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Abstract

In this paper we provide a unifying framework for a set of seemingly
disparate models for exogenous and endogenous shocks in complex fi-
nancial systems. Markets operate by balancing intrinsic levels of risk
and return. This remains true even in the midst of transitory external
shocks. Changes in market regime (bearish to bullish and bullish to
bearish) can be explicitly shown to represent a phase transition from
random to deterministic behaviour in prices. The resulting models
refine the empirical analysis in a number of previous papers.

Keywords: Exogenous; Endogenous; Financial Crashes; Bubbles; Econo-
physics

1 Introduction

There is a burgeoning literature discussing endogenous/exogenous dynam-
ics in complex systems [1]-[7]. This includes various applications to finan-
cial and social systems [4] including book sales [5]-[6], financial markets [8]
and internet downloads [9]. This has occurred alongside various interrelated
models for financial crash precursors [10]-[12]. This makes use of the oft-cited
analogy between financial market crashes and phase transitions in critical
phenomena, based upon lattice models in statistical physics [12]. The litera-
ture thus provides a series of essentially separate models for crash-precursors
[10]-[12] and for associated after-shock patterns [8], [14].
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This paper provides a novel framework unifying this seemingly disparate
set of models. Financial markets operate by balancing an intrinsic rate of
return against an intrinsic level of risk. Further, the analogy between regime-
changes in financial markets and phase transitions in critical phenomena is
made explicit. Such changes are shown to represent a phase transition from
random to deterministic behaviour in prices.

In terms of empirical applications our model for exogenous shocks refines
similar analyses conducted in [8], [13]. Our model for speculative bubbles
allows a more systematic treatment of log-periodic and related models for
financial crashes and can be shown to lead to several interesting empirical
applications discussed in [15]-[18].

The layout of this paper is as follows. Our mathematical model for
exogenous and endoenous shocks is discussed in Section 2. Section 3 covers
the empirical application of the model for exogenous shocks. Section 4
concludes and discusses further work.

2 The model

Markets are assumed to work by balancing the level of risk and the rate of
return. The level of risk and return remain fixed even in the face of techno-
logical innovation or an influx of new investors [19]. These assumptions do
not rely on complicated mathematics and avoid dubious assumptions such
as the “riskless hedge” of the Black-Scholes model [20]. Our model makes
several observable predictions for market crashes. Exogenous crashes result
in a decrease in drift and changes in volatility. Speculation-induced crashes
are preceded by an unsustainable super-exponential growth coupled with a
detectable increase in market over-confidence.

Let Pt denote the price of an asset at time t and let Xt = log Pt. The
set up of the model is as follows

Assumption 1 (Intrinsic Rate of Return) The intrinsic rate of return

is assumed constant and equal to µ:

E[Xt+δ|Xt] = µδ + o(δ). (1)

Assumption 2 (Intrinsic Level of Risk) The intrinsic level of risk is

assumed constant and equal to σ2:

Var[Xt+δ|Xt] = σ2δ + o(δ). (2)
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2.1 Endogenous crashes

Related work in [8] and [13] consider a series of dramatic world-news events
such as the 9/11 terror attacks and the attempted coup against Soviet Pres-
ident Mikhail Gorbachev in 1991 and focusses upon the observed volatility
response. In [8] volatility is shown to decay following the exogenous shock
at a rate quicker that is both faster than after a corresponding endogenous
shock (bubble-induced crash) and in such a way that can be distinguished
from the background noise.

Were the model in [8] correct, we would anticipate that the integrated
volatility would display concave growth of the form ∼t1−α, with α≈0.5.
Some evidence for this is presented in Figure 1 for the case of the French
Cac 40 index. Following the 9/11 terror attacks the left panel of Figure
1 shows that this appears to be a reasonable assumption. However, in the
aftermath of the attempted coup in 1991, the evidence provided by the right
panel is rather less compelling.
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Figure 1: Cumulative “integrated” market volatility for the French CAC 40
index 100 trading days after putative exogenous shocks. Left panel: Market
response to terror attacks of 9/11. Right panel: Market response to the
attempted coup against President Gorbachev August 18th 1991.

Suppose that the market is exposed to an external shock. The shock is
assumed to be completely unpredictable but as in [1]-[3] its affect is merely
transitory. The shock occurs at time 0 and results in an initial decrease in
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drift by the amount µ0 and an initial increase in volatility by the amount σ2
0.

At the random time t0 the market recovers – the drift increases by µ0 and
volatility decreases by σ2

0. The time t0 of the market recovery is a random
variable with hazard function h(t). Since the effect of the external shock
is transitory it follows that h′(t) > 0, since as time progresses a market
rebound becomes increasingly likely. Also, since the shock is assumed to
happen at t = 0 it follows that we must also have h(0) = 0.

h′(t) > 0; h(0) = 0. (3)

The price dynamics prior to the market recovery are described by the fol-
lowing equation

dXt = µ(t)dt+ σ(t)dWt + dj(t), (4)

where j(t) satisfies

dj(t) = µ0δ(t− t0)dt+ iσ0δ(t− t0)dWt, (5)

where i =
√
−1 and δ(·) denotes Dirac’s delta function. When a recovery

happens, the effect is an increase in drift and a decrease in the variance,
hence the introduction of i =

√
−1. Prior to the recovery we have that

E[Xt+δ|Xt] = δ(µ(t) + µ0h(t)) + o(δ).

Thus, from equation (1) it follows that

µ(t) + µ0h(t) = µ; µ(t) = µ− µ0h(t). (6)

Equation (6) shows that an exogenous shock thus reduces the level of return.
The risk (variance) associated with equation (5) is

δ
(

σ2(t) +
(

µ2
0 − σ2

0

)

h(t)
)

+ o(δ).

Similarly, it follows from (2) that

σ2(t) +
(

µ2
o − σ2

0

)

h(t) = σ2; σ2(t) = σ2 +
(

σ2
0 − µ2

0

)

h(t). (7)

If σ2
0≥µ2

0 the external shock affects volatility more than it does the drift. The
shock thus results in an increase in market volatility alongside a decrease in
drift. If σ2

0≤µ2
0 the external shock actually results in a reduction in volatility.

However, irrespective of the effect upon market volatility the shock decreases
the rate of return so is still likely to remain bad news for investors. If σ2

0 = µ2
0

market volatility remains unaffected.
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In empirical work we choose

h(t) = λ[1− (1 + t)−α]. (8)

Not only does h(t) in (8) satisfy (3) but the special case α = 0.5 in (8) recre-
ates both the empirical power-law reported in [8] and related phenomenology
in [1]-[3]. Equation (8) also ensures that h(t) is bounded – an important facet
of empirical work on related models in [15]-[18] – and provides a natural test
for the presence of an exogenous shock (see below). From (8) it follows that

σ2(t) = σ2 + β[1− (1 + t)−α], (9)

where β = λ(σ2
0 − µ2

0). Equations (8-9) provide a natural way of testing for
an exogenous shock in empirical data. The case α = 0 corresponds to the
case of an efficient market where price changes are completely unpredictable
and we are left with the classical random walk or Black-Scholes model:

dXt = µdt+ σdW t.

We have that

∂σ2(t)

∂t
= αβ(1 + t)−α−1. (10)

The interpretation depends on the sign of αβ and hence upon the sign of β
in (10) since it is assumed α > 0. If β > 0 then then σ2(t) increases without
bound. This does not appear to be physically reallistic. In contrast, if
β < 0 the market recovery becomes the inevitable phase transition between
random and deterministic behaviour with

lim
t→∞

σ2(t) = 0. (11)

This suggests that

σ2 + β = 0; σ2 = −β. (12)

2.2 Endogenous crashes

In this section we show how the framework laid out by the equations (1-2)
can be used to generate a model for financial bubbles discussed in [15]-[18]
extending a deterministic version of the same model in [12] and a series of
later papers [21]-[33] which all omit a critical second-order condition given
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by equation (18). Let P (t) denote the price of an asset at time t. Our
starting point is the equation

P (t) = P1(t)(1− κ)j(t), (13)

where P1(t) satisfies

dP1(t) = µ(t)P1(t)dt+ σ(t)P1(t)dWt,

where Wt is a Wiener process and j(t) is a jump process satisfying

j(t) =

{

0 before the crash
1 after the crash.

When a crash occurs κ% is automatically wiped off the value of the asset.
Prior to a crash P (t) = P1(t) and Xt = log(P (t)) satisfies

dXt = µ̃(t)dt+ σ(t)dWt − vdj(t), (14)

where µ̃ = µ(t) − σ2(t)/2 and v = − ln[(1 − κ)] with v > 0. If a crash has
not occurred by time t, we have that

E[j(t+ δ)− j(t)] = δh(t) + o(δ), (15)

Var[j(t+ δ)− j(t)] = δh(t) + o(δ), (16)

where h(t) is the hazard rate. Hence it follows from (1) and (15) that

µ̃(t)− vh(t) = µ; µ̃(t) = µ+ vh(t). (17)

Similarly, from (2) and (16) that

σ2(t) + v2h(t) = σ2; σ2(t) = σ2 − v2h(t). (18)

This model characterises bubbles as a dramatic super-exponential price rise
shown by equation (17) and market over-confidence shown by (18). As
σ2(t)↓0 (18) shows that speculative bubbles are characterised by a phase
transition between deterministic and random behaviour.

3 Empirical Application

Several works have looked at the empirical implementation of the endoge-
nous bubble model in Section 2.2 [15]-[18]. This sits alongside a number of
related papers, see e.g. [21]-[31] exploring the empirical implementation of
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the deterministic version of this model – omitting the second-order condition
shown in equation (18). Here, in contrast, we fit the model for exogenous
crashes in Section 2.1.

Following methodology in [8], [13] we fit equations (6-12) to data on
real financial markets following putative exogenous shocks – namely the
attempted coup against President Gorbachev and the terror attacks of 9/11.
From equations (6-12) it follows that under this model the log-returns ∆Xt =
Xt+1 −Xt are independent and normally distributed:

∆Xt ∼ N
(

µt, σ
2
t

)

,

µt = µ− µ0λ+ λ

[

(2 + t)1−α

1− α
− (1 + t)1−α

1− α

]

,

σ2
t = β

[

(2 + t)1−α

1− α
− (1 + t)1−α

1− α

]

(19)

The model in equation (19) can thus be estimated by maximum likelihood.
Evidence for an exogenous shock is found if we reject the hypothesis α = 0
in favour of the hypothesis α > 0.

Results in Table 1 show that the effects of the 1991 coup are largely
muted. For the CAC 40, S& P 500 and the FTSE we retain the hypothesis
α = 0 at the 5% level. Any effects present are indistinguishable from the
background noise and the hypothesis of an exogenous shock is rejected. In
contrast, on the Nikkei the null hypothesis α = 0 is rejected in favour of the
hypothesis α < 0. This result contravenes the model for exogenous shocks
in Section 2 and in contrast seems to confirm evidence of an endogenous
antibubble in the Nikkei identified in [32]-[33]. This interpretation also co-
incides with Japan’s “lost decade” and recession in the early 1990s [33]-[35],
with the observed price fluctuations a harbinger of future stock market falls
still to come.

α̂ e.s.e α t-value p-value

Nikkei -0.288 0.125 2.294 0.024∗
Cac 40 -0.075 0.107 0.708 0.481
FTSE -0.223 0.131 1.702 0.092
S&P 500 0.024 0.133 0.179 0.858

Table 1: Maximum likelihood estimates of α in equation (8): 100 trading
days after the attempted coup against President Gorbachev (August 18th
1991)
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In contrast the results in Table 2 strongly support the hypothesis of an
exogenous shock for the terror attacks of 9/11. In all cases the hypothesis
α = 0 is rejected in favour of the hypothesis α>0. Estimated values of α
are in reasonable agreement with the estimate of α = 0.5 obtained in [8].
However, our results suggest slightly higher values of α with α = 0.62±0.5.

α̂ e.s.e α t-value p-value 95 % Confidence
Interval

Nikkei 0.502 0.150 3.350 0.001∗∗ (0.202, 0.801)
Cac 40 0.588 0.178 3.308 0.001∗∗ (0.232, 0.944)
FTSE 0.787 0.172 4.586 0.000∗ ∗ ∗ (0.457, 1.117)
S&P 500 0.417 0.149 2.807 0.006∗∗ (0.120, 0.715)

Table 2: Maximum likelihood estimates of α in equation (8): 100 trading
days after the terrorist attacks of 9/11

4 Conclusions and further work

This paper provides a unifying framework for a seemingly disparate set
of models for endogenous [12] and exogenous crashes [8], [13]. Financial
markets function by balancing an intrinsic rate of return against an intrinsic
level of risk. This feature is easy to lose sight of – particularly during bubbles
and the introduction of new technologies/influx of new investors [19]. Our
model also makes explicit the oft-cited link between financial crashes and
phase transitions and critical phenomena. In particular, changes of market
regime (bearish to bullish; Section 2.1) and (bullish to bearish; Section 2.2)
are identified with a transition from random to deterministic behaviour in
prices. Our model for exogenous shocks refines the analysis in [8], [13].
Similarly, the speculative bubble model in Section 2.2 allows for a more
systematic treatment of log-periodic and related models for bubbles and
crashes, whilst retaining the explicit analogy between physical and financial
systems.

Several novel empirical applications of the models in Sections 2 are pos-
sible. Here, in our empirical application, we restrict attention to exogenous
crashes. We examine the market response to putative exogenous shocks;
the attempted coup against USSR’s President Gorbachev and the terror at-
tacks of 9/11. The 1991 coup does not constitute a significant exogenous
effect upon global financial markets. Results are either indistinguishable
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from background noise or in the case of Japan’s Nikkei index appear linked
instead to the recession of the early 1990s and Japan’s “lost decade”. In con-
trast, the terror attacks of 9/11 are seen to represent an exogenous shock.
Evidence of a power-law decay in volatility is found, with estimated expo-
nent α = 0.62±0.5 slightly higher than the value of 0.5 suggested in [8].

The models for endogenous and exogenous market crashes suggest a
number of applications to risk management and several interesting avenues
for further research. This paper sits alongside wider work on financial as-
pects of societal resilience [36] and future work will examine the implications
for economic policy [37] and towards a more systematic treatment of market
psychology and related themes discussed in [38].
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