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Abstract

The aim of this paper is to explore the structure of cities as a func-

tion of labor di¤erentiation, gains to trade, a �xed cost for constructing

the transportation network, a variable cost of commodity transport, and

the commuting costs of consumers. Firms use di¤erent types of labor to

produce di¤erent outputs. Locations of all agents are endogenous as are

prices and quantities. This is among the �rst papers to apply smooth

economy techniques to urban economics. Existence of equilibrium and

its determinacy properties depend crucially on the relative numbers of

outputs, types of labor and �rms. More di¤erentiated labor implies

more equilibria. We provide tight lower bounds on labor di¤erentiation

for existence of equilibrium. If these su¢cient conditions are satis�ed,

then generically there is a continuum of equilibria for given parame-

ter values. Finally, an equilibrium allocation is not necessarily Pareto

optimal in this model.
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1 Introduction

This work will attempt to address some of the classic, but relatively unex-

plored, questions raised in urban economics that deal with the economics of

cities. Our questions include the following. Why do cities form where they

do? What are the driving forces behind the formation of cities? What roles do

increasing returns, gains to trade and the location of marketplaces play? What

role does the location of �rms play? Is market failure necessary for agglomer-

ation? Is perfect competition consistent with spatial modeling? Why do some

cities grow faster than others? This set of questions frames our line of research.

The answers to these questions have important policy implications, since the

predictability of the e¤ects of government actions rests on an understanding

of the mechanisms driving the urban economy. The ability of policy makers

to make informed decisions about contemporary issues such as government

policy pertaining to migration to and from cities, or social policy directed at

revitalizing cities, relies on information provided by urban economic theory.

In order to have a theory explaining city formation and structure, it is

necessary to construct a class of models in which the locations of all agents are

endogenous, including both consumers and �rms. As explained in Berliant and

ten Raa (1994), the nature of most of the existing literature is partial rather

than general equilibrium in the sense that either the locations of consumers or

�rms are �xed. The literature reviewed here is distinct since the locations of

all agents are endogenous, and thus these models have the potential to answer

the questions we have posed.

There are many approaches to answering the questions addressed by our

model that generally suggest di¤erent economic causes for city formation and

growth, and consequently di¤erent modeling strategies. Each theory relies

on di¤erent forces to explain agglomeration and therefore has di¤erent conse-

quences in terms of welfare. So it is important to generate testable hypotheses

to distinguish among the theories. We categorize the literature on city for-

mation into four groups, using the Spatial Impossibility Theorem of Starrett

(1978), as interpreted in Fujita (1986) and Fujita and Thisse (2002), which

states that there is no spatial equilibrium with agglomeration if the follow-

ing conditions are met: (i) no relocation cost, (ii) consumers� preferences and

�rms� technologies are independent of location, (iii) the economy is closed, (iv)

each location has complete competitive markets. Each of the four groups ex-

plains agglomeration by relaxing at least one of the hypotheses of the Starrett

Theorem.
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In the �rst group, city formation is explained using increasing returns to

scale. This group violates (iv) since it assumes imperfect competition. Indeed,

Fujita and Krugman (1995, 2000), Fujita, Krugman and Venables (1999) and

Krugman (1991, 1993a, 1993b) use a Dixit-Stiglitz framework and increasing

returns to generate city formation in a monopolistic competition context.1

This work was preceded by Fujita (1988), Abdel-Rahman (1988, 1990) and

Abdel-Rahman and Fujita (1990).

The second group of models uses spatial externalities to explain city for-

mation (Beckmann (1977), Fujita and Ogawa (1982), Papageorgiou and Smith

(1983), ten Raa (1984)). These models violate (ii), (iv) or both, since agent

utilities or production functions depend on the locations of the other agents

and these externalities are not priced.

In the third group, agglomeration is explained by strategic interactions be-

tween �rms (spatial competition a la Hotelling; for surveys see Gabszewicz and

Thisse (1986, 1992)). This group also violates (iv) since it assumes imperfect

competition.

The fourth group of models (Berliant and Konishi (2000), Berliant and

Wang (1993), Wang (1990)) uses gains to trade and setup costs of marketplaces

and transportation networks to generate agglomeration. This group violates

(ii) and (iv), since there may be no marketplace (and consequently no market)

at some locations, and therefore agents care about location.

Another explanation for city formation is the di¤erentiation of labor. For

example, Rochester, NY, has a highly specialized labor force that serves com-

panies such as Kodak, Xerox, and Bausch and Lomb. These companies employ

workers who know about optics and engineering. Another example is Silicon

Valley, that has a concentration of labor specialized in the production of semi-

conductors. This idea has not been modelled formally, although some attempts

have been made to model the worker choice of human capital investment us-

ing very crude spatial structures (Baumgardner (1988), Benabou (1993), Kim

(1991)). Zenou (2009) surveys this literature and studies labor markets in

various imperfect competition or search contexts.

The speci�c question we address in the present paper is: How does labor

di¤erentiation a¤ect city structure?

In our approach (which can be considered as a �fth group), the formation

1Kim (1995) provides some empirical evidence on regional concentration or specialization

of industrial production in the United States. For the data from the 1920�s to the present,

this evidence seem to contradict the empirical implications of the monopolistic competition

models.
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of cities is explained by labor di¤erentiation, gains to trade, a �xed cost for

the transportation network, a variable cost of commodity transport, and the

commuting costs of consumers. Since �rms are used as marketplaces, our

model violates (ii) and (iv) of the Starrett Theorem, similar to the fourth

group above.

Observe that in all models of general equilibrium with endogenous locations

(including ours), the main problem is to show the existence of a spatial equilib-

rium and to �nd its determinacy properties. Why is this a problem? When one

introduces space in a general equilibrium framework with a continuum of con-

sumers (and locations) and a �nite number of �rms, there are non-convexities

for both consumers (the consumption set and preferences are non-convex due

to the discrete choice of one location of residence) and �rms (�rm reaction

correspondences are not convex valued since given prices, a �rm�s pro�t could

be maximized at two di¤erent locations), and therefore the usual �xed point

theorems relevant for proving existence of an equilibrium do not work.

On the consumer side, we can easily convexify the aggregate demand cor-

respondence with a large number of individuals (see Hildenbrand (1974)).

Schweizer, Varaiya and Hartwick (1976), Ellickson (1979), and Grimaud and

La¤ont (1989) have used this technique to prove the existence of a spatial

equilibrium. Observe that the number of locations in all of this work is �nite.

In contrast, our model as well as the standard models of location theory use

a continuum of locations. In this case, Hildenbrand�s type of argument does

not necessarily apply. As is common in the literature (see Fujita (1989)), we

use the bid rent approach, imposing the condition that consumers can choose

only one location, to solve the non-convexity problem; this technique does not

require a �xed point argument or convexity, but relies on direct calculations.

How can we solve the �rm�s non-convexity problem? To the best of our

knowledge, there are two techniques that work. Both of them �x producer

locations and solutions are computed for non-location variables given these lo-

cations. The two techniques use di¤erent methods of �xing producer locations.

The �rst uses Negishi�s (1960) method, that �xes �rms at the Pareto optimal

locations and more generally �xes the allocation at the Pareto optimum. Then

one has to decentralize, and �nd a price system that supports the optimum

(see Wang (1990), Berliant and Wang (1993)). Obviously, this method does

not work if there is a market failure. The second technique consists of char-

acterizing the spatial equilibrium. However, since there is in general a lot of

endogenous variables (prices and quantities as usual, but also locations of pro-
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ducers and consumers), the characterization of equilibrium is di¢cult. This

method was used by Fujita and Krugman (1995, 2000) and in order to charac-

terize the equilibrium they resort to speci�c functional forms (e.g. CES utility

functions and a Samuelsonian �iceberg� transport technology). This approach

su¤ers from a lack of robustness in the speci�cation of functional forms as

well as from a large indeterminacy in the number and qualitative properties of

equilibrium. They select one equilibrium. Moreover, consumer commuting is

not allowed by this type of model. In our approach, we also use the (second)

technique of calculating the equilibrium directly, but we avoid the problems

encountered by Fujita and Krugman (1995, 2000). In essence, due to the in-

teraction of �rms, considered to be marketplaces as well for exchanging goods,

we are able to characterize their equilibrium locations in general, and therefore

to prove existence of equilibrium by employing a �xed point argument for all

of the non-locational variables.

A natural question that comes to mind is why, in a model of general equilib-

rium with endogenous locations (such as ours), does one not use randomized

strategies to alleviate the non-convexity problem and to prove existence of

an equilibrium? Basically, there are two reasons not to use mixed strategies.

First, if one studies what happens after a randomization is realized, one can

easily end up at an infeasible allocation. For example, each �rm randomizes

over all possible parcels ex ante, but ex post, �rms might happen to pile up on

one interval, an ex post infeasible allocation. Mixed strategies also involve pre-

commitment of �rms to the parcels they get after randomization, and when

the random draw is realized, they might have more pro�ts with a di¤erent

strategy. The latter e¤ect is common to games allowing mixed strategies.

The second, and perhaps more important reason, is that the obvious equi-

librium with mixed strategies is where everyone is spread out uniformly by

randomizing over all locations: it is the Starrett theorem in the context of

randomization. Such an allocation clearly minimizes transport costs. There

is no agglomeration, and it is uninteresting just as in the standard Starrett

theorem. Equilibrium is an artefact of randomization. This is very similar to

what is proposed in Koopmans and Beckmann (1957) as the solution where

there is no equilibrium in their quadratic assignment model, and should be

rejected for the same reasons.

To be more precise, our model uses a very general setting, allowing a multi-

dimensional location space and multiple �rms using di¤erent types of labor to

produce di¤erent output commodities. Locations of all agents are endogenous
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as are prices and quantities. Firms anticipate the relocation of consumers,

but in�uence land prices through their location decisions. As we shall ex-

plain shortly, we stick as close to perfect competition as possible while retain-

ing existence of equilibrium. Firms use compact, convex sets of land while

consumers buy densities of land. It is assumed that each �rm can use only

one type of labor and produce only one type of output. With reference to

the labor economics literature, labor di¤erentiation can be viewed either as

general or speci�c human capital depending on the number of �rms using a

particular type of labor. Within this framework, we characterize the spatial

con�guration of �rms in equilibrium. Firms are adjacent to each other at any

equilibrium allocation. This is very similar to the principle of minimum di¤er-

entiation although the force that is driving agglomeration in our model is the

transportation cost of outputs. This result is used to prove existence and to

examine the determinacy of equilibrium. The proof of existence is unusual in

that it uses a mixture of bid rent and �xed point techniques. Concerning the

determinacy analysis, we use di¤erential topology techniques in combination

with the bid rent approach. This paper can be counted among the �rst appli-

cations of smooth economy techniques to urban economics. To our knowledge,

Berliant and Kung (2006, 2009) are the only predecessors, and they apply these

techniques to New Economic Geography models.

We show that whether or not equilibrium exists and whether or not it is

locally unique depend crucially on the relative numbers of outputs, types of

labor and �rms. The multiplicity of equilibria is positively associated with

the degree of labor di¤erentiation. Finally, an equilibrium is not necessarily

Pareto optimal in this model.

Loosely speaking, our main conclusion is as follows. When labor is not

completely di¤erentiated, in the sense that more than one �rm is drawing from

the same pool of labor, equilibrium might not exist; a counterexample (Ex-

ample 4) is provided in the Appendix. (This does not exclude existence of

equilibrium for other examples.) Once one has su¢cient conditions on labor

di¤erentiation for existence of equilibrium, generically there is a continuum of

equilibria. This derives from the classical idea that indivisibilities, particu-

larly in the order and location of �rms in our model, both inhibits existence

of equilibrium and, once equilibrium is found, allows variation in continuous

endogenous parameters without altering the order of �rms and without de-

stroying equilibrium.

The remainder of the paper is organized as follows. Section 2 sets up
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the model and provides the notation and basic de�nitions. In section 3, we

characterize the locations of �rms and consumers in equilibrium. It is unusual

to be able to do this analytically. Section 4 examines the determinacy of

equilibrium in this model. For given values of the exogenous parameters, we

�nd that, depending on the number of labor types, �rms and output goods, the

set of equilibria might be empty, might be �nite or might form a continuum.

Section 5 provides su¢cient conditions for existence of an equilibrium in the

model. These conditions, in turn, imply that generically the set of equilibria

forms a continuum. In section 6, we give an example showing that both welfare

theorems can fail. Section 7 concludes. An Appendix, available at the �rst

author�s web site, contains complementary illustrative examples and all proofs.

2 The general setting

The location space Z is a compact, convex subset of the Euclidean space <K .2

Land of density 1 is available in all locations in Z. There are V types of

labor, v = 1; :::; V . Each consumer is classi�ed in one category of labor. This

could, for example, be derived from the endogenous choice of human capital by

consumers as in Rosen (1983), Kim (1989) or Baumgardner (1988). However,

here we assume that labor heterogeneity is exogenous. There are s = 1; :::; S

goods and each �rm produces only one type of good s. Each worker of a

given type has the same utility function and is endowed with one unit of

labor but no consumption commodities. N v is the measure of consumers who

supply labor of type v. Each individual3 of type v chooses location z 2 Z,

land consumption qv(z) (where q(z) = [q1(z); :::; qV (z)]), consumption good

quantities Xv
s (z) in order to maximize utility U

v(qv(z); Xv(z)), where Xv(z)

is the vector [Xv
1 (z); :::; X

v
S(z)] and X(z) = [X

1(z); :::; XV (z)], under a budget

constraint that will be given later. The consumption set of each consumer

is the positive orthant of <s+1. We assume that utility is strictly monotonic

in all arguments and represents Cr di¤erentiably strictly convex preferences

(see Mas-Colell (1985, ch. 2.6)). We also assume that for any q > 0, X > 0,

U v(q;X) > 0 = U v(0; X) = U v(q; 0) = U v(0; 0), so any consumption (q;X)

with q and X strictly positive yields higher utility than any consumption on

the boundary of <s+1+ . For simplicity, there is no disutility from labor.

Each �rm uses only one type of labor, along with land, to produce exactly

2Typically, K = 1 or 2. With multi-story buildings, K = 3.
3In our notation, superscripts represent agents and subscripts represent commodities.
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one output commodity. For each s = 1; :::; S and v = 1; :::; V , there are M v
s

�rms producing type s commodity with type v labor, where Li;vs , Q
i;v
s and Y i;vs

are respectively the labor, the land input and the output of �rm i producing

good s using type v labor. Each �rm is thus characterized by a triple (i; s; v).

Here the index i runs from 1 to M v
s . De�ne the following vectors: Lvs =

[L1;vs ; :::; L
Mv
s ;v

s ], Ls = [L
1
s; :::; L

V
s ], L = [L1; :::; LS], Q

v
s = [Q

1;v
s ; :::; Q

Mv
s ;v

s ], Qs =

[Q1s; :::; Q
V
s ], Q = [Q1; :::; QS], Y

v
s = [Y 1;vs ; :::; Y

Mv
s ;v

s ], Ys = [Y 1s ; :::; Y
V
s ], Y =

[Y1; :::; YS]. The production function for �rm (i; s; v) is given by f
v
s (L

i;v
s ; Q

i;v
s ) =

Y i;vs . Firms using the same type of labor to produce the same commodity are

identical. We assume that f vs (�) is C
rwith strictly positive derivatives on <2++,

that D2f vs is negative de�nite, and that f
v
s (L

i;v
s ; 0) = 0.

Assuming constant returns to scale would not change the basic results but

would change supply functions to correspondences, and this would make the

di¤erential topology argument used for the determinacy of equilibrium much

more di¢cult.

In our model, absentee landlords are endowed with all of the land and all

of the pro�t shares but consume only produced goods. It is standard in the

literature of urban economics to employ absentee landlords to insulate the

model from income e¤ects in order to use a bid rent approach (see e.g. Fujita

(1989)). Our results are easily generalized to allow consumers to be endowed

with land or pro�t shares.4 We can also allow �absentee� shareholders (as

distinct from landlords) to have all the pro�t shares.

We assume that the market for all goods (including labor) except land are

competitive. This assumption of perfectly competitive markets will be made

formal in the statements of the consumer and producer optimization problems,

and is important in order to prove that equilibrium exists. As we will see later,

whatever the assumption on the transportation cost of goods, it is this assump-

tion of perfect competition that makes good prices location-independent. We

will discuss later the assumption that the land market is not competitive.

Consumers of type v purchase a density of land qv(z), whereas �rms will use

an area of land. Let � be Lebesgue measure on measurable subsets of <k. All

measure theoretic statements (such as �almost surely�) are made with respect

to this measure. Let d be a metric on <k. For any Lebesgue measurable A

4For that, one must include this extra revenue in the consumer budget constraint and

skip the analysis of the absentee landlord. This is called the public ownership model (see

Fujita (1989, ch.3)).
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and any � > 0, de�ne

B�(A) = fz 2 Z j inf
y2A

d(y; z) � �g and

g(A; �) = �(B�(A)).

Firms use Lebesgue measurable subsets of Z as inputs for production. Let C

be any collection of Lebesgue measurable subsets of Z satisfying the following

conditions:

(a) For each A 2 C there is a � > 0 such that B�(A) 2 C 8� 2 [0; �)

and g(A; �) is twice continuously di¤erentiable on [0; �).5

(b) Fix any C1;11 ; :::; C
Mv
s ;V

S 2 C. If some �rm is using a positive

quantity of land, then there exists a (possibly di¤erent) �rm (i; s; v) with

�(Ci;vs ) > 0 such that for every �0 > 0 there is an A 2 C, A � Ci;vs a.s.

with �(Ci;vs )� �
0 < �(A) < �(Ci;vs ) and

inf
x2Ci;vs

y2Cj;v
0

s0

kx� yk = inf
x2A

y2Cj;v
0

s0

kx� yk

for s0 = 1; ::; S; v0 = 1; :::; V ; j = 1; :::;M v
s ;8(j; s

0; v0) 6= (i; s; v)

For instance, if Z = [0; 1]K , the hyper-rectangles of the form [�; �]�[0; 1]K�1

aligned parallel to the axes in <K used below will satisfy these conditions, as

will many other collections. For assumption (b), the �rm parcel that contracts

is one at the edge of the economy. The idea behind this assumption is that

small expansions and contractions of parcels are possible, so calculus can be

used. Cantor sets violate this assumption.

If �rm i producing good s and using type v labor chooses a Ci;vs 2 C, then

Qi;vs = �(Ci;vs ).

Consumers pay a commuting cost to travel to work. For simplicity, com-

muting costs are only monetary costs and therefore there is no time cost of

commuting. Let t denote the vector of input requirements for one unit of

commuting distance, so the cost per unit is p(i; s; v) � t (where p(i; s; v) is the

vector of prices of the output goods, p(i; s; v) 2 <s+, t 2 <
s). Observe that

p(i; s; v) is a price vector at a �rm-market place so prices are �rm (and hence

location) dependent. Consumers of type v are employed only by �rms using

type v labor.

5It is easy to verify that this assumption holds for intervals when K = 1. It also holds

when K = 2 and a parcel is a disk, and when K = 3 and a parcel is a sphere. Many

other shapes can be accommodated as well. General metrics are employed here because,

for instance, the sup norm metric is useful for squares.
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We assume that every pair of �rms must be connected by a transport net-

work (the cost of connecting any pair of �rms is shared equally by each mem-

ber of the pair) and that all consumers purchase their consumption goods at

the location of a �rm, i.e. �rms are marketplaces.6 These assumptions mean

that transportation of goods takes place only between �rms, where consumers

purchase all their consumption commodities. The transportation network for

commodities will connect all �rms, even those producing the same good, since

local demand and supply of consumption commodities might not be balanced.

In the model, all markets are spatially global, but labor markets can di¤er due

to labor heterogeneity. Variable transport cost can create di¤erences in the

price of a consumption good across locations and �rms. That is the reason

p(i; s; v) is indexed by �rm. Later, we shall argue that competition forces p

to be constant across �rms and hence locations. Observe that the reason that

goods must be transported among �rms, and the reason that �rms must pay a

�xed and variable transportation cost, is that consumers use the �rms as mar-

ketplaces and, due to the boundary condition on preferences, want some of all

of the goods.

More formally, let � 2 <s denote the vector of marginal physical require-

ments for setting up half of a transportation network between two �rms, so

the cost per unit of distance to �rm (i; s; v) is p(i; s; v) � � . This is a �xed cost

independent of volume. Next we specify variable costs.

Let g
(i;s;v)
(j;s0;v0) represent the vector of net shipments of consumption goods

between two �rms and let T be a non-negative S � S matrix. Row s of

the matrix T gives the cost in terms of the S consumption goods (per unit

of distance) of shipping one unit of consumption good s to or from a �rm. A

diagonal non-negative matrix with entries less than 1 would be a Samuelsonian

�iceberg� transport technology.

Our assumption about the cost sharing rule means that this rule is essen-

tially equal division of the network transportation cost for connecting each

�rm to another. However, our results can be extended to arbitrary monotonic

and lower semi-continuous functions of this �xed cost. Relocation costs for

both �rms and consumers are zero.

We could employ a more general transportation technology as in Berliant

and Konishi (2000) which would specify a set of input requirements, each ele-

ment of which can produce one unit of transportation services. For simplicity,

6An alternative is to model marketplace structure as a public good for consumers; see

Berliant and Konishi (2000).
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we use the special case given above. The use of a more general technology will

not a¤ect the main results, as we shall explain in section 3 below. Let us now

de�ne two important concepts.

De�nition 1 Firm (i; s; v) and �rm (j; s0; v0) are adjacent if

inf
x2Ci;vs

y2Cj;v
0

s0

kx� yk = 0:

De�nition 2 Firm (i; s; v) and �rm (j; s0; v0) are connected if there is a list

of �rms such that �rm i is the �rst on the list and �rm j is the last on the list

and each �rm is adjacent to its predecessor and successor on the list.

We assume no transport cost between adjacent �rms. This implies no

transport costs between connected �rms, because otherwise �rms would simply

ship to adjacent �rms, and those �rms would re-ship to the next �rm. Thus,

zero transport costs between adjacent �rms actually implies zero transport costs

among connected �rms. Hence, we state the total cost for �rm (i; s; v) of a

transportation network between �rms as follows:

SX

s0=1

VX

v0=1

Mv0

s0X

j=1

p(i; s; v) � [� + T � g
(i;s;v)
(j;s0;v0)] inf

x2Ci;vs

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

where IX is the indicator function of the event X and X
(i;s;v)
(j;s0;v0) = fFirm (i; s; v)

is not connected to �rm (j; s0; v0)g. Notice that we separate the last two parts

of this expression, since �rms that are connected are not necessarily adjacent.

Observe that even when �rms are connected, commuting distance and thus

commuting cost of a worker to various �rms is not the same.

Let 	 be the constant (over location) unit price of land to �rms. The

idea that this must be constant will be explained after the statement of the

�rm�s optimization problem. Firm (i; s; v) maximizes its pro�t �vs (�rms using

the same input v and output s are identical) by solving the following problem,

taking as given the locations of other �rms. To give meaning to other �rms�

choices, let C
�(i;s;v)
s =

h
C1;11 ; :::; C

i�1;v
s ; Ci+1;vs ; :::; C

MV
S ;V

S

i
: Ci;vs 2 C represents

the choice of parcel. For now, we take good shipments g
(i;s;v)
(j;s0;v0) to be exoge-

nous, but shortly we shall see that T can be taken to be zero without loss of

generality, so g
(i;s;v)
(j;s0;v0) is immaterial.

max
Li;vs ;Ci;vs

�vs(L
i;v
s ; C

i;v
s ; C

�(i;s;v)
s ) (1)
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where

�vs(L
i;v
s ; C

i;v
s ; C

�(i;s;v)
s ) = ps(i; s; v) f

v
s (L

i;v
s ; �(C

i;v
s ))� w

vLi;vs � �(Ci;vs )	

�

SX

s0=1

VX

v0=1

Mv0

s0X

j=1

p(i; s; v) � [� + T � g
(i;s;v)
(j;s0;v0)] inf

x2Ci;vs

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

:

Notice that a �rm does not think that changing its location will a¤ect its

unit price of land 	 or any other price.

Observe that the pro�t function depends on the location of �rm (i; s; v)

and the locations of all other �rms through the fourth term of the RHS of (1).

This is the Nash assumption about equilibrium. When a �rm moves, it takes

as given the locations of other �rms. Here, in terms of location, consumers are

behaving competitively whereas �rm behavior is Nash. The concept of equilib-

rium we have here is a sort of a combination of the ones introduced by Fujita

and Thisse (1986) and Anderson and Engers (1994). Indeed, in the �rst paper

a land market is considered in the Hotelling model and the authors introduce

the possibility of workers� relocation in reaction to �rms� location decisions.

Thus, consumers are the followers in a Stackelberg game where �rms are the

leaders. In the second paper, �rms are price-taking but have Nash behavior in

location; consumer locations are �xed. It is important to highlight here that

our concept of equilibrium is Nash in location but �rms take all prices (good

prices as well as wages) as given. In other words, each �rm moves, taking

prices and the location of other �rms as given.

Observe moreover that, when a �rm changes its location and locates farther

away from other �rms, this �rm might think that its variable transportation

cost will go up but, since it is competitive (in the product market), it thinks

its output price won�t change. Therefore, even with the assumption of positive

variable transportation costs, good prices are not location dependent.

This implies location-independent (good and labor) prices. Thus, we have

a constant wage gradient, which is just a special case of allowing wages to vary

across locations. If wages are allowed to vary across �rm locations but agents

take the wage gradient as parametric, we would simply have more equilibria.

Furthermore, if wages vary with residential distance from a �rm, this is a form

of price discrimination and seems to be incompatible with perfect competition.

In this case, it is unclear what �rms think wages would be if they move.

Moreover, it seems unrealistic to assume that �rms wage-discriminate based

on the residence locations of worker/consumers.
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There are several alternative equilibrium concepts that could be used with

this model. We use the simplest, namely perfect competition, taking prices and

the actions of other agents as given, with one small deviation. We assume that

the price of land faced by �rms is constant across locations. An implication is

that it is independent of consumer bid-rent or the unit price of land paid by

consumers. Another implication is that, in equilibrium, the price of land faced

by �rms will be at least as high as the maximal bid-rent of consumers.

There are two reasons we make this assumption. First, the �rms know that

if they relocate, consumers will follow and bid up the price of land nearby.

Although it would be best to model this process explicitly, the resulting model

would be very complex and di¢cult to analyze. In particular, non-convexities

in reaction correspondences of �rms would make the analysis attempted here

impossible. Instead, we model this process implicitly through a constant price

of land for �rms.

Second, it is clear that at any possible equilibrium allocation, the bid-

rent curves of consumers are highest near a �rm and decline with distance

from a �rm. If �rms pay the price given by the highest bid rent for parcels

and have location-independent production functions, they will always want to

locate where rent is lowest, namely as far away from their current location as

possible. Such behavior is unlikely to lead to an equilibrium.

Perhaps the most natural alternative equilibrium concept is as follows.

There are two stages, and the solution concept is pure strategy subgame per-

fect Nash equilibrium. The second stage is an equilibrium under perfect com-

petition given �xed �rm parcels. The �rst stage is a simultaneous move Nash

equilibrium with �rms choosing the parcels that they will use in production

and will rent in the second stage. The �rms know perfectly how their choice

of parcel in the �rst stage will a¤ect equilibrium in the second stage, including

their land rent and the value of their output.

Although this equilibrium concept has intuitive appeal, there are three seri-

ous technical problems associated with it. First, the second stage competitive

equilibrium will not be unique in general. This presents problems for both re-

sults concerning existence of equilibrium and determinacy of equilibrium. Of

course, multiple equilibria in the second stage can cause non-convexities in (or

an ill-de�ned) �rst stage reaction correspondence. Possible remedies include

using mixed strategies in the �rst stage, re�ning second stage equilibria so that

they are unique, or imposing conditions on the economy so that second stage

equilibria are unique. Any of these solutions will either complicate matters or

13



limit the robustness of results substantially.

The second technical problem is that �rms might not be connected in an

equilibrium. Prices of mobile goods in the second stage can di¤er across lo-

cations, rendering the equilibrium concept very complex. Non-convexities in

�rst stage �rm reaction correspondences can result. Moreover, the arguments

we use for existence of an equilibrium and determinacy properties would no

longer work, since they take as given the locations of �rms.

The third technical problem with the alternative equilibrium concept is that

if �rms in the �rst stage choose a disequilibrium con�guration, for example if

two �rms decide to use the same parcel of land, then payo¤s are not well-

de�ned. The reason is that given such �rm location choices, the second stage

con�guration of �rms is not feasible, so there is no competitive equilibrium

associated with it.

For these reasons, we use the �rst equilibrium concept, employing (virtu-

ally) perfect competition. This can be seen as a special case of the alternative

equilibrium concept, where the transport cost faced by �rms is much larger

than the commuting cost faced by consumers, so that �rms will always choose

to form a connected set in equilibrium.

Let us turn to the consumer�s problem. A consumer of type v performs

the following optimization program taking as given prices, p = [p1; :::; pS], the

wage rate, wv, the integrable land rent, 	 : Z ! <+, and the location of all

�rms where Cvs = [C1;vs ; :::; C
Mv
s ;v

s ], Cs = [C1s ; :::; C
V
s ], C

v = [Cv1 ; :::; C
v
S] and

C = [C1; :::; CS].

max
Xv ;qv ;z

U v(qv; Xv) (2)

s:t: p �Xv + qv	(z) + p � t inf
y2Ci;vs

i=1;:::;Mv
s

s=1;:::;S

kz � yk = wv

Observe that there is only one wage for each labor type since consumers are

mobile and one unit of labor is supplied inelastically by each consumer. De�ne

w = [w1; :::; wV ].

Let us denote by Ri;vs = fz 2 Z j i; s 2 argmin
i0=1;:::;Mv

s
s0=1;:::;S

( inf
y2Ci

0;v

s0

kz � yk)g, the set

of locations from which �rm (i; s; v) draws its labor.

Let�s now consider the absentee landlord�s problem. LetXL = [XL
1 ; :::; X

L
S ],

�v = [�v1; :::; �
v
S] and � = [�

1; :::; �V ]. So, the absentee landlord utility function

is UL(XL), and we assume that it has the same standard properties as the
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consumer utility function. The absentee landlord program is therefore:

max
XL

UL(XL) s:t: p �XL =

Z

Z

	(z)dz +
SX

s=1

VX

v=1

M v
s �

v
s (3)

where XL(
R
Z

	(r)dr; �) is the �argmax� of (3).

The following are standard de�nitions.

IfD is a Lebesgue measurable subset of Z, then 1D is the indicator function

of the set D, namely 1D(x) = 1 if x 2 D and 1D(x) = 0 otherwise: Let n
v(z)

be the density of population of type v at location z, with n = [n1; :::; nV ]. For

the matrix T and the vector g, let T � g = [(T � g)1; :::; (T � g)S].

De�nition 3 A feasible allocation is a vector
�
C;L;X(�); q(�); Y;XL; n(�)

�

such that 8i; s; v; Ci;vs 2 C, Li;vs � 0, Y i;vs � 0; XL 2 <S+; and X : Z ! <S+,

q : Z ! <+ and n : Z ! <V+ are measurable functions, such that:

SX

s=1

VX

v=1

Mv
sX

i=1

1Ci;vs
(z) +

VX

v=1

nv(z)qv(z) = 1 almost surely for z 2 Z (4)

Z

Z

nv(z)dz = N v v = 1; :::; V (5)

Li;vs =

Z

Ri;vs

nv(z)dz s = 1; :::; S; v = 1; :::; V; i = 1; :::;M v
s (6)

Y i;vs = f vs (L
i;v
s ; �(C

i;v
s )) s = 1; :::; S; v = 1; :::; V; i = 1; :::;M v

s (7)

SX

s=1

SX

s0=1

VX

v=1

VX

v0=1

Mv
sX

i=1

Mv0

s0X

j=1

[� s + (T � g)s] inf
x2Ci;vs

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

(8)

+

Z

Z

Xv
s (z)n

v(z)dz+XL
s +

VX

v=1

Z

Z

nv(z)ts (inf
y2Ci;vs

i=1;:::;Mv
s

s=1;:::;S

kz � yk)dz =
VX

v=1

Mv
sX

i=1

Y i;vs s = 1; :::; S

Equation (4) is the material balance condition for land. Notice that one

unit of land is available at each point in Z and all land is used. This is due to

the fact that we have assumed that both preferences and production functions

are monotonic, which implies that land is productive. In one dimension, this

is a linear city. Our model can easily be generalized to an arbitrary supply

density for land. Equation (5) is the population balance condition. Equation
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(6) is the material balance condition for local labor markets.7 Equation (7)

is production feasibility and equation (8) is material balance for the product

markets. At a feasible allocation, �rm (i; s; v) is (almost surely) the only

employer of workers in Ri;vs .

De�nition 4 An equilibrium is a vector

(p�;	
�
;	�(�); w�; C�; L�; X�(�); q�(�); Y �; XL� ; n�(�))

such that
�
C�; L�; X�(�); q�(�); Y �; XL� ; n�(�)

�
is a feasible allocation, p� 2 <S+,

	
�
2 <+, 	

� : Z ! <+ is measurable, w
� 2 <V+, 	

�(z) = 	
�
almost surely for

z 2
S
[
s=1

V
[
v=1

Mv
s

[
i=1
Ci;v�s , and such that, for each s, for each v, for each i, Li;v

�

s and

Ci;v
�

s solve (1), and such that, for each v, and almost every z 2 Z, Xv�(z);

qv
�

(z) solve (2), and �nally such that XL� solves (3).

De�nition 5 An equal treatment Pareto optimum is a feasible allocation

�
C;L;X(�); q(�); Y;XL; n(�)

�

such that for each v, for each z and z0 with nv(z) > 0 and nv(z0) > 0;

uv = U v(qv(z); Xv(z)) = U v(qv(z0); Xv(z0)); and such that there is no feasible

allocation
�
C 0; L0; X 0(�); q0(�); Y 0; XL0 ; n0(�)

�
such that UL(XL0) � UL(XL) and

for all v and all z with nv
0

(z) > 0; U v(qv
0

(z); Xv0(z)) � uv, with strict in-

equality holding for a set of consumers of positive measure or for the absentee

landlord.

3 What does equilibrium look like?

Example 1, found in the Appendix, motivates our �rst result and gives us good

intuition about equilibrium in the case of two �rms and two types of workers.

We state the general result.8

7In general, it is possible that there are i, i0, s, s0, v such that �(Ri;vs \ Ri
0;v
s0 ) > 0,

namely that two �rms using the same type of labor draw it from the same locations, and

these locations have non-negligible overlap. If this were to happen, there would be a serious

problem in the part of the de�nition of a feasible allocation related to labor, necessitating

a more elaborate de�nition. However, we note that the de�nition of a feasible allocation

is not used in Theorem 1, while all remaining results in the paper employ the special case

where �rms use hyper-rectangles. In that special case, the set of workers with no unique

closest employer is of measure zero.
8All proofs are given in the Appendix. This Theorem is anything but trivial for the case

K > 1.
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Theorem 1 Fix any equilibrium land allocation for �rms, C. Then it has the

property that all �rms using positive Lebesgue measure of land are connected

(in the sense of De�nition 2).9 Thus, without loss of generality, we can take

equilibrium inter-�rm transportation costs to be zero.

The following comments are in order. First, in one dimension (K = 1, a

linear city), the city is monocentric since the �rms are connected. However,

contrary to the standard urban economics literature (Fujita (1989)), the Cen-

tral Business District (CBD) is not a point but a set of �rms interacting with

each other. It is in this sense the same kind of result as that obtained by Fujita

and Ogawa (1982). In two dimensions, (K = 2, a circular city for example),

the city can be monocentric or the �rms can form any connected set, including

an annulus or rectangle. We can have, for example, a circular city where all

�rms occupy all the locations on the fringe whereas the consumers reside inside

the ring.

Second, since a �rm takes everything as given except for transport costs

(variable or �xed, or both), it will seek to minimize them. Thus Theorem

1 will work even with positive variable transportation costs, provided that

these costs are zero when two �rms are connected. Thus variable costs can

be taken to be zero without loss of generality, since �rms will be connected in

equilibrium in any case. Now consider the case where variable transportation

costs are non-zero even when �rms are connected. Positive variable costs make

no di¤erence, in equilibrium, where they are absorbed by the producer. In

this case, they simply are drawn from pro�ts, and can only have the e¤ect

of reinforcing the agglomeration of �rms. An alternative assumption is that

they are passed on to consumers in the form of higher prices for consumption

goods. In this case, variable transport costs are irrelevant to a �rm�s decision

problem, since the �rm does not pay them. Once again, Theorem 1 applies

and �rms are connected in equilibrium due to the �xed set-up cost of the

transport network. Of course, intermediate cases, where variable transport

costs are partially passed through to consumers via higher prices and partially

absorbed by producers, are possible. Theorem 1 is robust to these variations

since variable transport costs only serve to reinforce the agglomeration of �rms.

Variable costs will only drive �rms together or, if costs are passed to consumers,

be neutral.

Third, the assumption of zero transport costs between connected �rms

is not necessary to obtain Theorem 1. We simply must assume that total

9Any �rm using zero Lebesgue measure of land is shut down.
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transport costs for a �rm are minimized when the �rm is connected to every

other. For example, we could add a constant to the transport costs between

�rms, independent of location. If two �rms are connected, then the transport

cost is just this constant. If the two �rms are not connected, then it is the

constant plus the cost de�ned in section 2. This obviously leads to no alteration

in the result and proof of Theorem 1. It will also be obvious that results in

sections 4, 5 and 6 will still be valid, provided that the constant does not

exceed a �rm�s pro�ts.

More generally, the result given in Theorem 1 holds when the transporta-

tion cost function for a �rm is any monotonic increasing function of the pair-

wise (closest point) distances between the �rm in question and every other

�rm, except that it is assumed that the minimum of the function is attained

when all �rms are connected. In other words, transportation cost is a func-

tion of the entire con�guration (speci�cally, when all �rms are connected), not

just pairwise distances. This function is lower semi-continuous, but it might

not be continuous. The addition of a constant to the cost function given in

section 2 is a special case of this, as speci�ed just above. The result can be

extended even further. For example, consider the case when the location space

is 2 dimensional. Assume that the transportation cost of a �rm is equal to a

monotonic function of pairwise distances between it and every other �rm ex-

cept in the case when the con�guration of �rm locations (i.e. the land they

use) is convex; in the latter case we assume that the function reaches its min-

imum (as in the case of connected �rms above). Then the same proof gives

us that in any equilibrium (if it exists), the con�guration of �rms is convex.

Of course the question of existence is then more di¢cult, since fewer con�gu-

rations of �rms are possible in equilibrium, so (as we shall see) labor must be

more di¤erentiated to give enough freedom in endogenous variables to prove

that such an equilibrium exists. What we are saying, in essence, is that the

equilibrium con�guration is driven by assumptions about the transport costs

faced by �rms. The assumptions, in turn, are informed by our understand-

ing of real world cost functions as well as common sense, but variations are

certainly compatible with the model and the techniques. Therefore, we can

force any con�guration of �rms we choose as cost-minimizing to be a necessary

condition for an equilibrium using the ideas above.

Last, at an equilibrium in which all �rms are connected, the land price of

any �rm inside the interval (in one dimension) is constant and at least as large

as the bid rents at the boundaries of the two extreme �rms. In equilibrium, it
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is indeed not possible that any �rm has a lower land price since the one next to

it will be induced to move into the land area of the �rm in question if the land

price is lower. To see this, consider an �equilibrium� where land prices are not

constant across connected �rms. If land price is decreasing at the boundary

of the land used by a particular �rm, and if this �rm expands its land use

in the direction where the price is decreasing, the �rm is not maximizing its

pro�t since the marginal revenue product of land exceeds its cost. Although

the �rst order conditions for pro�t maximization of this particular �rm might

be satis�ed at the �equilibrium� allocation, a marginal expansion of the �rm

land usage will yield greater pro�t since the second order conditions for pro�t

maximization will not be satis�ed when land price decreases. Therefore, equi-

librium land price is constant locally around this boundary of the �rm�s land

parcel. Moreover, our de�nition of equilibrium requires that the price of land

is constant within a �rm�s parcel. In fact, if it relocates it thinks the land price

is constant and the same as at its current location.

4 Determinacy of equilibrium

Examples 2 and 3, contained in the Appendix, illustrate the determinacy prop-

erties of equilibrium. We now study the general case by examining the di-

mension of the set of equilibria (the equilibrium manifold) for a �xed set of

exogenous parameters. First, let us de�ne the bid rent functions.

The bid-rent approach is a well-known technique in urban economics using

duality theory to �nd the maximal willingness to pay for land at each loca-

tion (see Fujita (1989)). The consumer with maximal willingness to pay at a

location will live there in equilibrium. Our innovations are to combine it with

di¤erential topology methods for use in determinacy analysis, and to com-

bine it with �xed point methods for use in proving existence of equilibrium.

Moreover, we extend bid-rent from a one dimensional to a multi-dimensional

tool.

Let Z = [0; 1]K . Let �rm (i; s; v) use the hyper-rectangle Ci;vs � [!h; !h+1]�

[0; 1]K�1 where h =
P
s0<s

P
v0<v

M v0

s0 + i. In this way, �rms are always connected.

Then Qi;vs � !h+1 � !h, and let ! = (!
[
SP
s=1

VP
v=1

Mv
s ]+1

+ !1)=2 be the midpoint of

�rm land use.

For this subsection only, we must alter our commuting cost function. The

reason is that, as speci�ed, it is not C1 at zero distance. Thus, for this sub-
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section, we will take it to be a general C1 function t : <+ ! <s+ that is

non-decreasing. For example, t(�) could be quadratic.

De�nition 6 The bid rent function for a type v worker at a given location z

is de�ned to be:

�v(z; p; wv; Cv; uv) (9)

= max
Xv ;qv

f[wv � p �Xv � p � t( inf
y2Ci;vs

i=1;:::;Mv
s

s=1;:::;S

kz � yk)]=qv j U v(qv; Xv) = uvg

De�ne Xv(z; p; wv; Cv; uv) and qv(z; p; wv; Cv; uv) to be the �argmax� of (9).

Of course, there might not be a solution to (9).10 This can happen in several

di¤erent ways, generally at boundaries. For example, uv might specify a level

of utility above the supremum utility in the range of the utility function. In

that case, one would want to set �v = 0, qv = 1 and Xv = 1. Another

possibility is a negative value for �v, which does not cause problems and is

thus permissible. If the price of some consumption goods are zero, then one

would want to set consumption of those goods to in�nity, consumption of all

other goods (including land) to zero, and bid-rent at in�nity. Finally, if utility

were set at its in�mum, then one would want to de�ne all consumption levels

to be zero and bid-rent to be in�nite.

These boundary problems have no e¤ect on determinacy analysis, which is

next, but can a¤ect the proof of existence of equilibrium. The reason there

is no impact on determinacy analysis is that we will restrict our analysis to

interior (non-zero) prices and utility levels. We only prove that the system is

smooth on this domain; equilibria must reside in this region, so determinacy

analysis can proceed where variables do not hit boundaries. Obviously, to

prove that an equilibrium exists, behavior of the system on boundaries matters.

However, rather than worry about de�ning bid rent at all of these boundaries,

it is easier simply to de�ne excess demand correspondences directly at these

boundaries, and be sure that they are upper-hemicontinuous. We shall do this

in the proof of Theorem 4.

Since �rms are connected in the spatial arrangement we have postulated,

transportation (but not commuting) cost can be neglected. This simpli�es

matters substantially. The optimization problem (1) of �rm (i; s; v) becomes:

max
Li;vs ;Qi;vs

�vs = ps fs(L
i;v
s ; Q

i;v
s )� w

vLi;vs �Qi;vs 	 (10)

10This problem is usually not addressed by models using the bid-rent approach, but should

be. We are grateful to Guy Laroque for pointing this out.
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where 	 will be the (uniform) price of land for �rms. De�ne �vs(ps; w
v;	) to be

the maximum and de�ne Li;vs (ps; w
v;	) and Qi;vs (ps; w

v;	) to be the �argmax�

of (10), all of which exist if wv and 	 are positive. Given our assumptions

on production, if a solution to (10) exists, it is unique. Given Qi;vs (ps; w
v;	),

de�ne Ci;vs (ps; w
v;	) to be the hyper-rectangle given above De�nition 6.

Of course, as in the case of bid rent (9), there might not be a solution to

(10) when the price of an input is zero. Once again, these boundary problems

have no e¤ect on determinacy analysis, which is next, but can a¤ect the proof

of existence of equilibrium. Thus, we shall take up this issue in the proof of

Theorem 4.

We begin by restating the set of equations that de�ne equilibrium. The

goal, as in Berliant and Kung (2006), is to reduce the number of equations and

endogenous variables from a continuum to a �nite number. That is why we

use bid rent. Substituting demands and supplies into the feasibility conditions

(4)�(8) and using (9) and (10), we obtain:

SX

s=1

VX

v=1

Mv
sX

i=1

1Ci;vs (ps;wv ;	)
(z) +

VX

v=1

nv(z)qv(z; p; wv; Cv; uv)� 1 = 0 (11)

almost surely for z 2 Z

Z

Z

nv(z)dz �N v = 0 v = 1; :::; V (12)

Li;vs (ps; w
v;	�)�

Z

Ri;vs

nv(z)dz = 0 s = 1; :::; S; v = 1; :::; V; i = 1; :::;M v
s

(13)

Y i;vs = f vs
�
Li;vs (ps; w

v;	); �(Ci;vs (ps; w
v;	))

�
s = 1; :::; S; v = 1; :::; V; i = 1; :::;M v

s

(14)
VX

v=1

Z

Z

Xv
s (z; p; w

v; Cv; uv)nv(z)dz +XL
s (z; p; w

v; Cv; uv) (15)

+

VX

v=1

Z

Z

nv(z)ts (inf
y2Ci;vs

i=1;:::;Mv
s

s=1;:::;S

kz � yk)dz =

VX

v=1

Mv
sX

i=1

Y i;vs s = 1; :::; S

We assume that for �xed output prices, �xed wages, �xed locations of �rms,

and �xed utility levels, all the consumer bid rent functions are well-behaved in

the sense of Fujita (1989, de�nition 4.1, p.99) and that each pair of bid rent

functions crosses on a set of measure zero. A related assumption is that bid
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rent functions can be ordered by relative steepness (see assumption 4.3, p.102

in Fujita (1989)). Our de�nition is di¤erent from Fujita�s since consumers

work in and thus commute to di¤erent places while in Fujita they all work in

the same place (the CBD). Formally, the assumption is:

8v 6= v0; 8p; wv; wv
0

; Cv; Cv
0

; uv; uv
0

almost surely for z 2 Z n
S
[
s=1

Mv
s

[
i=1
Ci;vs

@�v(z; p; wv; Cv; uv)

@z
6=
@�v

0

(z; p; wv
0

; Cv
0

; uv
0

)

@z

We use this assumption in order to be sure that the bid-rent functions of con-

sumers do not coincide on an open set of locations. For if they were to coincide,

the bid rent approach would not lead to a unique distribution of population.

In this case, we would have to deal with aggregate demand correspondences

instead of functions and both determinacy and equilibrium analysis would be

much more complicated, but the results would likely be similar. Our assump-

tion would follow, for instance, if consumers have Cobb-Douglas utilities where

di¤erent types of workers have di¤erent parameters attached to land consump-

tion. We conjecture that our assumption is generic in utilities, though that

idea is far removed from the point of this work.

We also want land consumption for workers and �rms, composite good

consumption and �rm labor demand to be well-de�ned as functions of pro�t

levels, utility levels, wages and prices. That is the next step, and we will

obtain this result in Lemma 1 below.

We reformulate the equilibrium conditions using a bid rent approach (see

e.g., Fujita and Ogawa (1982) or Fujita (1989)).

Let � : Z�<S+�<
V
+�C

SP
s=1

VP
v=1

Mv
s

�<V ! < be an arbitrary smooth function

(we write �(z; p; w; C; u), where u = [u1; :::; uV ] are utility levels) so that for all

(p; w; C; u), @�(z; p; w; C; u)=@z1 < 08 z1 < !; @�(z; p; w; C; u)=@z1 > 08z1 >

!; and inf
z2Zn

S
[
s=1

V
[
v=1

Mv
s
[
i=1

Ci;vs

�(z; p; w; C; u) � sup

z2
S
[
s=1

V
[
v=1

Mv
s
[
i=1

Ci;vs

maxv=1;:::;V [�
v(z; p; wv; Cv; uv)]:

The purpose of the function � is to stand in for the maximal bid-rent function,

since the latter function is not smooth.11 The restriction on the slope of �

will ensure that when the price of land paid by the �rms, 	, is too low, there

is excess demand for land. If it is too high, there is excess supply. We let


 � 1 be a variable that will scale �. Once we have some function � satisfying

11An example is �(z; p; w;C; u) = (z1 � !)2 + �(p; w;C; u) where � is smooth and

�(p; w;C; u) � sup

z2
S
[
s=1

V
[
v=1

Mv
s
[
i=1

C
i;v
s

maxv=1;:::;V [�
v(z; p; wv; Cv; uv)] pointwise on its domain.
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the requirements just above, 
 � � will also satisfy these requirements, leading

to another degree of indeterminacy.

Let

Zv = fz 2 Z n
S
[
s=1

V
[
v=1

Mv
s

[
i=1
Ci;vs j 
 � �(z; p; w; C; u) � 	

and 0 � �v(z; p; wv; Cv; uv) = max
v=1;:::;V

[�v(z; p; wv; Cv; uv)]g

[fz 2
S
[
s=1

V
[
v=1

Mv
s

[
i=1
Ci;vs j 
 � �(z; p; w; C; u) > 	

and 0 � �v(z; p; wv; Cv; uv) = max
v=1;:::;V

[�v(z; p; wv; Cv; uv)]g

Since we shall employ Walras� law in the context of the bid-rent approach,

we must de�ne (out of equilibrium) rent collections:

R(p; w; C; u;	) �

VX

v=1

Z

Zv

�v(z; p; wv; Cv; uv)dz +	 � �(
S
[
s=1

V
[
v=1

Mv
s

[
i=1
Ci;vs )

This is consistent with (3) in equilibrium.

The remaining equilibrium equations are
Z

Zv

1

qv(z; p; wv; Cv(ps; wv;	); uv)
dz �N v = 0 v = 1; :::; V (16)

Li;vs (ps; w
v;	)�

Z

Ri;vs \Zv

1

qv(z; p; wv; Cv(ps; wv;	); uv)
dz = 0 (17)

s = 1; :::; S; v = 1; :::; V; i = 1; :::;M v
s

VX

v=1

Z

Z

Xv
s (z; p; w

v; Cv(ps; w
v;	); uv)

qv(z; p; wv; Cv(ps; wv;	); uv)
dz +XL

s (R; �) (18)
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v=1
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��
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where equation (19) is the market clearing condition for land under the bid

rent approach.

We need to show that the LHS of equations (16)�(19) are continuous func-

tions for the proof of existence and smooth functions for determinacy analysis.

De�ne


� =

(
(p; w;	) j

SX

s=1

ps +
VX

v=1

wv +	 = 1; ps > 0; w
v > 0;	 > 0; s = 1; :::; S; v = 1; :::; V

)

and u� = f(u1; :::; uV ) 2 <V+ j u
v > 0 for v = 1; ::; V g.

We recapitulate our key assumptions here for completeness.

Lemma 1 Suppose that r � 1 and for each v, U v is Cr+1 di¤erentiably strictly

convex (and thus has no critical point). Suppose that for each s and v, f vs is

Cr+1 and that D2f vs is negative de�nite (thus f
v
s is strictly concave). Suppose

that for each (z; p; wv; Cv; uv) and wv
0

; Cv
0

; uv
0

, @�
v(z;p;wv ;Cv ;uv)

@z
6= @�v(z;p;wv

0

;Cv
0

;uv
0

)
@z

.

Suppose that commuting cost as a function of distance to a �rm, t : <+ ! <s+,

is Cr with @ts
@r
� 0 for all s. Finally, restrict attention to those allocations

where �rms using each type of labor v are connected. Then the equation sys-

tem (16)�(19) is Cr on domain 
� � u�.12

To examine determinacy of equilibrium we use the implicit function theo-

rem (see Mas-Colell (1985, theorem C.3.2, p.20)). If zero is a regular value of

the set of functions de�ned by the LHS of equations (16)�(19), then by the

implicit function theorem the set of equilibria forms a manifold of dimension

equal to the number of unknowns minus the number of equations. Any reg-

ular parameterization (see Mas-Colell (1985, de�nition 5.8.12, p.226)) of the

economies de�ned by the LHS of equations (16)�(19) will imply that zero is a

regular value generically in the parameters; see Mas-Colell (1985, proposition

8.3.1, p.320). An example of a regular parameterization of our system can be

found in our Appendix.

This is the point at which the results for models with location, such as this

one, begin to diverge from those more standard models without location. First,

12For the usual reasons, equilibria will never lie on the boundary of 
� � u�, so we do

not need to examine behavior of our system on the boundary of 
��u� for the equilibrium

determinacy analysis that follows.
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notice that there will be a di¤erent equilibriummanifold for each order of �rms.

In essence, the set of all equilibria will be the union of these manifolds. Second,

there will be a distinction between the dimension of the equilibrium manifold

under symmetry of the con�guration of �rms as opposed to asymmetry. This

latter subject requires a de�nition.

De�nition 7 If for all v = 1; :::; V and s = 1; :::; S, except for one (v0; s0),

M v
s = 2 or M v

s = 0,13 and either M v0

s0 = 1 or M v0

s0 = 0, then we call the

production sector symmetrizable. An order of �rms is a list of all �rms by

type (v; s) in the economy. An order is called symmetric if it reads the same

from left to right as from right to left.

The idea behind this de�nition is that a production sector is symmetrizable

if and only if one can create a symmetric distribution of �rms, placing the

exceptional �rm (v0; s0) (if it is present) in the middle of the interval and

allocating each pair of identical �rms on either side of the exceptional �rm

so as to create a symmetric distribution. When this is possible, determinacy

properties are di¤erent.

Theorem 2 Let K = 1; Z = [0; 1] and suppose that the production sector is

not symmetrizable. Let r > min(0; V �
SP
s=1

VP
v=1

M v
s +2).

14 Take any Cr regular

parameterization of the economies de�ned by (16)�(19).15 Fix any order of

�rms (from left to right). Then generically in parameters, the set of equilibria

forms a manifold of dimension:

V �

SX

s=1

VX

v=1

M v
s + 2 (20)

This theorem is in accordance with Examples 2 and 3, found in the Ap-

pendix. Indeed, in Example 3 where S = 2; V = 2 and
SP
s=1

VP
v=1

M v
s = 2, we

obtain two dimensions of indeterminacy, which is consistent with formula (20)

(generically). Now consider Example 2 with S = 2; V = 1 and two di¤erent

�rms. It is easy to check by using formula (20) that there is one dimension of

indeterminacy (generically).

13This particular kind of economy follows the biblical story of Noah�s ark.

14Since V �
SP
s=1

VP
v=1

Mv
s , r � 3 is su¢cient.

15For example, use the lemma to obtain such a Cr system.

25



This means that existence and determinacy of equilibrium are very sensitive

to both the degree of labor di¤erentiation and the number of �rms. What is

the intuition about why the degree of indeterminacy is expressed according to

formula (20)? Consider the �rms with the same labor input and same output.

These �rms must have the same pro�t level in equilibrium. It is the number

of such equal pro�t constraints that a¤ects the formula (20). So as labor

becomes more di¤erentiated, there are fewer such constraints. Hence, the more

di¤erentiated the labor, the larger the variety of equilibria. Another way of

interpreting the intuition behind formula (20) is that identical �rms must o¤er

the same wages to the same workers and this cannot compensate for locational

and hence commuting cost di¤erences between �rms.

Theorem 3 Let K = 1; Z = [0; 1] and suppose that the production sector

is symmetrizable. Fix any symmetric order of �rms. Let r > min(0; V �

[
SP
s=1

VP
v=1

M v
s ]=2+1) if the number of �rms is even, and r > min(0; V�[

SP
s=1

VP
v=1

M v
s+

1]=2 + 1) if the number of �rms is odd. Take any Cr regular parameterization

of the economies de�ned by (16)�(19). Then generically in parameters, the

set of equilibria forms a manifold of dimension:

V � [

SX

s=1

VX

v=1

M v
s ]=2 + 1 (21)

if the number of �rms is even and

V � [

SX

s=1

VX

v=1

M v
s + 1]=2 + 1 (22)

if the number of �rms is odd.

What distinguishes symmetrizable production sectors is that we only need

to deal with half (possibly plus one) the number of �rms. This means that

the number of constraints in a symmetric equilibrium, particularly in (17), can

be dropped by half (modulo the central �rm). The reason the last term in

the indeterminacy formula is 1 for this theorem whereas it�s 2 for the previous

theorem is that under symmetry, !, the midpoint of �rm land use, is �xed,

whereas under asymmetry, it�s not.

In the general case when Z is not necessarily [0; 1], the analysis above

applies, but it is very di¢cult to parameterize the location of �rms. When

Z = [0; 1]K , formula (20) gives only a lower bound on the dimension of the
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equilibrium manifold, since �rms might not be con�gured in the linear fash-

ion that we have postulated. Con�gurations that are not rectangular are also

possible. At the end of section 3, we discussed various con�gurations of �rms.

In the most general case when Z is an arbitrary compact, convex subset of

<k, Theorem 1 tells us that �rms will be connected but the con�guration can

vary in a multitude of ways. Hence, it is di¢cult to draw general conclusions

about the determinacy properties of equilibrium when location is multidimen-

sional, except for noting that the general expression for the dimension of the

equilibrium manifold becomes larger as labor di¤erentiation increases.

5 Existence of equilibrium

Putting aside the problem of multiplicity of equilibria, we next provide su¢-

cient conditions for the set of equilibria to be non-empty. In the Appendix

we provide Example 4 where formula (22) tells us that equilibria should be

locally unique (as the dimension of the equilibrium manifold is equal to zero),

but the set of equilibria is in fact empty. This might seem paradoxical given

formula (22), but the resolution, of course, is that the empty set is a manifold

of any dimension.

Theorem 4 Fix K, a positive integer. Let Z = [0; 1]K. Suppose that labor is

completely di¤erentiated, that is V =
SP
s=1

VP
v=1

M v
s . Suppose that the assumptions

of Lemma 1 hold with r = 1. Then there exists an equilibrium.

We have an analogous result when the production sector is symmetrizable,

since in that case only half the �rms matter.

Theorem 5 Fix K, a positive integer. Let Z = [0; 1]K. Suppose that the

production sector is symmetrizable, and that labor is completely di¤erentiated

in each half-economy, that is

V = [
SX

s=1

VX

v=1

M v
s ]=2 (23)

if the number of �rms is even and

V = [
SX

s=1

VX

v=1

M v
s + 1]=2 (24)
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if the number of �rms is odd. Suppose that the assumptions of Lemma 1 hold

with r = 1. Then there exists an equilibrium.

In cases not covered by these two Theorems, it is easy to generate coun-

terexamples like the one in the Appendix. If two �rms are drawing their labor

supply from the same pool of commuters, one of the �rms is going to be far-

ther away from the pool and will never be able to hire the labor it demands at

any wage. Example 4 shows that the assumptions on labor di¤erentiation in

Theorems 4 and 5 are tight. When these conditions are satis�ed, Theorems 2

and 3 imply (generically) that there is a continuum of equilibria.

The method of proof can be extended to more general settings. For in-

stance, Z can be more general. In more general settings, one must be careful

with land parcels used by �rms since they can hit the boundary of Z; that

is the reason we use the particular connected spatial con�guration of �rms in

this theorem.

Observe also that the assumption that markets for all goods (including

labor) except land are competitive is used to prove Theorem 1. Indeed, our

equilibrium concept is such that each �rm takes all prices as given. If product

and labor markets were not competitive, i.e. �rms do not take all prices as

given, then �rm reaction correspondences would not be convex valued since

given prices, a �rm�s pro�t could be maximized at two di¤erent locations. In

this case, the existence of equilibrium could not be proved in the way we have

done it.

6 Welfare properties of equilibrium

Theorem 6 An equilibrium allocation might not be Pareto optimal.

The proof (found in the Appendix) proceeds by presenting an example

where the equilibrium allocation is not Pareto optimal. This is accomplished

by taking an equilibrium where the only two �rms in the economy are adjacent,

pulling them apart a little bit, and putting some consumers in between the

�rms, thereby reducing commuting costs. Although transportation costs rise,

parameters are taken so that this is more than o¤set by the drop in commuting

cost.

Notice that, if a Pareto optimum exists, it will not have adjacent �rms (for

the reason given in the proof of Theorem 6), and thus will not be an equilibrium
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allocation. Therefore, the second welfare theorem will also fail for this model

and this example, provided that a Pareto optimum exists for this example. We

do not prove that a Pareto optimum (equal treatment or otherwise) exists for

this example since such a proof is both technical and peripheral to our work

here.

Notice also that even though �rms and consumers are price takers in all

markets, we still have a market failure. More precisely, when a �rm moves it

anticipates the relocation of its workers, but it does not take into account that

it a¤ects workers� commuting cost and hence utility levels. In a certain sense,

there is an externality that causes a market failure.

7 Conclusion

This article has explained city structure driven by labor di¤erentiation and

transportation costs. We have examined the characteristics, welfare properties,

existence and determinacy of equilibrium.

It is immediately apparent from section 6 that there is a role for the gov-

ernment in improving consumer welfare relative to an equilibrium allocation,

since the two welfare theorems can fail. In the one dimensional example, the

government might be able to improve welfare by separating �rms and reducing

consumer commuting cost. It would be interesting to examine this further in

a more general setting.

Theorem 1 provides a testable implication of the model: that �rms are con-

nected in equilibrium. Comparative static properties of the model are within

reach but messy. One can see that the more di¤erentiated the labor, the

larger the variety of equilibria. For example, in the homogeneous labor case

for K = 1, V = 1, S = 2, supposing that there are 3 �rms producing each of

the two products, then there is no equilibrium. When labor is di¤erentiated,

K = 1, V = 6, S = 2 so that each �rm uses a unique type of labor, then

generically there is a continuum of equilibria. Thus, the variety of city types

is positively related to the degree of labor di¤erentiation, a second testable

implication of the model. The collection of essays in Pereira and Mata (1996)

provide interesting data on this subject for Portugal.

Our results provide an illustration of the manifestations of indivisibilities

in location models. Due to the discreteness with which �rms must be ordered

in one dimension, the set of equilibria for �xed values of other exogenous

parameters can skip from emptiness to a continuum as labor di¤erentiation is
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increased.

Our model can be extended in the following way. We have taken as ex-

ogenous the general and speci�c human capital of workers. We can make the

choice of human capital endogenous by adding a �rst stage to the model in

which each worker chooses an investment in human capital, with perfect fore-

sight, that will determine their skill and type in the second stage. The �rst

stage can be handled in a standard way, for example as in Rosen (1983). The

second stage is the model examined in the present paper where the popula-

tions of the various types of workers are endogenous and determined in the

�rst stage. We intend to examine this more elaborate model in the future.
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8 Appendix

8.1 Examples

Example 1 Two di¤erent �rms and two di¤erent types of workers: equilib-

rium with adjacent �rms.

Take K = 1, Z = [0; 1]: There are two �rms; �rm 1 produces good 1

using type 1 labor and �rm 2 produces good 2 using type 2 labor. Hence,

we have: S = 2, V = 2, M1
1 = 1, M2

2 = 1, M2
1 = 0 and M1

2 = 0. We will

simplify the notation and omit some of the subscripts and superscripts. The

transportation technologies are given by [t; 0] (for consumers) and [� ; 0] (for

�rms), where good 1 is taken to be the numéraire. There is a �xed transport

cost but no variable cost. Assume the utility and the production functions are

respectively equal to:

U v(qv; Xv) = (qv)1=3(Xv
1 )
1=3(Xv

2 )
1=3 v = 1; 2

fs(Ls; Qs) = (Ls)
1=4(Qs)

1=4 s = 1; 2

We omit the superscript since there is one �rm of each type and s = v. In

this example, the pro�t function of �rm 1 reduces to:

�1 = L
1=4
1 (z+1 � z

�
1 )

1=4 � w1L1 �

z+1Z

z�1

	(z)dz � �(z�2 � z
+
1 ) (25)

where Cv = [z
�
v ; z

+
v ]; v = 1; 2 and without loss of generality we take �rm 1 on

the left and �rm 2 on the right. Observe that we use here a general formulation

of the rent function 	(z); we will impose our assumption concerning the �rm�s

view of the price of land shortly, as we wish to explain it in the context of this

example.

Since a consumer/worker consumes both goods but can work only in the

�rm using labor type v to produce good s = v, we can study the optimization

problem of type v workers and the optimization problem of the �rm where

they work, denoted by �rm v. Thus, the budget constraint for a type v worker

working in a �rm v reduces to:

Xv
1 + p2X

v
2 + q

v	(z) + t
�
minf

��z+v � z
�� ;
��z�v � z

��g
�
= wv v = 1; 2 (26)

By combining the �rst order conditions of the worker�s program, we obtain:

qv(z) =
1

3

�
wv � t [minfjz+v � zj ; jz

�
v � zjg]

	(z)

�
v = 1; 2 (27)
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Workers of type v are indi¤erent between locations z+v and z
�
v so if they live

at both locations the rents must be the same. We have therefore:

	(z+v ) = 	(z
�
v ) v = 1; 2 (28)

It is a necessary condition if consumers of type v are to live on both sides of

�rm s = v when solving (2).

Maximizing �v with respect to z
+
v ; z

�
v and Lv yields:

1

4
L1=4v (z+v � z

�
v )

�3=4 �	(z+v ) + � = 0 v = 1; 2 (29)

1

4
L1=4v (z+v � z

�
v )

�3=4 �	(z�v ) = 0 v = 1; 2 (30)

1

4
L�3=4v (z+v � z

�
v )

1=4 � wv = 0 v = 1; 2 (31)

Equation (28) implies that, independent of the location of the �rm, in equilib-

rium land rent at the endpoints are equal to the same constant. We assume

that land price is constant in the interval Cv = [z
�
v ; z

+
v ], v = 1; 2. As we will

see, this will be consistent with equilibrium. Under this assumption, the �rm

perceives that, no matter where it locates, and accounting for the movement

of consumers (who behave competitively) the unit price of land is always the

same. Combining (29) and (30) yields:

	(z�v ) + � = 	(z
+
v ) v = 1; 2 (32)

Actually, (32) is a necessary condition for Cv = [z
�
v ; z

+
v ] to be pro�t maximiz-

ing, that is, to prevent a deviation by �rm v. This condition �rst appeared

in Berliant and Fujita (1992) in the context of Alonso�s discrete model of con-

sumer location. The intuition and reasons for its presence are the same in this

model and Alonso�s model. Consider altering �rm 1�s parcel by removing a

marginal piece of land from the side of the parcel further away from �rm 2

and adding a marginal piece of land to the side of the parcel closer to �rm

2; this will not a¤ect output or revenue of �rm 1. Due to the �xed cost of

the transportation of goods, the �xed transportation cost will decrease by � .

So, at a pro�t maximum, the absolute di¤erence between the price of land at

either end of the parcel of �rm 1 must be � .

Now, suppose that type v workers locate on both sides of �rm v, i.e., at

z+v and z
�
v . Then equations (28) and (32) are contradictory. What is going on

here? The implication is that workers of type 1 can only reside on one side of

�rm 1 and similarly for �rm 2.
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Recalling equation (25) and keeping the size of the land parcel used by �rm

v constant, all the terms of the pro�t function are constant except the �xed

transportation cost of commodities. Since �rms are maximizing pro�t, in Nash

equilibrium each �rm will choose to be adjacent to the other.

In the next two examples, we use Cobb-Douglas utility and production

functions, a one dimensional location space (K = 1 and Z = [0; 1]), and

transportation technology given by [t; 0] (for consumers) and [� ; 0] (for �rms),

so that transport and commuting cost are paid in terms of good 1 only. Good

1 is taken to be the numéraire. There are no variable costs. Contrary to

example 1, we do not want to examine what equilibrium looks like (since by

Theorem 1 we know that all �rms are connected in equilibrium), but instead

we want to examine its determinacy properties. For that we consider two

examples corresponding to two di¤erent cases: a one dimensional continuum

of equilibria and a two dimensional continuum of equilibria.

Example 2 Two di¤erent �rms and homogeneous workers: the case of a one

dimensional continuum of equilibria.

There are two di¤erent �rms using the same type of labor V = 1 to produce

di¤erent outputs s = 1; 2. In equilibrium, the two �rms are connected (The-

orem 1) and the transport cost of goods is zero. We have therefore: S = 2;

V = 1; M1
1 = 1; M

1
2 = 1; M

2
2 = 0 and M

2
1 = 0. As in example 1, land parcels

used by each �rm i = 1; 2 are denoted by C1 = [z�1 ; z
+
1 ] and C2 = [z�2 ; z

+
2 ].

Without loss of generality, we take �rm 1 on the left and �rm 2 on the right

so that the location of each �rm is denoted by zi, i = 1; 2 with zi = z�1 or

zi = z
+
2 .

In this context, each consumer located at z and working at �rm i solves

the following program:

max
q;X1;X2

U(q;X1; X2) = q
1=3X

1=3
1 X

1=3
2 s:t: X1+p2X2+q	(z)+t jz � zij = w

By di¤erentiating the Lagrangian of this program with respect to q;X1; X2 and

� (the Lagrange multiplier), and by combining the four resulting equations,

we obtain the following Marshallian demands:

q� =
1

3	(z)
[w � t jz � zij] X�

1 =
1

3
[w � t jz � zij] X�

2 =
1

3p2
[w � t jz � zij]

The indirect utility function is thus equal to:

U(q�; X�
1 ; X

�
2 ) =

1

3
[w � t jz � zij] (p2	(z))

�1=3 � u�
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where u� is the equilibrium utility level for all (homogeneous) workers in the

city. The bid rent function, �(�), which is the inverse of the indirect utility

function with respect to 	(z), is equal to:

�(z; zi; u
�) =

(u�)�3

9p2
[w � t jz � zij]

3 :

In equilibrium, workers� bid rent �(z; zi; u
�) is equal to the equilibrium land

rent 	(z) at each residential location z 2 Z. Moreover, in equilibrium, it must

be that all workers reach utility level u� and that 	(z�1 ) = 	(z
+
2 ) =

1
9p2

�
w
u�

�3
,

which implies that all workers in the city earn the same wage w and consume

the same amount of q�; X�
1 and X

�
2 . We have therefore:

	 =
1

9p2

� w
u�

�3
� 
 (33)

where 
 � 1 is a scaling factor that �xes, in equilibrium, how much above the

maximal consumer bid-rent the producer land price will be set. There will be

a one dimensional continuum of equilibria in this example, indexed by 
.

Let us now focus on �rm i�s program. It solves:

max
Li;z

+
i ;z

�

i

�i = pi L
1=4
i (z+i � z

�
i )

1=4 � wLi �	(z
+
i � z

�
i ) i = 1; 2

where p1 = 1 and p2 > 0. By combining the �rst order conditions and by using

(33), we easily obtain:

(z+1 � z
�
1 )

� = 332�4p
3=2
2 w�5u9=2
�3=2

(z+2 � z
�
2 )

� = 332�4p32w
�5u9=2
�3=2

L�1 = 2
�43 p

1=2
2 w�3u3=2
�1=2

L�2 = 2
�43 p

7=3
2 w�3u3=2
�1=2

Using these values, the equilibrium pro�t is equal to:

��1 = 2
�33 p

1=2
2 w�2u3=2
�1=2

��2 = 2
�33 p22w

�2u3=2
�1=2
�
3p
1=3
2 � 1

�

So with this example, we have closed form solutions and there is a one

dimensional continuum of equilibria indexed by 
. The intuition is as follows.

When there are two �rms connected to each other, there is no inducement for

them to change location. Consumers have the same level of utility whatever
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�rm they choose as employer. The di¤erent equilibria are indexed by the price

di¤erential between �rm land and consumer land.

There is one interesting feature of this example that we wish to note. There

are two market clearing conditions for labor (one for each �rm) but only one

wage, since there is only one type of worker. In order to get enough freedom in

endogenous variables to generate an equilibrium, the midpoint of �rm land !

is used. By varying this to the left or right, the supply of labor commuting to

one of the two �rms can be equated to demand. This gives us two endogenous

variables to satisfy the two labor market clearing conditions. Since technologies

are symmetric, the equilibrium ! will be 1/2.

Example 3 Two di¤erent �rms and two di¤erent types of workers: the case

of a two dimensional continuum of equilibria.

We use exactly the same hypotheses as in example 1 but we focus on

the determinacy properties of the equilibrium. In equilibrium all (two) �rms

are connected so that the good transportation costs are zero (Theorem 1). By

combining the �rst order conditions for both �rms and workers and equilibrium

conditions, we obtain:

�
w1

w2

�5=8�
N1

N2

��1=2 �a
b

�1=4 

p2
= 1

and

	(z) = a
�
�
�
w1 � t(z�1 � z)

��3
= b

�
�
�
w2 � t(z � z+2 )

��3

where a and b are constants of integration.

By further manipulating the equations de�ning equilibrium, one can see

that equilibrium exists, and in fact, there is a one dimensional family of equi-

libria parameterized by a constant of integration or by the location of a �rm.

There is another one dimensional family parameterized by 
, as in the previous

example. This means that there is a two dimensional continuum of equilib-

ria. The main di¤erence with the previous example is that since workers are

heterogeneous they will not necessarily reach the same utility level and it is

possible that u1� 6= u2�. Thus, there is one less equation that must hold in

equilibrium, compared to example 2.

Moreover, from these equations, it appears that prices (and consumption

and production) are genuinely di¤erent in these equilibria. Indeed, the equi-

libria that form this two dimensional continuum cannot be obtained from one
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another by simple translation of the location of agents. There are substantial

di¤erences in both prices and allocations of di¤erent equilibria, and thus there

is genuine indeterminacy.

Example 4 Three identical �rms and homogeneous workers: no equilibrium.

There are three �rms using the same type of labor V = 1 to produce the

same type of output S = 1, which is taken as the numéraire. We have therefore:

S = 1; V = 1; M1
1 = 3. In equilibrium all (three) �rms are connected so that

the good transportation costs are zero (Theorem 1). Without loss of generality,

we take �rm 1 on the left, �rm 3 on the right, and �rm 2 in between so that

the location of each �rm is denoted by zi, i = 1; 2; 3 with zi = z
�
1 or zi = z

�
2

or zi = z
+
2 (= z

�
3 ) or zi = z

+
3 . Moreover, land parcels consumed by each �rm

i = 1; 2; 3 are denoted by Ci = [z�i ; z
+
i ]. Each individual residing at z and

working at �rm i solves the following program:

max
q;X

U(q;X) = q1=2X1=2 s:t: X + q	(z) + t jz � zij = w

By combining the �rst order conditions, we easily obtain:

q� =
w � t jz � zij

2	(z)
X� =

w � t jz � zij

2

Let us denote by u� the equilibrium utility level for all (homogeneous) workers

in the city. Then, the bid rent �(�), which is the inverse of the indirect utility

function with respect to 	(z), is equal to

�(z; zi; u
�) =

�
w � t jz � zij

2u�

�2

In equilibrium, where workers� bid rent coincides with the equilibrium land

rent at each location, we must have that all workers reach the utility level u�

and that:

	(z�1 ) = 	(z
+
1 ) = 	(z

�
2 ) = 	(z

+
2 ) = 	(z

�
3 ) = 	(z

+
3 ) (34)

Now consider the comparison of commuting cost for a consumer commuting

to �rms 1 and 3 as opposed to �rm 2. We have:

	(z�1 ) = 	(z+3 ) =
� w
2u�

�2
> 	(z�2 ) =

�
w � t (z�2 � z

�
1 )

2u�

�2
(35)

= 	(z+2 ) =

�
w � t (z+3 � z

+
2 )

2u�

�2

7



which contradicts (34), if and only if z+3 � z
+
2 = z

�
2 � z

�
1 > 0. We now show

that if �rms maximize their pro�t, this is always true. The pro�t function of

�rm i is equal to:

�i = L
1=4(z+i � z

�
i )� wL� 
	(z

+
i )(z

+
i � z

�
i ) i = 1; 2; 3

By combining the �rst order equations, we obtain:

z+i � z
�
i =

wL


	(z+i )
> 0 i = 1; 2; 3

Therefore, when �rms maximize their pro�t, inequality (35) always holds and

no equilibrium with connected �rms can exist since it contradicts the equilib-

rium condition (34). The intuition is quite simple. Since all three �rms are

using the same input to produce the same output and since in equilibrium,

one of the �rms has to be in between the other two, the commuting cost of all

consumers to that �rm is larger than to the others. So nobody would work

there and there is no equilibrium. Obviously for �rm 2 located in between

�rms 1 and 3, u� can never be reached by any worker commuting to �rm 2

since the commuting distance and cost is greater and the competitive wage w

must be the same for all workers in any �rm. So why doesn�t �rm 2 simply shut

down, and why isn�t there an equilibrium with only �rms 1 and 3 operating?

Notice that in this example, there is a decreasing returns to scale technology

for each �rm. So in such a con�guration, �rms 1 and 3 earn positive pro�ts,

while �rm 2 is shut down and earns zero pro�ts. Thus, �rm 2 will try to

mimic the production plan (including land usage) of another �rm, resulting in

disequilibrium.

Observe that the argument depends crucially on the dimension of the loca-

tion space Z. If Z were two dimensional, then it would be possible to construct

an equilibrium for this example since the three �rms can be connected and at

the same time workers do not have to cross one �rm to work at another.

8.2 Proofs

Proof of Theorem 1:

Suppose that in an equilibrium, not all �rms are connected. Then the

�xed transport cost for every �rm is positive. Let us focus on one �rm, the

�rm (i; s; v) given in (b) of the assumption on the collection C. De�ne

�(�) = ps(i; s; v) f
v
s (L

i;v
s ; �(B�(C

i;v
s )))� w

vLi;vs � �(B�(C
i;v
s ))	

8



�

SX

s0=1

VX

v0=1

Mv0

s0X

j=1

p(i; s; v) � [� + T � g
(i;s;v)
(j;s0;v0)] inf

x2B�(C
i;v
s )

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

:

We will show that under the assumptions of the Theorem, the equilibrium

production plan of �rm (i; s; v) is not pro�t optimizing, leading to a contra-

diction. In order to accomplish this, we use part (a) of the assumption on the

collection C and a one term Taylor�s series expansion of � at � = 0.

�(�) = �(0) + � � ps(i; s; v) � d f
v
s (L

i;v
s ; �(C

i;v
s ))=dQ � dg(C

i;v
s ; �)=d� j�=0

�� �	 � dg(Ci;vs ; �)=d� j�=0

+� �
SX

s0=1

VX

v0=1

Mv0

s0X

j=1

p(i; s; v) � [� + T � g
(i;s;v)
(j;s0;v0)] inf

x2Ci;vs

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

+R(�);

where lim
�!0

R(�)

�
= 0.

(The sign on the transport cost term is reversed because an � expansion

of land use by �rm (i; s; v) results in a decrease in transport cost.) Now in

equilibrium, it must be the case that

0 � �(�)� �(0) = � � ps(i; s; v) � d f
v
s (L

i;v
s ; �(C

i;v
s ))=dQ � dg(C

i;v
s ; �)=d� j�=0

�� �	 � dg(Ci;vs ; �)=d� j�=0

+� �

SX

s0=1

VX

v0=1

Mv0

s0X

j=1

p(i; s; v) � [� + T � g
(i;s;v)
(j;s0;v0)] inf

x2Ci;vs

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

+R(�);

so

� �	 �dg(Ci;vs ; �)=d� j�=0� � �ps(i; s; v) �d f
v
s (L

i;v
s ; �(C

i;v
s ))=dQ �dg(C

i;v
s ; �)=d� j�=0

+� �
SX

s0=1

VX

v0=1

Mv0

s0X

j=1

p(i; s; v) � [� + T � g
(i;s;v)
(j;s0;v0)] inf

x2Ci;vs

y2Cj;v
0

s0

kx� yk � I
X
(i;s;v)

(j;s0;v0)

+R(�):

Now since transport costs for this �rm are positive, the second to last term is

positive and by choosing � small so that the second to last term dominates the

last term

� �	 �dg(Ci;vs ; �)=d� j�=0> � �ps(i; s; v) �d f
v
s (L

i;v
s ; �(C

i;v
s ))=dQ �dg(C

i;v
s ; �)=d� j�=0

9



or

	 � dg(Ci;vs ; �)=d� j�=0> ps(i; s; v) � d f
v
s (L

i;v
s ; �(C

i;v
s ))=dQ � dg(C

i;v
s ; �)=d� j�=0 :

This condition says that the cost of the last unit of land exceeds its marginal

revenue product. Next we apply part (b) of the assumption on collection C:

for every �0 > 0 there is an A 2 C, A � Ci;vs a.s. with �(Ci;vs ) � �
0 < �(A) <

�(Ci;vs ) and

inf
x2Ci;vs

y2Cj;v
0

s0

kx� yk = inf
x2A

y2Cj;v
0

s0

kx� yk

so transport cost is unchanged when replacing Ci;vs with A. So by choosing �0

small, the �rm has higher pro�ts using less land A instead of Ci;vs , contradicting

pro�t optimization in equilibrium on the part of �rm (i; s; v).

Proof of Lemma 1:

Our goal is to show that the equation system (16)�(19) is Cr. In order

to accomplish this, it is convenient to establish some preliminary results �rst,

namely that supply and demand are Cr. The proofs of these preliminary

results parallel the proof of Mas-Colell (1985, Proposition 2.7.2, p.85), but

with a subtle twist due to our use of bid rent.

Let us begin with production. Pro�ts are given in equation (10), and the

�rst order conditions are:

ps
@f vs (L;Q)

@L
� wv = 0

ps
@f vs (L;Q)

@Q
�	 = 0

This equation system has (L;Q) as endogenous variables as functions of prices,

(ps; w
v;	), and any other exogenous variables desired. The Jacobian of this

equation system (with respect to the endogenous variables) is simply the

Hessian of f vs . By assumption, D
2f vs (x) is negative de�nite, so by Mas-Colell,

Whinston and Green (1995, Example M.D.1, p.937), the determinant of this

Hessian is positive. Using the implicit function theorem (Mas-Colell, 1985,

C.32, p.20), the derived demand functions are Cr. Plugging the derived de-

mand functions back into the Cr+1 production function, a Cr supply function

for outputs is obtained.

10



Turning next to the consumption sector, we use a similar technique. Bid

rent is de�ned in equation (9). From Mas-Colell (1985, D.1, p.22), the �rst

order conditions are:

�

�
�p

qv

�
+ 
DXvU v(qv; Xv) = 0

��[wv � p �Xv � p � t (inf
y2Ci;vs

i=1;:::;Mv
s

s=1;:::;S

kz � yk)]=(qv)2 + 
DqvU
v(qv; Xv) = 0

�uv + U v(qv; Xv) = 0

The �rst equation implies that both � and 
 are positive, so de�ning � =

�=
 > 0, the �rst order conditions become:

DXvU v(qv; Xv)� �

�
p

qv

�
= 0

DqvU
v(qv; Xv)� �[wv � p �Xv � p � t (inf

y2Ci;vs
i=1;:::;Mv

s
s=1;:::;S

kz � yk)]=(qv)2 = 0

�uv + U v(qv; Xv) = 0

This equation system has (qv; Xv; �) as endogenous variables as functions of

prices, (p; wv), and any other exogenous variables desired. The Jacobian of

this equation system (with respect to the endogenous variables) is as follows:

A =

0
B@
D2
XvU v D2

XvqvU
v + �p=(qv)2 �p=qv

D2
qvXvU v + �p=(qv)2 D2

qvU
v + 2��=(qv)3 ��=(qv)2

DXvU v DqvU
v 0

1
CA

where � � wv � p �Xv � p � t (inf
y2Ci;vs

i=1;:::;Mv
s

s=1;:::;S

kz � yk).

Substitute the �rst order conditions into the last column and multiply the

last column by ��; we obtain a new matrix B, where Det(A) = � 1
�
Det(B).

Now multiply the last row by 1=qv and subtract it from the next to last row

of B. Multiply the last column by 1=qv and subtract it from the next to last

column of B. The result is the matrix

C =

0
B@
D2
XvU v D2

XvqvU
v DXvU v

D2
qvXvU v D2

qvU
v DqvU

v

DXvU v DqvU
v 0

1
CA

where � 1
�
Det(C) = � 1

�
Det(B) = Det(A). By Mas-Colell (1985, 2.5.1, p.76),

Det(C) is nothing more than Gaussian curvature (assumed non-zero since U v
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has no critical point) multiplied by a non-zero constant, and thus Det(A) 6=

0. Applying the implicit function theorem once again, the demand functions

implied by the bid rent calculation (9) are Cr. Plugging these solutions into the

de�nition of bid rent, we obtain that bid rent is Cr provided that commuting

cost is a Cr function of z.

Here there is a potential problem if �rms using the same type of labor are

located on two di¤erent sides of a consumer, since in that case commuting cost

is continuous but not necessarily di¤erentiable in z. But if we restrict attention

to those allocations where �rms using the same type of labor are connected

(as assumed) and using hyper-rectangles centered at !, as postulated at the

beginning of section 4.2, then commuting cost is Cr.

Finally, the assumptions that

8v 6= v0; 8p; wv; wv
0

; Cv; Cv
0

; uv; uv
0

almost surely for z 2 Z n
S
[
s=1

Mv
s

[
i=1
Ci;vs

@�v(z; p; wv; Cv; uv)

@z
6=
@�v

0

(z; p; wv
0

; Cv
0

; uv
0

)

@z

and @�(z;p;w;C;u)
@z

6= 0 (except at z = !) allow us to apply the implicit func-

tion theorem to locations z where �v(z; p; wv; Cv; uv) = �v
0

(z; p; wv
0

; Cv
0

; uv
0

)

or 
 � �(z; p; w; C; u) = 	, so that the implicit function parameterizing the in-

tersection of two consumers bid rents or a consumer bid rent with the producer

land price is Cr. Thus the equation system (16)�(19) is Cr.

12



An Example of a Regular Parameterization:

Let K = 1 and Z = [0; 1]. Using Walras� law, we take (19) to be the

redundant equation in the system. We modify (16)�(18) to incorporate the

following exogenous parameters, some of which are not yet in the system.

Already appearing in equation (16) only are N v (v = 1; :::; V ). We relax

the assumption that production functions for all �rms using the same type of

labor to produce the same output are the same, and parameterize production

functions as follows. For �i;vs > 0,

f i;vs (L
i;v
s ; �(C

i;v
s );�

i;v
s ) =

1

�i;vs
f
i;v

s (L
i;v
s ) +

ef i;vs (�(Ci;vs ))

where f
i;v

s is C2 and df
i;v

s

dL
> 0 and d2f

i;v

s

dL2
< 0. (This is easily generalized to

the case where f i;vs is not additively separable by using the implicit function

theorem in combination with the �rst order conditions for pro�t maximization,

as in the proof of Lemma 1).

Finally, we replace the single landlord with two, where the �rst landlord

receives �% of rents plus pro�ts and the second landlord receives (1� �)% of

rents plus pro�ts. (The �rst landlord will be denoted by bars over variables

and the second landlord will be represented by tildes over variables.) Moreover,

we endow the landlords with consumption goods W , fW 2 <s++. Formally,

XL(R; �) = X
L
(�R; ��)�W + eXL((1� �)R; (1� �)�)�fW

We claim that the parameterization
n
(N v)Vv=1 ;

�
�i;vs
�Mv

s V S

i=1 v=1 s=1
; � ; W;fW

o

is regular. To prove this, we examine the derivative of (16)�(18) with re-

spect to the parameters (at equilibrium). The Jacobian of (16) with respect to

(N v)Vv=1 is the negative of the identity matrix, and N
v appears nowhere else in

the system. Turning next to the parameters �i;vs and equation (17), notice that

from the �rst order conditions for pro�t optimization, Li;vs = f
0i;v�1

s

�
�i;vs wv

ps

�
.

The Jacobian of (17) with respect to
�
�i;vs
�Mv

s V S

i=1 v=1 s=1
yields a non-singular sub-

matrix of rank
SP
s=1

VP
v=1

M v
s . Notice that the Jacobian of (18) with respect to �

i;v
s

yields non-zero elements, but these can be row-eliminated.

The last part of the proof is similar to Mas-Colell (1985, Example 5.8.5,

p.227). For an arbitrary small change inW , we can compensate with a change

in � (for the �rst landlord) andfW (for the second landlord) so that wealth, and

hence gross demand, is unchanged for both landlords. This yields a Jacobian

of (18) with respect to �;W and fW of rank s, and completes the proof.
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Proof of Theorem 2:

We need to ascertain the dimensions of the domain and range of the func-

tions given by the LHS of the equations (16)-(19). If we take one of the

consumption goods as the numéraire, the following tables describe the number

of unknowns and equations.

Unknown Dimension

p S � 1

w V

u V

! 1

	� 1


 1

Equation number Dimension

(16) V

(17)
SP
s=1

VP
v=1

M v
s

(18) S

(19) 1

Observe that one of the s commodity equations in (18) is dependent on the

other equations due to Walras law. After subtracting the number of equations

from the number of unknowns, we obtain: V �
SP
s=1

VP
v=1

M v
s + 2. In order to

apply the proposition of Mas-Colell (1985, proposition 8.3.1, p.320), we assume

that utilities, production functions and their parameterization (see Mas-Colell

(1985, de�nition 5.8.11, p.226)) are Cr with r > min(0; V �
SP
s=1

VP
v=1

M v
s +2) and

Theorem 2 follows.

Proof of Theorem 3:

The proof proceeds in much the same way as the proof of Theorem 2.

Fix some symmetric order of �rms. By symmetry, we limit attention to

[0; 1=2] � [0; 1]K�1. Fix ! = 1=2 so that it is no longer endogenous. (This

reduces the number of unknowns by 1.) For the �rm in the middle of the order

(if any), called (i0; s0; v0), change its production function to ef v0s0 (Li
0;v0

s0 ; Q
i0;v0

s0 ) =

(1=2) � f v
0

s0 (2 � L
i0;v0

s0 ; 2 � Q
i0;v0

s0 ). Performing the same analysis contained in the

proof of Theorem 2 on this half-economy in [0; 1=2]� [0; 1]K�1, with only �rms

to the left of (i0; s0; v0) in the order participating and including the modi�ed

middle �rm (with the right endpoint of its parcel anchored at 1=2), we obtain

the result. Notice that when we add back the �rms to the right of the middle
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�rm, the equilibrium is unchanged by symmetry, and the middle �rm can

return to its original production function without altering the allocation.

Proof of Theorem 4:

Let Z = [0; 1]K . Let �rm (i; s; v) use the hyper-rectangle Ci;vs � [!h; !h+1]�

[0; 1]K�1, where h =
P
s0<s

P
v0<v

M v0

s0 + i. In this way, �rms are always connected.

Fix ! the midpoint of �rm land use, to be 1=2. As mentioned in section 4.2,

we must alter the �rm�s problem (10) slightly to ensure that solutions exist.

Instead of asking them to solve (10) unconstrained, we impose the following

constraints, and de�ne �vs(ps; w
v;	), Li;vs (ps; w

v;	) and Qi;vs (ps; w
v;	) to be

solutions to (10) subject to the following constraints:

0 � Li;vs � N v + 1 (36)

0 � Qi;vs � 2 (37)

The solution to (10) subject to (36) and (37) always exists and is unique.

De�ne u = [u1; :::; uV ] to be utility levels. For nonzero prices and utility

levels, the LHS of equations (16)�(19) are continuous functions on 
� � u�

(see Lemma 1) - we will deal with the boundary cases momentarily - and are

respectively denoted by:

h1(p; w; u;	) = 0 (38)

h2(p; w; u;	) = 0 (39)

h3(p; w; u;	) = 0 (40)

h4(p; w; u;	) = 0 (41)

Let the domain of the prices (p, w and 	) be


 =

(
(p; w;	) j

SX

s=1

ps +

VX

v=1

wv +	 = 1; ps � 0; w
v � 0;	 � 0; s = 1; :::; S; v = 1; :::; V

)

Due to the special nature of production, the asymptotic cones of the indi-

vidual production sets are positively semi-independent, so by Debreu (1959,

p.23(9)), the aggregate production set is closed. Given that the input endow-

ments of land and labor are bounded, the set of feasible allocations is compact.

Let the range of uv (when consumption is bounded by endowments) be con-

tained in [0; E � 1]; where E 2 <+. In other words, when type v workers
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have all the resources, under equal treatment, they will all get exactly the

same utility level, which is at most E � 1. Further, without loss of generality,

we assume that E is contained in the range of uv (when it is not constrained

by endowments). This eliminates one of the boundary problems mentioned

earlier.

The dual variables eu, ew, ep and e	 are respectively associated with equations
(16)�(19) so that they maximize the following functions:

g1(�) = eu = argmax
u2[0;E]V

u � h1(�) (42)

g2(�) = (ep; ew; e	) = argmax
(p;w;e	)2�

VX

v=1

wv �

SX

s=1

Mv
sX

i=1

h2(�) + p � h3(�) + e	 � h4(�) (43)

We are left with de�ning g1 and g2 at boundary cases when bid rent is

unde�ned. Whenever ps = 0, set q
v = 0 so euv = E for all v, g2 � fep; ew; e	 j

ewv = 0 8v; e	 = 0; P
fsjps=0g

eps = 1g. Whenever, uv = 0, set qv = 0 so eu = E,

ewv = 0,
SP
s=1

eps = 1, e	 = 0.
g1(�) and g2(�) are convex valued and upper-hemicontinuous correspon-

dences. Let � be the Cartesian product of g1(�) and g2(�). So � : E
V � 
 !

EV � 
. Now, we have all the elements to apply the Kakutani �xed point

theorem. Let the �xed point be (bp; bw; bu; b	). The boundary conditions on both
the utility and the production functions will rule out the possibility of excess

demands. Next, let us demonstrate that at a �xed point (bp; bw; bu; b	), h1(�),
h2(�), h3(�) and h4(�) are all equal to zero and hence we have an equilibrium.

First, let us focus on non-locational variables, where the argument is stan-

dard. Suppose that h2(�) for some �rm (i; s; v), or h3(�) for some s, or h4(�) is

strictly positive. Then
VP
v=1

bwv �
SP
s=1

Mv
sP

i=1

h2(�) + bp � h3(�) + b	 � h4(�) > 0. Summing
the budget constraints of all consumers and the landlord/shareholder and us-

ing the de�nition of pro�t for �rms, it must be that (43) is non-positive. This

contradicts the inequality above. Suppose that h2(�) for some �rm (i; s; v),

or h3(�) for some s, or h4(�) is strictly negative. Using the summed budget

constraints and the de�nition of pro�t, some other components of h2(�), h3(�),

or h4(�) must be positive. This leads to another contradiction of the inequality

above.

So it remains to show that h1(�) = 0. If h1(�) > 0 for some v, then buv = E.
This implies that the allocation of goods is infeasible (since the maximum

utility attainable at a feasible allocation is E�1), contradicting what we have
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already proved. If h1(�) < 0 for some v, then buv = 0, and this cannot be a

�xed point, since its image under g1 is E. So h1(�) = 0.

Finally, if for some �rm (i; s; v) there is an alternative production plan that

yields higher pro�ts than the �xed point production plan, then this alternative

violates either (36) or (37). Since the �xed point production plan is feasible and

the pro�t function is linear, there is a convex combination of the �xed point

production and the alternative that yields higher pro�ts than the �xed point

production plan, satis�es (36) and (37), and (since the production function is

concave) can be produced. Since the �xed point production plan solves (10)

subject to (36) and (37), this is a contradiction.

Proof of Theorem 5:

The proof is the same as that of Theorem 4, as modi�ed as in the proof of

Theorem 3 to use only a half-economy. Using symmetry, the equilibrium can

be extended to the entire economy.

Proof of Theorem 6:

To prove Theorem 6, we will �nd a counter-example to the �rst fundamental

theorem of welfare economies. Let us use Example 1. One equilibrium of

interest is when the two �rms are located in the middle of [0; 1], i.e., z+1 =

z�2 = 1=2. We now �nd a small Pareto improvement, denoted by tildes over

the variables. We give absentee landlords exactly the same allocation of goods

in the Pareto improvement as in equilibrium. Starting with the equilibrium

allocation, move the �rms apart by 2" so that ez+1 = 1=2� " and ez�2 = 1=2+ ".
Let the �rms use the same inputs including the same quantities of land in the

new allocation. In other words, ez�1 = z�1 � " and ez+2 = z+2 + ". The �rms

will produce the same outputs at the new allocation. A consumer located in

equilibrium at " � z � z�1 will get exactly the same allocation of goods but

will be located at ez = z � ", slightly to the left. Then this consumer will

have the same level of utility (and commuting cost) in this allocation as in the

equilibrium allocation. A consumer located in equilibrium at ez+2 � z � 1 � "
will get exactly the same allocation of goods but will be located at ez = z + ",
slightly to the right. Then this consumer will have the same level of utility

(and commuting cost) in this allocation as in the equilibrium allocation. The

17



consumers who were located at 0 � z � " in equilibrium are moved to 1=2� z

and will have the same allocation of goods. The consumers who were located

at 1 � " � z � 1 in equilibrium are moved to 3=2 � z and will have the

same allocation of goods. Notice that commuting cost for the last two types

of consumers will be lower in the new allocation, so that there will be some

surplus good 1 to distribute to any or all agents and raise utility. To be

more precise, the savings of these consumers in terms of commuting cost will

be
"R
0

n(z)t(z�1 � ")dz +
1R
1�"

n(z)t(1 � " � z+2 )dz (where n(z) is the equilibrium

population density), whereas the additional cost of transporting goods between

the two �rms is 4�". By choosing t large enough and � small enough, we

have constructed a feasible Pareto improvement. Hence, the initial equilibrium

was not Pareto optimal, and in particular was not an equal treatment Pareto

optimum.

Although we use the concept of equal treatment Pareto optimum for conve-

nience, notice that any equilibrium involves equal treatment (in utility levels)

of consumers of the same type. Consequently, for the counter-example to the

�rst welfare theorem, showing that an equilibrium allocation is not an equal

treatment Pareto optimum is the same as showing that it is not a Pareto

optimum.

Observe that in this example, locating �rms at opposite ends of the unit

interval (maximum di¤erentiation) is not Pareto optimal. Indeed, at such an

allocation, the social planner can �ip the allocation between zero and one-

half symmetrically about one-quarter, and �ip the allocation between one-half

and one symmetrically about three-quarters to obtain a Pareto dominating

allocation; the allocation of goods is unchanged except �rm transportation

costs are reduced and these goods are reallocated to consumers.
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