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Abstract

This paper proposes a partially heterogeneous framework for the analysis

of panel data with �xed T . In particular, the population of cross-sectional

units is grouped into clusters, such that slope parameter homogeneity is

maintained only within clusters. Our method assumes no a priori infor-

mation about the number of clusters and cluster membership and relies on

the data instead. The unknown number of clusters and the corresponding

partition are determined based on the concept of �partitional clustering�,

using an information-based criterion. It is shown that this is strongly con-

sistent, i.e. it selects the true number of clusters with probability one as

N !1. Simulation experiments show that the proposed criterion performs
well even with moderate N and the resulting parameter estimates are close

to the true values. We apply the method in a panel data set of commercial

banks in the US and we �nd �ve clusters, with signi�cant di¤erences in the

slope parameters across clusters.
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1 Introduction

Slope parameter homogeneity is often an assumption that is di¢cult to justify in

panel data models, both on theoretical grounds and from a practical point of view.

On the other hand, the alternative of imposing no structure on how these coe¢-

cients may vary across individual units may be rather extreme. This argument is

in line with evidence provided by a substantial body of applied work. For exam-

ple, Baltagi and Gri¢n (1997) reject the hypothesis of coe¢cient homogeneity in

a panel of gasoline demand regressions across the OECD countries, and Burnside

(1996) rejects the hypothesis of homogeneous production function parameters in

a panel of US manufacturing industries. Even so, both studies show that fully

heterogeneous models lead to very imprecise estimates of the parameters, which

in some cases have even the wrong sign. Baltagi and Gri¢n notice that this is

the case despite the fact that there is a relatively long time series in the panel �
to the extent that the traditional pooled estimators are superior in terms of root

mean square error and forecasting performance. Furthermore, Burnside suggests

that in general his estimates show signi�cant di¤erences between the homogeneous

and the heterogeneous models and the conclusions about the degree of returns to

scale in the manufacturing industry would heavily depend on which one of these

two models is used. Along the same line Baltagi, Gri¢n and Xiong (2000) place

the debate between homogeneous versus heterogeneous panel estimators in the

context of cigarette demand and conclude that even with a relatively large num-

ber of time series observations, heterogeneous models for individual states tend

to produce implausible estimates with inferior forecasting properties, despite the

fact that parameter homogeneity is soundly rejected by the data. As pointed out

by Browing and Carro (2007), there is usually a lot more heterogeneity than what

empirical researchers allow for in econometric modelling, although the level of het-

erogeneity and how one allows for it can make a large di¤erence for outcomes of

interest.

These �ndings indicate that the modelling framework of slope parameter homo-

geneity (pooling) and full heterogeneity may be polar cases, and other intermediate

cases may often provide more realistic solutions in practice. The pooled mean

group estimator (PMGE) proposed by Pesaran, Shin and Smith (1999) bridges

the gap between pooled and fully heterogeneous estimators by imposing partially

heterogeneous restrictions related to the time dimension of the panel. In partic-

ular, this intermediate estimator allows the short-run parameters of the model to
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be individual-speci�c and restricts the long-run coe¢cients to be the same across

individuals for reasons attributed to budget constraints, arbitrage conditions and

common technologies.

In this paper we propose a modelling framework that imposes partially het-

erogeneous restrictions not with respect to the time dimension of the panel, as

PMGE does, but with respect to the cross-sectional dimension, N . In particular,

the population of cross-sectional units is grouped into distinct clusters, such that

within each cluster the slope parameters are homogeneous and all intra-cluster

heterogeneity is attributed to a function of unobserved individual-speci�c and/or

time-speci�c e¤ects. The clusters themselves are heterogeneous, that is, the slope

parameters vary across clusters.

Naturally, the practical issue of how to group the individuals into clusters is

central in the paper. If there is a priori information about cluster membership and

the number of clusters, the problem reduces to a split-sample standard panel data

regression. In many cases, while it might be plausible to think of a set of factors

to which slope parameter heterogeneity can be attributed, such as di¤erences

in tastes, beliefs, abilities, skills or constraints, these are often unobserved and

moreover provide no guidance as to what the appropriate partitioning is, or how

many clusters exist. In addition, there are often several ways to partition the

sample and while the formed clusters may be economically meaningful, they may

not be optimal from a statistical point of view.

Clustering methods have already been advocated in the econometric panel data

literature by some researchers; for instance, Durlauf and Johnson (1995) propose

clustering the individuals using regression tree analysis, and Vahid (1999) suggests

a classi�cation algorithm based on a measure of complexity using the principles

of minimum description length and minimum message length, which are often

employed in coding theory.1 Both these methods are based on the concept of

hierarchical clustering, which involves building a �hierarchy� from the individual

units by progressively merging them into larger clusters. The proposed algorithms

provide a consistent estimate of the true number of clusters for T ! 1 only.

On the contrary, this paper proposes estimating the unknown number of clusters

and the corresponding partition based on the concept of partitional clustering. In

1Kapetanios (2006) proposes an information criterion, based on simulated annealing, to ad-

dress a related problem � in particular, how to decompose a set of series into a set of poolable
series for which there is evidence of a common parameter subvector and a set of series for which

there is no such evidence.
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particular, the underlying structure is recovered from the data by grouping the

individuals into a �xed number of clusters using an initial partition, and then

re-allocating each individual into the remaining clusters until the �nal preferred

partition minimises an objective function. In this paper the residual sum of squares

(RSS) of the estimated model is used as the objective function. The number of

clusters is determined by the clustering solution that minimises RSS subject to a

penalty function that is strictly increasing in the number of clusters. Intuitively our

procedure is identical to a standard model selection criterion method, although the

study of the asymptotics is more complicated because the number of individuals

contained in a given cluster may vary with N . It is shown that the proposed

criterion is strongly consistent, i.e. it estimates the true number of clusters with

probability one as N grows, for any T �xed. This is important because most

frequently panel data sets entail a large number of individuals and a small number

of time series observations. Furthermore, it is usually the case of small T where

some kind of pooling provides substantial e¢ciency gains over full heterogeneity.

As with other clustering procedures, our method relies on the data to suggest

any clustering structure that might exist, and as such it can be described as an

exploratory data analysis approach. Hence, it can be particularly useful when

there is no a priori information about the clustering structure, or when one is

interested in examining how far a structure that might be meaningful according

to some economic measure lies from the structure that �ts the data best.

The remainder of the paper is as follows. The next section formulates the prob-

lem. Section 3 analyses the properties of the proposed clustering criterion. Section

4 discusses the implementation of the algorithm used to implement the cluster-

ing procedure. The �nite-sample performance of the algorithm is investigated

in Section 5 using simulated data. Section 6 applies our partially heterogeneous

framework to a random panel of 551 banking institutions operating in the US,

each observed over a period of 15 years. Five clusters are found and the results

show some large and statistically signi�cant di¤erences in the value of the slope

coe¢cients across these clusters. A �nal section provides concluding remarks.
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2 Model Speci�cation and Cluster Determina-

tion

We consider the following panel data model:

y!it = �
0
!x!it + u!it; (1)

where y!it denotes the observation on the dependent variable for the i
th individual

that belongs to cluster ! at time t, �! = (�!1; :::; �!K)
0 is a K � 1 vector of �xed

coe¢cients, x!it = (x!it1; :::; x!itK)
0 is a K � 1 vector of covariates, and u!it is a

disturbance term. Therefore, each cluster has its own regression structure with

! = 1; :::;
0, i [2 !] = 1; :::; N!, and t = 1; :::; T . This means that the total

number of clusters equals 
0, the !
th cluster has N! individuals, for which there

are T time series observations available. The total number of individuals in all

clusters equals N =
P
0

!=1N! and the total sample size is given by S = NT .

If the true number of clusters and the corresponding partition or membership

of individual i into cluster ! are both known, the problem reduces to a split-sample

standard panel data regression, which is straightforward enough to estimate. In

this paper we are interested in estimating the vector �! for ! = 1; :::;
0, when

neither the true number of clusters nor cluster membership are known. Unfortu-

nately, ignoring cluster-speci�c slope parameter heterogeneity by pooling the data

will not provide a consistent estimate of � =
P
0

!=1
N!
N
�!, which is the natural

weighted average value of the cluster-speci�c coe¢cients with weights determined

by the proportion of individuals belonging to each cluster. This holds true even

under strict exogeneity of the regressors.

To see this, let E (u!itjx!i1; :::;x!iT ) = 0 and N�1
!

N!X

i=1

X 0
!iX!i

p! MXX;!, a

�nite and positive de�nite matrix, where X!i = (x!i1; :::;x!iT )
0. The pooled least-

squares estimate of � is given by
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b�pooled =

"

0X

!=1

N!X

i=1

X 0
!iX!i

#�1 " 
0X

!=1

N!X

i=1

X 0
!iy!i

#

=

"

0X

!=1

N!X

i=1

X 0
!iX!i

#�1 
0X

!=1

 
N!X

i=1

X 0
!iX!i

! 
N!X

i=1

X 0
!iX!i

!�1 N!X

i=1

X 0
!iy!i

!

=


0X

!=1

"

0X

!=1

N!

N

 
1

N!

N!X

i=1

X 0
!iX!i

!#�1 "
N!

N

 
1

N!

N!X

i=1

X 0
!iX!i

!#
b�!

=


0X

!=1

cW!
b�!. (2)

The expression above shows that b�pooled is a matrix-weighted average of the cluster-
speci�c estimates, where the weights are inversely proportional to the cluster co-

variance matrices. Therefore, letting N!=N ! c! , b�pooled converges in probability
to

b�pooled
p!


0X

!=1

W!�!, (3)

where W! =

"

0X

!=1

c!MXX;!

#�1
[c!MXX;!]. The pooled least-squares estimator is

not consistent for � unless, say, the limiting matrix MXX;! is constant across

clusters. The condition MXX;! = MXX is unnatural in economic data sets and

therefore it is unlikely to hold true in most empirical applications.2

Our aim is to try to determine whether a clustering structure can be identi�ed

among individuals without utilising a priori information, but rather by relying on

the data to suggest any possible groups. Let us denote the true partition of the N

individuals into 
0 clusters by �
0 = fC01 ; : : : ; C0
0g, where C0! is a set of indices of
elements in the !th cluster such that C0! = f!1; : : : ; !N0!g � f1; 2; : : : ; Ng: Thus,
the number of individuals in the !th cluster is jC0!j = N0!, and N01+ : : :+N0
0 =

N .

The model under the true partition will be expressed as follows:

yC0!it = �
0
0!xC0!it

+ uC0!it , uC
0
!it
= �0C0!it

�t + "C0!it , (4)

2Fernandez-Val (2005) and Graham and Powel (2009) study the estimands of linear panel

�xed e¤ects estimators in random coe¢cient models. Yitzhaki (1996) investigates the properties

of pooled OLS in a cross-sectional model with individual-speci�c coe¢cients. In these studies the

underlying assumption is that the data generating process takes a correlated random coe¢cients

form, i.e. the individual-speci�c parameters are correlated with the regressors. In contrast, our

result holds even under strict exogeneity of the covariates.
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or, in matrix form,

YC0!
= XC0!

�0! + uC0! , uC0! = (IN0! 
 �)�C0! + "C0! , (5)

whereYC0!
=
�
y0!1 ; :::;y

0
!N0!

�0
, with y!i = (y!i1; :::; y!iT )

0, is the (N0!T )�1 vector
of observations on the dependent variable for the individuals in the !th cluster,

XC0!
=
�
x0!1 ; :::;x

0
!N0!

�0
, with x!i = (x!i1; :::;x!iT )

0, is the (N0!T )�K matrix of

covariates and �0! is a vector of �xed coe¢cients speci�c to each cluster.

The error term is subject to a factor structure where � = (�1; :::;�T )
0 is a

T � r matrix of unobserved common factors and �C0! =
�
�0!1 ; :::;�

0
!N0!

�0
is a

N0!r � 1 vector of factor loadings. Thus, the error allows for individual-speci�c
unobserved heterogeneity, captured by �!i, that varies over time in an intertem-

porally arbitrary way, albeit in a similar fashion across i. It also allows for the

presence of common unobserved shocks (such as technological shocks and �nancial

crises), captured by �t, the impact of which is di¤erent for each individual i. Both

cases can be thought of as generating cross-sectional dependence. The composite

error term reduces to the usual two-way error components model by setting r = 2,

�t = (1; 
t)
0 and �!i = (�i; 1)

0. The unobserved factors, �t, could be correlated

with x!it and to allow for such a possibility the following speci�cation for the

covariates will be considered:

XC0!
= (IN0! 
 �)�C0! + VC0! , (6)

where �C0! is a N0!r � K matrix of factor loadings and VC0! is a (N0!T ) � K

matrix containing the idiosyncratic errors of the covariates, which are distributed

independently of the common e¤ects and across i.

Pre-multiplying (5) by the transformation matrixQC0!
= IN0!T�IN0!


�
� (�0�)�1�0

�

that eliminates the factor structure yields

QC0!
YC0!

= QC0!
XC0!

�0! +QC0!
"C0! , (7)

or

eYC0!
= eXC0!

�0! + e"C0! , (8)

where eYC0!
= QC0!

YC0!
, eXC0!

= QC0!
VC0! , and so on.

Suppose we partition the population into 
 clusters �
(N)

 =

n
C
(N)

1 ; :::; C

(N)




o

and assume the true number of clusters is bounded by some constant �. For ease

of notation we will drop the (N) superscript unless there is ambiguity. Let b�
!
be the least squares estimate of � based on the observations in cluster C
!, b�0!
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be the least squares estimate of � based on the observations in the true cluster

C0! and
b�!jj be the least squares estimate based on the observations in cluster

C
! \ C0j , ! = 1; :::;
, j = 1; :::;
0. Let

RSS! =



eYC
! � eXC
!

b�
!




2

denote the sum of the squares of the residuals for the C
! cluster, and

RSS = RSS(
) =

X

!=1

RSS!.

De�ne

FN
�
�(N)!

�
= N log

�
RSS

NT

�
+ f (
) �N , (9)

where f (
) is a strictly increasing function of 
 and �N is a sequence of constants

the size of which depends on N . For example, we often take �N =
p
N and f

as the identity function. We propose estimating the number of clusters and the

corresponding partition by minimising the following objective function:

FN

�
�
(N)
b
0

�
= min

1�
��
min
�
(N)



FN

�
�
(N)



�
, (10)

where b
0 is the value of 
 that minimises FN . It will be shown in the following
section that, under certain conditions, this criterion identi�es 
0 with probability

one as N grows large.

Using the above criterion to compare two distinct partitions we have

FN

�
�
(N)



�
� FN

�
�
(N)

0

�

= N log

�
1 +

RSS(
)�RSS(
0)

RSS(
0)

�
+ [f (
)� f (
0)] �N ;

� RSS(
)�RSS(
0)

RSS(
0)=N
+ [f (
)� f (
0)] �N :

The residual sum of squares for the �
0 partition divided by N , which appears in

the denominator of the ratio in the expression above, is a measure of the variability

in the data. Thus, heuristically, the �rst term compares the goodness of �t of a

model normed by a measure of the overall level of spread. Therefore, the proposed

criterion is invariant to the scale of the data. This is important because in practice

for any �xed N and T , multiplying the variables by a constant scalar will change

the RSS value without altering the estimates of the slope parameters. The second

term in the above expression is a penalty for over�tting, which re�ects the fact that

the minimum RSS of the estimated model is monotone decreasing in the number of
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clusters and therefore it tends to over-parameterise the model by allowing for more

clusters than may actually exist. Hence, the penalty acts essentially as a �lter to

ensure that the preferred clustering outcome partitions between rather than within

clusters. The intuition of the procedure is identical to a standard model selection

criterion, although the study of the asymptotics is more complicated in the present

case because the number of individuals contained in a given cluster may vary with

N .

3 Asymptotic Properties of Clustering Criterion

The following assumptions are required to establish the asymptotic properties of

the proposed clustering criterion:

A.1 There exists a �xed constant, 0 < c! < 1, with
P
0

!=1 c! = 1, such that

N!=N ! c! for ! = 1; :::;
0, as N !1.

A.2 
0 is a �xed unknown integer, such that 0 < 
0 � �, where � is �xed and

known.

A.3 Given the covariatesX!it corresponding to the observations in the !
th cluster,

the error vectors "!i = ("!i1; :::; "!iT )
0 for the individuals in the cluster are

independent and identically distributed random vectors with mean vector 0

and for some � > 0, E j"!itj2+� < 1. To avoid trivialities assume some

elements of "!i have non-zero variance.

Let C` denote a true class or a subset of a true class with N` elements. Given

the matrix eXC`, let
eX(t)
C`
be the submatrix consisting of rows t; t+ T; :::; t+

(N` � 1)T of eXC` for t = 1; :::; T .

A.4 There exist constants �1 > 0 and �2 > 0 such that the eigenvalues of

N�1
`
eX 0
C`
eXC` and N

�1
`
eX(t)0
C`
eX(t)
C`
lie in [�1; �2] for N` large enough.

A.5 For any column vector x!` of eXC`, its elements x
(1)
!` ; :::; x

(N`T )
!` satisfy the

condition

N`TX

i=1

���x(i)!`
���
2+�

= Op

h
(x0!`x!`)

(2+�)=2
= log (x0!`x!`)

1+�
i

(11)

for 1 � ! � 
 and some � > 0.
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A.1 ensures that no clusters are asymptotically negligible. In particular, it

implies that for the true partition there exist �xed constants d! 2 (0; 1) such

that d! <
N0!
N

< 1, ! = 1; :::;
0 for N large enough. Assumption A.2 ensures

that the total number of clusters is bounded by a known integer, �.3 Assumption

A.3 is common in panel data models and implies that the covariates are strictly

exogenous with respect to the idiosyncratic error component, "!i, although not

with respect to the total error term. Observe also that "!it is permitted to be

serially correlated in an arbitrary way and heteroskedastic across clusters and

over t. Assumptions A.4�A.5 describe the behaviour of the covariates. A.4 is

employed for identi�cation purposes and ensures that
�
N�1
`
eX 0
C`
eXC`

��1
exists in

probability for all N! su¢ciently large.

For any set C` which is a true cluster, a subset of a true cluster or a union of

subsets of a true cluster with jC`j = N`, let P eXC`
denote the projection matrix

P eXC`
= eXC`

�
eX 0
C`
eXC`

��1 eX 0
C`
, (12)

based on the corresponding eXC` matrix. Let "C` denote the vector of correspond-

ing error terms. The following lemma controls the rate of growth of a weighted

sum of random variables.

Lemma 1 Let $1; $2; ::: be a sequence of independent random variables with zero

mean, such that 0 < E ($2
i ) = �2i and E j$ij2+� < � < 1 for some � > 0, � > 0

and i = 1; 2; ::: Furthermore, let �1; �2; :::;2 R be a sequence of constants such

that

(i) B2
N =

NX

i=1

�2i !1;

(ii)

NX

i=1

j�ij2+� = Op

n
B2+�
N

�
logB2

N

��1��o
, for some � > 0.

Then, for N !1

TN =

NX

i=1

�i$i = O
��
B2
N log log

�
B2
N

�� 1
2

�
a.s.

Proof. See Shao and Wu (2005), Lemma 3.5.

Write

"C` = �
(1)
C`
+ :::+ �

(T )
C`
, (13)

3The choice of � is empirically immaterial, as explained in Section 4.1.
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where the ith element of �
(t)
C`
is ("C`)i I (i 2 ft; t+ T; t+ 2T; :::g). For example,

�
(1)
C`
= ("!11; 0; :::; 0; "!21; 0; :::; "!N`1; 0; :::; 0)

0 and so on. The non-zero elements of

the vector �
(t)
C`
are the i:i:d: error terms corresponding to the observations at time

t for the elements in the cluster. We can write

"0C`P eXC`
"C` =

TX

t=1

TX

s=1

�
(t)0
C`
P eXC`

�
(s)
C`
. (14)

Using the idempotent nature of the matrix P eXC`
and the Cauchy-Schwartz in-

equality we have

�
�
(t)0
C`
P eXC`

�
(s)
C`

�2
=

�
�
(t)0
C`
P 2eXC`

�
(s)
C`

�2

=

��
P eXC`

�
(t)
C`

�0 �
P eXC`

�
(s)
C`

��2

�
�
�
(t)0
C`
P eXC`

�
(t)
C`

��
�
(s)0
C`
P eXC`

�
(s)
C`

�
. (15)

Thus, if �
(t)0
C`
P eXC`

�
(t)
C`
= O (log logNC`) a.s. for each t, then "

0
C`
P eXC`

"C` = O (log logNC`)

a.s.

Applying Lemma 1 along with assumptions CA.1-CA.3 we have

�
(t)0
C`
eXC` = O (N` log logN`)

1
2 a.s. (16)

Therefore,

"0C`
eXC` = O

�
(N` log logN`)

1
2

�
a.s. (17)

Furthermore, A.4 ensures that the elements of
�
eX 0
C`
eX 0
C`

��1
are O

�
N�1
`

�
. Hence,

using (16) and arguing as in the proof of Lemma A.2 of Bai, Rao and Wu (1999)

we have

�
(t)0
C`
P eXC`

�
(t)
C`

= �
(t)0
C`
eXC`

�
eX 0
C`
eXC`

��1 eX 0
C`
�
(t)
C`

= O (log logN`) a.s. (18)

As a result,

"0C`P eXC`
"C` = O (log logN`) a.s. (19)

The results in (17) and (19) are key to proving that the clustering algorithm

converges to the true number of clusters. The asymptotics are developed by con-

sidering class growing sequences. That is, we will assume that as N increases, the

sequence of true partitions of f1; 2; :::; Ng is naturally nested, i.e.

C
(N)

! � C

(N+1)

! for all ! = 1; :::;
; for large N . (20)
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In other words, the asymptotics can be conceived via a �class-growing sequence�

approach, which assigns the (N + 1)th observation to any cluster of the previous

partition based on the �rst N observations. The following theorem shows that

the criterion in (10) selects the true number of clusters amongst all class-growing

sequences with probability one for N large enough:

Theorem 2 Let limN!1N
�1�N = 0 and limN!1 (log logN)

�1 �N = 1. Sup-

pose that assumptions A.1-A.5 hold and �
0 is the true clustering partition corre-

sponding to model (5). Then the clustering criterion in (10) is strongly consistent

� that is, it selects 
0, the true number of clusters among all class-growing se-

quences, with probability one as N !1.

Proof. See Appendix.

The �rst condition in Theorem 2 prevents estimating too many clusters as-

ymptotically while the second condition prevents under-�tting. Similar conditions

underlie well-known model selection criteria such as the AIC and the BIC, except

that the criterion above is developed for the purpose of clustering individuals. Our

class-growing approach is motivated by Shao and Wu (2005), who prove consis-

tency of a similar criterion function for the cross-sectional regression model. Our

model is more general, while it permits cross-sectional dependence in the errors

and arbitrary forms of residual serial correlation. Moreover, the proposed criterion

is invariant to the scale of the data.

In practice the unknown � in the transformation matrix Q! can be replaced

by any consistent estimator b� for �xed T . For example, given that the covariates
are strictly exogenous with respect to the purely idiosyncratic error, "!i, b� can
be obtained using the method of Pesaran (2006), or using principal components

analysis based solely on the covariates. Sara�dis and Wansbeek (2011) provide an

overview of these procedures.

4 Implementation

The number of ways to partition a set of N objects into 
 nonempty subsets is

given by a �Stirling number of the second kind�, which is one of two types of Stirling

numbers that commonly occur in the �eld of combinatorics.4 Stirling numbers of

4See, for example, Rota (1964).
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the second kind are given by the formula

S (N;
) =
1


!


X

!=0

(�1)
�!
�


!

�
!N . (21)

Therefore, the total number of partitions is exponential in N and, in fact, the

optimization problem becomes intractable even for relatively small values of N

and 
. To see the order of the magnitude of a Stirling number, for N = 50

and 
 = 3 the total number of distinct partitions is larger than 1:19 � 1023. This
implies that if we assumed, rather optimistically, that a given computer was able to

estimate 10; 000 panel regressions every second, one would require about 3:79 �1011

years to exhaust all possible partitions. Clearly, a global search over all possible

partitions is not feasible, even with small data sets. To deal with this issue, we

propose a partitional algorithm based on K-means clustering.

4.1 K-means regression clustering

K-means algorithms are common in partitional cluster analysis (see, e.g., Everitt,

1993, and Kaufman and Rousseeuw, 1990). The algorithm we adopt in this paper

is suitable for regression clustering and it can be outlined in the following steps5:

1. Given an initial partition and a �xed number of clusters, estimate the model

for each cluster separately and calculate RSS;

2. Assign the ith cross-section to all remaining clusters and obtain the resulting

RSS value that arises in each case. Finally, assign the ith individual into

the cluster that achieves the smaller RSS value;

3. Repeat the same procedure for i = 1; :::; N ;

4. Repeat steps 2-3 until RSS cannot be minimised any further.

Once the partition that achieves the minimumRSS value has been determined,

one may repeat steps 1-4 for di¤erent numbers of clusters. The �nal number of

clusters can be determined by the value that minimises

N log

�
RSS

NT

�
+ f (
) �N , (22)

5The algorithm is written as an ado �le in Stata 11 and it will be made available to all Stata

users on the web.
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where f (
) is a strictly increasing function of 
 and �N is chosen such that it

satis�es the bounds in Theorem 2.6

A simple initial choice is to set f (
) = 
 and �N =
p
N , which lies between

the lower and upper bounds set out in Theorem 2. These values have been found

to be reliable across a range of models in simulations. Further parametrisations

for the penalty function are discussed in the next section.

The basic idea of steps 2-4 of the algorithm is very similar to that underlying

steepest descent algorithms used to solve non-linear optimization problems. In

particular, this type of algorithm starts at an initial point and then generates

a sequence of moves from one point to another, each leading to an improved

value of the objective function, until a local minimum is reached. The local

minimum is the partition that minimises the within-cluster residual sum of squares,
P


!=1




eYC
! � eXC
!
b�
!





2

. Using the properties of least squares residuals one

can write


X

!=1




eYC
! � eXC
!
b�p




2

=

X

!=1




eYC
! � eXC
!
b�
!





2

+

X

!=1




eXC
!

�
b�
! � b�p

�



2

,

where b�p denotes the pooled estimator. Since the term on the left-hand side

remains constant across all possible partitions it is easy to see that minimising the

within-cluster residual sum of squares is equivalent to maximising the between

cluster squared di¤erences of the �tted values obtained from the cluster-speci�c

estimates versus the pooled estimate.

Notice that in each move the assignment of N individuals into 
 clusters

entails N
 regressions and N (
� 1) comparisons of residual sums of squares.
The convergence of the algorithm to a local minimum is guaranteed (see Selim

and Ismail, 1984, for a proof). Intuitively, this is because the method alters a

given partition only if assigning an individual to a di¤erent cluster leads to a lower

residual sum of squares. Therefore, the algorithm cannot choose a partition that

was abandoned at an earlier stage. Thus, since each partition is generated at most

once and the number of partitions is �nite, the algorithm is �nitely convergent.

The time complexity of the algorithm is proportional to KN
B, where B is the

number of iterations and the value of which depends on the distribution of the

data points. The simulation experiments we have performed indicate that �ve

6Notice that the choice of � in the algorithm is immaterial because if the chosen value of �

is smaller than 
0, the number of the clusters minimising the criterion function will equal the

maximum number of clusters allowed, which will indicate that the researcher should allow for

more clusters.
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iterations, or less, typically su¢ce and only rarely more than ten iterations are

required. Of course, convergence to the global minimum requires, in addition,

that steps 2-4 are reiterated using a su¢ciently large number of random starts to

escape local minima. Alternatively, the initial partition can be chosen carefully

based on a set of observed attributes, such as the individual-speci�c estimated

slope coe¢cients, or a set of variables that do not enter directly into the model.

This possibility is studied in the following section.

4.2 Choosing the Initial Partition

There are several ways to choose the initial partition. For the case where there

is a single variable to which slope parameter heterogeneity can be attributed, one

can use the property that when the cross-sectional units are ordered according to

the value of this variable, the partition that minimises the objective function, total

RSS, is a contiguous partition, i.e. each cluster corresponds to a single interval

that is disjoint from all other clusters; see Fisher (1958). This reduces the number

of possible partitions from a Stirling number of the second kind to the binomial

coe¢cient

�
N � 1

� 1

�
. This result comes from the fact that there are N �1 inter-

vals de�ned by the N ordered elements of the individual-speci�c slope coe¢cients,

which are segmented by 
 � 1 dividors. The number of ways of choosing 
 � 1
division points on N � 1 intervals yields the total number of possible contiguous
partitions. Thus, the computational complexity of solving the optimization prob-

lem is O
�
N

�
and so for �xed 
 it is polynomial. Using the same example as

before, for N = 50 and 
 = 3 the total number of distinct contiguous partitions

equals 1; 176, which implies a reduction of 10 orders of magnitude.

Unfortunately, the above procedure becomes unappealing for N moderately

large and 
 > 3. One would bene�t from a more e¢cient solution algorithm

which exploits the additive property of residual sum of squares and is polynomial

in N and independent of 
. Hence we develop an iterative algorithm based on

a dynamic programming formulation, which solves the problem into polynomial

time, or more speci�cally in O (N2
). The objective is to partition the contiguous

set into at most 
 non-overlapping clusters so as to minimise RSS. Before giving

the formal algorithm we calculate an N�N matrix of the RSS function de�ned as

follows: RSS (i; j) is the residual sum of squares for individuals i; i+1; i+2; :::; j,

for 1 � i � j � N . Clearly, computing all values in the matrix requires O (N2)

time. Since the number of clusters is bounded from above, a forward dynamic
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programming algorithm proves more appropriate for our optimization problem.

We de�ne the following two-state RSS function f (r;m) where r describes

the last individual that has been assigned to a cluster and m is the number of

clusters used for the �rst 1; 2; :::; r individuals. Thus, we assume that individuals

r+1; r+2; :::; N have been optimally assigned into clusters. Our decision variable

is given by r0 and describes the last individual not included in the current cluster.

Hence we choose to include in the current cluster r0 + 1; r0 + 2; :::; r individuals.

We begin with our objective

min ff (N + 1;m)g .

The boundary condition is

f (0; 0) = 0.

Next we de�ne the following recursive relation between f (r;m) and f (r0;m0),

whereas m0 is the number of clusters for individuals 1; :::; r0:

f (r;m) = min
1�r0<r
m�r

ff (r0;m� 1) +RSS (r0 + 1; :::; r) + g (m)g ,

whereas

g (m) =

�
1 if m > 

0 elsewhere.

Notice that m0 is always equal to m � 1 by de�nition. In addition, we require

g (m) to ensure that we do not create more than 
 clusters. The �rst term in the

recursive equation is the minimum RSS value when assigning the �rst r individuals

into the m� 1 cluster, while the second term is the RSS value of a single cluster

containing individuals r0 + 1; :::; r. The algorithm stores the minimum residual

sum of squares for each m (at most 
 values), which can then be used as inputs

for the model selection criterion in (22).

The running time of the algorithm is O (N2
). For a �xed 
 this is clearly

of order O (N2), where as for a general 
 it is O (N3) since 
 is bounded by N .

The number of possible states is O (N
) since we consider N individuals and 


clusters. At each state there are at most N alternatives since the state variable

m grows by 1 where as the r variable has at most O (N) alternatives. The exact

number of calculations for the RSS (i; j) matrix is N (N + 1) =2. The recursive

function is computed exactly N +
P


!=1 (N � ! + 1) (N � !) =2 times.

Unfortunately the problem of obtaining the initial partition becomes much

more complicated when there exists more than one variable to which slope para-

meter heterogeneity can be attributed. Suppose, for example, that one wishes to
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obtain the initial partition based on optimal clustering of the individual-speci�c

estimated slope coe¢cients; in the multivariate case this is not straightforward be-

cause the ordering of the cross-sectional units can vary across di¤erent variables.

One possibility is to convert the problem into a set partitioning problem and then

build up an algorithm for multi-dimensional data clustering (see e.g. Beasley and

Chu, 1996, and Wan, Wong and Prusinkiewicz, 1988). In particular, the problem

can be stated in the following way. There are N individuals and each of them con-

tains a vector, the entries of which are di¤erent variables. Following Rao (1971)

we use the following �string condition�: �in an optimal solution, each group should

consist of at least one individual unit, which for convenience will be denoted as the

leader of the group, such that the distance between the leader and any individual

that does not belong to the same group is not less than the distance between the

leader and any individual within the same group.� Mathematically this can be

expressed as

di;j2gi � di;j =2gi,

where di;j is the Euclidian distance between individuals i and j, and gi is the group

the leader of which is individual i. Notice that this condition is di¤erent from the

property of contiguity, adopted in the dynamic programming algorithm analysed

above, in that clusters do not necessarily consist of consecutive points on the real

line measuring a single observed variable. Therefore, since there are N individuals

and each of these is a candidate to be a leader of a group, the string condition

implies the existence of N (N � 1) + 1 groups, including the one comprising all
individuals. This can be seen if we let j1; j2; :::; jn�1 be entities such that

di;i = 0 < dj1;i < dj2;i < :::; djn�1;i.

Thus, the problem takes the form

minCY

subject to AY = b

Yi 2 f0; 1g ,

where C is a N (N � 1) + 2 row vector that contains the cost for a particular

grouping, which in our context is the cluster-speci�c RSS, Y is a N (N � 1) + 2
column vector representing whether a particular grouping is utilised or not in

the optimal solution, A is a (N + 1) � [N (N � 1) + 2] matrix and b is a N + 1
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column vector given by (1; :::;
). Each column of A, except the last one, re�ects a

possible grouping of the N individuals and each row corresponds to an individual.

The last column of A has all zeros except one in the last row which restricts the

total number of clusters to be at most 
. Notice that some of the groupings may

be identical and therefore should be deleted. Further reductions are suggested

by Gar�nkel and Nemhauser (1969) and Beasley and Chu (1996). The �nal

procedure provides the optimal 
 non-overlaping clusters subject to the string

condition mentioned above. Both our dynamic programming algorithm and our

set-partitioning algorithm will be made available on the web.

5 Simulation Study

In this section we carry out simulation experiments to investigate the performance

of our criterion in �nite samples. Our main focus lies on the choice of �N and the

e¤ect of (i) the number of clusters, (ii) the size of N , (iii) the number of regressors

and (iv) the signal-to-noise ratio in the model. We also pay attention to the

properties of the estimators that arise from the estimated partitions, as well as

the pooled OLS and FE estimators.

5.1 Experimental Design

The underlying process is given by

y!it =

KX

k=1

�k!xk!it + �!i + u!it,

t = 1; :::; T , i [2 !] = 1; :::; N! and ! = 1; :::;
0, (23)

where �!i is drawn in each replication from i:i:d:N
�
0; �2�

�
, while xk!it is drawn

from i:i:d:N
�
�xk! ; �

2
xk!

�
. u!it obeys a single-factor structure

u!it = �!i�t + "!it, (24)

where �!i � i:i:d:N (0; 0:5�2u), �t � i:i:d:N (0; 1) and "!it � i:i:d:N (0; 0:5�2u), such

that V ar (u!it) = �2u.

De�ne y�!it = y!it � �!i, such that (23) can be rewritten as

y�!it =

KX

k=1

�k!xk!it + u!it, (25)

18



and let the signal-to-noise ratio be denoted by �! = �2s!=�
2
u! , where �

2
s! and �

2
u!

denote the variance of the signal and noise, respectively, for the !th cluster. �2s!

equals

�2s! = var (y�!it � u!it) = var

 
KX

k=1

�k!xk!it

!
=

KX

k=1

�2k!�
2
xk!
. (26)

This implies that for a given value of
�
�2xk!

	K
k=1

and �2u! , the signal-to-noise ratio

for the !th cluster depends on the value of f�k!gKk=1. Thus, for example, scaling
the coe¢cients upwards by a constant factor will increase � and this may improve

the performance of the model selection criterion; however, there is no natural

way to choose the value of such scalar. Furthermore, notice that for �xed �2u!

alternating K will change �2s! and thereby the performance of the criterion may

also be a¤ected. We control both these e¤ects by normalising �2u! = 1, �! = �,

for ! = 1; :::;
0 and setting �
2
xk!

= �=
�
�2!kK

�
. In this way, the signal-to-noise

ratio in our design is invariant to the choice of K and the scale of f�k!gKk=1. The
values of the slope coe¢cients are listed in Table 1. We consider � = f4; 8g,
N = f100; 400g with T = 10, K = f1; 4g and 
0 = f1; 2; 3g.7 We set N1 = 0:7N ,

N2 = 0:3N for 
0 = 2 and N1 = 0:4N , N2 = 0:3N , N2 = 0:3N for 
0 = 3. This

allows the size of the clusters to be di¤erent. We perform 500 replications in each

experiment. To reduce the computational burden, we �t models with 
 = 1; 2; 3

clusters when 
0 = 1, 
 = 1; 2; 3; 4 clusters when 
0 = 2 and 
 = 1; 2; 3; 4; 5

clusters when 
0 = 3.

�t is estimated in each replication based on the method of Pesaran (2006)

and the model is orthogonalised prior to estimation by premultiplying the T � 1
vectors of observed variables, y!i = (y!i1; :::; y!iT )

0 and xk!i = (xk!i1; :::; xk!iT )
0

for k = 1; :::; K, by the T � T idempotent matrix M = IT � Z
�
Z
0
Z
��1

Z
0
,

Z =
�
Z1; :::; ZT

�0
, with typical entry Zt = N�1

PN
i=1 zit, zit = (yit;x

0
it)
0.

7We also set �xk! = 1 for k = 1; :::;K and ! = 1; :::;
.
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Table 1. Parameter values used in the simulation study.

K = 1 K = 4


0 = 1 � = 1 � =

0
BB@

1
:5
:75
2

1
CCA


0 = 2
�
1
= 1

�
2
= :5

�
1
=

0
BB@

1
:5
:75
2

1
CCA ; �2 =

0
BB@

:5
:25
:375
1

1
CCA


0 = 3
�
1
= 1

�
2
= :5

�
3
= �:25

�
1
=

0
BB@

1
:5
:75
2

1
CCA ; �2 =

0
BB@

:5
:25
:375
1

1
CCA ; �3 =

0
BB@

�:25
1
1:5
0:5

1
CCA

5.2 Results

Tables A1-A3 in the appendix report the results of our simulation experiments

in terms of the relative frequency of selecting 
 clusters when the true number

of clusters is 
0. The relative frequency of selecting the true number of clusters

is emphasised in bold. Since the property of consistency of b
 only requires

that f (
) is stricly increasing in 
 and �N satis�es limN!1N
�1�N = 0 and

limN!1 (log logN)
�1 �N = 1, there is a broad range of values for the penalty

function one can choose from. In this study we set f (
) = 
 such that

MICj = N log

�
RSS

NT

�
+ 
�j for j = 1; :::; 4,

where �1 = 2, �2 = logN , �3 = (1= )
h
(logN) � 1

i
and �4 =

p
N . MIC1 and

MIC2 resemble the Akaike and Bayesian information criteria, respectively, except

that they are applied to the clustering selection problem. �3 is motivated from

the fact that (1= )
h
(logN) � 1

i
! log logN as  ! 0 and hence for any  

bounded away from zero, the lower bound of Theorem 2 is satis�ed. As a rule

of thumb, we choose  such that �3 lies between �2 and �4, in particular, we set

�3 = w�2 + (1� w) �4, w = 1=3. An alternative method of selecting the value of

 can be based on the following heuristic algorithm. Firstly, for a given number of

clusters a parametric boostrap algorithm is run B times � that is, the responses are

sampled using the optimal partition obtained for this particular cluster number.8

Subsequently, an interval of  is determined such that the correct number of

clusters is selected in all bootstrapped samples. After repeating this procedure

8We set B = 50.
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 times, the intersection of all intervals is chosen as our admissible  values. It

is worth noting that in the present study the value of  obtained from the rule of

thumb almost always lies in the admissible set of values of  . Therefore, in what

follows we report results for this particular �3 value only. It is also possible to

determine  using cross-validation, by interpreting this as a smoothing parameter

in a nonparametric regression. For each particular value of  =  g, evaluated

at a given g, where g = 1; :::; G, the optimal predicted value for yi, by�i
�
 g
�
,

is computed by dropping individual i from the sample, estimating the optimal

number of clusters as well as the corresponding partition, and allocating individual

i to the cluster that achieves the lowest prediction error for yi. The optimal

value of  is then determined by minimising the objective function, S
�
 g
�
=

Pn
i=1

����yi � by�i
�
 g
�����2, over a grid of values of  : This procedure, however, can

be prohibitively time-consuming for moderately large N and as such we have not

pursued this any further.

As we can see from the tabulated results, bothMIC3 andMIC4 perform very

well in all circumstances. This holds true for all values of N , K and �. Naturally,

the performance of both criteria improves with larger values of N and �.9 On the

other hand, MIC1 performs poorly in most circumstances in that it constantly

overestimates the true number of clusters. This is not surprising as the criterion

is not consistent for N large. In fact, its performance deteriorates as N increases.

MIC2 is a special case of our criterion and performs somewhat better thanMIC1.

Notwithstanding, in a lot of cases it largely overestimates the number of clusters,

especially when 
0 = 1; 2. We have explored further the underlying reason for

this result. We found that a larger penalty is required in the clustering regression

problem to prevent over-�tting than what is typically used in the standard model

selection problem.

Table A4 in the appendix reports the average point estimates of the parameters

for K = 1.10 Standard deviations are reported in parentheses. b�p�denotes the
pooled estimator that arises by pooling all clusters together, i.e. ignoring cluster-

speci�c heterogeneity in the slope parameters. b�! denotes the estimator of the
parameter vector for the !th cluster that arises from the estimated partition when


0 is estimated usingMIC3. For b�p the true coe¢cient is taken to be the weighted
average value of the cluster-speci�c unknown slope coe¢cients, with the weights

9� does not a¤ect the results when 
0 = 1 of course.
10To save space, we do not report the results obtained for K = 4 because similar conclusions

can be drawn.
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determined by the size of the true clusters. It is apparent that the bias in b�p
is rather large. Its negative sign is due to the fact that the clusters with smaller

coe¢cients exhibit relatively larger leverage because the variance of the regressors

is larger for these clusters. In contrast, the cluster-speci�c estimators are virtually

unbiased even if they are obtained from estimated clusters and the corresponding

estimated partitions. This holds true even for N = 100, although the performance

of the estimators naturally improves as N increases. In conclusion, we see that

the criterion performs well, not only with respect to the estimate of 
0, but also

in terms of leading to accurate cluster-speci�c coe¢cients.

6 Empirical Application

We apply the proposed partially heterogeneous framework on a cost function based

on a panel data set of commercial banks operating in the United States. The

issue of how to estimate scale economies and e¢ciency in the banking industry

has attracted considerable attention among researchers due to the signi�cant role

that �nancial institutions play in economic prosperity and growth and, as a result,

the major implications that these estimates entail for policy making.

6.1 Existing Evidence

In an earlier survey conducted by Berger and Humphrey (1997), the authors report

more than 130 studies focusing on the measurement of economies of scale and the

e¢ciency of �nancial institutions in 21 countries. They conclude that while there

is lack of agreement among researchers regarding the preferred model with which

to estimate e¢ciency and returns to scale, there seems to be a consensus on the

fact that the underlying technology is likely to di¤er among banks. To this end,

McAllister and McManus (1993) argue that the estimates of the returns to scale in

the banking industry may be largely biased if one applies a single cost function to

the whole sample of banks. This result is likely to remain even if one uses a more

�exible functional form in the data, such as the translog form, because this would

restrict, for example, banks of di¤erent size to share the same symmetric average

cost curve. Hence, other interesting possibilities would be precluded, such as �at

segments in the average cost curve over some ranges, or even di¤erent average cost

curves among banks, depending on their size. Thus, the authors conclude:

�These results, taken together, suggest that estimated cost functions
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vary substantially depending on the range of bank sizes included in

the sample. This extreme dependence of the results on the choice

of the sample suggests that there are di¢culties with the statistical

techniques employed�, page 389.

Similarly, Kumbhakar and Tsionas (2008) argue that since the banking indus-

try contains banks of vastly di¤erent size, the underlying technology is very likely

to be di¤erent across banks:

�The distribution of assets across banks is highly skewed. As a result

of this, it is very likely that the parameters of the underlying technology

(cost function in this case) will di¤er among banks�, page 591.

Since this view appears to have been widely adopted in the banking literature,

we estimate a partially heterogeneous cost regression model. A conceptually

similar approach has been followed indirectly by Kaparakis et al (1994) and more

recently by Kwan (2006), who distinguish between small and large banks and

partition the population into two equally-sized sub-samples based on the median

value of total assets. However, this partioning is rather arbitrary and there is no

formal justi�cation for imposing two clusters.

6.2 Methodology

The data set consists of a random sample of 551 banks, each observed over a

period of 15 years. These data have been collected from the electronic database

maintained by the Federal Deposit Insurance Corporation (FDIC).11

In the theory of banking there is not a univocal approach regarding one�s view

of what banks produce and what purposes they serve. In this paper we follow

the �intermediation� approach, in which the banks are viewed as intermediators

of �nancial and physical resources and produce loans and investments; see also

Sealey and Lindley (1977). Under this approach, outputs are measured in money

values and cost �gures include interest expenses. The selection of inputs and

outputs follows closely the study conducted by Hancock (1986). The variables

used in the analysis are: c; the sum of the cost related to the three input prices

that appear below, y1; the sum of industrial, commercial and individual loans, real

estate loans and other loans and leases, y2; all other assets, pl; the price of labour,

11See http://www.fdic.gov
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measured as total expenses on salaries and employee bene�ts, divided by the total

number of employees, pk; the price of capital, measured as expenses on premises

and equipment, divided by the dollar value of premises and equipment, and pf ;

the price of loanable funds, measured as total expenses on interest, divided by the

dollar value of deposits, federal funds purchased and other borrowed funds.

Hence, the model is speci�ed as follows12:

c!it = �1!y1;!it + �2!y2;!it + �3!pl;!it + �4!pk;!it + �5!pf;!it + �!it;

�!it = �!i + u!it, u!it =
rX

m=1

�m!i�
m
t + "!it. (27)

The assumption of strict exogeneity of the regressors with respect to "!it is stan-

dard in this context; see Kwan (2006), Kumbhakar and Tsionas (2008) and Fries

and Taci (2005), among others. However, we deviate from the literature by allow-

ing for cross-sectional dependence in the residuals, u!it, by means of a multi-factor

structure. These factors may capture distinct components of time-varying cost

e¢ciency, or common shocks that hit the population of banks at time t. Since

these unobserved common components are likely to be correlated with the regres-

sors, strict/weak exogeneity with respect to u!it is violated, leading to biased and

inconsistent parameter estimates.13 We test for error cross-sectional dependence

after estimating (27) allowing for a two-way error components model based on the

�xed e¤ects estimator. We use the test statistics developed by Pesaran (2004)

and Pesaran, Ullah and Yamagata (2008) for this purpose. Both tests soundly

reject the null hypothesis of no error cross-sectional dependence at the 5% level of

signi�cance. In particular, Pesaran�s CD statistic equals 26.3 (p-value = 0.000)

and the bias-adjusted LM statistic equals 116.9 (p-value = 0.000). Subsequently,

we �nd two factors in the residuals based on the eigenvalue ratio test of Ahn and

Horenstein (2008), and accordingly we orthogonalise all variables prior to estima-

tion using principal components analysis.

6.3 Main Results

We cluster the sample of banks into up to six clusters based on our partitional

clustering algorithm. The initial partition is chosen on the basis of bank size

using the dynamic programming algorithm analysed in Section 4.2. This algorithm

12All variables are expressed in logs.
13A recent literature review on residual factor models is provided by Sara�dis and Wansbeek

(2010).
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�nds the global minimum for a given number of clusters, i.e. the partition that

minimises the within-cluster sum of squares of the deviations between each cross-

sectional unit and the centroid of the cluster in which a particular cross-sectional

unit belongs. Bank size is proxied by the �fteen-year average value of total assets

for each individual bank.

Table 2 reports the values ofMICj, j = 1; :::; 4, for 
 = 1; :::; 6. As we can see,

MIC3 and MIC2 suggest the presence of 5 clusters, while MIC4, MIC1, suggest

four and six clusters, respectively. These �nding corroborate the results of the

simulation study, which show that under cross-sectional dependence MIC4 might

occasionally underestimate the true number of clusters while the penalty attached

by MIC1 is clearly insu¢cient to prevent over-�tting.

Table 2. Results for estimating the number of clusters.


 1 2 3 4 5 6
MIC1 -1086:2 -1227:0 -1249:0 -1260:2 -1270:4 -1271:5
MIC2 -1082:5 -1219:5 -1237:9 -1245:4 -1251:9 -1249:3
MIC3 -1079:6 -1213:8 -1299:2 -1233:9 -1237:4 -1231:9
MIC4 -1072:7 -1200:0 -1208:6 -1209:4 -1203:0 -1190:7

Table 3 reports the estimation results obtained for model (27) for 
 = 5. We

adopt a notation similar to the simulation study; in particular, b�pdenotes the
pooled estimator for the whole sample, b�! refers to the �xed e¤ects estimate for
the !th cluster and b� is the weighted average estimate of all clusters with the

weights determined by the size of each estimated cluster. The clusters are sorted

in ascending order such that cluster 1 contains on average the smallest banks and

cluster 5 the largest banks.

Note that since our clustering procedure minimises the within-cluster residual

sum of squares, the properties of the estimated standard errors obtained in the

usual way are no longer known. Therefore, we use bootstrapping to attach a

standard error to the estimated parameters. In particular, for each cluster we draw

a �bootstrap sample� by sampling N times with replacement from the sample.

We then estimate the parameters from the bootstrap sample, and we repeat this

process B (= 200) times, which provides estimates of the distribution one would

get if one were able to draw repeated samples of N points from the unknown true

distribution.

The results in Table 3 show that there are some large and statistically signif-

icant di¤erences in the value of the regression coe¢cients across clusters. For
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example, the estimated coe¢cient of the price of labour, b�3, appears to form a

U-shaped function of size, which indicates that in a passage from small to medium

sized banks economies of scale increase, and then decrease for large banks. In con-

trast, the estimated coe¢cient of loans, b�1, appears to rise as bank size increases,
although it remains well below one. This implies that while there are increasing

output returns for both small and large banks, the bene�t of small banks getting

larger is higher than for banks which are already large. It is worth mentioning

that one draws qualitatively similar conclusions for 
 = 3; 4; 6, and so the shape

of these pro�les appears to be robust to the choice of clusters. In summary, we

see that banks of di¤erent size have di¤erent cost drivers and therefore pooling the

data and imposing homogeneity in the slope parameters across the whole sample

may yield misleading results. This becomes apparent when we compare b�p with
b�, the di¤erence of which is statistically signi�cant for most coe¢cients.

Table 3. Estimation Results1;2

b�1 b�2 b�3 b�4 b�5
b�p :187 :221 :251 :007� :548

(:003) (:005) (:011) (:004) (:005)
b�1 :021 :061 :309 :022 :401

(:004) (:009) (:025) (:007) (:008)
b�2 :049 :040 :226 :007� :640

(:006) (:010) (:021) (:005) (:008)
b�3 :222 :096 :187 :006� :497

(:009) (:014) (:030) (:013) (:009)
b�4 :117 :480 :005� -:128� :616

(:015) (:023) (:047) (:215) (:021)
b�5 :358 :236 :356 :056 :571

(:011) (:018) (:047) (:023) (:021)

b� :110 :106 :243 :008 :530

1: Bootstrapped standard errors in parentheses.
2: ��� denotes non-signi�cance at the 5% level.

7 Concluding Remarks

Slope parameter homogeneity versus heterogeneity is a topic that has intrigued

research in the analysis of panel data since its infancy. In many cases the issue

remains practically unresolved. In particular, a substantial body of empirical work
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appears to suggest that while slope parameter homogeneity is usually rejected, the

alternative of allowing these parameters to be individual-speci�c often leads to

estimates with large standard errors, counterintuitive sign and inferior forecasting

performance. This paper has proposed an intermediate modelling framework that

imposes partially heterogeneous restrictions in the slope parameters. The unknown

number of clusters and the corresponding partition are determined based on the

concept of �partitional clustering�, using an information-based criterion that is

strongly consistent for �xed T .
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Appendix

A Proof of Theorem 2

A1. Overparameterised case: 
0 < 
 < �.
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than log logN . Further, as N !1; RSS(
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where the last line follows from the idempotent nature of the matrices QC0j
and

QC
!\C
0
j
;

Q0C0j
P eX

C0
j

QC0j
= P eX

C0
j

. (29)
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Under the conditions of the theorem, using (19), we have

"0C
!\C0j
P eX

C
!\C
0
j

"C
!\C0j = O
�
log logN!jj

�
= O (log logN) a.s., (30)

where N!jj =
��C
! \ C0j

��. Thus it follows that FN (�
)� FN (�0) > 0 a.s. for N
large enough.

A2. Underparameterised case: 
 < 
0.

Again we want to show that for N large enough, FN (�
) � FN (�0) > 0 a.s.

In this case, (f (
)� f (
0)) < 0 and by assumption, limN!1N
�1�N = 0. The

result will follow if we show that N log (RSS(
)=RSS(
0)) is positive and of order

N:

The following lemma is necessary for our proof.

Lemma 3 Suppose that Assumption A.4 holds true. Then, for any possible par-

tition �
 with 
 < 
0, there exist C
! 2 �
 and C0!1 ; C0!2 2 �0 such that
��C
! \ C0!1

�� > c0N and
��C
! \ C0!2

�� > c0N for any ! and N large enough,

(31)

where c0 is a �xed constant.

Proof. See Shao and Wu (2005), Lemma 3.1.

From Lemma 3, for any partition �
 = fC
1; :::; C

g, there exists one cluster
in �
, say C
1, and two distinct true clusters C

0
1 and C

0
2 , such that
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�� < N , (32)

forN large enough. Denote the family of subsets
�
C
! \ C0j : j = 1; :::;
0; ! = 1; :::;


	
�

fC
1 \ C01 ; C
1 \ C02g by L12. Then

RSS(
)�RSS(
0)

= T�1

 

X

!=1




eYC
! � eXC
!
b�
!





2

�

0X

j=1




eYC0j
� eXC0j

b�0j




2
!

= T�1
�


eYC
1\C

0
1
� eXC
1\C

0
1

b�
1




2

+



eYC
1\C

0
2
� eXC
1\C

0
2

b�
1




2
�
+

T�1

0
@X

L12




eYC
!\C
0
j
� eXC
!\C

0
j

b�
!




2

�

0X

j=1




eYC0j
� eXC0j

b�0j




2

1
A .

(33)

32
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where b�012 is the least squares estimate of � based on
�
eY012; eX012

�
. Since eY012 =
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using the algebraic identity (A+B)�1 = A�1 �A�1 (A�1 +B�1)
�1
A�1, where A

and B are non-singular matrices.

Since we have assumed j�01 � �02j > 0, given Assumption A.4 we have
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Using (17), (19) and the Cauchy-Schwartz inequality we see that the other terms

in the above lower bound are of smaller order in N . As RSS(
0)=N is bounded

away from 0 and 1 almost surely, we have, for N large enough,

N log

�
1 +

RSS(
)�RSS(
0)

RSS(
0)

�
> N log(1 +K);

for some positive K, and the result follows.
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Table A1. Simulation results for 
0 = 1.

K = 1 K = 4
N = 100 N = 400 N = 100 N = 400 N = 100 N = 400 N = 100 N = 400

� = 4 � = 8 � = 4 � = 8
MIC1


 = 1 :015 :000 :015 :000 :000 :000 :000 :000


 = 2 :934 :023 :934 :023 :000 :000 :000 :000

 = 3 :051 :977 :051 :977 1:00 1:00 1:00 1:00

MIC2

 = 1 :021 :032 :021 :032 :533 :698 :533 :698


 = 2 :979 :968 :979 :968 :369 :302 :369 :302

 = 3 :000 :000 :000 :000 :000 :000 :000 :000

MIC3

 = 1 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00


 = 2 :000 :000 :000 :000 :027 :000 :027 :000

 = 3 :000 :000 :000 :000 :000 :000 :000 :000

MIC4

 = 1 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00


 = 2 :000 :000 :000 :000 :000 :000 :000 :000

 = 3 :000 :000 :000 :000 :000 :000 :000 :000

Table A2. Simulation results for 
0 = 2.

K = 1 K = 4
N = 100 N = 400 N = 100 N = 400 N = 100 N = 400 N = 100 N = 400

� = 4 � = 8 � = 4 � = 8
MIC1


 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 :109 :000 :231 :000 :172 :000 :210 :000


 = 3 :281 :000 :401 :069 :222 :011 :381 :033

 = 4 :610 1:00 :368 :931 :606 :989 :409 :967

MIC2

 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 :196 :299 :279 :412 :258 :323 :396 :431


 = 3 :383 :589 :332 :587 :495 :376 :501 :569

 = 4 :421 :112 :396 :001 :247 :301 :103 :000

MIC3

 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00


 = 3 :000 :000 :000 :000 :000 :000 :000 :000

 = 4 :000 :000 :000 :000 :000 :000 :000 :000

MIC4

 = 1 :069 :009 :000 :000 :086 :000 :000 :000

 = 2 :931 :991 1:00 1:00 :914 1:00 1:00 1:00


 = 3 :000 :000 :000 :000 :000 :000 :000 :000

 = 4 :000 :000 :000 :000 :000 :000 :000 :000
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Table A3. Simulation results for 
0 = 3.

K = 1 K = 4
N = 100 N = 400 N = 100 N = 400 N = 100 N = 400 N = 100 N = 400

� = 4 � = 8 � = 4 � = 8
MIC1


 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 :000 :000 :000 :000 :000 :000 :000 :028

 = 3 :541 :496 :603 :568 :026 :000 :049 :000


 = 4 :459 :504 :397 :432 :439 :000 :491 :000

 = 5 :000 :002 :000 :000 :535 1:00 :460 1:00

MIC2

 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 :000 :000 :000 :000 :000 :000 :000 :000

 = 3 :671 :727 :715 :768 :811 :310 :863 :391


 = 4 :329 :273 :285 :232 :189 :479 :137 :491

 = 5 :000 :000 :000 :000 :000 :211 :000 :118

MIC3

 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 :000 :000 :000 :000 :000 :000 :000 :000

 = 3 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00


 = 4 :000 :000 :000 :000 :000 :000 :000 :000

 = 5 :000 :000 :000 :000 :000 :000 :000 :000

MIC4

 = 1 :000 :000 :000 :000 :000 :000 :000 :000

 = 2 :088 :027 :000 :000 :151 :049 :000 :000

 = 3 :912 :973 1:00 1:00 :849 :951 1:00 1:00


 = 4 :000 :000 :000 :000 :000 :000 :000 :000

 = 5 :000 :000 :000 :000 :000 :000 :000 :000

Table A4. Finite sample properties of estimators.

K = 1, 
0 = 2, � = 0:85, � = (1; :5)
0
K = 1, 
0 = 3, � = 0:475, � = (1; :5; -:25)

0

N = 100 N = 400 N = 100 N = 400 N = 100 N = 400 N = 100 N = 400

� = 4 � = 8 � = 4 � = 8

b�p :684 :671 :685 :677 -:026 -:031 -:024 -:037

(:013) (:008) (:009) (:005) (:008) (:005) (:005) (:003)

b�
1

1:03 1:01 1:02 1:01 1:03 1:02 1:01 1:00

(:028) (:018) (:016) (:009) (:034) (:017) (:022) (:009)

b�
2

:505 :502 :502 :501 :501 :501 :501 :502

(:019) (:011) (:010) (:007) (:020) (:010) (:014) (:008)

b�
3

-:247 -:251 -:251 -:250

(:009) (:005) (:005) (:004)
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