column rank (non-zero

entries). As p v and Ay gy have full rank, such that A p n ER A p, Aa g N LA Ay g.

Let
—1
aD(AQ,D,N) = [Ay'_lZﬁAg,D,NZ%)Ay,l] [Ay'_lZEAQ,D,NZ%)Ay} s (26)

and

1
O5(ay5n) = {yil,sngz,s,NZ/gyﬂ,s} [yL1,SZ§A2,S,NZ{§YS] ; (27)

be the FD and SYS GMM estimators that combine the standard and spatial instruments. The
following theorem establishes the consistency and asymptotic normality of these estimators.

Theorem 5 Suppose Assumptions 1-3(ii), and (22), (23) hold true. Let Qs p N = var [\/NmNﬁ (a)]
be a sequence of symmetric non-negative definite matrices with rank greater than or equal to (s p,
such that Amin (Q2,p.n) > ¢ > 0, and Q2 p N 2, Qo p = asy.var [\/Nme) (a)}. The GMM estim-
ator in (26) is consistent and
_ d

VN (@p —a) 5 N (0,V5), (28)

where
/ -1 ’ , -1
Vi = |:q25Ay_1A2,DqZﬁAy,1] Az50y-1 42,082 0 A2 DAZ Ay, {QZﬁAy_lAQ,DqZﬁAy,l]

In addition to the assumptions above, suppose that (12), (24)-(25) hold true and let Qagn =

var [\/ NmN’g (a)} be a sequence of symmetric, non-negative definite matrices with rank greater

than or equal to Cy g, such that Amin (Q2,5,8) > ¢ > 0, and Q2 5 N ER Qo 5 = asy.var [\/]VmNg (a)] .
The GMM estimator in (27) is consistent and

VN (as —a) % N (0,V5), (29)

where

—1 —1
o / / /
V§ - QZgy,l,SAZ,Squy_I,S] qZ§y,17SAQ,SQQ,SAlqugy_LS |:qZ§y,1’SA2,SqZ§y_1’S

Proof. See Appendiz A. m

One interesting issue that arises is whether these spatial moment conditions are redundant or
not. It is well known that adding more moment conditions will not hurt asymptotically since the
asymptotic variance of the GMM estimator that arises from the enlarged set of moment conditions
is less than or equal to the asymptotic variance of the GMM estimator from the smaller (nested)
set. However, if the enlarged set of moment conditions does not increase the asymptotic efficiency



of the GMM estimator, the additional instruments are redundant.? To shed some light on this issue
we will consider the case where T' = 2 for the model in first-differences; there is a single equation
given by

Ayiz = aAyin + Acig,
and a single instrument with respect to lagged values of the endogenous regressor of individual ¢,
such that the reduced form (instrumental variable regression) equation is

Ayi1 = VYio + €.
The FD GMM estimator of a reduces to a simple IV estimator, given by

o cov (Ayiz, Yyio) _ cov [a (Ayi + Aeia) , Vo]

var (Yyio) var (Yyio)
cov [or (Yyio + €:1) + Aciz, Yyio] _ N cov (Aeiz, yio)
var (Vyio) Avar (yio)

where the last equality holds because e; is orthogonal to ;9 by construction. Hence, we have

VN (@ - a) = VRS 00) Z Aciayio/V'N. (30)

Avar (yio) ~var (yio)

Using Proposition 1 and Theorem 2 we have

1 P 1
1, | (31)
Avar (yio)  yvar (yio)

while N

> im1 Agiayio d

== =7 — N[0, var (Agzo) var (yio)] , 32

- 0, var (Acys) var (gi0)] (32)

since

var (Zil\/ANerm) = %Var (Z AEizyio) =F (AEZZQ) E (y?o) . (33)

i=1
A direct application of Slutsky theorem yields

VN (@—a) 4 N(0,Va), (34)
where (Aen)
. var £i2

Vs = Tvar ()’ (35)

In addition, there exist spatial instruments with respect to the individual(s) unit 7 is spatially
correlated with. The instrumental variable equation for the two-stage least-squares (2SLS) estimator
that uses the enlarged set of moment conditions is

N
Ayir = 119i0 + 72 Z WijyYjo + Wi-
=1
The 2SLS estimator of « is given by
oV | Ayiz, F1vio + F2 Y wizyj0 oV | Aciz, 1yi0 +72 D wisyjo
~ =1 =1
N
var | J1gio + 92 Y wijyjo var | Yiyio + 72 3 wijljo
=1 i=1

?Breusch, Qian, Schmidt and Wyhowski (1999) provide a general treatment of redundancy of moment conditions.



N
where, similarly as above, w; is orthogonal to y;0 and Zwijyjo by construction.? Therefore, one

j=1
has 1 1
L : (37)
N N
var |91yi0 + 32 Y wijyio var | vi1yio + 2 Y wijyjo
=1 =1
and
N
N -~ ~
> im1 Agiz | Y1%i0 + V2 Z Wij Y0 N
Jj=1 a
NI ~ N |0,var (Agjz) x var | v1yi0 + 75 Jz; WijYj0
The asymptotic distribution of v N (@ — «) is
VN (@ —a) % N(0,V5), (38)
where
Va . var (AEZ'Q)
N
var | y1¥%io + Y2 Z WizYj0
j=1
var (AEiQ)

N N
y3var (yi0) + Yy3var Z wijyjo | + 2v172¢0v | Yio, Z WijY;0
J=1 j=1

It is straightforward to show that the denominator in (39) is larger than in (35) and therefore « is

asymptotically more efficient than @. This holds true unless 75 = 0, in which case v; = v and « is

asymptotically equivalent to &. This is an intuitive result because v, = 0 implies that, conditional
N

on Yo, Zwijyjo is not correlated with the endogenous regressor. We will investigate further the
j=1
condition 5 = 0 by considering the first-stage coefficient 7,, which equals

N N
cov | Ay, E wigyjo | Var (yio) — oV (At yio) OV | bio, E WijYj0
_ =1 i=1
Y2 = 2
N N
var (y;o) var E wijYjo | — cov | Yio, E WijYjo
Jj=1 Jj=1

N N
cov | Ay, Z wiyjo | var (yio) — cov (Ayit, yio) cov | yio, Z WijYj0
j=1 J=1
Ly = - - 5 . (40)
var (yio) var Z Wizyjo | — COV | Yio, Z WizYj0
j=1 J=1

3Notice that it is also possible to investigate the properties of the GMM estimator that makes use of the optimal
weighting matrix. This is asymptotically more efficient than & and & when the spatial instruments are not redundant.
In order to concentrate on the issue of redundancy of the set of additional instruments, however, it suffices to study
the properties of the 2SLS estimator.
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Without loss of generality suppose that the weighting matrix used is circular?, such that

ro1o0 . . . . .0
oo0o1o0. . . .0
W = (41)
0 0 0 01
! ... 0 0 0|
One can show that
var (yi0) = 5%0% + 62 (1 + 92) o2
N
var Z wijyjo | = 2 [530’727 + 62 (1+ 92) 012}] ;
j=1
1
cov (Ayi1,yi0) = (a—1) [500727 (50 - 1—04) + 5%02 (1 + 92)] ;
N
cov | Ay, Z Wi Y50 = 2(a—-1) 05%0%;
j=1
N
Cov yiO,Zwijyjo = 29(5%0% (42)
j=1

As a result, we have

2 (a—1)06%02 [[5305 + 63 (1+6%) 2] — [002 (50 - L) + 6% (1 + 6°) gg]]

-«
2| [5302 + 63 (1+ 6%) 02)” - 2 (66302)°
(a0 —1) 05262 [5(2)0727 - 500% (50 - ﬁ)}

703 + 31 (1+ ) 2" — 2 (05702)’
9505%020%
560% + 2586%0% (146%) 02 + 01 (1+6%) o4

Y2 =

(43)

Therefore, we can see that v, = 0 for either 69 = 0, or §; = 0 or # = 0. The last two zero conditions
imply that the covariance between the endogenous regressor and the spatial instruments equals zero,
as it is clear from (42). It is worth mentioning that -5 does not depend on the value of & so long
as 0p and d; are not a functions of a. Furthermore, since the denominator in 7, is always a non-
negative number, v, < 0 for § > 0 and dg > 0. The following figure illustrates graphically the value
of —v, for 6 € [0,1] and &y € [0,4], setting 62 = 02 = 02 = 1. Observe that for any 6y > 0, the
value of the function increases as 6 approaches unity. On the other hand, for any given 6 > 0 the
value of the function initially gets larger as d¢ increases from zero to a positive value, although it
approaches zero as §g increases further to large positive values. As an implication, if the y process
is mean-stationary such that dp = 1/ (1 — «), the spatial instruments become redundant as o — 1
regardless of the value of . Of course, at the same time instruments with respect to lagged values
of the endogenous regressor for individual ¢ become weak for o« — 1. This in turn implies that
the spatial instruments become weak as well, given redundancy. We will investigate further the
properties of GMM estimators that make use of spatial instruments using simulated data in Section
3.1.

*See e.g. Baltagi, Bresson and Pirotte (2007).
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Another issue that arises is dominance; in particular, suppose that there is a dominant cross-
sectional unit which is correlated with all remaining individuals. It turns out that instruments with
respect to the dominant individual are always redundant. To see this, let the dominat unit be the
N individual. We have

N N
plimy_, N~ Z ynsAei = ynsplimy_ oo N ! Z Aegjy =0, (44)
i=1 i=1
and
N N
plimy oo N7 ynsAyi-1 = ynsplimy oo N1 Ay 1 = 0. (45)
i=1 =1

Therefore, the instrument with respect to the dominant unit is uncorrelated with Ay;;_1. Intuitively,
if the same variable is used as instrument for all individuals, then it is fixed in the cross-sectional
dimension and therefore it is asymptotically uncorrelated with the endogenous regressor. Notice that
the existence of a dominant unit violates the uniform boundedness condition of spatial dependence,
and indeed one of the conditions in Theorem 1.

3.1 A Short Monte Carlo Investigation

We will investigate the finite-sample performance of the estimators above using simulated data. The
underlying generating process is given by

N
Yit = Qi1 0 + ity €0 = 0 Y wigNUj A+ vig, i =1, N, t=1,..,T, (46)
i=1

where w;; v denotes the ijt" element of Wy, which is formulated as in (41), n; ~ ii.d.N (0,0’%),

Vit ~ i.i.d.N (0,02). The initial value is

N
Yi0 = 001; + 0140, €i0 = 0 E W;j, NVjo + Vio-
=1

12



We set a = 0.5, § = 0.5, T' = 6 and we normalise 07 = 02 = 1, while N € {100,400,800}. The
initial conditions are such that dg € {0, 1,(1— a)fl} and 6, = (1 — a2)_1/2. For §p = (1 —a)™*
the process is mean-stationary and also it is variance-stationary given the chosen value for 9.

The results are provided in the table below. FD, FD' and FD* denote the first-differenced GMM
estimators that utilise Zp, Zp and Z ~ . respectively, as defined earlier in the paper, while SYS, SYS'
and SYS* denote the system GMM estimators that utilise Zg, ZS and Zg, where Zg is defined in
(58). Therefore, FD (SYS) makes use of the standard instruments that are available with respect
to individual 4, FD' (SYS') makes use of the spatials instruments with respect to the individuals
which unit ¢ is spatially correlated with, and FD* (SYS*) combine the two sets of instruments.

Table 1. Performance in terms of mean point estimates and RMSE, a = 0.5.

T=6 do =0 do =1 3o =2

FD FD' FD FD FD' FD FD FD'  FD*

N = 100 450 405  .429 395 380  .377 440 370 407
(132) (.192) (.133) (.200) (.221) (.197) (.143)  (.240) (.159)

N = 400 486 472 480 AT2 467 466 486 463 .ATT7
(.065) (.092) (.063) (.095) (.102)  (.090) (.067) (.100) (.071)

N = 800 493 486 .490 484 482 481 492 480 487
(.045) (.065) (.043) (.067) (.072) (.063) (.048) (.079) (.051)

* * *

SYS Sys' sys SYS Sys' sys SYS Sys' sys

N = 100 711 489 713 642 492 646 500 498 507
(224) (.142) (.257) (.167) (.143) (.167) (.099) (.136) (.094)
N = 400 725 495 734 654 498 663 500 501 .502
(.229) (.081) (.237) (.161) (.081) (.169) (.053) (.082) (.052)
N = 800 723497 737 656 498  .666 499 499 500
(223)  (.059) (.238) (.160) (.060) (.169) (.034) (.062) (.038)

As we can see, the performace of FD and FD* is similar. In most cases FD has slightly less bias
and slightly larger RMSE. This is not surprising; it is known that in finite samples and with a fixed
value of IV, using a larger number of instruments results in a trade-off between bias and efficiency.
Of course, asymptotically the GMM estimator with the enlarged set of moment conditions is more
efficient, providing that the additional moment conditions are not redundant. FDT is generally
dominated by FD and FD* both in terms of bias as well as RMSE. Its performance deteriorates
with higher values of &g, which, however, is also the case for the remaining first-differenced GMM
estimators. Intuitively, this is a weak instruments problem; as Jg increases the proportion of the
variance of the total disturbance that is due to the variance of the individual-specific effects gets
larger. Essentially, abusing the notation, for dg — oo we have 0727 /o2 — 0o and the instruments
become weak (see Blundell and Bond, 1998). The same intuition holds for the spatial instruments.
Similarly to FD and FD*, the performance of SYS and SYS* is similar under all circumstances.
However, both estimators are consistent only under mean-stationarity and they appear to exhibit a
large upwards bias otherwise. SYST, on the other hand, performs well under all situations and largely
dominates SYS and SYS*, unless the process is mean-stationarity. Importantly, SYS' appears to
dominate FD and FD* as well, unless §g is large. We have experimented also with @ = 0.8; in this
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case SYST uniformly dominates FD and FD* under all circumstances. To save space we do not report
these results. In the section below it will be demonstrated that the spatial moment conditions can
be used to construct consistent GMM estimators in situations were the standard GMM estimators
are not consistent.

4 Spatial and Factor Structure Dependence

In this section we will consider a panel autoregressive model in which the disturbance contains a
common factor structure, such that

git = o@-t_l —{—ﬂit, |Oz’ <l,¢=1,.,N,t=1,..,T,
N

Uy = 1m;+ Agfbt + ity it = 0 Z Wij, NUjt + Vit,
j=1

where ¢, = (¢1y, Gogy s Gy) is a n x 1 vector of factors and A; = (Aiz, Mg, ..., Ans) 18 a 1 X 1 vector
of factor loadings. A similar structure is also studied by Pesaran and Tosetti (2011) and Chudik,
Pesaran and Tosetti (2011). We make the following assumption regarding the factors and their
loadings:

Assumption 4 (common factor component): (i) The random variables {\,; : 1 <i < N, 1 <r < n}
are independently distributed with zero mean and finite variance O'%\r. Furthermore, sup;<;<n 0<r<n
E |)\m'|4+(S < oo for some § > 0. (ii) ¢, is non-stochastic and has uniformly bounded elements,
such that ||¢,|| < ¢ < oo V ¢. (iii) The processes {\yi}, {vit} and {n;} are totally independent.

Assumption 4 is standard in factor analysis; see for example, Sarafidis, Yamagata and Robertson
(2009) and Sarafidis and Wansbeek (2012). The zero mean assumption on the vector A; is not
restrictive because the model can be expressed in terms of deviations from time-specific averages,
which will eliminate the non-zero mean of A; (e.g. Sarafidis and Robertson, 2009). The vector of
factors is treated as fixed and the factor loadings as random variables because the asymptotics apply
for large IV, T fixed. Observe that A; is correlated with the lagged dependent variable by construction
and cannot be eliminated using the first-difference transformation because A; is multiplicative with
¢, which is time-varying. One may think of the loadings in this context as reflecting different
sources of unobserved heterogeneity, the impact of which is not constant through time. Rewriting
the model in vector form yields

yt:aytfl_‘_ﬁtv ﬁt:n+A¢t+PNvt7 (47)

where A = (A1, ..., Ax)" is a N x n matrix. Observe that y; can be written as

B N 1— th t—1 t—1

Fomalot (T ) A e, e ()
and the initial observation is now given by yo = don + d1 Pyvg + d2A¢y. Therefore, y; and u; can
be expressed as linear forms of the innovations 1, A and v:

Vi = 53,t’7 + (IN ® ¢17t¢’) A+ (B ® Py)wv, (49)
and
W =n+ (In®¢1) A + (€41 @ Py) v, (50)

where ¥, = (620!, 0", ..,al) is a 1 x (T +1) row vector, ® = (P, dr) isa (T+1) xn
matrix, A = vec (A’) is a nN x 1 row vector, while the remaining terms have been defined in Section
2. Stacking (47) over t = 2, ..., T yields

y=ay-1+u, (51)
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~ ~ ~ ~ ~ ~ !~ ~ ~
where y = (¥5, ...,y’T)/, y_o1= (y’l, ...,y’T_l) ,u = (..., ur’).
Similarly, taking first-differences in (47) yields

Ay = aAy;—1 + AA¢p, + PyAwvy. (52)
Ay; and Au; can be expressed as linear forms of the innovations as follows:
Ay, = dpm + ([N ® ¢2,tq>) A+ (v ® Pn) v, (53)

and
Ay = (Iy ® Agi) A+ (dy ® Py) v, (54)

where ¢y, = [d2 (@ —1) &' (e —1) o' 72, ., (a—1)a% 1] isa 1 x (t + 1) row vector. Stacking the
column vectors in (52) over ¢ = 2,..., T yields

A = aAF_; + AT (55)

As shown by Sarafidis and Robertson (2009) for the case where § = 0, the standard moment
conditions that utilise instruments with respect to lagged values of y;—1 in the first-differenced
equations and Ay;;_1 in the levels equations are invalidated under a factor structure in the residuals.
A similar result applies for 6 # 0 of course.” Therefore both @p and g as defined in (16) and (17)
respectively, are not consistent. However, as the following proposition demonstrates, the moment
conditions that utilise instruments with respect to the individuals which unit ¢ is spatially correlated
with, remain valid. These moment conditions will be used to obtain consistent estimates of the
structural parameter o.

Proposition 6 Under Assumptions 1-4, the following T (T — 1) /2 moment conditions are valid in
the first-differenced model (55):

m, 5 () =N"'ZpAu 2 0. (56)

Furthermore, the following T — 1 moment conditions are valid in the levels model (51):

my (o) =N"'Zabo. (57)
Proof. See Appendix A. =
Observe that we have made no assumptions about mean-stationarity of the process. Indeed this
assumption is always violated when there exists a common factor component because the mean
of the process shifts every time period according to the value of ¢,. Therefore, one requires an
estimator that does not rely on this assumption. Define

: (58)

and let A3 p v and A3 g n be sequences of possibly random, non-negative definite matrices of order

C1,p X ¢y, ps and (4 g X (q g, respectively. The following assumption is employed for the identification

of a:

Assumption 3(iii) (identification of a): NflzbvaD 2 Qz,» Nflz’DAﬁ_l 2 Ay 1 N*12g25
2, QZS’ , N1 ZLy 15 LN Ygs o all finite matrices (vectors) with full column rank (non-

zero entries). Ag p n and A g n have full rank, such that Az p n 2, A3 p, A3 s N 2, Az s.

SFor the case of a degenerate factor structure, which takes the form of a singe individual-invariant time effect, a
similar result has been shown by Hsiao and Tahmiscioglu (2008).
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Consider the following GMM estimators:

_ _ -1 ~ ~
1y o) = | AV 1 Z0Asp N ZpAT 1| [AF 1 ZpAsp N ZpAT] (59)

and

~

~ ~ -1 ~ ~
O3(Assn) = [yl_LSZSA?),S,NZILY—l,S} [y/_LSZSA&S,NZZQYS} : (60)

The following theorem establishes the consistency and asymptotic normality of the above estimators
under a factor structure and spatially correlated idiosyncratic components.

Theorem 7 Suppose Assumptions 1-4, and (56) hold true. Let Q3 p N = var [\/NIBNI) (a)} be a
sequence of symmetric non-negative definite matrices with rank greater than or equal to ¢y p, such
that Amin (23,p,8) > ¢ >0, and Q3 p N ER Q3.p = asy.var [\/ﬁfﬁNﬁ (oz)]. The GMM estimator in
(59) is consistent and

VN (a5 —a) 4 N (0,75), (61)
where

—1 -1
_ ~ / _ / ~ /
Vﬁ - qZDAg—l A3,DqZDAg_1i| qZDAg—l A3’DQS’DA3’DqZDA§_1 [qZDAZj—l A3,Dq2DA@'_1 . (62)

In addition, suppose that (57) holds true and let Q3 g N = var [\/NIYINE (a)} be a sequence of sym-

metric non-negative definite matrices with rank greater than or equal to CLS, such that Amin (Q37S,N) >

c>0, and Q3 g N LN Q3.5 = asy.var [\/NﬁlNZ (a)]. The GMM estimator in (60) is consistent and

VN (G5 —a) 5 N (0,75), (63)

where
-1

~1

~ — ~ /~ ~ /~ ~ /~
Vs = qzsgflA&qusg,J A7y, Asss43,505 o [qzsgflA:;,qungl
Proof. See Appendiz A. m

The optimal GMM estimators are obtained by replacing A3 p n, A3 s n by consistent estimates
of Q;}) N and Q?:}gNa respectively. As in Section (2), 23 p y can be partitioned as

W2opN -+ Q327.DN
Q3 pN= KB 5
QWrepN -+ SBTT.DN

where Q34 p N = N_lEYt_Q’WNAﬁtAﬁ;YS_Q. The pg'" element of D345, DN 1S W3 pgts DN =
N_lEyngAﬁtAﬁ;WNiq. Therefore, from the proof of Proposition 6, equation (81), it is clear
that to obtain a consistent estimate of {13 p x, one requires estimating the number of unobserved
factors and the factors themselves. For inference purposes, a consistent estimate of €3 p is required
even for a sub-optimal GMM estimator, as it is clear from (62). The same issue applies for Q3 g ;. To
avoid this complication, the standard errors for the sub-optimal GMM estimators can be computed
using spatial block bootstrapping (e.g. Hall, 1985 and Anselin, 1990). We investigate this approach
in simulations.

5 A Simulation Study

We will investigate the performance of the estimators analysed above in finite samples using simu-
lated data. The main focus lies on examining the impact of the relative weight of the unobserved
factor component in the total error process, as well as the effect of different values of N and a.
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5.1 Design

The underlying generating process is given by

N
Yit = QYit—1 + Uiz, 5, Uit = )\iﬁbt + 9211)@'7]\]1}]',5 +vg,i=1,....,. N, t=1,...,T, (64)

j=1
where w;; v is formed as in (41), A\; ~ 4.9.d.U [-0.25,0.25], ¢, ~ i.i.d.N (0,1) and vy ~ i.i.d.N (0,1).
The performance of the estimators will depend on the proportion of o2 attributed to the variance
of the common factor component — hereafter this proportion is denoted by &. Therefore, noticing

that

on = pxo, + oxos, +on (1+6%), (65)

and normalising ai =1, we have

2 (1 — 5) U%\ (66)

g, =
! & (1+6%)
We set § = 0.5, which implies that o2 will change only according to ¢ since the value of o3 is fixed
in the design. As the value of £ approaches unity, the impact of the factor component in the total
error process increases. We choose the following values for &:

Low impact of factor structure on wu: £=1/3
Medium impact of factor structure on ug: £E=1/2
Medium-to-high impact of factor structure on u;: & =2/3
High impact of factor structure on wu;: £=3/4

We set T' = 10, and we experiment between « € {.2,.5,.8} and N € {100, 400, 800}. Notice that
under a factor structure, mean-stationarity is always violated by construction because the mean
shifts every time period according to the value of ¢;. To enhance transparency and save space, we
simply set the initial value of the process as yip = A\i¢g + €io. All experiments are based on 2,000
replications.

To compute empirical standard errors for the estimators, we use block bootstrapping. The
algorithm can be outlined as follows: each individual ¢ is assigned an equal probability of being
selected with replacement. If unit 7 is selected, the complete time series of unit ¢ is sampled to
preserve the serial correlation structure of the data. The complete time series of unit 7’s neighbours,
as reflected on Wy, are sampled as well. This process is repeated until the data set equals the
original size of N. Once the sampling process is complete, estimates of the autoregressive parameter
are obtained using the various methods employed in this simulation experiment. For the estimators
that rely on spatial instruments, we make use of the spatial neighbours information, i.e. instruments
are utilised with respect to the individuals, unit 7 is spatially correlated. The same procedure is
followed over 200 bootstrapped samples, and the empirical standard errors of the estimators are
computed in each replication.

5.1.1 Results

Table Al in the appendix reports mean bias, root mean square error and empirical size (nominal
size is 5%) for the estimators employed in this study. WG is the within-group estimator, FD (SYS)
and FD! (SYS') denote the first-differenced (system) GMM estimators that utilise Zp (Zg) and Zp
(ZS), respectively, as defined earlier in the paper.5

The performance of all estimators depends on the value of £, « and the size of N. Specifically, as
the value of £ increases for a given value of @ and N, the performance of the estimators deteriorates
in terms of bias and RMSE. This is illustrated in Figure 2 for o = 0.5, N = 400.

SFor FDT we set Az p,N = N_lz’D (DD' ® In) ZD, and similarly for FD, expect that ZD is replaced by Zp. For
SYS' we set As s,y = N~ Zsdiag [(D ® In) (D ® In)", (Ir-1 ® In)] Zs, while SYS makes use of Zs instead.
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This is expected because higher values of £ imply that the invalidity of the instruments used with
respect to unit ¢ itself (utilised by FD and SYS) is magnified; for the estimators that make use
of the spatial instruments, the increase in bias and RMSE is also intuitive because as the value of
& increases the contribution of the spatial component in the total error process, and thereby the
correlation between the endogenous variable and the spatial instruments, decreases.

However, it is important to emphasise two points; firstly, both FD' and SYS uniformly out-
perform FD and SYS, respectively, in terms of RMSE. The same holds for bias, unless N is small.
Secondly, as the value of N increases, the bias and RMSE of FD' and SYS' decreases considerably,
which is natural as these estimators are consistent. This is not the case for the conventional estim-
ators, FD and SYS, the performance of which does not improve with larger values of N. This is
illustrated in Figure 3 below for £ = 1/3 and £ = 3/4. Similar graphs apply for the remaining values
of &, not illustrated here.

RMSE: £=1/3, a=0.5. RMISE: €23/4, 0=0.5
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It is also worth mentioning that SYS! appears to outperform FD' in terms of both bias and
RMSE in all circumstances, with the relative difference in performance increasing according to the
value of a.

In terms of empirical size, the results indicate that this is largely distorted for the conventional
estimators, WG, FD and SYS, which is natural since these estimators exhibit large bias. The same
applies to FDT and SYST when N is small. However, as N increases, size improves considerably and
appears to converge to the nominal level, especially for SYS', which contrary to the conventional
system GMM, it does not require mean-stationarity and therefore it is consistent under very mild
assumptions on the initial conditions.
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6 Concluding Remarks

Error cross-sectional dependence is an increasingly popular research area in the analysis of panel
data. This papers considers spatial dependence and factor structure dependence in dynamic panel
data models. It is shown that under spatially correlated errors, an additional set of moment condi-
tions arises — in particular, instruments with respect to the individual(s) which unit 4 is correlated
with. We demonstrate that these moment conditions remain valid when the errors contains a
common factor component, in which case the standard instruments are invalidated. The resulting
estimators are attractive because, aside from specifying a weighting matrix W, they are compu-
tationally simple and provide consistent estimates of the structural parameters without requiring
estimation of the number of unobserved factors, or the factors themselves. Simulation experiments
show that the proposed estimators largely outperform the conventional ones, in terms of both bias
and root mean square error. This result is even more pronounced as N becomes larger.
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Appendix A
The (t — 1)th block of N_lg’DAe, fort = 2,...,T, where Zp = diag (WNYO, WNYl, v WNYT_2>
and WN =Wy + Wy, with W]’V = (Wn + W]’V)' =Wy +Wy = WN, is given by

Y6/W:NA€t
/
N7! (WNYt_2>IAst _ oy | NWvhe

v’ ﬁgdt X P],VWNPN v+ 56,577/ d; ® WNPN v
v’ ,3/1 d; ® P],\[WNPN v+ 56757’]/ d; ® WNPN v

v (B_adi @ P Wy Py) ot 5. (dh @ Wi Py) v

since, using (4) and (5), we have
1157 / / / * 1 117
yWnAe, = [V (B, @ Py)+ 651" Wy [(di @ Py)v]
= v (B, ® Py) Wy (dy ® Py) + 85 ;v + 8 ;' W (d @ Py) v
= V(B Py) (10 Wy) (d @ Py) vt 65,0 (10 Wy ) (d @ Py) v
= o (ﬁ’sdt ® P;VWNPN) v+ 85 .1 (dt ® V[N/NPN) v. (67)
The (t — 1)th block of N *1Z'DA5 is identical except that V[N/N is replaced by Iy, the N x N identity

matrix. B
Similarly, using (6) and (8), the (£ — 1) block of Z]u can be written as

Ay, Wywy = [V (7i-1 ®@ Py) +055-17] W [(€l41® Pn) v +n]
= v (7.1 @ Py) Wi (€i41 @ Py) v+ (v, ® Py) Wan
+857 1M W (€141 ® Pr) v + 857 1m' Wam
= (’7271 €1 ® P]'V/W\;NPN) v+ (’yé,l ® P}VWN) n
+003-11 (e£+1 ® WNPN) v+ 85y W (68)

The (¢t — 1)™ block of Z} u is identical except that Wy is replaced by Iy.
Furthermore, the (t — 1)th block of N1 Z) ) Ay_,, for t =2,...,T, is

Yé?NAyt—l
N1 (WNYt_Q)/Ay,l _N-! YIIWN.Aytfl
yllf—ZWNAyt—l
where
YiWNAY: 1 = [V (B, ® PY) + 650 W [(ve-1 ® Pn) v + 655 1m]
= ' (Bl ® PPy ) v + 05510 (BL® P )

35,41 (Yim1 ® WPy ) v + 85,855 1m Wi, (69)
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while using (4) and (8), the (¢t — 1) block of N_lgj;y_l can be written as

N'Ay, Wyyio1 = [ (vi_1 ® Py) + 563—177/] W [(Bi-1 @ Px) v+ 53,t—177]
= <’Y;5—1:8t—1 ® PJIVWNPN> v+ 58?}7177/ <Bt—1 ® WNPN) v
05010 (Vies @ PRW ) 0+ 05 410550 W, (70)
We define the following terms:
Yran = N'yiAes
Uorn = NT'AyL juy
Yaan = NTyWyAey;
YN = N7 Ay, Wy
Vsan = NY.WnAy_g;

Vi N = N_lAy;—1WNYt71-
PROOF OF PROPOSITION 1
We need to show that (i) Evy o n = 0, E@Dist,N —0as N —oofort=2..,T s<t—2
and (ii) By, v =0, E¢%,t,N — 0as N — oo for t = 2,...,T. This is entirely straightforward from

the proof in Proposition 3 by replacing WN by Iy and using the mean-stationarity assumption for
Y9+ N, Which implies that dg%_; = 0 V¢. The claims in Proposition 1 then follow from Chebychev’s
inequality. QED

PROOF OF PROPOSITION 3

Firstly, we will show that (i) Evg oy = 0, Ewg’stw —0as N »oofort=2,...,T, s <t—2
and (i) Evy; n =0, B, v —0as N — oo for t =2,...,T.

We have

Evyun = N'E [U’ (B;dt ® P]’VWNPN) v+ 65.,m' (dt ® WNPN) v}
— Nl [(ﬁ;dt ® P;VWNPN) E’U’UI} + Oyt [(dt ® WNPN) Evn’]
= Nl [(Bldie PRV Py ) B (71)

since Fvny’ = 0 under the maintained assumptions. Observe that B.d; is a (T'+1) x (T +1)
matrix that contains zeros on the main diagonal s < ¢t — 2. Therefore, <5/sdt ® P/;WVNP”> is a

N (T + 1) x N (T + 1) matrix with zeros on the main diagonal and by Lemma 9 it has uniformly
bounded row and column sums, setting 5lsdt = H and P]’VWNPN = Cyn. In addition, X, is a
N (T'+1) x N (T + 1) diagonal matrix under the maintained assumptions with uniformly bounded
elements. Hence, tr [(B8,d; ® Py Pn) %] = 0 by Lemma 10(i), setting 3,d; ® PJ’V/W/NPN = C?,ZN
and ¥, = Dy gy, with £ =T + 1. Therefore, B3 o v = 0.

The variance of ¢3 o n equals

Evf ey = NT2E{|v (BLdi@ PAWyPy) vt 8,0 (4@ WaPy)]
X [U’ (d@ﬁs ® P;VWNPN) v+ 55 0 (dt ® WNHV) n]}
= N7E[v/ (Bidi @ Py Py ) vo! (48, @ Py Wy Py ) o]
+N"22E [n’ (dt ® WNPN) "y (d; ® P]’VWN> n}

+N 2255 F [u’ (,B’Sdt ® P]’VWNPN) v’ (d; ® P]’VWN) n} . (72)
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The first term on the right-hand side of the last equality above equals
N72E [v' (ﬁ’sdt ® P;VWNPN) v (d'sﬁt ® P;VWNPN) u} = N722tr (C0 y 2o C¥ )

with £ = T+ 1. This follows from Lemma 11(i) and the fact that ¢, ,,» = 0 for s < t—2. Given this
property and since Y, is diagonal, it follows from Lemma 10(iii) that N~22¢r (C? , NEUC?’Z NZU> =

o (1). The second term is
N72E :'r]’ (dt ® WNPN> v’ (d; ® WNPJ,V) 77}
= N 2tvE [(dt ® WNPN) vv’ (d; X P]'VWN> 7777’]
(o WnPy) 5, (d @ PA T ) 3,
= N7 |(d @ WaPy) S, (4@ Py ) (10 3,)]

— N2 :(dt ® PNWN> =, (d; ® P;VWNE,])} . (73)

= N %

By Lemma 9 the row and column sums of (dt ® WNPN) and (d; ®P]’\,W~/NZ,7> are uniformly
bounded. Furthermore, ¥, is a diagonal matrix with uniformly bounded diagonal entries. As a res-
ult, N=2tr [(dt ® WNPN> =, (d; ® PJ’VWNEn)] = 0(1) by Lemma 10(ii), setting (dt ® WNPN> -

CSZN, Yy = Dyyn and (dg ® PJ’VWNZ,,> = :(a)eN The third term equals zero by Lemma 11(iv). It

follows from Chebychev’s inequality that N *lyngVNAet 0.
For 1, o n we have, using (6) and (8),

Bhun = NOE[ (Yiaén @ A EY) o] + NTE [0 (i P )
+665 INT'E [n’ (eQH ® WNPN) v] +65y N 'E {n’AW/Nn}
= Nl [(7;_14“ ® P]’VWNPN) E'uv’] + N~ K%_l ® P]’VWN) Em/}

+655 1N Keéﬂ ® WNPN> Evn’} + 665 Nt [WNEnn'} . (74)
Under the maintained assumptions Env’ = 0. In addition, both (’72_1 € 1 ® P]’VWNPN> and Wy
have uniformly bounded row and column sums and contain zeros on the main diagonal. Therefore,
E},’ Lemma 10(i) Ev4, y = 0. Notice that the expression for N~!'Ay} ,u; is obtained by replacing
Wy by the identity matrix. In this case the last term is zero only if Jp%_; = 0, which is satisfied

under mean-stationarity of the process.
The variance of ¥, , n equals

By = NT2E{ (Yioi€hr ® PyWyPy) v+ (vio © PyWa ) m
+005—m (62+1 ® WNPN) v+ 58;-1"7/WN77]
x[V" (er1ema @ PAWN Py ) v 40 (vim © Wiy Py ) v

+057-1v" <€t+1 ® PJI\TWN) N+ 0551 Wanl} =
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= N2E |:’U/ (’y;_l €1 ® P]’VWNPN> vv’ (7t71 err1 ® P]’VWNPN> v}
+N"22F ['u’ (Fy%_le;ﬂ ® P]’VWNPN) vn (’yt 1 ® WNPN) }
+N 22658 { <’yt 1€, @ PyWy Py ) (et+1 ® P{VWN> n}
+N 722657 [ (’)’t 1611 ® PNWNPN) un WN??]
+N72E |:’U/ (7;,1 ® P]’VWN> nn’ (’yt_l ® WNPN> v}
+N 72265, 1 E |0 (’72—1 ® P;VWN) nv’ (et+1 ® PJ,\/'WN) 77]
+N 22855 1 E |0 (72—1 ® P],V,WVN> "”/WN"}
+N~ 258‘;2 1 n’ (324-1 ® WNPN> vv’ (6t+1 ® PJ/VWN) n}
+N~ 22(58*,52 1 17' (egﬂ ® WN/NPN) Un'WN/Nn]

+N 265 E [W’ann'wwn]

—

= N_22t7" [CE,ENEUCE,IZNEU] + N_22(56j<t_1t7“ |:CE7KNE77WNE’L£|
+N 2 tr [Gron Sy Gl v Eo] + N 722655 1tr [G1aXnCR v ]
+FNT22552 tr [ S CO nS] + N 7226572 11 [WNEUMN/NEW] ,

where CA(L),ZN = <’72—162+1 ® P]’VWNPN), Gip = (72_1 ® PJ’VWN), CE?,KN = <€t+1 ® P}VWN>, using
Lemma 11 repeatedly. Finally, by Lemma 10(iii)-(iv) it follows immediately that Evj, v = o(1)
and so N~1Ay/ 1WNut 2, 0 by Chebychev’s inequality.
Next, we will show that (i) Evs o n = gsta # 0, in general, Eq? stn — 0as N — oo for
t=2,..,T,s<t—2,and (ii) EYg; v = q,s 7 0, in general, ET,Z)(;,LN —0as N —oofort=2,..,T.
The expected value of Evy o v, using (4) and (8), is given by

Evs gn = N'E [ (B, ® Py) + 53,1577/] W [(vi-1® Py) v+ 55?}—177]
= NT'E [0 (Biviy @ PYWNPN) 0] + 63,055 N71E [0 W)
+0g% 1N 'E [UI (ﬂls ® P],VWN> 77} +85,, N 'E [?7' (’Yt_1 ® WN/NPN> U]
= N ltr [(ﬂ;'yt_l ® PJ’V/W/NPN) Evv } + 66,5001V L [WNE'rm’}
+N_155j}_1t7° [(,8; ® PJ'VVIN/N) Env'] + N_ldastr [('yt_l ® WNPN> Evn’}

= N7l [(,6"57,5_1 ® PJIVWN/NPN) Ev] = gst,D, (75)

since Fvn’ = Emv’ = 0 under the maintained assumptions. We have also used the fact that
tr [WNEnn' } = tr [V[N/NZW] = 0 from Lemma 10(i), given that WN contains zeros on the main
diagonal and 3, is diagonal. Observe that ¢s p # 0 in general, unless # = 0, in which case
Py =1y = P]’VWNPN = WN. As a result, the kronecker product matrix contains zeros on the

main diagonal and so gs,p = 0. Therefore, the spatial instruments are not correlated with the
endogenous regressor — an intuitive result.
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Furthermore, we have

2
E¢5,st,N =

NZ2B{[v' (Blvi—s @ PRWx Py ) v+ 05510 (Bl @ P W)
+05,51m (71&—1 ® WNPN) v+ 65 I W)

x[v' (%qﬁs ® PJ’VWNPN) v+ 655 m (ﬁs ® WNPN) v
35,00 (Yier © PRWi ) 1+ 65,055 0m Wrn])

N2E ['u’ (,3/5’Yt—1 ® PJ’VWN/NPN) v’ (%,ﬁs ® PJ’VWNPN) v}
+N 22650 [ ' (5;%4 ® P]/VWNPN> v’ (/Bs ® WNPN> ’v}
+N_2253,5E [UI (5/3%—1 ® P]/\ffWVNPN> v’ <’st71 ® P]/VWN) 77]
+N 72255 085 1 B |V (ﬂ'ﬂtq ® PJ,V/WNPN) UU/WNU}

+N 2052 E [U, </8,s ® P]/VWN) nn’ </Bs ® WN/NPN) v}

+N 72265 8551 E |V (/3; ® PJ/VWN> nv’ (7271 ® PJ/VWN> 77}
+N 2265 08321 B |V (ﬂls ® P],VWN) ﬂﬂ'WN/NU}

+N26LE [77’ <'yt_1 ® WNPN) vv’ (72,1 ® P]'VWN> 77]

+N 22655084 1 B ' <7t71 ® WNPN) UUIWNH}

+w%%w&Ehﬁmﬂ%ﬂ

N2

IN
2tr [Cl gNE Cl ZNE + ZOZ”]{:ZN ( — 30' )]
=1

+N 2255 55t [Cy v S tr [WNE,]}
—I—N_Q(SS? 1t [GQ’nZnGQ’nZU] +tr [G’z nE§1G3,nZ§2]
N 72632t [Gla 3 Gl S0] + N 726820572 tr [WNE{VVNZ,?] ,

where C v = (5;%_1 ®P]/VWNPN)7 Gon = (,3,5®P]/VWN>, G3n = (7271 ®P]/VWN)’ using
Lemma 11 repeatedly. Using, by Lemma 10(iii)-(iv) it is straightforward to show that Equ,n N =

o(1).

Finally, for ¢, n we have

NT'E [V (vi1 @ Py) + 65,-17] W [(B1-1® Pn) v+ 85;-1m]

Ed)(ﬁ,t,N

NE [o

+N71§
N~ 1ltr

+N71s

(Ve-18i1 @ PATN PN ) 0] 4 85,0 F [0 iy © P TP ) ]

0t-1E [77/ (ﬂt,l ® WNPN) U} + N1, 1055 E [W'WNW}

N~

(%716,:_1 ® P]/VWNPN> Evv’] +00,-100, 1 N r [’WvEnn’}
0,417 {(’72—1 ® PJ,VWN) EUU'] + N_153Tt_1t7“ [(ﬁpl ® WNPN> Evn’}
(,3;%—1 ® PAWNPN> Evj| = qt,L., (76)

since EFvny’ = Emv’ = 0 under the maintained assumptions, and recalling that ¢r [WNEnn’ } =

tr [WNEU} = 0. Notice, as before, ¢;1, = 0 for 6 = 0.
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The variance of ¢g, y equals

Ew%,st,N = N_2E{[U, (72—1@—1 ® P]/VWNPN> v+ 567,5_1’0/ (’y;_l ® P}VWN) n

+05-1m (’615—1 ® WNPN) v+ 53,1&7153:;7177/WN77]
x [V <B1,t—1'7t71 ® PJ/VWNPN) v+05, 1M (’yt,l ® WNPN) v
+001-1v (:6271 ® P]IVWN> n+ 53,t7158Tt71n/WN77]}

= N 2E ['v’ (’y;_l,ﬂt,1 ® PJ’VWNPN) vv’ (ﬁ;_lfyt,:l ® P]'VWNPN> v}
+N 2285, 1 E [ (’Yt 181 ® PNWNPN) vy’ (’Yt 1® WNPN> U} -
+N 722655 4 [ ' (’7271515—1 ® PJ/VWNPN> ( Bi1® P]/VWN) 77} -
+N 2265, 16551 [ (‘Yt 1811 ® PNWNPN) v WN"?]
+N 2655 1B [UI (’7:‘,71 ® P]I\TWN) nn <’Yt—1 ® WNPN) U]
+N72265, 10551 E [’Ul (’72—1 ® P]/V/WN> nv' (ﬂi_l ® PJI\[WN) 7]]
+N~ 2250t 1 S:ktflE [UI (’7271 ® P]IVWN> HUIWNU} -
+N~ 2(58*t2 . [ ! (ﬁtfl ® /W/NPN> v’ ([32_1 ® PJ/\,WN) TI}
+N 72265, 1057 E [ ' (5t—1 ® WNPN) UUIWNU] -
N2 B [0 W Win|

= [2tr [CMNEUCLZNZU] +]

N72

(N
2tr [CoenE0Ch v S0 + Zagm,m (1, — 30&)]
i=1

+NT228% 55yt [Coon S tr [WNE,]}
N 2268 tr (G35 S0 Gl S0 | + N 72265 1665 1tr [Gh 5y Ca ]
+N 2857 1t [CaanEyCa oy Do) + N 72687 185 tr [WNzanzn} ;
(77)

where 02 AN = (’72 1ﬁt 1 ® P! WNPN> ng = (’72 1 & P! WN) 03 AN = (:315 1 ® WNPN>, using
Lemma 11 repeatedly. Finally, by Lemma 10(iii)-(iv) it follows that E1/16t Ny =o0(1). QED

PROOF OF THEOREM 2
Firstly, notice that using the expression for ap in (16), we can write

. Ay 7 Z Ay 117 [AY L Z Z Ae
\/N(ozp—oz)Z[ y]\; P aipw DNy l} [ y]\; Paipn \[/)N } (78)

By the maintained assumptions we know that N~1ZAy_; 2 Qzpay ., N1Z0h7Zp EN Qz,, and

A1,p,N 2 A1,p, where all limiting matrices are finite with full column rank. In addition, as shown
in (67) with WN replaced by Iy, the elements of Zj,Ae are quadratic forms of the innovations,
v and 1. By Assumption 1 these random variables satisfy Assumptions B.1, B.3 in Appendix
B. Furthermore, Assumption 2 ensures that Assumption B.2. is also met. As a result, we have
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Ql_lD/in’ Ae & N <0,IC1D), with Q1 p Ny = var \/]vap (a)], by virtue of the central limit
theorem provided by Lemma 13. Hence,

VNZpAe = VNO/E (O pA ZhAe 5 N (0,01 p).

The desired result follows from the generalised Slutsky theorem. Of course, this also implies that
ap is consistent. The proof of (20) is similar and therefore it will be omitted. QED

PROOF OF THEOREM 5

ap can be written as

AYI_1Z[) Z%)AY—l
A

~ 2DN T

VN (Gp—a) = (79)

Combining Assumption 3 and Proposition 3, namely N1 Z),Ay_ 2 qzpAy_, and N_lgbAy,1 2
Az, Ay 0 WE have that N~'Ay’ ,Z 5 2 q’Z]5 Ay_;» Such that all entries are different from zero.
Furthermore, under the maintained assumptions in Section 3 we have N _1Z/BZ ) 2 QZf)’ and

Asp N LR As p, where all limiting matrices are finite with full column rank. It is straightforward to
show that the elements of Z% Ae are stacked random variables consisting of y.Ae;, and ngNAet.
As shown in (67) these are quadratic forms of the innovations, v and 7, and satisfy Assumptions B.1,
B.3 in Appendix B, given Assumption 1. Moreover, since WN = Wxn+WJ, it has uniformly bounded
row and column sums by Lemma 9. This implies that Assumption B.2. is satisfied. Combining
Propositions 1 and 3 it follows that

m 5 (@) = 0. (80)

As a result, _ 1/2NZ’ Ae 4 N (0 Ig2D), with Q, 5 \ = var {\/NmN,f) (a)}, by virtue of the

7 )

central limit theorem provided by Lemma 13. Hence,

/ 1/2 1/2 _
VNZiAe = VNQYZ a2 Zne 4N (0,0, 5).

The result follows by the generalised Slutsky theorem. Of course, this also implies that ap is
consistent. The proof of the second part of the theorem is similar and it will be omitted. QED

PROOF OF PROPOQOSITION 6
Define the following terms:

Yran = N7YY WA
sy = NTTAY,  Wyuy.

The aim is to show that Evy o v = 0, Ewi,st,N — 0as N — oo for k = 7,8. Using (49) and (54)
we have

Eyrgn = NTUE[V (B,®PY) + XN (In @ ®'4,) + 05 0] Wy [(In @ Ag)) A+ (di @ Py)v]
= NT'B[v (8L® Pi) Wy (Iv © A¢)) A| + NUE [/ (8, @ Pi) Wi (dy © Py) v]
+N7IE [X (In @ ®'9), ) Wy (Iy @ Ad,) }
+NE [A (In ® &' ) Wi (dy @ Py) ]
+NTE (55, /Wi (In © Agp) A + N7 [ 0/ Wi (dy @ Py) v]

= N~lr [(WN © P wl,sﬁcbé) ZA} ,
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where 3\ = FAX, which follows from (i) using repeatedly the property by Abs = tr [Abybf] for any
vectors by and by, (ii) the fact that EAv' = EAn’ = Fvn’ = 0 by assumption, and (iii) the result

N-E [v’ (,@; ® PJ’V) WN (d; ® Pn) v] = 0 from the proof of Proposition 3. Since WN contains zeros
on the main diagonal, the kronecker product matrix (WN ® P’ @b'l’sAqSQ) preserves this property.

On the other hand, X, is a diagonal matrix. Therefore, tr [(WN ® <I>’1,b'1’sAq§Q) E,\} = 0 by Lemma
10().

Remark 8 Observe that if WN is replaced by Iy, the trace of the matriz in the square brackets is

O (N) and so N~ttr [(WN ® <I>’1,ZJ'LSA¢Q> EA} = O (1); the moment conditions are not valid in this
case.

For Ev3 ; v we have
Ey?,n = NT2EY.WyARATWNY

N[5 0 + N (In ® 89 ) + 0 (8@ PY)] W [(Iv © Adl) A+ (d @ Py) v]
X [N (In ® Agpy) +v' (dy @ PY)] Wi [05.m + (In ® b1 ;@) A + (B, © Py)v]}

= N2E{5n (VT/N ® Agb;) At 050 (dt ® I/IN/NPN) v
Y (’VVN ® <1>’¢'1,8A¢;) A+ N (WN ® @’1/)378) (d; © Py)v
+v' (8@ Py) (Wi © Ag}) A+ 0/ (Bldi @ Py W Py ) o]
X (55 N (WN ® A(j)t) n+ N (WN ® A¢tqp1,sc1>) A+ N (WN ® A¢t> (8, ® Py)v
+65 (d; ® P;VWN) n+v (d o Py) (WN ® wl’;b) A+ (d;ﬂs ® P;VWNPN> ]}

— N2E [531# (WN ® A¢;) AN (WN ® A¢t> n}
YN2E :68,2377’ (dt ® WNPN) v’ (d; ® P;VWN) n]
YNT2E :X (WN ® <I>’¢’178Aqbg) AN (WN ® AqbtszS(I’) A}
+NT2E :X (W/N ® <1>'¢’1,SA¢;) AV (dgﬁs ® PI’VWNPN) v}
+N2E [N (Wy @ @9),) (d o Py) oX (W © Ag,) (8, ® P) o]
YN"22F [A' (WN ® <1>’¢’175) (di @ Py)vv' (d) @ Pl) (WN ® 1!)175@) A}
+N 228 [of (Bldy © Py WPy ) oX (W © Adytp; @) A]

+NT2E v (Bidi @ PYWwPy ) oo’ (48, Py WPy ) v| =
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2552ty [(WN ® A¢;> N (WN ® A¢t) zn}
N2 [(dt ® V[N/NPN> 2, (d; ® P{VWN/N) zn}
N2 KWN ® '), 8A¢;) N (WN ® A¢t¢175<1>) zA}
LN "2 [(WN ® '), SA@) ZA] tr [(d;ﬂs ® P]’VWNPN) zv}
N2t (W @ @) (dh @ Py) S0 (8, ® PL) (W © Ag)) 3]
+ N2 [(WN ® B/, s) (d;® Py) %, (d, ® P) (WN ® ¢1,S<I>) EA]
T N2 [(5 d ® PNWNPN) } tr [(WN ® Aqbtzpl,S(b) E,\}

N2 [(ﬁsdt ® P}V”WNPN) 5, (d;ﬁs ® P;VWNPN) zv} , (81)

using Lemma 11(iii) for the first, second and sixth terms of the last equality, Lemma 11(ii) for the
third and last terms, Lemma 11(v) for the fourth seventh terms and Lemma 11(vi) for the remaining
term. It is easily seen now using Lemma 10 that E?ﬂ%st’N =o(1).

Using (53) and (50) we have for ¢g; v

Epgyn = NT'E{[v(vi_1©@Py) + X (In @ @', 1) + 65517
xWn [n+ (In ® ¢}) A+ (€41 @ Py) v]}
= N'E[v(v)_ © Py) Wan| + N B [0/ (vio @ Pi) Wy (In @ ¢}) A
YNTIE :v’ (v_1 ® Pi) Wy (€41 ® Py) v} +NTIE [X (In ® D', ;) WNn}
FNTUE [N (Iy @ @', ) Wi (In @ 6)) Al
FNTLE [N (In @ D'y, )) Wi (€)4; ® Py) v}

+N7E 53? 1mn WN’?} +N'E [5075 n "Wy (IN ® d’;) )‘}

+N7'E 56‘:’;,177'WN (€41 ® Py) v}

= N7 tr [

/N

Yi-1€141 @ P]/VWNPN) EU} + N_ldgft_ltr [WN/NZn]

YN :(WN ® <I>’¢’2,H¢;) EA] .

Observe that the first two terms in the last equality are zero from the proof of Proposit ion 3. The
last term is also zero by Lemma 10(i). Finally, it is entirely straightforward (but again tedious) to
show that Ewg’tN =o0(1). QED

PROOF OF THEOREM 7
We have

Ayl—lgDA Z/DAy—l B
3,D,N N 3,D,N \/N

\/N(aﬁ—oz): ~ D, ~

(82)

Under the maintained assumptions N~'Z, Ay _ 2, qs a vector with non-zero entries, and
D 1 ZpAy—1’ )

As p N EN Az p, where the limiting matrix is finite with full column rank. It is easy to see that the
elements of Z},Au are stacked random variables consisting of y,WyAu,. As shown in Proposition
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6 these are quadratic forms of the innovations, v, 7 and A that satisfy Assumptions B.1, B.3 in

Appendix B, given Assumption 1 and Assumption 4. Moreover, Wy has uniformly bounded row and

column sums by Lemma 9 and satisfies Assumption B.2. As a result, Q5 }:)/QZVE})AG 4N (0, I¢, D),

with Q3 p y = var \/NIYINE (a)], by virtue of the central limit theorem provided by Lemma 13.
Hence,

VNZpAu = VNP Q5 A ZhAt L N (0,95 p).

The result follows by the generalised Slutsky theorem. Of course, this also implies that ay is
consistent. The proof of the second part of the theorem is similar and it will be omitted. QED

Appendix B

Lemma 9 Let Cp y be a (sequence of) N x N matrices, for k = 1,..., whose row and column
sums are uniformly bounded in absolute value by finite constants, cy, respectively. Then the row and
column sums of the product of a finite number of Cy n, e.g. CinConCs3 N, and of the sum of a

finite number of Cy N, e.g. C1, Ny +Can+C3 n are uniformly bounded in absolute value by H cr and
k=1
ch, respectively. Furthermore, consider a finite Iy X lo matrix H, whose rows and columns sums

k
are uniformly bounded in absolute value by a constant c,. Then H @ Cy n has uniformly bounded

row and column sums.
Proof. These are easily verified. See, for example, Kapoor (2003) and Kelejian Prucha (1999). m

Lemma 10 Let C,glN = [C?g;k,ZN] and Cyen = [cijken] be (sequences of) LN x {N matrices, with
I > 1 fized and some k, whose row and columns sums are uniformly bounded in absolute value by Cg,c:
ck,c, respectively, with C?LMN =0 Vi. Let Gpyn = [gijren] be a (sequence of) (N x N matrices,
whose row and columns sums are uniformly bounded in absolute value by cy . Furthermore, let
Dy on = [dijren] and Mg n = [0i51,n5] be LN x (N and N x N diagonal matrices respectively, for
some k, whose diagonal entries are uniformly bounded in absolute value by cy p and cp . Then

tr [CIQ,KNDk7£N:| =0;

N~ Y [CngDgNCk/gN] =0 (1) N

N7 [CruonDrunCrr on Dy on] = O (1) ;
N~ Y [Gk,ZNAk,NG;ngNDk,ZN] =0 (1) .
Proof: For part (i) of the lemma we have

{N (N

N_ltr [CISJNDk,ZN] = N_l Z Z [C?j,k,gNdji,k,EN] = 07 (83)
=1 j=1

since c?j,k,EN =0 for j =1, while dj; oy =0 V] # 1 (all k). For part (ii) we have

N
N7 [ChuonDenCrryn] = N1 Z Z Cij kN Cii k! ¢NjjkoN
=1 j—=1

IN N (N (N

< cppN~! ZZ \cijren | cjipen| < cepNT ZZ |cijken| Z |cjip onv |
=1 j=1 =1 j5=1
(N

< apN D eheowe=0(1). (84)
i—1
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For part (iii) we have

¢N (N
1 1
N~%r [CrunDiynCrion Dy yn] = N Z ZCij,k,ENCji,k’,éNdjj,k,ENdii,k’,ZN
=1 j=1
(N (N
1
< N Zdii,k’,ZN Z |Cijen| | Cjieren| djjpen
i—1 =1
(N (N
1
< c¢k,pN Zdii,k’,éN Z |cijeen| | en]
i—1 =1
N N N
1
< arpN Y diswan Y leijren! Y |cjiwen]
i—1 j=1 =1
(N
1
< crperocw, e N diwen < ek pow perocr.c =0 (1). (85)
i1
Finally, part (iv) equals
(N N
“1 / “1
N7'r [Gron A NGl ynDien]) = N ZZgij,k,éNgij,k’,éNdii7k,ZN5jj,k,N
=1 j=1
(N N
1
< N Z dii kN Z |9 een | | ik o] 6,
i—1 =1
(N N
—1
< cpaN Zdii,k,m Z \9ijeen | | Gigokr e |
i1 =1
(N N N
1
< araNTYD diswan > |Gijken| Y Gijren]
i—1 =1 =1
(N
—1
< cgackacr,aN Zdu‘,k',m < cpackacr.aer,p =0 (1). (86)
i—1

The following lemma concerns the variance and covariance of various quadratic forms.

Lemma 11 Let & = (&1, ... &ni) ~ (0,%¢,), and €y = (€19, Ena) ~ (0,3¢,), where Te,,
Y, are positive-definite LN x {N and N x N matrices, respectively, for some fived £. Let Ay on =
[ijken] and By n = |04k, n] be sequences of UN XN and N x N non-stochastic symmetric matrices,
respectively, for some k, while Gy n = [gijk,N] be a sequence of non-stochastic matrices of order

(N x N. Consider the decomposition X¢, = 5157, let A}, = [oz:.‘jng} = S1AknS1, Bfy =
[bjj,k’N} = SyBynSe, and Gfy = SiGynSe. Furthermore, let gy = (nyy,mens) = Sy €1,

Ny = (77172,...,7;[]\,’2)/ = 52_152. Then assuming that the elements of m; and my are (mutually)
independently distributed with zero mean, unit variance and finite third and fourth order moments
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3 _ 3 4 _ 4 3 _ 3 4 _ 4
Emii =t Eivg = by, B = iy, 5 By = py, ,» we have

(i) : E (ﬁllA;@gNEl) =tr (AZ:,ZN) =tr (AijZgl) ;
(i) : Cov (&1 Aren€, &1 Ar on€1) = 2tr (A enSe, Ap inSe,)
(N
+ Z Qi k0N Qi J! (N (lfglm - 30’211) ;
i—1

) i Cov(§1GrunEs €3G inv€1) = 17 [GrnDe, Gl onZe, ]
(iv) : Cov (€1AkenE1,E1Grin€s) =0;
(v) : Cov (EllAk,ENslaé/QBk,NSQ) =tr [Ak’gNE&] tr [Bk,Nzgl] ;
(vi) = Cov (Elle’gNEQ,Elle/’gN€2) =tr [Gk’nEngk,mE&] .

Proof. The expression for the expectation follows from the assumed independence of 1, because

E (&1 Arn€)) = E (6157751 ApenS157°€)) = E (myAfovm)
tr (Ap onEmmy) = tr (Af v) = tr (S1AkenS1) = tr (8151 Aken)
= tir (Ak,gNZ&) . (87)
The derivation of the expression of part (ii) follows from the proof of Theorem 1 in Kelejian and
Prucha (2001, pg. 242). Observe that the last term drops out if the diagonal elements ofAzm and/or
Al:’,n equal zero, i.e. oy pyN = ik ¢n = 0. In this case E (E'lAWNﬁl) =tr (AWNZ&) =0 from
Lemma 10(i). This term also drops out under normality of €, in which case the expression for the

covariance is provided in Magnus and Neudecker (1979, Corrolary 4.1(ii)). For parts (iii) and (iv)
we have

(4ii

Cov (€1Gr,NE2, €5G)y nE1) = EE G n€2€5Gh Ny
= B€ 57 VS1Gr NS5 €659,V S5Gh nS157 €y = EN\ G xmama G v

(N (N N N I{N N
= F Z Z Z Z gfj,k,ngq,k’,Nm,f'?pJ77j,277q,2 = Z Z g;kj,k,Ng;q,k’,NE (77?,1) E (77?,2)
i=1 p=1 j=1 ¢=1 i=1 j=1
= tr [G;:,NG*’,N] =tr [SQGANS&S{G]C/,NSQ] =1r [S2SéG;§7NSIS:,[le,N:|
= tr [Gk/’NEE2G;€7NE§1] Py (88)

and

Cov (€1 Ak en€1, E1Grun€s) = BET A in€1 €1 Grunés
= EB&ISTVS 1 ArunS1Sy 16,8157V S1Grin 5255 €y = Enf AL jnmimy G vl
(N ¢N (N N

= F Z Z Z Z afj,k,eN!J;q,k,eNmJ77j,177p,177q,2

i=1 j=1 p=1g=1
(N (N ¢N N

= Z Z Z Z o g anIng keNE (1:1151Mp1) E (1g2) = 0. (89)

i=1 j=1p=1 =1
For parts (v) and (vi) we have

Cov (€} A onEyr, €bBr nEs) = Enl AL oymm Bixms
(N (N N

N
= EY Y ahnnTialin Y Urg kN Tp 2ty

i=1 j=1 p=1 g=1
{N N

= > b E (151) Y b E (n2)

=1 p=1
ZWWMWWMF”WM%WWM%L (90)
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and finally

Cov (&1 Grens, €1Gr inE2) = EN\GL ynmamy Gl o2
(N (N N N

= F Z Z Z Z gfp,k,mg;q,kf,eNm,ﬂIj,ﬂlp,znq,z

i=1 j=1 p=1 g=1

IN N
= Z Zg;kp,k,éNg;i,k’,éNE (77;2,1) E (77127,2)
i=1 p=1
= tr [GZ:ZNG*’,ZN] =1ir [G%,Zszle/,ZNZEQ] . (91)

Remark 12 The assumption of symmetry for Ay N and By, n is without loss of generality because
for any square matriz A, x' Ax = x’ (#) X.

Consider the following r x 1 vectors of linear quadratic forms

q1,1,N (EN) 2 €4 Ay €y
qi,N = : = : )
qr,1,N (eN)_1/2 £I1AT,EN£1
q1,.2,N (EN) 2 €GN,
d2.N = : = : )
Gra,N (EN) Y2 Gy nEy
and
q,N (eN)~12 (€1 A1 nE + E1G1 NG
aN = : = : ;
4N (EN)"V2 (€1 Aron€) + €1GrnEs)

where §; and &5 are /N and N vectors of random variables and Ay ¢y and Gy n denote /N x (N
and /N x N non-stochastic matrices. Let u,, = Eqy = F [qi,n +az2,n] and Xy, = var (qn) =
var (qi, n) + var (gz ), since by Lemma 11 cov(qi,n + qgz2,n) = 0.

The following assumptions are maintained:

Assumption B.1. The random variables of the arrays {EM :1<4,5 < EN} and {52,1' 1< < N}
have zero expectation and are totally independent.

Assumption B.2. The elements of the array of real numbers {c;; ), : 1 <4 <IN} satisfy o, =

{N IN
aji k. and sup; <oy Z |cvij k| < 00, supj<n Z |gijk| < o0.
i=1 i=1
Assumption B.3. For all k, the following conditions hold true: sup;<,n £ ‘Eu‘%é < oo for

‘4+6

246
some ¢ > 0 and a;, = 0, sup,<,n £ ‘£1J } *

< oo for some d > 0 and i1 # 0, sup;<y F ‘5271-
|4+6

<
oo for some § > 0 and g;; ) = 0, sup;<y F }5272- < oo for some 6 > 0 and g;; 1 # 0.

The following Lemma provides a central limit theorem for vectors of linear quadratic forms, due
to Kelejian and Prucha (2010).

Lemma 13 Suppose Assumptions B.1 — B.3 hold true and Amin (X4) > ¢ for some c, where
/
Amin (Xq) denotes the smallest eigenvalue of ¥,. Letting ¥q = (25/2) (Eém) , then

_ d
Son'? (an — pgy) = N(0,1).
Proof. This follows directly from Kelejian and Prucha (2010), Theorem A.1. m
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Table Al.

Performance of estimators in terms of mean point estimates, Root Mean Squared Error and size

T =10 a=0.2 a=0.5 a=0.8
WG FD FD' SYS SYS' FE FD FD' SYS SYS' FE FD FD' SYS SYS'
12;11/%? 071 150 .134 173 161  .322 423 404 457 445 543 625 .618 .732 .729
(.164) (.141) (.133) (.137) (.117)  (.203) (.167) (.163) (.149) (.129)  (.272) (.269) (.253) (.156) (.137)
[.992] [.548] [.581] [.405] [437]  [.991] [.878] [.522] [.729] [.234]  [.993] [.892] [.384] [.414] [.276]
€=1/2 068 .116 .113 .158 .148  .314 .369 .372 .431 .427 532 .525 .566 .693 .708
(.196) (.199) (.161) (.188) (.136)  (.233) (.240) (.202) (.202) (.154) (.298) (.380) (.312) (.210) (.165)
[991] [.743] [.651] [489] [.311]  [.982] [.838] [.581] [.745] [.783]  [.994] [.926] [.796] [.499] [.372]
€=2/3 063 .078 .082 .140 .128  .302 .307 .327 .401 401 515 .444 .500 .656 .677
(:235) (.257) (.199) (.235) (.166)  (.272) (.313) (.256) (.250) (.189)  (.334) (.461) (.387) (.258) (.205)
[.984] [.639] [.584] [.317] [.369] [.992] [.872] [.609] [.895] [.528]  [.951] [.885] [.734] [.496] [.347]
€=3/4 060 058 .061 .131 .116  .294 277 295 387 .381 504 414 451 .639 .654
(.256) (.285) (.226) (.257) (.188)  (.294) (.348) (.291) (.272) (.216)  (.357) (.490) (.434) (.280) (.234)
[955] [.792] [.629] [.348] [.520]  [.972] [.901] [.893] [.825] [.506]  [.963] [.952] [.919] [.463] [.417]
ng;f/oe? 073 159 184 179 190  .324 433 476 464 486 545 .642 749 739 .780
(.160) (.139) (.060) (.134) (.058)  (.200) (.161) (.070) (.144) (.063)  (.269) (.256) (.103) (.151) (.069)
[.983] [436] [.061] [.204] [.061]  [.987] [.813] [.067] [.682] [.057] [.973] [.917] [.146] [.333] [.068]
€=1/2 070 .124 176 .135 .163  .316 .376 .464 436 479  .533 .538 725 697 .77l
(.193) (.200) (.072) (.199) (.068)  (.230) (.238) (.087) (.199) (.076)  (.295) (.373) (.134) (.208) (.084)
[927] [421] [.056] [.234] [.077]  [.981] [.801] [.069] [.648] [.072]  [.917] [.984] [.163] [.289] [.071]
€=2/3 065 084 .163 .145 177  .303 .312 .443 404 466  .515 .451 679 .658 .755
(.233) (.259) (.093) (.235) (.087) (.269) (.314) (.116) (.248) (.098)  (.332) (.456) (.189) (.260) (.100)
[.888] [438] [.082] [450] [.084]  [.984] [.837] [.096] [.776] [.081]  [.947] [.873] [.211] [.370] [.094]
€=3/4 062 .063 .151 .135 .169  .205 .281 .424 .388 .454  .503 .419 .641 .640 .736
(:255) (.287) ((111) (.257) (.103)  (.292) (.349) (.141) (.271) (.117)  (.356) (.486) (.232) (.283) (.131)
[.948] [.570] [.113] [.307] [.094]  [.963] [.876] [.147] [.794] [.092]  [.949] [.937] [.289] [.446] [.097]
ngz_ls/o:;) 070 140 192 177 196 321 428 487 461 493 543 638 771 736 .789
(.163) (.130) (.042) (.134) (.041) (.203) (.164) (.049) (.146) (.046) (.271) (.259) (.073) (.153) (.050)
[971] [.399] [.048] [.158] [.057]  [.982] [.783] [.056] [.632] [.053]  [.966] [.941] [.124] [.288] [.059]
€=1/2 065 .118 .188 .159 .193 310 .370 .481 431 .490 529 531 758 .694 .784
(.198) (.201) (.051) (.187) (.050)  (.235) (.242) (.061) (.202) (.055)  (.299) (.379) (.095) (.214) (.061)
[.924] [453] [.051] [.210] [.060]  [.987] [.797] [.057] [651] [.058]  [.982] [.976] [.131] [.291] [.062]
£€=2/3 055 077 .180 .139 .188  .300 .306 .469 .399 .482  .510 .443 .730 .655 .773
(:238) (.259) (.067) (.233) (.064)  (.276) (.318) (.083) (.250) (.072)  (.338) (.466) (.134) (.260) (.080)
[.934] [461] [.071] [453] [.079]  [.991] [.810] [.081] [.784] [.071]  [.934] [.917] [.189] [.371] [.081]
€=3/4 054 .055 .174 .128 .183 287 274 457 .383 475 500 .411 .703 .637 .769

(.261) (.288) (.080) (.254) (.077)
[.962] [.592] [.081] [.312] [.082]

(.300) (.353) (.100) (.272) (.086)
[.982] [.893] [.111] [.812] [.079]

(.362) (.496) (.165) (.283) (.097)
[.962] [.943] [.227] [.457] [.090]
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