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Abstract

This paper considers estimation of short dynamic panel data models with error cross-sectional
dependence. It is shown that under spatially correlated errors, an additional, generally non-
redundant, set of moment conditions becomes available for each i � speci�cally, instruments
with respect to the individual(s) which unit i is spatially correlated with. We demonstrate that
these moment conditions remain valid when the error term contains a common factor component,
in which situation the standard moment conditions with respect to individual i itself are invalid-
ated, and thereby the standard dynamic panel GMM estimators are inconsistent. The resulting
estimators are computationally attractive and do not require estimating the number of unob-
served factors. Simulated experiments show that the resulting method of moments estimators
perform well in terms of both median bias and root median square error.

Key Words: Dynamic Panel Data, Spatial Dependence, Factor Structure Dependence, Generalised
Method of Moments.
JEL Classi�cation: C13; C15; C33.

1 Introduction

In developing the theory of GMM estimation of short dynamic panel data models, it is commonly
assumed that the residuals are independently distributed across individuals (see e.g. Anderson and
Hsiao, 1981, pg. 598, Arellano and Bond, 1991, pg. 278, Arellano, 1993, pg. 88, Ahn and Schmidt,
1995, pg. 7, Blundell and Bond, 1998, page 118, and others). This assumption is usually made
for identi�cation purposes rather than descriptive accuracy with the hope, presumably, that by
conditioning on a su¢cient number of explanatory variables, what is left over can be treated as
a purely idiosyncratic disturbance that is uncorrelated in the cross-sectional dimension. On the
other hand, this rather strong assumption is somewhat relaxed in empirical applications involving
dynamic panels by allowing for common variations in the dependent variable at any given point
in time using a two-way error components disturbance (e.g. Arellano and Bond, 1991, pg. 288,
Blundell and Bond, 1998, pg. 137, Bover and Watson, 2005, pg. 1975). In practice, however, this
formulation is unlikely to be adequate to remove all correlated behaviour in the residuals and this
may invalidate the point estimates of the parameters, as well as inferences; see e.g. Sara�dis and
Robertson (2009).

Error cross-sectional dependence may arise for various reasons in practice; for example, it may
be due to the presence of spatial correlations speci�ed on the basis of economic and social distance
(Conley, 1999) or relative location (Anselin, 1988), as well as due to the presence of unobserved
components that give rise to a common factor speci�cation in the disturbances with a �xed number

�I would like to thank Takashi Yamagata and Neville Weber for helpful comments and suggestions.
yDiscipline of Operations Management and Econometrics, University of Sydney, and Department of Econometrics

and Business Statistics, Monash University, Australia. e-mail: vasilis.sara�dis@sydney.edu.au.

1



of factors (e.g. Goldberger, 1972, and Jöreskog and Goldberger, 1975). Methods that account for
spatial dependence in panel data models have been proposed by Mutl (2006), Kapoor, Kelejian
and Prucha (2007), Lee and Yu (2010) among others. Methods that deal with a multi-factor error
structure have been proposed by Robertson and Symons (2007), Phillips and Sul (2003), Moon and
Perron (2004), Bai (2006), Pesaran (2006), Sara�dis and Yamagata (2010) among others. These
methods are theoretically justi�ed in panels where the number of time series observations (T ) is
large and/or (some of) the covariates are strictly exogenous with respect to the purely idiosyncratic
disturbance. Valid methods for �xed T and weakly exogenous, or endogenous regressors have been
proposed by Ahn, Lee and Schmidt (2006), Bai (2010), Robertson, Sara�dis and Symons (2010).
These methods are non-linear and require estimating the number of unobserved factors as well as
the factors themselves. An overview of recent developments in the literature is provided by Sara�dis
and Wansbeek (2012).

The present paper investigates the e¤ect of spatial dependence in dynamic panel data models. It
is shown that an additional set of moment conditions becomes available � in particular, instruments
with respect to the individual(s) which unit i is spatially correlated with. In many practical circum-
stances these moment conditions are not redundant in the sense that the asymptotic variance of the
GMM estimator from the enlarged set of moment conditions is smaller than the GMM estimator
that uses the smaller set of moment conditions, i.e. those instruments with respect to individual i
only. We develop two GMM estimators. One is based on �rst-di¤erenced equations and is similar to
the Arellano and Bond (1991) GMM estimator. The other one combines equations in �rst-di¤erences
and in levels, yielding a system GMM estimator. Unlike the standard system GMM, however, this
estimator remains consistent even if the process is not mean-stationary. This is important because
mean-stationarity cannot be theoretically founded in a large number of applications.

Most notably, it is demonstrated that the spatial moment conditions remain valid even when
the error term contains a common factor component, in which case the standard moment conditions
with respect to lagged values of the endogenous regressor are invalidated. The resulting estimators
are computationally attractive since the moment conditions are linear in the parameters, and they
do not require estimating the number of unobserved factors or the factors themselves (assuming that
theory suggests a particular number of factors to exist) for consistent estimation of the structural
parameters. In addition, the set of regressors can be strictly exogenous, or endogenous, while T
can be either �xed or large, provided that the number of moment conditions utilised does not grow
with T . The main requirement is the speci�cation of a spatial weighting matrix, which is common
practice in the spatial literature.

The structure of the paper is as follows. The following section speci�es the panel regression
model, discusses the basic assumptions employed and derives the consistency and asymptotic normal-
ity of the standard �rst-di¤erenced and system GMM estimators under spatial dependence. Section
3 analyses the properties of the spatial instruments that become available. Section 4 demonstrates
that these instruments remain valid even if the error contains a common factor component. The
performance of the resulting estimators is investigated in Section 5 using simulated data. A �nal
section concludes.

2 Model Speci�cation and Standard Moment Conditions

This section investigates the e¤ect of spatial dependence on dynamic panel data estimation. Without
loss of generality and for easy of exposition we will consider the following panel AR(1) model:

yit = �yit�1 + uit, j�j < 1, i = 1; :::; N , t = 1; :::; T ,

uit = �i + "it, "it = �
NX

j=1

wij;N�jt + �it,
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where the initial observation is given by

yi0 = �0�i + �1"i0, "i0 = �
NX

j=1

wij;N�j0 + �i0. (1)

For �0 = 1= (1� �) the process is mean-stationary, and if, in addition, �1 = �
p
1= (1� �2) the

process is covariance-stationary. We do not necessarily want to impose these restrictions at this
stage.

Stacking the model over i yields

yt = �yt�1 + ut = �yt�1 + � + "t = �yt�1 + � + PN�t, (2)

where yt = (y1t; :::; yNt)
0, yt�1 = (y1t�1; :::; yNt�1)

0, ut = (u1t; :::; uNt)
0, � = (�1; :::; �N )

0, "t =
("1t; :::; "Nt)

0, �t = (�1t; :::; �Nt)
0, WN is an N �N matrix and PN = IN + �WN . yt can be written

as

yt = �ty0 +

�
1� �t
1� �

�
�+ PN

t�1X

�=0

���t�� , (3)

and from (1) we have y0 = �0� + �1PN�0 . Therefore, yt can be expressed as a linear form of the
innovations, � and �,

yt
N�1

= (�t 
 PN )
N�N(T+1)

�
N(T+1)�1

+ ��0;t �,
N�1

(4)

where, following a similar approach to Mutl (2006), �t =
�
�1�

t; �t�1; :::; �0;01�T�t
�
is a 1� (T + 1)

row vector, � = (�00; :::;�
0
T )
0 is a N (T + 1)� 1 column vector that contains all the elements of the

purely idiosyncratic error component, while ��0;t =
h

1
1�� + �

t
�
�0 � 1

1��

�i
. Observe that �"t can

also be expressed as a linear form of � as follows:

�"t
N�1

= (dt 
 PN )
N�N(T+1)

�
N(T+1)�1

, (5)

where dt is a 1� (T + 1) row vector and consists of the (t� 1)th row of (0T�1�1; D), while D is the
(T � 1)� T matrix �rst-di¤erence operator (see e.g. Arellano, 2003, pg. 15) de�ned as

D �

2
6664

�1 1 0 � � � 0 0
0 �1 1 0 0
...

. . .

0 0 0 � � � �1 1

3
7775 .

Similarly, ut can be expressed as

ut
N�1

=
�
e0t+1 
 PN

�
N�N(T+1)

�
N(T+1)�1

+ �,
N�1

(6)

where et+1 denotes the elementary (T + 1)� 1 vector with 1 in the (t+ 1)th position.
Taking �rst-di¤erences in (2) yields

�yt = ��yt�1 +�"t = ��yt�1 + PN��t, t = 2; :::; T . (7)

One can express �yt as a linear form of the innovations as follows:

�yt
N�1

= (t 
 PN )
N�N(T+1)

�
N(T+1)�1

+ ���0;t �,
N�1

(8)
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with t�1 =
�
�1 (�� 1)�t�2; (�� 1)�t�3; :::; (�� 1)�0; 1;01�T�(t�1)

�
is a 1 � (T + 1) row vector,

���0;t�1 =
�
�t�2 � �0 (1� �)�t�2

�
, while �, � have been de�ned above. Stacking (2) and (7) over

t = 2; :::; T yields
y

N(T�1)�1
= � y�1

N(T�1)�1

+ u,
N(T�1)�1

(9)

and
�y

N(T�1)�1
= � �y�1

N(T�1)�1

+ �",
N(T�1)�1

(10)

respectively, where y = (y02; :::;y
0
T )
0, y�1 =

�
y01; :::;y

0
T�1

�0
, u = (u02; :::;u

0
T )
0, �y = (�y02; :::;�y

0
T )
0,

�y�1 =
�
�y01; :::;�y

0
T�1

�0
, �" = (�"02; :::;�"

0
T )
0.

Let ZD = diag
�
Y 0; Y 1; :::; Y T�2

�
be a N (T � 1)� T (T � 1) =2 block-diagonal matrix, where a

typical block is Y s = (y0;y1;; :::;ys), a N � (s+ 1) matrix, where y� = (y1� ; y2� ; :::; yN� )0, a N � 1
vector. Also, let ZL = diag (�y1;�y2; :::;�yT�1) be a N (T � 1) � (T � 1) matrix, where each
block is given by �ys = (�y1s;�y2s; :::;�yNs)

0, a N � 1 vector. The following assumptions are
maintained:

Assumption 1 (error components): (i) The random variables f�it : 1 � i � N , 0 � t � Tg are
independently distributed with zero mean and �nite variance �2�. Furthermore, sup1�i�N;0�t�T
E j�itj4+� <1 for some � > 0. (ii) The random variables f�i : 1 � i � Ng are independently
distributed with zero mean and �nite variance �2�. Furthermore, sup1�i�N E j�ij4+� < 1 for
some � > 0. (iii) The processes f�itg and f�ig are totally independent.

Assumption 2 (weighting matrix and space of MA parameter): (i) All diagonal elements
of WN equal zero. (ii) The spatial moving average parameter satis�es � 2 (�c1;�; c2;�) with
0 < c1;�; c2;� � c� < 1. (iii) The matrix WN is non-singular and PN = IN + �WN is non-
singular for all � 2 (�c1;�; c2;�). (iv) The row and column sums of WN and (IN + �WN ) are
bounded uniformly in absolute value.

The assumptions above are standard in the spatial literature, see e.g. Kelejian and Prucha (2010).
Notice that Assumption 1 permits cross-sectional heteroskedasticity in "it, through the weighting
matrix WN . Serial independence in the error can be relaxed by allowing "it to follow a �nite MA
process. An AR process can be accommodated using further lags of y on the right-hand side of
the model. Assumption 2(i) is just a normalisation of the model and implies that no individual
is viewed as its own neighbour. Assumptions 2(ii)-(iiii) concern the parameter space of � and are
discussed in detail by Kelejian and Prucha (2010, Section 2.2). Assumption 2(iv) implies that there
is no dominant unit in the sample, i.e. an individual unit that is correlated with all remaining
individuals. We will study the factor structure case, which violates this scenario, in Section 4.
Notice that the assumptions above do not depend on a particular ordering of the data, which can
be arbitrary. For reasons of generality the elements of WN , and by implication of y with a slight
abuse of notation, are permitted to depend on N , that is to form triangular arrays. This is due to
the fact that for �boundary� elements the connectedness structure may change as new data points
are added. This implies that the asymptotics require the use of a CLT for triangular arrays (see e.g.
Davidson, 1994, Ch. 24).

The following proposition shows that the following moment conditions remain valid for the panel
autoregressive model with spatially correlated errors.

Proposition 1 Under Assumptions 1-2, the following T (T � 1) =2 moment conditions are valid in
the �rst-di¤erenced model (10):

mN;D (�) = N�1Z 0D�"
p! 0. (11)

Furthermore, under mean-stationarity, �0 = 1= (1� �), the following T � 1 moment conditions are
valid in the levels model (9):

mN;L (�) = N�1Z 0Lu
p! 0. (12)
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Proof. See Appendix A.
The above proposition demonstrates that instruments with respect to lagged values of the en-

dogenous regressor remain valid under spatial dependence. Therefore, under certain regularity
conditions it will be shown that Generalised Method of Moment estimators making use of these
moment conditions are consistent and asymptotically normal with mean zero. In particular, de�ne

ZS �
�
ZD 0
0 ZL

�
; yS �

�
�y
y

�
; y�1;S �

�
�y�1
y�1

�
; uS �

�
�"
u

�
.

Also, let A1;D;N and A1;S;N be sequences of possibly random, non-negative de�nite matrices of order
�1;D � �1;D and �1;S � �1;S , respectively, where �1;D = T (T � 1) =2 and �1;S = T (T � 1) =2+ T � 1.
The following assumption is employed for the identi�cation of the autoregressive parameter, �.

Assumption 3(i) (identi�cation of �): N�1Z 0DZD
p! QZD , N

�1Z 0D�y�1
p! qZD�y�1 , N

�1Z 0SZS
p! QZS , N

�1Z 0Sy�1;S
p! qZSy�1;S , all �nite matrices (vectors) with full column rank (non-zero

entries). A1;D;N and A1;S;N have full rank and A1;D;N
p! A1;D, A1;S;N

p! A1;S .

The �rst-di¤erenced (FD) GMM estimator is de�ned as the minimiser of the following quadratic
form:

b�D(A1;D;N) � argmin� mN;D (�)
0A1;D;NmN;D (�) . (13)

Combining (11) and (12) yields

mN;S (�) = N�1Z 0SuS
p! 0. (14)

The system (SYS) GMM estimator is de�ned as the minimiser of the following quadratic form:

b�S(A1;S;N) � argmin� mN;S (�)A1;S;NmN;S (�) , (15)

Setting the �rst-order conditions equal to zero and solving for the unknown value of � in (13) and
(15) yields

b�D =
�
�y0�1ZDA1;D;NZ

0
D�y�1

��1 �
�y0�1ZDA1;D;NZ

0
D�y

�
, (16)

and
b�S =

�
y0�1;SZSA1;S;NZ

0
Sy�1;S

��1 �
y0�1;SZSA1;S;NZ

0
SyS

�
, (17)

respectively. The following theorem establishes the consistency and asymptotic normality of the
above estimators.

Theorem 2 Suppose Assumptions 1-3(i), and (11) hold true. Let 
1;D;N = var
hp

NmN;D (�)
i
be

a sequence of symmetric, non-negative de�nite matrices with rank greater than or equal to �1;D, such

that �min (
1;D;N ) � c > 0, and 
1;D;N
p! 
1;D = asy:var

hp
NmN;D (�)

i
. The GMM estimator in

(16) is consistent and p
N
�
b�D(A1;D;N) � �

�
d! N (0; VD) , (18)

where

VD =
h
qZD�y�1A

0
1;Dq

0
ZD�y�1

i�1
qZD�y�1A1;D
1;DA1;Dq

0
ZD�y�1

h
qZD�y�1A1;Dq

0
ZD�y�1

i�1
. (19)

In addition to the assumptions above, suppose that (12) holds true and let 
1;S;N = var
hp

NmN;S (�)
i

be a sequence of symmetric, non-negative de�nite matrices with rank greater than or equal to �1;S,

such that �min (
1;S;N ) � c > 0, and 
1;S;N
p! 
1;S = asy:var

hp
NmN;S (�)

i
. The GMM estimator

in (17) is consistent and p
N (b�S � �) d! N (0; VS) , (20)
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where

VS =
h
qZSy�1;SA1;Sq

0
ZSy�1;S

i�1
qZSy�1;SA1;S
1;SA1;Sq

0
ZSy�1;S

h
qZSy�1;SA1;Sq

0
ZSy�1;S

i�1
. (21)

Proof. See Appendix A.

A �rst-stage choice for A1;D;N can be such that

A1;D = N�1Z 0D
�
DD0 
 IN

�
ZD,

which takes into account that the �rst-di¤erenced operator creates serial correlation in the errors
but ignores spatial correlation. Similarly, for A1;S;N one can choose

A1;S = N�1Z 0S

�
(D 
 IN ) (D 
 IN )0 0

0 (IT�1 
 IN )

�
ZS .

The optimal GMM estimators are obtained by replacing A1;D;N and A1;S;N by 

�1
1;D;N and 


�1
1;S;N ,

respectively, in which case (19) and (21) reduce to

VD =
h
qZD�y�1


�1
1Dq

0
ZD�y�1

i�1
,

and

VS =
h
qZSy�1;S


�1
1;Sq

0
ZSy�1;S

i�1
.

The distributional results hold as well if the unobserved 
�11;D;N , 

�1
1;S;N are replaced by consistent

estimates. In particular, notice that 
1;D;N can be partitioned as follows:


1;D;N =

2
64

1;22;D;N � � � 
1;2T;D;N

. . .


1;T2;D;N � � � 
1;TT;D;N

3
75 ,

where 
1;ts;D;N = N�1EY t�20�"t�"
0
sY

s�2. Letting the pqth element of 
1;ts;D;N be denoted by
!1;pq;ts;D;N , we have

!1;pq;ts;D;N = N�1Ey0p�"t�"
0
syq

= N�1
�
�0
�
�0pdt 
 P 0NPN

�
�+ ��0;p�

0 (dt 
 PN )�
�

�
�
�0
�
d0s�q 
 P 0NPN

�
�+ ��0;q�

0 (ds 
 PN )�
�

= N�12tr
��
�0pdt 
 P 0NPN

�
��
�
d0s�q 
 P 0NPN

�
��
�

+��0;p�
�
0;qtr [(dt 
 PN ) �� (ds 
 PN ) ��] ,

where �� = �2�IN(T+1), �� = �2�IN and the remaining variables have been already de�ned.
1 There-

fore, an expectations based operator for !1;pq;ts;D;N will replace the true value of the parameters
above by their consistent estimates, obtained from the �rst stage. A consistent estimate for �,
required to compute PN , can be obtained based on the estimator proposed by Fingleton (2008),
applied on the residual vector bu = y � b�y�1; see also Kapoor, Kelejian and Prucha (2007).

An alternative estimator for 
1;ts;D;N can be obtained by ignoring the fact that the instruments
are stochastic variables, based on

e
1;D;N = N�1Z 0D
b��";NZD,

1This expression easily follows from the expectation of  2
3;ts;N in the proof of Proposition 3 in the Appendix with

fWN replaced by IN .
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where b��";N is a consistent estimate of

E
�
�"�"0

�
= E

�
(D 
 PN )��0

�
D0 
 P 0N

��
= �2� (D 
 PN )

�
D0 
 P 0N

�
,

with unknown parameters �2� and �. This is sub-optimal in the sense that
e
1;D;N is not a consist-

ent estimator for 
1;D;N , however, it is computationally simpler and results in a consistent GMM
estimator of �. Similar analysis applies to 
1;S;N . Block bootstrapping procedures for spatially
dependent observations are also available; see e.g. Hall (1985) and Anselin (1990). We will explore
this alternative in Section 3.1.

3 Spatial Instruments: Validity, Relevance and Redundancy

It turns out that under spatially correlated errors, an additional set of moment conditions becomes
valid and is relevant in the sense that it is correlated with the endogenous regressor. This is

demonstrated in the proposition below. In particular, let eZD = diag
�
fWNY

0;fWNY
1; :::;fWNY

T�2
�

be a N (T � 1)�T (T � 1) =2 block-diagonal matrix, where fWN =WN +W
0
N is a symmetric matrix,

and Y s has been de�ned above. E¤ectively fWN is a matrix the ith row of which contains non-zero
values at the entries corresponding to the individuals which unit i is spatially correlated with. Also,

let eZL = diag
�
fWN�y1;fWN�y2; :::;fWN�yT�1

�
be a N (T � 1) � (T � 1) matrix, where �ys has

been de�ned previously.

Proposition 3 Under Assumptions 1-2, the following T (T � 1) =2 moment conditions are valid in
the �rst-di¤erenced model (10):

emN;D (�) = N�1 eZ 0D�"
p! 0, (22)

with
egN;D (�) = N�1 eZ 0D�y�1

p! q eZD�y�1, (23)

where q eZD�y�1 =
�
q1;D; :::; qT (T�1)=2;D

�0
denotes a T (T � 1) =2� 1 column vector with qk;D 6= 0, in

general. Furthermore, the following T � 1 moment conditions are valid in the levels model (9):

emN;L (�) = N�1 eZ 0Lu
p! 0, (24)

with
egN;L (�) = N�1 eZ 0Ly�1

p! q eZLy�1, (25)

where q eZLy�1 = (q1;L; :::; qT�1;L)
0 denotes a (T � 1)� 1 column vector with qk;L 6= 0, in general.

Proof. See Appendix A.
The above proposition shows that the spatial instruments are valid and relevant as well, so long

as � 6= 0, as shown in the appendix.

Remark 4 Observe that unlike Proposition 1 we have not imposed mean stationarity for the equa-
tions in levels. Intuitively, this is because E�i�j = 0 8i 6= j, under the maintained assumptions.
Therefore, the spatial moment conditions in the equations in levels are valid in this case even if
the standard moment conditions are not. We will investigate the consequences of this result in
simulations.

De�ne

Z eD
N(T�1)�T (T�1)

�
h
ZD ; eZD

i
; ZeL
N(T�1)�2(T�1)

�
h
ZL ; eZL

i
; ZeS
N(T�1)�[T (T�1)+2(T�1)]

�
�
Z eD 0
0 ZeL

�
,
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m
N; eD

(�) � N�1Z 0
eD
�",

and
m
N;eS

(�) � N�1Z 0
eS
�uS :

Let A2;D;N and A2;S;N be sequences of possibly random, non-negative de�nite matrices of order
�2;D � �2;D, and �2;S � �2;S , respectively, where �2;D = T (T � 1), �2;S = T (T � 1) + 2 (T � 1).
Furthermore, let qZ eD

�y�1 =
�
q0ZD�y�1 ;q

0
eZD�y�1

�0
, qZeSy�1;S =

�
q0Z eD

�y�1
;q0ZeLy�1

�0
with qZeLy�1 =�

q0ZLy�1 ;q
0
eZLy�1

�0
. The following assumption is employed for the identi�cation of �:

Assumption 3(ii) (identi�cation of �): N�1Z 0
eD
Z eD

p! QZ eD
, N�1Z 0

eD
�y�1

p! qZ eD
�y�1 , N

�1Z 0
eS
ZeS

p! QZeS , , N
�1Z 0

eS
y�1;S

p! qZeSy�1;S , all �nite matrices (vectors) with full column rank (non-zero

entries). A2;D;N and A2;S;N have full rank, such that A2;D;N
p! A2;D, A2;S;N

p! A2;S .

Let

e�D(A2;D;N) =
h
�y0�1Z eDA2;D;NZ

0
eD
�y�1

i�1 h
�y0�1Z eDA2;D;NZ

0
eD
�y
i
, (26)

and

e�S(A2;S;N) =
h
y0�1;SZeSA2;S;NZ

0
eS
y�1;S

i�1 h
y0�1;SZeSA2;S;NZ

0
eS
yS

i
, (27)

be the FD and SYS GMM estimators that combine the standard and spatial instruments. The
following theorem establishes the consistency and asymptotic normality of these estimators.

Theorem 5 Suppose Assumptions 1-3(ii), and (22), (23) hold true. Let 
2;D;N = var
hp

Nm
N; eD

(�)
i

be a sequence of symmetric non-negative de�nite matrices with rank greater than or equal to �2;D,

such that �min (
2;D;N ) � c > 0, and 
2;D;N
p! 
2;D = asy:var

hp
Nm

N; eD
(�)
i
. The GMM estim-

ator in (26) is consistent and p
N (e�D � �) d! N

�
0; V eD

�
, (28)

where

V eD =
h
qZ eD

�y�1A2;Dq
0
Z eD

�y�1

i�1
qZ eD

�y�1A2;D
2;DA2;Dq
0
Z eD

�y�1

h
qZ eD

�y�1A2;Dq
0
Z eD

�y�1

i�1
.

In addition to the assumptions above, suppose that (12), (24)-(25) hold true and let 
2;S;N =

var
hp

Nm
N;eS

(�)
i
be a sequence of symmetric, non-negative de�nite matrices with rank greater

than or equal to �2;S, such that �min (
2;S;N ) � c > 0, and 
2;S;N
p! 
2;S = asy:var

hp
Nm

N;eS
(�)
i
.

The GMM estimator in (27) is consistent and

p
N (e�S � �) d! N

�
0; VeS

�
, (29)

where

VeS =
h
qZeSy�1;SA2;Sq

0
ZeSy�1;S

i�1
qZeSy�1;SA2;S
2;SA2;Sq

0
ZeSy�1;S

h
qZeSy�1;SA2;Sq

0
ZeSy�1;S

i�1
.

Proof. See Appendix A.

One interesting issue that arises is whether these spatial moment conditions are redundant or
not. It is well known that adding more moment conditions will not hurt asymptotically since the
asymptotic variance of the GMM estimator that arises from the enlarged set of moment conditions
is less than or equal to the asymptotic variance of the GMM estimator from the smaller (nested)
set. However, if the enlarged set of moment conditions does not increase the asymptotic e¢ciency
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of the GMM estimator, the additional instruments are redundant.2 To shed some light on this issue
we will consider the case where T = 2 for the model in �rst-di¤erences; there is a single equation
given by

�yi2 = ��yi1 +�"i2,

and a single instrument with respect to lagged values of the endogenous regressor of individual i,
such that the reduced form (instrumental variable regression) equation is

�yi1 = yi0 + ei.

The FD GMM estimator of � reduces to a simple IV estimator, given by

b� =
ccov (�yi2; byi0)
cvar (byi0)

=
ccov [� (�yi1 +�"i2) ; byi0]

cvar (byi0)

=
ccov [� (byi0 + ei) + �"i2; byi0]

cvar (byi0)
= �+

ccov (�"i2; yi0)
bcvar (yi0)

,

where the last equality holds because ei is orthogonal to yi0 by construction. Hence, we have

p
N (b�� �) =

p
N
ccov (�"i2; yi0)
bcvar (yi0)

=
1

bcvar (yi0)

NX

i=1

�"i2yi0=
p
N . (30)

Using Proposition 1 and Theorem 2 we have

1

bcvar (yi0)
p! 1

var (yi0)
, (31)

while PN
i=1�"i2yi0p

N

d! N [0; var (�"i2) var (yi0)] , (32)

since

var

 PN
i=1�"i2yi0p

N

!
=
1

N
var

 
NX

i=1

�"i2yi0

!
= E

�
�"2i2

�
E
�
y2i0
�
. (33)

A direct application of Slutsky theorem yields

p
N (b�� �) d! N (0; Vb�) , (34)

where

Vb� =
var (�"i2)

2var (yi0)
. (35)

In addition, there exist spatial instruments with respect to the individual(s) unit i is spatially
correlated with. The instrumental variable equation for the two-stage least-squares (2SLS) estimator
that uses the enlarged set of moment conditions is

�yi1 = 1yi0 + 2

NX

j=1

wijyj0 + wi.

The 2SLS estimator of � is given by

e� =

ccov

2
4�yi2; b1yi0 + b2

NX

j=1

wijyj0

3
5

cvar

2
4b1yi0 + b2

NX

j=1

wijyj0

3
5

= �+

ccov

0
@�"i2; b1yi0 + b2

NX

j=1

wijyj0

1
A

cvar

0
@b1yi0 + b2

NX

j=1

wijyj0

1
A

, (36)

2Breusch, Qian, Schmidt and Wyhowski (1999) provide a general treatment of redundancy of moment conditions.
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where, similarly as above, wi is orthogonal to yi0 and

NX

j=1

wijyj0 by construction.
3 Therefore, one

has
1

cvar

2
4b1yi0 + b2

NX

j=1

wijyj0

3
5

p! 1

var

2
41yi0 + 2

NX

j=1

wijyj0

3
5
, (37)

and

PN
i=1�"i2

2
4b1yi0 + b2

NX

j=1

wijyj0

3
5

p
N

a� N

2
40; var (�"i2)� var

0
@1yi0 + 2

NX

j=1

wijyj0

1
A
3
5 .

The asymptotic distribution of
p
N (e�� �) is
p
N (e�� �) d! N (0; Ve�) , (38)

where

Ve� =
var (�"i2)

var

0
@1yi0 + 2

NX

j=1

wijyj0

1
A

=
var (�"i2)

21var (yi0) + 
2
2var

0
@

NX

j=1

wijyj0

1
A+ 212cov

0
@yi0;

NX

j=1

wijyj0

1
A
. (39)

It is straightforward to show that the denominator in (39) is larger than in (35) and therefore e� is
asymptotically more e¢cient than b�. This holds true unless 2 = 0, in which case 1 =  and e� is
asymptotically equivalent to b�. This is an intuitive result because 2 = 0 implies that, conditional

on yi0,

NX

j=1

wijyj0 is not correlated with the endogenous regressor. We will investigate further the

condition 2 = 0 by considering the �rst-stage coe¢cient b2, which equals

b2 =

ccov

0
@�yi1;

NX

j=1

wijyj0

1
A cvar (yi0)� ccov (�yi1; yi0) ccov

0
@yi0;

NX

j=1

wijyj0

1
A

cvar (yi0) cvar

0
@

NX

j=1

wijyj0

1
A� ccov

0
@yi0;

NX

j=1

wijyj0

1
A
2

p! 2 =

cov

0
@�yi1;

NX

j=1

wijyj0

1
A var (yi0)� cov (�yi1; yi0) cov

0
@yi0;

NX

j=1

wijyj0

1
A

var (yi0) var

0
@

NX

j=1

wijyj0

1
A� cov

0
@yi0;

NX

j=1

wijyj0

1
A
2 . (40)

3Notice that it is also possible to investigate the properties of the GMM estimator that makes use of the optimal
weighting matrix. This is asymptotically more e¢cient than b� and e� when the spatial instruments are not redundant.
In order to concentrate on the issue of redundancy of the set of additional instruments, however, it su¢ces to study
the properties of the 2SLS estimator.
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Without loss of generality suppose that the weighting matrix used is circular4, such that

W =

2
6666664

0 1 0 : : : : : 0
0 0 1 0 : : : : 0
: : : : : : : : :
: : : : : : : : :
0 : : : : 0 0 0 1
1 : : : : : 0 0 0

3
7777775
. (41)

One can show that

var (yi0) = �20�
2
� + �

2
1

�
1 + �2

�
�2�;

var

0
@

NX

j=1

wijyj0

1
A = 2

�
�20�

2
� + �

2
1

�
1 + �2

�
�2�
�
;

cov (�yi1; yi0) = (�� 1)
�
�0�

2
�

�
�0 �

1

1� �

�
+ �21�

2
u

�
1 + �2

��
;

cov

0
@�yi1;

NX

j=1

wijyj0

1
A = 2 (�� 1) ��21�2�;

cov

0
@yi0;

NX

j=1

wijyj0

1
A = 2��21�

2
�: (42)

As a result, we have

2 =
2 (�� 1) ��21�2�

h�
�20�

2
� + �

2
1

�
1 + �2

�
�2�
�
� [�0�2�

�
�0 � 1

1��

�
+ �21

�
1 + �2

�
�2�]
i

2
h�
�20�

2
� + �

2
1

�
1 + �2

�
�2�
�2 � 2

�
��21�

2
�

�2i

=
(�� 1) ��21�2�

h
�20�

2
� � �0�2�

�
�0 � 1

1��

�i

�
�20�

2
� + �

2
1

�
1 + �2

�
�2�
�2 � 2

�
��21�

2
�

�2

= �
��0�

2
1�
2
��
2
�

�40�
4
� + 2�

2
0�
2
1�
2
�

�
1 + �2

�
�2� + �

4
1

�
1 + �4

�
�4�
. (43)

Therefore, we can see that 2 = 0 for either �0 = 0, or �1 = 0 or � = 0. The last two zero conditions
imply that the covariance between the endogenous regressor and the spatial instruments equals zero,
as it is clear from (42). It is worth mentioning that 2 does not depend on the value of � so long
as �0 and �1 are not a functions of �. Furthermore, since the denominator in 2 is always a non-
negative number, 2 � 0 for � � 0 and �0 � 0. The following �gure illustrates graphically the value
of �2 for � 2 [0; 1] and �0 2 [0; 4], setting �21 = �2� = �2� = 1. Observe that for any �0 > 0, the
value of the function increases as � approaches unity. On the other hand, for any given � > 0 the
value of the function initially gets larger as �0 increases from zero to a positive value, although it
approaches zero as �0 increases further to large positive values. As an implication, if the y process
is mean-stationary such that �0 = 1= (1� �), the spatial instruments become redundant as � ! 1
regardless of the value of �. Of course, at the same time instruments with respect to lagged values
of the endogenous regressor for individual i become weak for � ! 1. This in turn implies that
the spatial instruments become weak as well, given redundancy. We will investigate further the
properties of GMM estimators that make use of spatial instruments using simulated data in Section
3.1.

4See e.g. Baltagi, Bresson and Pirotte (2007).
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Figure 1

Another issue that arises is dominance; in particular, suppose that there is a dominant cross-
sectional unit which is correlated with all remaining individuals. It turns out that instruments with
respect to the dominant individual are always redundant. To see this, let the dominat unit be the
N th individual. We have

plimN!1N
�1

NX

i=1

yNs�"it = yNsplimN!1N
�1

NX

i=1

�"it = 0, (44)

and

plimN!1N
�1

NX

i=1

yNs�yit�1 = yNsplimN!1N
�1

NX

i=1

�yit�1 = 0. (45)

Therefore, the instrument with respect to the dominant unit is uncorrelated with �yit�1. Intuitively,
if the same variable is used as instrument for all individuals, then it is �xed in the cross-sectional
dimension and therefore it is asymptotically uncorrelated with the endogenous regressor. Notice that
the existence of a dominant unit violates the uniform boundedness condition of spatial dependence,
and indeed one of the conditions in Theorem 1.

3.1 A Short Monte Carlo Investigation

We will investigate the �nite-sample performance of the estimators above using simulated data. The
underlying generating process is given by

yit = �yit�1 + �i + "it, "it = �

NX

j=1

wij;N�jt + �it, i = 1; :::; N , t = 1; :::; T , (46)

where wij;N denotes the ijth element of WN , which is formulated as in (41), �i � i:i:d:N
�
0; �2�

�
,

�it � i:i:d:N
�
0; �2�

�
. The initial value is

yi0 = �0�i + �1"i0, "i0 = �
NX

j=1

wij;N�j0 + �i0.
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We set � = 0:5, � = 0:5, T = 6 and we normalise �2� = �2" = 1, while N 2 f100; 400; 800g. The
initial conditions are such that �0 2

n
0; 1; (1� �)�1

o
and �1 =

�
1� �2

��1=2
. For �0 = (1� �)�1

the process is mean-stationary and also it is variance-stationary given the chosen value for �1.
The results are provided in the table below. FD, FDy and FD� denote the �rst-di¤erenced GMM

estimators that utilise ZD, eZD and Z eD, respectively, as de�ned earlier in the paper, while SYS, SYSy
and SYS� denote the system GMM estimators that utilise ZS , eZS and ZeS , where eZS is de�ned in
(58). Therefore, FD (SYS) makes use of the standard instruments that are available with respect
to individual i, FDy (SYSy) makes use of the spatials instruments with respect to the individuals
which unit i is spatially correlated with, and FD� (SYS�) combine the two sets of instruments.

Table 1. Performance in terms of mean point estimates and RMSE, � = 0:5.

T = 6 �0 = 0 �0 = 1 �0 = 2

FD FD
y

FD
�

FD FD
y

FD
�

FD FD
y

FD�

N = 100 :450 :405 :429 :395 :380 :377 :440 :370 :407

(:132) (:192) (:133) (:200) (:221) (:197) (:143) (:240) (:159)

N = 400 :486 :472 :480 :472 :467 :466 :486 :463 :477

(:065) (:092) (:063) (:095) (:102) (:090) (:067) (:100) (:071)

N = 800 :493 :486 :490 :484 :482 :481 :492 :480 :487

(:045) (:065) (:043) (:067) (:072) (:063) (:048) (:079) (:051)

SYS SYS
y

SYS
�

SYS SYS
y

SYS
�

SYS SYS
y

SYS
�

N = 100 :711 :489 :713 :642 :492 :646 :500 :498 :507

(:224) (:142) (:257) (:167) (:143) (:167) (:099) (:136) (:094)

N = 400 :725 :495 :734 :654 :498 :663 :500 :501 :502

(:229) (:081) (:237) (:161) (:081) (:169) (:053) (:082) (:052)

N = 800 :723 :497 :737 :656 :498 :666 :499 :499 :500

(:223) (:059) (:238) (:160) (:060) (:169) (:034) (:062) (:038)

As we can see, the performace of FD and FD� is similar. In most cases FD has slightly less bias
and slightly larger RMSE. This is not surprising; it is known that in �nite samples and with a �xed
value of N , using a larger number of instruments results in a trade-o¤ between bias and e¢ciency.
Of course, asymptotically the GMM estimator with the enlarged set of moment conditions is more
e¢cient, providing that the additional moment conditions are not redundant. FDy is generally
dominated by FD and FD� both in terms of bias as well as RMSE. Its performance deteriorates
with higher values of �0, which, however, is also the case for the remaining �rst-di¤erenced GMM
estimators. Intuitively, this is a weak instruments problem; as �0 increases the proportion of the
variance of the total disturbance that is due to the variance of the individual-speci�c e¤ects gets
larger. Essentially, abusing the notation, for �0 ! 1 we have �2�=�

2
" ! 1 and the instruments

become weak (see Blundell and Bond, 1998). The same intuition holds for the spatial instruments.
Similarly to FD and FD�, the performance of SYS and SYS� is similar under all circumstances.
However, both estimators are consistent only under mean-stationarity and they appear to exhibit a
large upwards bias otherwise. SYSy, on the other hand, performs well under all situations and largely
dominates SYS and SYS�, unless the process is mean-stationarity. Importantly, SYSy appears to
dominate FD and FD� as well, unless �0 is large. We have experimented also with � = 0:8; in this
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case SYSy uniformly dominates FD and FD� under all circumstances. To save space we do not report
these results. In the section below it will be demonstrated that the spatial moment conditions can
be used to construct consistent GMM estimators in situations were the standard GMM estimators
are not consistent.

4 Spatial and Factor Structure Dependence

In this section we will consider a panel autoregressive model in which the disturbance contains a
common factor structure, such that

eyit = �eyit�1 + euit, j�j < 1, i = 1; :::; N , t = 1; :::; T ,

euit = �i + �
0
i�t + "it, "it = �

NX

j=1

wij;N�jt + �it,

where �t = (�1t; �2t; :::; �nt)
0 is a n� 1 vector of factors and �i = (�1i; �2i; :::; �ni)0 is a n� 1 vector

of factor loadings. A similar structure is also studied by Pesaran and Tosetti (2011) and Chudik,
Pesaran and Tosetti (2011). We make the following assumption regarding the factors and their
loadings:

Assumption 4 (common factor component): (i) The random variables f�ri : 1 � i � N , 1 � r � ng
are independently distributed with zero mean and �nite variance �2�r . Furthermore, sup1�i�N;0�r�n
E j�rij4+� <1 for some � > 0. (ii) �t is non-stochastic and has uniformly bounded elements,
such that k�tk � c <1 8 t. (iii) The processes f�rig, f�itg and f�ig are totally independent.

Assumption 4 is standard in factor analysis; see for example, Sara�dis, Yamagata and Robertson
(2009) and Sara�dis and Wansbeek (2012). The zero mean assumption on the vector �i is not
restrictive because the model can be expressed in terms of deviations from time-speci�c averages,
which will eliminate the non-zero mean of �i (e.g. Sara�dis and Robertson, 2009). The vector of
factors is treated as �xed and the factor loadings as random variables because the asymptotics apply
for largeN , T �xed. Observe that �i is correlated with the lagged dependent variable by construction
and cannot be eliminated using the �rst-di¤erence transformation because �i is multiplicative with
�t, which is time-varying. One may think of the loadings in this context as re�ecting di¤erent
sources of unobserved heterogeneity, the impact of which is not constant through time. Rewriting
the model in vector form yields

eyt = �eyt�1 + eut, eut = � + ��t + PN�t, (47)

where � = (�1; :::;�N )
0 is a N � n matrix. Observe that eyt can be written as

eyt = �tey0 +
�
1� �t
1� �

�
� + �

t�1X

�=0

���t�� + PN

t�1X

�=0

���t�� , (48)

and the initial observation is now given by ey0 = �0� + �1PN�0 + �2��0. Therefore, eyt and eut can
be expressed as linear forms of the innovations �, � and �:

eyt = ��0;t� +
�
IN 
 1;t�

�
�+ (�t 
 PN )�, (49)

and
eut = � +

�
IN 
 �0t

�
�+

�
e0t+1 
 PN

�
�, (50)

where  1;t =
�
�2�

t; �t�1; :::; �0
�
is a 1 � (T + 1) row vector, � = (�0; :::;�T )

0 is a (T + 1) � n
matrix, � = vec (�0) is a nN �1 row vector, while the remaining terms have been de�ned in Section
2. Stacking (47) over t = 2; :::; T yields

ey = �ey�1 + eu, (51)

14



where ey = (ey02; :::; ey0T )
0, ey�1 =

�
ey01; :::; ey0T�1

�0
, eu = (eu02; :::; euT 0)0.

Similarly, taking �rst-di¤erences in (47) yields

�eyt = ��eyt�1 + ���t + PN��t. (52)

�eyt and �eut can be expressed as linear forms of the innovations as follows:

�eyt = ���0;t� +
�
IN 
 2;t�

�
�+ (t 
 PN )�, (53)

and
�eut =

�
IN 
��0t

�
�+ (dt 
 PN )�, (54)

where  2;t =
�
�2 (�� 1)�t�1; (�� 1)�t�2; :::; (�� 1)�0; 1

�
is a 1� (t+ 1) row vector. Stacking the

column vectors in (52) over t = 2; :::; T yields

�ey = ��ey�1 +�eu. (55)

As shown by Sara�dis and Robertson (2009) for the case where � = 0, the standard moment
conditions that utilise instruments with respect to lagged values of yit�1 in the �rst-di¤erenced
equations and �yit�1 in the levels equations are invalidated under a factor structure in the residuals.
A similar result applies for � 6= 0 of course.5 Therefore both b�D and b�S as de�ned in (16) and (17)
respectively, are not consistent. However, as the following proposition demonstrates, the moment
conditions that utilise instruments with respect to the individuals which unit i is spatially correlated
with, remain valid. These moment conditions will be used to obtain consistent estimates of the
structural parameter �.

Proposition 6 Under Assumptions 1-4, the following T (T � 1) =2 moment conditions are valid in
the �rst-di¤erenced model (55):

em
N; eD

(�) = N�1 eZ 0D�eu
p! 0. (56)

Furthermore, the following T � 1 moment conditions are valid in the levels model (51):

em
N;eL

(�) = N�1 eZ 0Leu
p! 0. (57)

Proof. See Appendix A.
Observe that we have made no assumptions about mean-stationarity of the process. Indeed this

assumption is always violated when there exists a common factor component because the mean
of the process shifts every time period according to the value of �t. Therefore, one requires an
estimator that does not rely on this assumption. De�ne

eZS �
"
eZD 0

0 eZL

#
, (58)

and let A3;D;N and A3;S;N be sequences of possibly random, non-negative de�nite matrices of order
�1;D��1;D, and �1;S��1;S , respectively. The following assumption is employed for the identi�cation
of �:

Assumption 3(iii) (identi�cation of �): N�1 eZ 0D eZD
p! Q eZD

, N�1 eZ 0D�ey�1
p! q eZD�ey�1 , N

�1 eZ 0S eZS
p! Q eZS

, , N�1 eZ 0Sey�1;S
p! q eZSey�1;S , all �nite matrices (vectors) with full column rank (non-

zero entries). A3;D;N and A3;S;N have full rank, such that A3;D;N
p! A3;D, A3;S;N

p! A3;S .

5For the case of a degenerate factor structure, which takes the form of a singe individual-invariant time e¤ect, a
similar result has been shown by Hsiao and Tahmiscioglu (2008).
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Consider the following GMM estimators:

b� eD(A3;D;N) =
h
�ey0�1 eZDA3;D;N eZ 0D�ey�1

i�1 h
�ey0�1 eZDA3;D;N eZ 0D�ey

i
, (59)

and

b�eS(A3;S;N) =
h
ey0�1;S eZSA3;S;N eZ 0Ley�1;S

i�1 h
ey0�1;S eZSA3;S;N eZ 0SeyS

i
. (60)

The following theorem establishes the consistency and asymptotic normality of the above estimators
under a factor structure and spatially correlated idiosyncratic components.

Theorem 7 Suppose Assumptions 1-4, and (56) hold true. Let 
3;D;N = var
hp

N em
N; eD

(�)
i
be a

sequence of symmetric non-negative de�nite matrices with rank greater than or equal to �1;D, such

that �min (
3;D;N ) � c > 0, and 
3;D;N
p! 
3;D = asy:var

hp
N em

N; eD
(�)
i
. The GMM estimator in

(59) is consistent and p
N
�
b� eD � �

� d! N
�
0; eV eD

�
, (61)

where

eV eD =
h
q eZD�ey�1A3;Dq

0
eZD�ey�1

i�1
q eZD�ey�1A3;D
3;DA3;Dq

0
eZD�ey�1

h
q eZD�ey�1A3;Dq

0
eZD�ey�1

i�1
. (62)

In addition, suppose that (57) holds true and let 
3;S;N = var
hp

N em
N;eL

(�)
i
be a sequence of sym-

metric non-negative de�nite matrices with rank greater than or equal to �1;S, such that �min (
3;S;N ) �
c > 0, and 
3;S;N

p! 
3;S = asy:var
hp

N em
N;eL

(�)
i
. The GMM estimator in (60) is consistent and

p
N
�
b�eS � �

� d! N
�
0; eVeS

�
, (63)

where

eVeS =
h
q eZSey�1A3;Sq

0
eZSey�1

i�1
q eZSey�1A3;S
3;SA3;Sq

0
eZSey�1

h
q eZSey�1A3;Sq

0
eZSey�1

i�1
.

Proof. See Appendix A.

The optimal GMM estimators are obtained by replacing A3;D;N , A3;S;N by consistent estimates
of 
�13;D;N and 


�1
3;S;N , respectively. As in Section (2), 
3;D;N can be partitioned as


3;D;N =

2
64

3;22;D;N � � � 
3;2T;D;N

. . .


3;T2;D;N � � � 
3;TT;D;N

3
75 ,

where 
3;ts;D;N = N�1EY t�20fWN�eut�eu0sY s�2. The pqth element of 
3;ts;D;N is !3;pq;ts;D;N =

N�1Eey0pfWN�eut�eu0sfWNeyq. Therefore, from the proof of Proposition 6, equation (81), it is clear
that to obtain a consistent estimate of 
3;D;N , one requires estimating the number of unobserved
factors and the factors themselves. For inference purposes, a consistent estimate of 
3;D is required
even for a sub-optimal GMM estimator, as it is clear from (62). The same issue applies for 
3;S;N . To
avoid this complication, the standard errors for the sub-optimal GMM estimators can be computed
using spatial block bootstrapping (e.g. Hall, 1985 and Anselin, 1990). We investigate this approach
in simulations.

5 A Simulation Study

We will investigate the performance of the estimators analysed above in �nite samples using simu-
lated data. The main focus lies on examining the impact of the relative weight of the unobserved
factor component in the total error process, as well as the e¤ect of di¤erent values of N and �.
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5.1 Design

The underlying generating process is given by

yit = �yit�1 + uit, , uit = �i�t + �
NX

j=1

wij;N�jt + �it, i = 1; :::; N , t = 1; :::; T , (64)

where wij;N is formed as in (41), �i � i:i:d:U [�0:25; 0:25], �t � i:i:d:N (0; 1) and �it � i:i:d:N (0; 1).
The performance of the estimators will depend on the proportion of �2u attributed to the variance

of the common factor component � hereafter this proportion is denoted by �. Therefore, noticing
that

�2u = �2��
2
� + �

2
��

2
� + �

2
�

�
1 + �2

�
, (65)

and normalising �2� = 1, we have

�2� =
(1� �)
�

�2��
1 + �2

� (66)

We set � = 0:5, which implies that �2� will change only according to � since the value of �
2
� is �xed

in the design. As the value of � approaches unity, the impact of the factor component in the total
error process increases. We choose the following values for �:

8
>><
>>:

Low impact of factor structure on uit: � = 1=3
Medium impact of factor structure on uit: � = 1=2

Medium-to-high impact of factor structure on uit: � = 2=3
High impact of factor structure on uit: � = 3=4

We set T = 10, and we experiment between � 2 f:2; :5; :8g and N 2 f100; 400; 800g. Notice that
under a factor structure, mean-stationarity is always violated by construction because the mean
shifts every time period according to the value of �t. To enhance transparency and save space, we
simply set the initial value of the process as yi0 = �i�0 + "i0. All experiments are based on 2,000
replications.

To compute empirical standard errors for the estimators, we use block bootstrapping. The
algorithm can be outlined as follows: each individual i is assigned an equal probability of being
selected with replacement. If unit i is selected, the complete time series of unit i is sampled to
preserve the serial correlation structure of the data. The complete time series of unit i�s neighbours,
as re�ected on WN , are sampled as well. This process is repeated until the data set equals the
original size of N . Once the sampling process is complete, estimates of the autoregressive parameter
are obtained using the various methods employed in this simulation experiment. For the estimators
that rely on spatial instruments, we make use of the spatial neighbours information, i.e. instruments
are utilised with respect to the individuals, unit i is spatially correlated. The same procedure is
followed over 200 bootstrapped samples, and the empirical standard errors of the estimators are
computed in each replication.

5.1.1 Results

Table A1 in the appendix reports mean bias, root mean square error and empirical size (nominal
size is 5%) for the estimators employed in this study. WG is the within-group estimator, FD (SYS)
and FDy (SYSy) denote the �rst-di¤erenced (system) GMM estimators that utilise ZD (ZS) and eZD
( eZS), respectively, as de�ned earlier in the paper.6

The performance of all estimators depends on the value of �, � and the size of N . Speci�cally, as
the value of � increases for a given value of � and N , the performance of the estimators deteriorates
in terms of bias and RMSE. This is illustrated in Figure 2 for � = 0:5, N = 400.

6For FDy we set A3;D;N = N�1 eZ0D (DD0

 IN ) eZD, and similarly for FD, expect that eZD is replaced by ZD. For

SYSy we set A3;S;N = N�1 eZ0Sdiag
�
(D 
 IN ) (D 
 IN )

0
; (IT�1 
 IN )

� eZS , while SYS makes use of ZS instead.
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Figure 2

This is expected because higher values of � imply that the invalidity of the instruments used with
respect to unit i itself (utilised by FD and SYS) is magni�ed; for the estimators that make use
of the spatial instruments, the increase in bias and RMSE is also intuitive because as the value of
� increases the contribution of the spatial component in the total error process, and thereby the
correlation between the endogenous variable and the spatial instruments, decreases.

However, it is important to emphasise two points; �rstly, both FDy and SYSy uniformly out-
perform FD and SYS, respectively, in terms of RMSE. The same holds for bias, unless N is small.
Secondly, as the value of N increases, the bias and RMSE of FDy and SYSy decreases considerably,
which is natural as these estimators are consistent. This is not the case for the conventional estim-
ators, FD and SYS, the performance of which does not improve with larger values of N . This is
illustrated in Figure 3 below for � = 1=3 and � = 3=4. Similar graphs apply for the remaining values
of �, not illustrated here.

Figure 3a Figure 3b

It is also worth mentioning that SYSy appears to outperform FDy in terms of both bias and
RMSE in all circumstances, with the relative di¤erence in performance increasing according to the
value of �.

In terms of empirical size, the results indicate that this is largely distorted for the conventional
estimators, WG, FD and SYS, which is natural since these estimators exhibit large bias. The same
applies to FDy and SYSy when N is small. However, as N increases, size improves considerably and
appears to converge to the nominal level, especially for SYSy, which contrary to the conventional
system GMM, it does not require mean-stationarity and therefore it is consistent under very mild
assumptions on the initial conditions.
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6 Concluding Remarks

Error cross-sectional dependence is an increasingly popular research area in the analysis of panel
data. This papers considers spatial dependence and factor structure dependence in dynamic panel
data models. It is shown that under spatially correlated errors, an additional set of moment condi-
tions arises � in particular, instruments with respect to the individual(s) which unit i is correlated
with. We demonstrate that these moment conditions remain valid when the errors contains a
common factor component, in which case the standard instruments are invalidated. The resulting
estimators are attractive because, aside from specifying a weighting matrix W , they are compu-
tationally simple and provide consistent estimates of the structural parameters without requiring
estimation of the number of unobserved factors, or the factors themselves. Simulation experiments
show that the proposed estimators largely outperform the conventional ones, in terms of both bias
and root mean square error. This result is even more pronounced as N becomes larger.
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Appendix A
The (t� 1)th block ofN�1 eZ 0D�", for t = 2; :::; T , where eZD = diag

�
fWNY

0;fWNY
1; :::;fWNY

T�2
�

and fWN =WN +W
0
N , with

fW 0
N = (WN +W

0
N )

0 =W 0
N +WN = fWN , is given by

N�1
�
fWNY

t�2
�0
�"t = N�1

2
66664

y00
fWN�"t

y01
fWN�"t
...

y0t�2
fWN�"t

3
77775

= N�1

2
6666664

�0
�
�00dt 
 P 0NfWNPN

�
�+ ��0;s�

0
�
dt 
fWNPN

�
�

�0
�
�01dt 
 P 0NfWNPN

�
�+ ��0;s�

0
�
dt 
fWNPN

�
�

...

�0
�
�0t�2dt 
 P 0NfWNPN

�
�+ ��0;s�

0
�
dt 
fWNPN

�
�

3
7777775
,

since, using (4) and (5), we have

y0sfWN�"t =
�
�0
�
�0s 
 P 0N

�
+ ��0;s�

0
�fWN [(dt 
 PN )�]

= �0
�
�0s 
 P 0N

�fWN (dt 
 PN ) + ��0;s� + ��0;s�0fWN (dt 
 PN )�

= �0
�
�0s 
 P 0N

� �
1
fWN

�
(dt 
 PN ) �+ ��0;s�

0
�
1
fWN

�
(dt 
 PN )�

= �0
�
�0sdt 
 P 0NfWNPN

�
�+ ��0;s�

0
�
dt 
fWNPN

�
�. (67)

The (t� 1)th block of N�1Z 0D�" is identical except that
fWN is replaced by IN , the N �N identity

matrix.
Similarly, using (6) and (8), the (t� 1)th block of eZ 0lu can be written as

�y0t�1
fWNut =

�
�0
�
 0t�1 
 P 0N

�
+ ���0;t�1�

0
�fWN

��
e0t+1 
 PN

�
� + �

�

= �0
�
 0t�1 
 P 0N

�fWN

�
e0t+1 
 PN

�
� + �0

�
 0t�1 
 P 0N

�fWN�

+���0;t�1�
0fWN

�
e0t+1 
 PN

�
� + ���0;t�1�

0fWN�

= �0
�
 0t�1e

0
t+1 
 P 0NfWNPN

�
� + �0

�
 0t�1 
 P 0NfWN

�
�

+���0;t�1�
0
�
e0t+1 
fWNPN

�
� + ���0;t�1�

0fWN�. (68)

The (t� 1)th block of Z 0Lu is identical except that fWN is replaced by IN .

Furthermore, the (t� 1)th block of N�1 eZ 0D�y�1, for t = 2; :::; T , is

N�1
�
fWNY

t�2
�0
�y�1 = N�1

2
66664

y00
fWN�yt�1

y01
fWN�yt�1

...

y0t�2
fWN�yt�1

3
77775
,

where

y0s
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�
�0
�
�0s 
 P 0N
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0
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�0st�1 
 P 0nfWNPN
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0fWN�, (69)
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while using (4) and (8), the (t� 1)th block of N�1 eZ 0Ly�1 can be written as

N�1�y0t�1fWNyt�1 =
�
�0
�
 0t�1 
 P 0N

�
+ ���0;t�1�

0
�fWN

��
�t�1 
 PN

�
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 P 0NfWNPN
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0
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�
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0
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 0t�1 
 P 0NfWN

�
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��
0;t�1�

0fWN�. (70)

We de�ne the following terms:

 1;st;N � N�1y0s�"t;

 2;t;N � N�1�y0t�1ut;

 3;st;N � N�1y0s
fWN�"t;

 4;t;N � N�1�y0t�1fWNut;

 5;st;N � N�1y0s
fWN�yt�1;

 6;t;N � N�1�y0t�1fWNyt�1.

PROOF OF PROPOSITION 1

We need to show that (i) E 1;st;N = 0, E 21;st;N ! 0 as N ! 1 for t = 2; :::; T , s � t � 2,
and (ii) E 2;t;N = 0, E 

2
2;t;N ! 0 as N !1 for t = 2; :::; T . This is entirely straightforward from

the proof in Proposition 3 by replacing fWN by IN and using the mean-stationarity assumption for
 2;t;N , which implies that �

��
0;t�1 = 0 8t. The claims in Proposition 1 then follow from Chebychev�s

inequality. QED

PROOF OF PROPOSITION 3

Firstly, we will show that (i) E 3;st;N = 0, E 
2
3;st;N ! 0 as N ! 1 for t = 2; :::; T , s � t � 2,

and (ii) E 4;t;N = 0, E 
2
4;t;N ! 0 as N !1 for t = 2; :::; T .

We have

E 3;st;N = N�1E
h
�0
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�0sdt 
 P 0NfWNPN

�
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0
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dt 
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 P 0NfWNPN

�
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i
, (71)

since E��0 = 0 under the maintained assumptions. Observe that �0sdt is a (T + 1) � (T + 1)
matrix that contains zeros on the main diagonal s � t � 2. Therefore,

�
�0sdt 
 P 0nfWNPn

�
is a

N (T + 1) � N (T + 1) matrix with zeros on the main diagonal and by Lemma 9 it has uniformly

bounded row and column sums, setting �0sdt = H and P 0N
fWNPN = C1;N . In addition, �� is a

N (T + 1)�N (T + 1) diagonal matrix under the maintained assumptions with uniformly bounded
elements. Hence, tr

��
�0sdt 
 P 0NPN

�
��
�
= 0 by Lemma 10(i), setting �0sdt 
 P 0N

fWNPN = C01;`N
and �� = D1;`N , with ` = T + 1. Therefore, E 3;st;N = 0.

The variance of  3;st;N equals
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The �rst term on the right-hand side of the last equality above equals
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,

with ` = T +1. This follows from Lemma 11(i) and the fact that c0ii;1;`N = 0 for s � t�2. Given this
property and since �� is diagonal, it follows from Lemma 10(iii) that N�22tr
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By Lemma 9 the row and column sums of
�
dt 
fWNPN

�
and

�
d0t 
 P 0NfWN��

�
are uniformly

bounded. Furthermore, �� is a diagonal matrix with uniformly bounded diagonal entries. As a res-
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follows from Chebychev�s inequality that N�1y0s
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For  4;st;N we have, using (6) and (8),
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Under the maintained assumptions E��0 = 0. In addition, both
�
 0t�1e

0
t+1 
 P 0NfWNPN

�
and fWN

have uniformly bounded row and column sums and contain zeros on the main diagonal. Therefore,
by Lemma 10(i) E 4;t;N = 0. Notice that the expression for N

�1�y0t�1ut is obtained by replacing
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since E��0 = E��0 = 0 under the maintained assumptions. We have also used the fact that
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h
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0
i
= tr

h
fWN��

i
= 0 from Lemma 10(i), given that fWN contains zeros on the main

diagonal and �� is diagonal. Observe that qst;D 6= 0 in general, unless � = 0, in which case

PN = IN ) P 0N
fWNPN = fWN . As a result, the kronecker product matrix contains zeros on the

main diagonal and so qst;D = 0. Therefore, the spatial instruments are not correlated with the
endogenous regressor � an intuitive result.
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since E��0 = E��0 = 0 under the maintained assumptions, and recalling that tr
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The variance of  6;t;N equals
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where C2;`N =
�
 0t�1�t�1 
 P 0NfWNPN

�
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, C3;`N =
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, using

Lemma 11 repeatedly. Finally, by Lemma 10(iii)-(iv) it follows that E 26;t;N = o (1). QED

PROOF OF THEOREM 2

Firstly, notice that using the expression for b�D in (16), we can write

p
N (b�D � �) =

�
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N
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. (78)

By the maintained assumptions we know that N�1Z 0D�y�1
p! qZD�y�1 , N

�1Z 0DZD
p! QZD , and

A1;D;N
p! A1;D, where all limiting matrices are �nite with full column rank. In addition, as shown

in (67) with fWN replaced by IN , the elements of Z
0
D�" are quadratic forms of the innovations,

� and �. By Assumption 1 these random variables satisfy Assumptions B.1, B.3 in Appendix
B. Furthermore, Assumption 2 ensures that Assumption B.2. is also met. As a result, we have
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The desired result follows from the generalised Slutsky theorem. Of course, this also implies that
b�D is consistent. The proof of (20) is similar and therefore it will be omitted. QED

PROOF OF THEOREM 5

e�D can be written as
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Combining Assumption 3 and Proposition 3, namely N�1Z 0D�y�1
p! qZD�y�1 and N
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q eZD�y�1 , we have that N
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, such that all entries are di¤erent from zero.
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As shown in (67) these are quadratic forms of the innovations, � and �, and satisfy Assumptions B.1,

B.3 in Appendix B, given Assumption 1. Moreover, sincefWN =WN+W
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N , it has uniformly bounded

row and column sums by Lemma 9. This implies that Assumption B.2. is satis�ed. Combining
Propositions 1 and 3 it follows that
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The result follows by the generalised Slutsky theorem. Of course, this also implies that e�D is
consistent. The proof of the second part of the theorem is similar and it will be omitted. QED

PROOF OF PROPOSITION 6

De�ne the following terms:

 7;st;N � N�1ey0sfWN�eut;
 8;t;N � N�1�ey0t�1fWNeut.
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where �� = E��0, which follows from (i) using repeatedly the property b1Ab2 = tr [Ab2b
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1] for any

vectors b1 and b2, (ii) the fact that E��
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+N�22tr
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 P 0NfWNPN
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��
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d0t�s 
 P 0NfWNPN

�
��

i
, (81)

using Lemma 11(iii) for the �rst, second and sixth terms of the last equality, Lemma 11(ii) for the
third and last terms, Lemma 11(v) for the fourth seventh terms and Lemma 11(vi) for the remaining
term. It is easily seen now using Lemma 10 that E 27;st;N = o (1).

Using (53) and (50) we have for  8;t;N

E 8;t;N = N�1Ef
�
�
�
 0t�1 
 P 0N
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+ �0

�
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i
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h
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i

+N�1E
h
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�fWN

�
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 �0t
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�
i

+N�1E
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�
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�
e0t+1 
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+N�1E
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���0;t�1�

0fWN�
i
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0fWN

�
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 �0t
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i

+N�1E
h
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0fWN

�
e0t+1 
 PN

�
�
i

= N�1tr
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0
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 P 0NfWNPN

�
��

i
+N�1���0;t�1tr

h
fWN��
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+N�1tr
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��

i
.

Observe that the �rst two terms in the last equality are zero from the proof of Proposit ion 3. The
last term is also zero by Lemma 10(i). Finally, it is entirely straightforward (but again tedious) to
show that E 28;t;N = o (1). QED

PROOF OF THEOREM 7

We have

p
N
�
b� eD � �

�
=

"
�ey0�1 eZD

N
A3;D;N

eZ 0D�ey�1
N

#�1 "
�ey0�1 eZD

N
A3;D;N

eZ 0D�eup
N

#
. (82)

Under the maintained assumptions N�1 eZ 0D�ey�1
p! q eZD�y�1 , a vector with non-zero entries, and

A2;D;N
p! A2;D, where the limiting matrix is �nite with full column rank. It is easy to see that the

elements of eZ 0D�eu are stacked random variables consisting of ey0sfWN�eut. As shown in Proposition
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6 these are quadratic forms of the innovations, �, � and � that satisfy Assumptions B.1, B.3 in
Appendix B, given Assumption 1 and Assumption 4. Moreover, fWN has uniformly bounded row and

column sums by Lemma 9 and satis�es Assumption B.2. As a result, 

�1=2
3;D;N

eZ 0D�eu
d! N

�
0; I�1;D

�
,

with 
3;D;N = var
hp

N em
N; eD

(�)
i
, by virtue of the central limit theorem provided by Lemma 13.

Hence, p
N eZ 0D�eu =

p
N


1=2
3;D;N


�1=2
3;D;N

eZ 0D�eu
d! N (0;
3;D) .

The result follows by the generalised Slutsky theorem. Of course, this also implies that b� eD is
consistent. The proof of the second part of the theorem is similar and it will be omitted. QED

Appendix B

Lemma 9 Let Ck;N be a (sequence of) N � N matrices, for k = 1; :::; whose row and column
sums are uniformly bounded in absolute value by �nite constants, ck, respectively. Then the row and
column sums of the product of a �nite number of Ck;N , e.g. C1;NC2;NC3;N , and of the sum of a

�nite number of Ck;N , e.g. C1;N+C2;N+C3;N are uniformly bounded in absolute value by
Y

k=1

ck and

X

k

ck, respectively. Furthermore, consider a �nite l1 � l2 matrix H, whose rows and columns sums

are uniformly bounded in absolute value by a constant ch. Then H 
 Ck;N has uniformly bounded
row and column sums.
Proof. These are easily veri�ed. See, for example, Kapoor (2003) and Kelejian Prucha (1999).

Lemma 10 Let C0k;`N =
h
c0ij;k;`N

i
and Ck;`N = [cij;k;`N ] be (sequences of) `N � `N matrices, with

l � 1 �xed and some k, whose row and columns sums are uniformly bounded in absolute value by c0k;C ,
ck;C , respectively, with c

0
ii;k;`N = 0 8i. Let Gk;`N = [gij;k;`N ] be a (sequence of) `N � N matrices,

whose row and columns sums are uniformly bounded in absolute value by ck;G. Furthermore, let
Dk;`N = [dij;k;`N ] and �k;N = [�ij;k;N ] be `N � `N and N � N diagonal matrices respectively, for
some k, whose diagonal entries are uniformly bounded in absolute value by ck;D and ck;�. Then

(i) : tr
�
C0k;`NDk;`N

�
= 0;

(ii) : N�1tr [Ck`ND`NCk0`N ] = O (1) ;

(iii) : N�1tr
�
Ck;`NDk;`NCk0;`NDk0;`N

�
= O (1) ;

(iv) : N�1tr
�
Gk;`N�k;NG

0
k0;`NDk;`N

�
= O (1) .

Proof: For part (i) of the lemma we have

N�1tr
�
C0k;`NDk;`N

�
= N�1

`NX

i=1

`NX

j=1

�
c0ij;k;`Ndji;k;`N

�
= 0, (83)

since c0ij;k;`N = 0 for j = i, while dji;k;`N = 0 8j 6= i (all k). For part (ii) we have

N�1tr
�
Ck;`ND`NCk0;`N

�
= N�1

`NX

i=1

`NX

j=1

cij;k;`Ncji;k0;`Ndjj;k;`N

� ck;DN
�1

`NX

i=1

`NX

j=1

jcij;k;`N j
��cji;k0;`N

�� � ck;DN
�1

`NX

i=1

`NX

j=1

jcij;k;`N j
`NX

j=1

��cji;k0;`N
��

� ck;DN
�1

`NX

i=1

ck;Cck0;C = O (1) . (84)
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For part (iii) we have

N�1tr
�
Ck;`NDk;`NCk0`NDk0;`N

�
= N�1

`NX

i=1

`NX

j=1

cij;k;`Ncji;k0;`Ndjj;k;`Ndii;k0;`N

� N�1
`NX
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`NX
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� ck;DN
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`NX
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jcij;k;`N j
��cji;k0;`N

��

� ck;DN
�1

`NX

i=1

dii;k0;`N

`NX

j=1

jcij;k;`N j
`NX
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��cji;k0;`N
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� ck;Dck;Cck0;CN
�1

`NX

i=1

dii;k0;`N � ck;Dck0;Dck;Cck0;C = O (1) . (85)

Finally, part (iv) equals

N�1tr
�
Gk;`N�k;NG

0
k0;`NDk;`N

�
= N�1

`NX

i=1

NX

j=1
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� N�1
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NX
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��gij;k0;`N
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dii;k;`N

NX
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jgij;k;`N j
��gij;k0;`N

��

� ck;�N
�1

`NX

i=1

dii;k0;`N

NX

j=1

jgij;k;`N j
NX

j=1

��gij;k0;`N
��

� ck;�ck;Gck0;GN
�1

`NX

i=1

dii;k0;`N � ck;�ck;Gck0;Gck0;D = O (1) . (86)

The following lemma concerns the variance and covariance of various quadratic forms.

Lemma 11 Let �1 =
�
�1;1; :::; �`N;1

�0 �
�
0;��1

�
, and �2 =

�
�1;2; :::; �N;2

�0 �
�
0;��2

�
, where ��1,

��2 are positive-de�nite `N � `N and N �N matrices, respectively, for some �xed `. Let Ak;`N =
[�ij;k;`N ] and Bk;N = [�ij;k;N ] be sequences of `N�`N and N�N non-stochastic symmetric matrices,
respectively, for some k, while Gk;N = [gij;k;N ] be a sequence of non-stochastic matrices of order

`N � N . Consider the decomposition ��1 = S1S
0
1, let A

�
k;`N =

h
��ij;k;`N

i
= S01Ak;`NS1, B

�
k;N =

h
b�ij;k;N

i
= S02Bk;NS2, and G

�
k;N = S01Gk;NS2. Furthermore, let �1 =

�
�1;1; :::; �`N;1

�0
= S�11 �1,

�2 =
�
�1;2; :::; �`N;2

�0
= S�12 �2. Then assuming that the elements of �1 and �2 are (mutually)

independently distributed with zero mean, unit variance and �nite third and fourth order moments
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E�31;i = �3�1;i, E�
4
1;i = �4�1;i, E�

3
2;i = �3�2;i, E�

4
2;i = �4�2;i, we have

(i) : E
�
�01Ak;`N�1

�
= tr

�
A�k;`N

�
= tr

�
Ak;`N��1

�
;

(ii) : Cov
�
�01Ak;`N�1; �

0
1Ak0;`N�1

�
= 2tr

�
Ak;`N��1Ak0;`N��1

�

+
`NX

i=1

�ii;k;`N�ii;k0;`N

�
�4�1;i � 3�

4
�1

�
;

(iii) : Cov
�
�01Gk;`N�2; �

0
2G

0
k0;`N�1

�
= tr

�
Gk;n��2G

0
k0;`N��1

�
;

(iv) : Cov
�
�01Ak;`N�1; �

0
1Gk;`N�2

�
= 0;

(v) : Cov
�
�01Ak;`N�1; �

0
2Bk;N�2

�
= tr

�
Ak;`N��1

�
tr
�
Bk;N��1

�
;

(vi) : Cov
�
�01Gk;`N�2; �

0
1Gk0;`N�2

�
= tr

�
Gk;n��2G

0
k0;n��1

�
.

Proof. The expression for the expectation follows from the assumed independence of �1 because

E
�
�01Ak;`N�1

�
= E

�
�01S

�10
1 S01Ak;`NS1S

�1
1 �1

�
= E

�
�01A

�
k;`N�1

�

= tr
�
A�k;`NE�1�

0
1

�
= tr

�
A�k;`N

�
= tr

�
S01Ak;`NS1

�
= tr

�
S1S

0
1Ak;`N

�

= tr
�
Ak;`N��1

�
. (87)

The derivation of the expression of part (ii) follows from the proof of Theorem 1 in Kelejian and
Prucha (2001, pg. 242). Observe that the last term drops out if the diagonal elements of A�k;n and/or

A�k0;n equal zero, i.e. �ii;k;`N = �ii;k0;`N = 0. In this case E
�
�01Ak;`N�1

�
= tr

�
Ak;`N��1

�
= 0 from

Lemma 10(i). This term also drops out under normality of �1, in which case the expression for the
covariance is provided in Magnus and Neudecker (1979, Corrolary 4.1(ii)). For parts (iii) and (iv)
we have

Cov
�
�01Gk;N�2; �

0
2G

0
k0;N�1

�
= E�01Gk;N�2�

0
2G

0
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2 �2�

0
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�10
2 S02G

0
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�1
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�
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0
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`NX
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`NX
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NX

j=1

NX

q=1
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`NX
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NX

j=1

g�ij;k;Ng
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E
�
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�
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�
G0�k;NG

�
k0;N

�
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S02G

0
k;NS1S

0
1Gk0;NS2

�
= tr

�
S2S

0
2G

0
k;NS1S

0
1Gk0;N

�

= tr
�
Gk0;N��2G

0
k;N��1

�
; (88)

and

Cov
�
�01Ak;`N�1; �

0
1Gk;`N�2

�
= E�001Ak;`N�1�

0
1Gk;`N�2

= E�001S
�10
1 S01Ak;`NS1S

�1
1 �1�

0
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1 S01Gk;`NS2S
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2 �2 = E�01A
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`NX

p=1

NX
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��ij;k;`Ng
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pq;k;`N�i;1�j;1�p;1�q;2
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`NX

i=1

`NX

j=1

`NX

p=1

NX

q=1

��ij;k;`Ng
�
pq;k;`NE

�
�i;1�j;1�p;1

�
E
�
�q;2
�
= 0. (89)

For parts (v) and (vi) we have

Cov
�
�01Ak;`N�1; �

0
2Bk;N�2

�
= E�01A

�
k;`N�1�

0
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k;N�2

= E

`NX

i=1

`NX
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��ij;k;`N�j;1�i;1

NX

p=1

NX

q=1

b�pq;k;N�p;2�q;2

=

`NX

i=1

��ii;k;`NE
�
�2i;1
� NX

p=1

b�pp;k;NE
�
�2p;2
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= tr
�
A�k;`N

�
tr
�
B�k;N

�
= tr

�
Ak;`N��1

�
tr
�
Bk;N��1

�
, (90)

33



and �nally

Cov
�
�01Gk;`N�2; �

0
1Gk0;`N�2

�
= E�01G

�
k;`N�2�

0
1G

�
k0;`N�2

= E
`NX

i=1

`NX

j=1

NX

p=1

NX

q=1

g�ip;k;`Ng
�
jq;k0;`N�i;1�j;1�p;2�q;2

=
`NX

i=1

NX

p=1

g�ip;k;`Ng
�
pi;k0;`NE

�
�2i;1
�
E
�
�2p;2
�

= tr
h
G�

0

k;`NG
�
k0;`N

i
= tr

�
G0k;`N��1Gk0;`N��2

�
. (91)

Remark 12 The assumption of symmetry for Ak;`N and Bk;N is without loss of generality because
for any square matrix A, x0Ax = x0

�
A+A
2

�
x.

Consider the following r � 1 vectors of linear quadratic forms

q1;N =

0
B@

q1;1;N
...

qr;1;N

1
CA =

0
B@
(`N)�1=2 �01A1;`N�1

...

(`N)�1=2 �01Ar;`N�1

1
CA ,

q2;N =

0
B@

q1;2;N
...

qr;2;N

1
CA =

0
B@
(`N)�1=2 �01G1;N�2

...

(`N)�1=2 �01Gr;N�2

1
CA ,

and

qN =

0
B@

q1;N
...

qr;N

1
CA =

0
B@
(`N)�1=2

�
�01A1;`N�1 + �

0
1G1;N�2

�
...

(`N)�1=2
�
�01Ar;`N�1 + �

0
1Gr;N�2

�

1
CA ,

where �1 and �2 are `N and N vectors of random variables and Ak;`N and Gk;N denote `N � `N
and `N � N non-stochastic matrices. Let �qN = EqN = E [q1;N + q2;N ] and �qN = var (qN ) =
var (q1;N ) + var (q2;N ), since by Lemma 11 cov(q1;N + q2;N ) = 0.

The following assumptions are maintained:
Assumption B.1. The random variables of the arrays

�
�1;i : 1 � i; j � `N

	
and

�
�2;i : 1 � i � N

	

have zero expectation and are totally independent.
Assumption B.2. The elements of the array of real numbers f�ij;k : 1 � i � `Ng satisfy �ij;k =

�ji;k and supj�`N

`NX

i=1

j�ij;kj <1, supj�N
`NX

i=1

jgij;kj <1.

Assumption B.3. For all k, the following conditions hold true: supi�`N E
���1;i

��2+� < 1 for

some � > 0 and �ii;k = 0, supi�`N E
���1;i

��4+� <1 for some � > 0 and �ii;k 6= 0, supi�N E
���2;i

��2+� <
1 for some � > 0 and gii;k = 0, supi�N E

���2;i
��4+� <1 for some � > 0 and gii;k 6= 0.

The following Lemma provides a central limit theorem for vectors of linear quadratic forms, due
to Kelejian and Prucha (2010).

Lemma 13 Suppose Assumptions B.1 � B.3 hold true and �min (�q) � c for some c, where

�min (�q) denotes the smallest eigenvalue of �q. Letting �q =
�
�
1=2
q

��
�
1=2
q

�0
, then

��1=2qN

�
qN � �qN

� d! N (0; Ir) .

Proof. This follows directly from Kelejian and Prucha (2010), Theorem A.1.
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Table A1. Performance of estimators in terms of mean point estimates, Root Mean Squared Error and size
T = 10 � = 0:2 � = 0:5 � = 0:8

WG FD FD
y

SYS SYS
y

FE FD FD
y

SYS SYS
y

FE FD FD
y

SYS SYS
y

N = 100
� = 1=3 :071 :150 :134 :173 :161 :322 :423 :404 :457 :445 :543 :625 :618 :732 :729

(:164) (:141) (:133) (:137) (:117) (:203) (:167) (:163) (:149) (:129) (:272) (:269) (:253) (:156) (:137)

[:992] [:548] [:581] [:405] [:437] [:991] [:878] [:522] [:729] [:234] [:993] [:892] [:384] [:414] [:276]

� = 1=2 :068 :116 :113 :158 :148 :314 :369 :372 :431 :427 :532 :525 :566 :693 :708

(:196) (:199) (:161) (:188) (:136) (:233) (:240) (:202) (:202) (:154) (:298) (:380) (:312) (:210) (:165)

[:991] [:743] [:651] [:489] [:311] [:982] [:838] [:581] [:745] [:783] [:994] [:926] [:796] [:499] [:372]

� = 2=3 :063 :078 :082 :140 :128 :302 :307 :327 :401 :401 :515 :444 :500 :656 :677

(:235) (:257) (:199) (:235) (:166) (:272) (:313) (:256) (:250) (:189) (:334) (:461) (:387) (:258) (:205)

[:984] [:639] [:584] [:317] [:369] [:992] [:872] [:609] [:895] [:528] [:951] [:885] [:734] [:496] [:347]

� = 3=4 :060 :058 :061 :131 :116 :294 :277 :295 :387 :381 :504 :414 :451 :639 :654

(:256) (:285) (:226) (:257) (:188) (:294) (:348) (:291) (:272) (:216) (:357) (:490) (:434) (:280) (:234)

[:955] [:792] [:629] [:348] [:520] [:972] [:901] [:893] [:825] [:506] [:963] [:952] [:919] [:463] [:417]

N = 400
� = 1=3 :073 :159 :184 :179 :190 :324 :433 :476 :464 :486 :545 :642 :749 :739 :780

(:160) (:139) (:060) (:134) (:058) (:200) (:161) (:070) (:144) (:063) (:269) (:256) (:103) (:151) (:069)

[:983] [:436] [:061] [:204] [:061] [:987] [:813] [:067] [:682] [:057] [:973] [:917] [:146] [:333] [:068]

� = 1=2 :070 :124 :176 :135 :163 :316 :376 :464 :436 :479 :533 :538 :725 :697 :771

(:193) (:200) (:072) (:199) (:068) (:230) (:238) (:087) (:199) (:076) (:295) (:373) (:134) (:208) (:084)

[:927] [:421] [:056] [:234] [:077] [:981] [:801] [:069] [:648] [:072] [:917] [:984] [:163] [:289] [:071]

� = 2=3 :065 :084 :163 :145 :177 :303 :312 :443 :404 :466 :515 :451 :679 :658 :755

(:233) (:259) (:093) (:235) (:087) (:269) (:314) (:116) (:248) (:098) (:332) (:456) (:189) (:260) (:100)

[:888] [:438] [:082] [:450] [:084] [:984] [:837] [:096] [:776] [:081] [:947] [:873] [:211] [:370] [:094]

� = 3=4 :062 :063 :151 :135 :169 :295 :281 :424 :388 :454 :503 :419 :641 :640 :736

(:255) (:287) (:111) (:257) (:103) (:292) (:349) (:141) (:271) (:117) (:356) (:486) (:232) (:283) (:131)

[:948] [:570] [:113] [:307] [:094] [:963] [:876] [:147] [:794] [:092] [:949] [:937] [:289] [:446] [:097]

N = 800
� = 1=3 :070 :140 :192 :177 :196 :321 :428 :487 :461 :493 :543 :638 :771 :736 :789

(:163) (:130) (:042) (:134) (:041) (:203) (:164) (:049) (:146) (:046) (:271) (:259) (:073) (:153) (:050)

[:971] [:399] [:048] [:158] [:057] [:982] [:783] [:056] [:632] [:053] [:966] [:941] [:124] [:288] [:059]

� = 1=2 :065 :118 :188 :159 :193 :310 :370 :481 :431 :490 :529 :531 :758 :694 :784

(:198) (:201) (:051) (:187) (:050) (:235) (:242) (:061) (:202) (:055) (:299) (:379) (:095) (:214) (:061)

[:924] [:453] [:051] [:210] [:060] [:987] [:797] [:057] [:651] [:058] [:982] [:976] [:131] [:291] [:062]

� = 2=3 :055 :077 :180 :139 :188 :300 :306 :469 :399 :482 :510 :443 :730 :655 :773

(:238) (:259) (:067) (:233) (:064) (:276) (:318) (:083) (:250) (:072) (:338) (:466) (:134) (:260) (:080)

[:934] [:461] [:071] [:453] [:079] [:991] [:810] [:081] [:784] [:071] [:934] [:917] [:189] [:371] [:081]

� = 3=4 :054 :055 :174 :128 :183 :287 :274 :457 :383 :475 :500 :411 :703 :637 :769

(:261) (:288) (:080) (:254) (:077) (:300) (:353) (:100) (:272) (:086) (:362) (:496) (:165) (:283) (:097)

[:962] [:592] [:081] [:312] [:082] [:982] [:893] [:111] [:812] [:079] [:962] [:943] [:227] [:457] [:090]
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