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Abstract

This study develops an R&D-based growth model with vertical and horizontal innovation

to shed some light on the current debate on whether patent protection stimulates or sti�es

innovation. We analyze the e¤ects of patent protection in the form of blocking patents.

We show that patent protection changes the direction of innovation by having asymmetric

e¤ects on vertical innovation (i.e., quality improvement) and horizontal innovation (i.e.,

variety expansion). Calibrating the model and simulating transition dynamics, we �nd that

strengthening the e¤ect of blocking patents sti�es vertical innovation and decreases economic

growth but increases social welfare due to an increase in horizontal innovation. In light of

this �nding, we argue that in order to properly analyze the growth and welfare implications

of patents, it is important to consider their often neglected compositional e¤ects on vertical

and horizontal innovation.
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1 Introduction

Since the early 1980�s, the patent system in the US has undergone substantial changes.1 As

a result of this patent reform, the strength of patent protection in the US has increased.

For example, Park (2008) provides an index of patent rights on a scale of 0 to 5 (a larger

number implies stronger protection) and shows that the strength of patent rights in the

US increases from 3.8 in 1975 to 4.9 in 2005.2 In other words, patentholders can now

better protect their inventions against imitation as well as subsequent innovation. When

a patent protects an invention against subsequent innovation, a blocking patent arises. A

classic example of blocking patents is James Watt�s patent on his steam engine. Boldrin

et al. (2008) argue that "[b]y patenting the separate condenser Boulton and Watt, from

1769 to 1800, had almost absolute control on the development of the steam engine. They

were able to use the power of their patent and the legal system to frustrate the e¤orts of

engineers such as Jonathan Hornblower to further improve the fuel e¢ciency of the steam

engine." As for the current patent system, economists have become even more concerned

about the innovation-sti�ing e¤ect of blocking patents. For example, Shapiro (2001) argues

that "[w]ith cumulative innovation and multiple blocking patents, stronger patent rights can

have the perverse e¤ect of sti�ing, not encouraging, innovation." In this study, we provide a

growth-theoretic analysis on the e¤ects of patent protection in the form of blocking patents.

In an environment with cumulative or sequential innovation, blocking patents give rise

to overlapping patent rights across sequential innovators and lead to contrasting e¤ects on

R&D. On the one hand, the traditional view suggests that stronger patent rights improve the

protection for existing inventions and increase their value to the patentholders. On the other

hand, the recent argument against patent protection suggests that stronger patent rights sti�e

1See Gallini (2002), Ja¤e (2000) and Ja¤e and Lerner (2004) for a detailed discussion on these changes
in patent policy.

2The index in Park (2008) is an updated version of the index in Ginarte and Park (1997), who examine
�ve categories of patent rights and assign a score from zero to one to each category. These �ve categories
are patent duration, coverage, enforcement mechanisms, restrictions on patent scope, and membership in
international treaties.
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innovation by giving too much power to existing patentholders, who use this power to extract

surplus from subsequent innovators rather than providing more innovation.3 In this study, we

develop a simple growth model to shed some light on this current debate on whether patents

stimulate or sti�e innovation. We argue that the two seemingly contradictory views of patents

are in fact two sides of the same coin. In other words, strengthening existing patentholders�

protection against future innovations inevitably decreases subsequent innovators� incentives

for R&D and leads to contrasting e¤ects on vertical innovation (i.e., quality improvement

within an industry) and horizontal innovation (i.e., variety expansion that gives rise to new

industries). In light of this �nding, we argue that in order to properly analyze the growth and

welfare implications of patents, it is important to consider their often neglected compositional

e¤ects on vertical and horizontal innovation.

To analyze the asymmetric e¤ects of patent protection on vertical and horizontal innova-

tion, this study develops an R&D-based growth model that features both quality improve-

ment and variety expansion. Within this framework, we derive the growth and welfare e¤ects

of patent protection in the form of blocking patents. A strengthening of blocking patents

refers to the case in which a new innovator (e.g., Jonathan Hornblower) has to transfer a

larger share of his pro�t to the previous innovator (e.g., James Watt). We �nd that there is

a tension between maximizing the incentives for vertical innovation and that of horizontal

innovation. On the one hand, maximizing the incentives for vertical innovation requires a

pro�t-division rule that allows the new innovator to keep all the pro�t. On the other hand,

maximizing the incentives for horizontal innovation requires a pro�t-division rule that assigns

as much pro�t to the previous innovator as possible. As a result of these asymmetric e¤ects

on vertical and horizontal innovation, strengthening the e¤ect of blocking patents stimulates

variety expansion but sti�es quality improvement a¤ecting the direction of innovation. This

theoretical result is consistent with the empirical �nding in Moser (2005), who provides an

empirical analysis on how patent protection a¤ects the direction of innovation and �nds that

3See for example Ja¤e and Lerner (2004) and Bessen and Meurer (2008). Boldrin and Levine (2008) refer
to patents as "intellectual monopoly" and argue for the elimination of all patents.
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the presence of patent laws in a country causes the inventions to be more diversi�ed and

directed to a broader set of industries than inventions in countries without patent laws.

Furthermore, strengthening the e¤ect of blocking patents has an additional e¤ect through

horizontal innovation on social welfare by increasing the number of varieties, so that there also

exists a welfare-maximizing pro�t-division rule that is generally di¤erent from the growth-

maximizing rule. Calibrating the model and simulating transition dynamics, we �nd that an

increase in the e¤ect of blocking patents sti�es vertical innovation and decreases the overall

growth rate despite the increase in horizontal innovation. This �nding is consistent with

the recent concerns on the innovation-sti�ing e¤ects of stronger patent rights. However, we

also �nd that social welfare increases despite the lower growth rate suggesting that a proper

welfare analysis should investigate beyond the e¤ects of patent protection on innovation and

economic growth.

Nordhaus (1969) is the seminal study on the optimal design of patent protection, and he

shows that the optimal patent length should balance between the social bene�t of innovation

and the social cost of monopolistic distortion. Eswaran and Gallini (1996) analyze the inter-

esting interaction between product and process innovations and consider patent breadth as

a policy tool that can be used to redirect technological change toward a socially e¢cient mix

of innovations. Scotchmer (2004) provides a comprehensive review on the subsequent devel-

opment in this patent-design literature that is mostly based on partial-equilibrium models.

In this literature, an interesting and important policy lever is forward patent protection (i.e.,

leading patent breadth) that gives rise to the division of pro�t between sequential innova-

tors.4 A recent study by Segal and Whinston (2007) analyzes a general antitrust policy lever

that has a similar e¤ect as the division of pro�t between entrants and incumbents. They show

that in an in�nite-horizon model with leapfrogging, protecting an entrant at the expense of

an incumbent has a frontloading e¤ect that potentially increases innovation. However, they

also note that their result does not apply to the �rst �rm of a quality ladder because it

4See for example Green and Scotchmer (1995) and Gallini and Scotchmer (2002) for a discussion on the
importance of this policy lever.
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does not have to share its pro�t with any incumbent but has the rights to share the next

entrant�s pro�t. In the present study, we formalize Segal and Whinston�s interesting insight

in a dynamic general-equilibrium model and match the model to the US data in order to

provide a quantitative analysis on the division of pro�t between sequential innovators.

O�Donoghue and Zweimuller (2004) merge the patent-design literature and the R&D-

based growth literature by incorporating leading breadth into a quality-ladder growth model

with overlapping patent rights across sequential innovators. In their model, for a given rate

of innovation, strengthening the e¤ect of blocking patents by reducing the share of pro�t

assigned to the current innovator (i.e., the entrant of a quality ladder) while holding leading

breadth constant would decrease the incentives for innovation. Intuitively, along the quality

ladder, every innovator is �rstly an entrant and then becomes an incumbent whose patent

is infringed upon. Therefore, setting aside the issues of pro�t growth and discounting, every

innovator receives the same amount of pro�t over the lifetime of an invention. Given that

the real interest rate is higher than the growth rate in their model, delaying the receipt of

pro�ts reduces the present value of the income stream. As a result, the complete frontloading

pro�t-division rule (i.e., allowing the entrant to keep all the pro�t) tends to maximize the

market value of an invention and the incentives for R&D.5 However, in the present study

with both vertical and horizontal innovation, this result no longer holds. In this case, the

inventor of a new variety is the �rst innovator on a quality ladder; therefore, assigning a

larger share of pro�t to the incumbent increases horizontal innovation. Given that qual-

ity improvement and variety expansion are both important channels for economic growth,

the growth-maximizing pro�t-division rule should balance between the asymmetric e¤ects of

pro�t division on vertical and horizontal innovation. Furthermore, given that growth max-

imization does not necessarily give rise to welfare maximization, we characterize both the

growth-maximizing and welfare-maximizing pro�t-division rules.

This study also relates to other growth-theoretic studies on patent policy. Judd (1985)

5See also Chu (2009) for a quantitative analysis of the pro�t-division rule in the O�Donoghue-Zweimuller
model.
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provides the seminal dynamic general-equilibrium analysis on patent length, and he �nds that

an in�nite patent length maximizes innovation and welfare. Subsequent studies �nd that

strengthening patent protection in various forms does not necessarily increase innovation and

may even sti�e it. Examples include Horowitz and Lai (1996) on patent length, O�Donoghue

and Zweimuller (2004) on leading breadth and patentability requirement, Koleda (2004) on

patentability requirement, and Furukawa (2007) and Horii and Iwaisako (2007) on patent

protection against imitation. The present study di¤ers from these studies by (a) analyzing

a di¤erent patent-policy lever (i.e., the pro�t-division rule between sequential innovators)

and (b) emphasizing the asymmetric e¤ects of patent protection on vertical and horizontal

innovation.6 In other words, rather than analyzing the e¤ects of patent policy on the level

of innovation as is common in the literature, we consider a much less explored question

that is the e¤ects of patent policy on the composition or direction of innovation. A recent

study by Iwaisako and Futagami (2011) examines the contrasting e¤ects of patent breadth

on innovation and physical capital accumulation, and they also show that the relationship

between patent protection and economic growth may follow an inverted-U shape.

Cozzi (2001) analyzes patent protection in the form of intellectual appropriability (i.e.,

the ability of an innovator to patent her invention in the presence of spying activities) in

a quality-ladder model. Cozzi and Spinesi (2006) extend this analysis into a model with

both vertical and horizontal innovation. In their model, spying activities are targeted only

at quality improvement. Therefore, strengthening intellectual appropriability stimulates

vertical innovation (at the expense of horizontal innovation) and increases long-run growth

because horizontal innovation only has a level e¤ect in their model for removing scale e¤ects.

Eicher and Garcia-Peñalosa (2008) consider endogenous mis-appropriation by endogenizing

�rm level costly institution building activities to counter-piracy, in an economy where hori-

6O�Donoghue and Zweimuller (2004) also consider a model with both vertical and horizontal innovation in
their appendix. However, their focus is on the e¤ects of patentability requirement and leading breadth, and
they did not analyze the e¤ects of alternative pro�t-division rules in the presence of vertical and horizontal
innovation.
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zontal innovation is the engine of growth.7 In contrast, in the present study, long-run growth

depends on both vertical and horizontal innovation,8 and hence, the asymmetric e¤ects of

pro�t division on vertical and horizontal innovation give rise to a growth-maximizing pro�t-

division rule.

Acs and Sanders (2011) and Cozzi and Galli (2011) also analyze the division of pro�t

between innovators. Acs and Sanders (2011) analyze the separation between invention and

commercialization in a variety-expanding model whereas Cozzi and Galli (2011) consider

basic research and applied research in a quality-ladder model. In these studies, each invention

(i.e., a new variety or a quality improvement) is created in a two-step innovation process;

therefore, there exists a growth-maximizing division of pro�t that balances between the

incentives of the �rst and second innovators of each invention. The present study di¤ers from

these studies by analyzing the division of pro�t between sequential innovators within the same

industry (in which every innovator is �rstly an entrant and then becomes an incumbent).

Also, we consider a model that features both vertical and horizontal innovation. We �nd that

frontloading (backloading) the income stream along the quality ladder stimulates vertical

(horizontal) innovation, and it is the interaction between these two types of innovation that

gives rise to a growth-maximizing pro�t-division rule in this study.

This study also relates to Acemoglu (2009), who shows that under the current patent

system, the equilibrium diversity of innovation is insu¢cient. In other words, innovators have

too much incentive to invest in R&D on improving existing products but too little incentive to

invest in R&D on developing new products that may become useful in the future. Acemoglu

suggests that increasing the diversity of researchers could be a partial remedy against this

problem of insu¢cient diversity. The present study suggests another possible solution that

is to increase the share of pro�t assigned to the pioneering inventor of a product. In this

case, there will be a reallocation of research inputs from vertical innovation (i.e., R&D on

7Interestingly, they also detect multiple institutional equilibria, provided that the scale of the economy is
large enough.

8See footnotes (9) and (27) for a discussion on the issue of scale e¤ects in R&D-based growth models.
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existing products) to horizontal innovation (i.e., R&D on new products).

The rest of this study is organized as follows. Section 2 describes the model. Section 3

de�nes the equilibrium and characterizes the equilibrium allocation. Section 4 considers the

growth and welfare e¤ects of patents. Section 5 calibrates the model and simulates transition

dynamics. Section 6 considers two extensions of the model. The �nal section concludes.

2 The model

To consider both vertical and horizontal innovation in an R&D-based growth model,9 we

modify the Grossman-Helpman (1991) quality-ladder model10 by endogenizing the number of

varieties in the economy. Furthermore, to consider the division of pro�t between sequential

innovators along the quality ladder, we assume that each entrant (i.e., the most recent

innovator) infringes the patent of the incumbent (i.e., the previous innovator). As a result

of this patent infringement, the entrant has to transfer a share s 2 [0; 1] of her pro�t to the

incumbent. However, with vertical innovation, every innovator�s patent would eventually

be infringed by the next innovation, and she can then extract a share s of pro�t from the

next entrant. This formulation of pro�t division between sequential innovators originates

from O�Donoghue and Zweimuller (2004). As for horizontal innovation, the invention of a

new variety does not infringe any patent,11 so that a variety inventor does not have to share

her pro�t but maintains the rights to extract pro�t from the next entrant. Given that the

Grossman-Helpman model is well-studied, we will describe the familiar features brie�y to

conserve space and discuss new features (i.e., variety expansion and pro�t division) in details.

9See also Dinopoulos and Thompson (1999a, 1999b), Howitt (1999), Jones (1999), Li (2000), Peretto
(1998, 1999), Peretto and Smulders (2002), Segerstrom (2000) and Young (1998). The focus of these studies
is on the removal of scale e¤ects in R&D-based growth models. Given that scale e¤ect is not the focus of
this study, we normalize the supply of skilled labor to unity to set aside this issue.
10See also Aghion and Howitt (1992) and Segerstrom et al. (1990) for other pioneering studies on the

quality-ladder growth model.
11In the main text, we also discuss the alternative case in which a newly invented variety infringes the

patents of other existing varieties.
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2.1 Households

There is a unit continuum of identical households. Their lifetime utility is given by

U =

1Z

0

e��t ln ctdt, (1)

where � > 0 is discount rate, and ct is the consumption index at time t. The consumption

index is de�ned as12

ct � exp

0
@

n�tZ

0

ln yt(i)di

1
A . (2)

(2) shows that the households derive utility by consuming a continuum of products yt(i). In

Grossman and Helpman (1991), there is a unit continuum of these products. In the present

study, we endogenize the number of varieties by allowing for horizontal innovation. n�t is the

number of active varieties that are consumed by households at time t, and its law of motion

is given by

:
n
�

t =
:
nt � �n�t . (3)

nt is the total number of varieties that have been invented in the past, and
:
nt is the number

of newly invented varieties at time t. We follow Grossman and Lai (2004) to allow for the

possibility that an invented variety becomes obsolete at some point. For tractability, we

assume that each active variety i 2 [0; n�t ] at time t faces the same probability � > 0 to

become permanently obsolete.13

Households maximize (1) subject to

:
at = rtat + wh;t + wl;tL�

n�tZ

0

pt(i)yt(i)di. (4)

12In their appendix, O�Donoghue and Zweimuller (2004) also consider this Cobb-Douglas speci�cation,
which is similar to the CES form in Howitt (1999) and Segerstrom (2000) except for the di¤erent elasticity
of substitution across varieties. In this study, we focus on the Cobb-Douglas aggregator which enables us to
compute the consumption index�s transition path along which the arrival rate of innovation varies.
13Due to the quality distribution across varieties, the model would become considerably more complicated

if we allow the obsolescence rate to depend on the age of a variety.
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at is the value of assets owned by households, and rt is the rate of return. To simplify the

analysis, we assume that households supply one unit of high-skill labor for R&D and L > 1

units of low-skill labor for production.14 The wage rates for high-skill and low-skill labors

are wh;t and wl;t respectively. pt(i) is the price of product i at time t. If we denote �t as the

Hamiltonian co-state variable, then households� intratemporal optimality condition is

pt(i)yt(i) = 1=�t (5)

for i 2 [0; n�t ], and the intertemporal optimality condition is

rt = ��
:

�t=�t. (6)

2.2 Production

There is a continuum of active varieties i 2 [0; n�t ] that are consumed by households at time

t. The production function for the most recent innovator in industry i is

yt(i) = zqt(i)lt(i). (7)

The parameter z > 1 is the exogenous step size of each productivity improvement. qt(i)

is the number of productivity improvements that have occurred in industry i as of time t.

lt(i) is the number of low-skill production workers employed in industry i. Given z
qt(i), the

14In Grossman and Helpman (1991), a homogeneous type of labor is allocated between R&D and pro-
duction. In reality, R&D engineers and scientists often have a high level of education. Given that this
model features two R&D sectors involving the allocation of high-skill labor, we naturally distinguish be-
tween high-skill labor for R&D and low-skill labor for production. However, it is useful to note that our
main results carry over to a setting with homogeneous labor that is allocated across production, vertical
R&D and horizontal R&D; see Section 6.2 for this extension.
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marginal cost of production for the most recent innovator in industry i is

mct(i) = wl;t=z
qt(i). (8)

Notice that we here adopt a "cost reducing" view of vertical innovation following Peretto

(1998, 1999) and Peretto and Smulders (2002).15 In each industry that has at least two

generations of innovation, the most recent innovator infringes the previous innovator�s patent.

As a result of this patent infringement, the most recent innovator pays a licensing fee by

transferring a share s of her pro�t to the previous innovator. We follow O�Donoghue and

Zweimuller (2004) to consider an exogenous pro�t-division rule.16 ;17 This pro�t-division rule

can be interpreted as the outcome of a bargaining game, in which the bargaining power of

each side can be in�uenced by patent policy.18 Therefore, it is not an unrealistic assumption

to treat s as a policy parameter.

O�Donoghue and Zweimuller (2004) are interested in the e¤ects of leading breadth on

R&D and economic growth through the consolidation of market power that enables the most

recent innovator and the previous innovator to consolidate their market power and charge a

higher markup. We do not adopt this formulation here for three reasons. First, the collusion

15It is useful to note that cost reduction is isomorphic to quality improvement in these studies as well as
in the current framework. To see this, the reader could easily reinterpret yt(i) as the consumption of the
latest version, qt(i), of product i, along the lines of Grossman and Helpman (1991), that is by assuming

ln ct �

0
B@

n�
tZ

0

ln

qt(i)X

j=0

zjyt(i)di

1
CA, with consumption good �{�s production function given by yt(i) = lt(i). Clearly,

the pro�t function (10) would follow directly from Bertrand competition, instead of the no longer valid (8)
and (9).
16O�Donoghue and Zweimuller (2004) consider the more general case in which the current innovator may

infringe the patents of multiple previous innovators. For the purpose of the present study, it is su¢cient
to demonstrate the asymmetric e¤ects of the pro�t-division rule on vertical and horizontal innovation by
considering the simple case of pro�t division between the entrant and the incumbent.
17Chu and Pan (2011) analyze the e¤ects of blocking patents under the case of an endogenous pro�t-division

rule and an endogenous step size of innovation in a quality-ladder model with only vertical innovation. As
in the present study, they also �nd that blocking patents have a non-monotonic e¤ect on economic growth.
18In reality, a patentholder enforces her patent rights through the Court, which decides her case of patent

infringement against a potential infringer. Therefore, when it becomes more likely for the Court to favor
patentees, the bargaining power of patentholders strengthens relative to potential infringers. Of course, this
will indirectly a¤ect also the outcomes of potential pre-trial settlements.
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between innovators may be prohibited by antitrust laws. Second, the licensing agreement

only allows the most recent innovator to produce, but it may not prevent the previous

innovator from selling her products at a lower price. As a result, the previous innovator may

have the incentives to continue selling her products and undercut the markup. Third, we

want to focus on the pro�t-division e¤ect (instead of the markup e¤ect) of patent protection

in this study. Given these considerations, we assume that the most recent innovator and the

previous innovator engage in the usual Bertrand competition as in Grossman and Helpman

(1991). The pro�t-maximizing price for the most recent innovator is a constant markup

(given by the step size z) over her own marginal cost in (8).19

pt(i) = z(wl;t=z
qt(i)). (9)

Given (7) - (9), the monopolistic pro�t generated by the most recent innovation is

�t(i) = (z � 1)wl;tlt(i) =
�
z � 1
z

�
1

�t
, (10)

where the second equality is obtained by using (5), (7) and (9). Due to pro�t division, the

most recent innovator obtains (1� s)�t while the previous innovator obtains s�t. The above

discussion implicitly assumes that the most recent innovation and the second-most recent

innovation are owned by di¤erent �rms (i.e., the Arrow replacement e¤ect). In Lemma 1, we

show that the Arrow replacement e¤ect is indeed present in this quality-ladder model with

pro�t division.20

19Li (2001) considers a CES version of (2) without horizontal innovation. In this case, the monopolistic
markup is determined by either the quality step size or the elasticity of substitution depending on whether
innovation is drastic or non-drastic. Without loss of generality, we focus on non-drastic innovation as in the
original Grossman-Helpman model.
20Cozzi (2007) shows that the Arrow e¤ect is not necessarily inconsistent with the empirical observation

that incumbents often target innovation at their own industries. Under this interpretation, the incumbents�
choice of R&D is simply indeterminate, so that the aggregate economy behaves as if innovation is targeted
only by entrants. See also Etro (2004, 2008) for an interesting analysis on innovation by incumbents with a
�rst-mover advantage.
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Lemma 1 The Arrow replacement e¤ect is present.

Proof. See the Appendix A.

Finally, for a newly invented variety, we make the usual simplifying assumption that the

productivity of labor in each new variety21 is randomly drawn from the existing distribution

of active products i 2 [0; n�t ]. We also assume that a variety inventor can only patent

the most advanced technology. Given that the lower-productivity production methods are

unpatented, Bertrand competition drives the markup down to z as well.22 However, because

there is no previous patentholder in the newly created industry, the variety inventor obtains

the entire � until the next productivity improvement occurs, and then she can extract s�

from the entrant.

What happens when a variety invention infringes the patents of existing varieties? For

example, Hall et al. (2001) de�ne an original innovation as "a patent that cites a broad

set of technologies or which has a certain percentage of citations given to di¤erent patent

classes". If we view an original innovation as a horizontal innovation and assume that

the probability of patent infringement is increasing in the number of patent citations, then

horizontal innovation may in fact be more at risk of patent infringements. Here we discuss the

implication of an alternative assumption that a newly invented variety infringes all previous

horizontal patents. In this case, the infringed patentholders should all claim a right to share

among themselves a fraction of the pro�ts. But this means that the share that will go to

each infringed patentholder is zero as a result of the continuum of products (or tending to

zero with countable products). Let us assume that each infringed party has to pay a however

small, but discrete, legal fee " in order to sue the infringer. Then, in equilibrium no previous

horizontal innovator will ever sue the current horizontal innovator.

21Or the quality of each new variety, in the equivalent quality ladder interpretation explained above.
22In the alternative case of drastic innovation, a new variety inventor and the most recent innovator for

an existing variety would also choose the same equilibrium markup that is determined by the elasticity of
substitution.
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2.3 Vertical innovation

Denote v2;t(i) as the value of the patent held by the second-most recent innovator in industry

i. Because �t(i) = �t for i 2 [0; n�t ] from (10), v2;t(i) = v2;t in a symmetric equilibrium (i.e.,

an equal arrival rate of innovation across industries).23 In this case, the familiar no-arbitrage

condition for v2;t is

rtv2;t = s�t +
:
v2;t � (� + �t)v2;t. (11)

The left-hand side of (11) is the return on this asset. The right-hand side of (11) is the sum

of (a) the pro�t s�t received by the patentholder, (b) the potential capital gain
:
v2;t, and (c)

the expected capital loss due to obsolescence �v2;t and creative destruction �tv2;t, where �t

is the Poisson arrival rate of innovation in the industry. As for the value of the patent held

by the most recent innovator, the no-arbitrage condition for v1;t is

rtv1;t = (1� s)�t +
:
v1;t � (� + �t)v1;t + �tv2;t. (12)

The intuition behind (12) is the same as (11) except for the addition of the last term. When

the next quality improvement occurs, the most recent innovator becomes the second-most

recent innovator, and hence, her net expected capital loss is �t(v1;t � v2;t).

There is a unit continuum of vertical-R&D �rms indexed by j 2 [0; 1] doing research on

vertical innovation in each industry i. They hire high-skill labor hq;t(j) to create productivity

improvements, and the expected pro�t of �rm j is

�q;t(j) = v1;t�t(j)� wh;thq;t(j). (13)

The �rm-level arrival rate of innovation is

�t(j) =
�
'q;thq;t(j), (14)

23We follow the standard approach in the literature to focus on the symmetric equilibrium. See Cozzi
(2005) and Cozzi et al. (2007) for a discussion on the symmetric equilibrium in the quality-ladder model.
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where
�
'q;t is the productivity of vertical R&D at time t. The zero-expected-pro�t condition

for vertical R&D is

v1;t
�
'q;t = wh;t. (15)

We follow Jones and Williams (2000) to assume that
�
'q;t = 'q(hq;t)

�q�1, where 'q > 0 is a

productivity parameter for vertical R&D and �q 2 (0; 1) captures the usual negative exter-

nality in intratemporal duplication within each industry. In equilibrium, the industry-level

arrival rate of innovation equals the aggregate of �rm-level arrival rates. Therefore, at the

aggregate level, the arrival rate of vertical innovation for each variety is �t = 'q(hq;t)
�q , which

is subject to decreasing returns to scale;24 see for example Kortum (1993) and Thompson

(1996) for empirical evidence.

2.4 Horizontal innovation

Denote vn;t as the value of inventing a new variety. The no-arbitrage condition for vn;t is

rtvn;t = �t +
:
vn;t � (� + �t)vn;t + �tv2;t. (16)

The only di¤erence between (12) and (16) is that a variety inventor captures �t while a

quality innovator captures (1�s)�t. There is also a unit continuum of horizontal-R&D �rms

indexed by k 2 [0; 1] doing research on creating new varieties. They hire high-skill labor

hn;t(k) to create inventions, and the pro�t of �rm k is

�n;t(k) = vn;t
:
nt(k)� wh;thn;t(k). (17)

24Despite decreasing returns to scale at the aggregate level, we assume constant returns to scale at the
�rm level in order to be consistent with free entry and zero expected pro�t in the R&D sector.
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The number of inventions created by �rm k is25

:
nt(k) =

�
'n;thn;t(k), (18)

where
�
'n;t is the productivity of horizontal R&D at time t. The zero-pro�t condition for

horizontal R&D is

vn;t
�
'n;t = wh;t. (19)

Again,
�
'n;t = 'n(hn;t)

�n�1, where 'n > 0 is a productivity parameter for variety-expanding

R&D and �n 2 (0; 1) captures the duplication externality in horizontal innovation. At the

aggregate level, the total number of inventions created at time t is

:
nt = 'n(hn;t)

�n. (20)

3 Decentralized equilibrium

The equilibrium is a time path fyt(i); lt; hq;t; hn;t; rt; pt(i); wl;t; wh;t; vn;t; v1;t; v2;tg, t � 0. Also,

at each instant of time,

� households maximize utility taking frt; pt(i); wl;t; wh;tg as given;

� production �rms produce fyt(i)g and choose fpt(i)g to maximize pro�t taking fwl;tg

as given;

� vertical-innovation �rms choose fhq;tg to maximize expected pro�t taking fwh;t; v1;tg

as given;

� horizontal-innovation �rms choose fhn;tg to maximize pro�t taking fwh;t; vn;tg as given;
25Due to the assumption of a continuum of varieties, there is no strategic interaction across varieties.

Therefore, we do not need to distinguish between single-product and multi-product �rms.
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� the low-skill labor market clears such that n�t lt = L; and

� the high-skill labor market clears such that hn;t + n�thq;t = 1.

3.1 Stationary equilibrium

We focus on a stationary equilibrium, in which the number of active varieties is constant.

Substituting (20) into (3) yields
:
n
�

t = 'n(hn;t)
�n � �n�t . Therefore,

:
n
�

t = 0 implies that

n� =
:
n=� = 'n(hn)

�n=�. (21)

The number of production workers per variety is

l =
L

n�
=

�L

'n(hn)
�n
. (22)

Let us choose low-skill labor as the numeraire (i.e., wl;t = 1 for all t). Then, combining (5),

(7) and (9) shows that � is constant in the stationary equilibrium implying that r = � from

(6) and
:
�t=�t = 0 from (10). Applying the stationary equilibrium conditions on (11), (12)

and (16) yields

v1 =
(1� s)� + �v2
�+ � + �

=
�

�+ � + �

�
1� s+ s

�

�+ � + �

�
, (23)

vn =
� + �v2
�+ � + �

=
�

�+ � + �

�
1 + s

�

�+ � + �

�
. (24)

(24) shows that the value of a new variety vn is increasing in s for a given innovation rate �

because a larger s allows the variety inventor to extract more pro�t from the next innovator.

In contrast, (23) shows that the value of a productivity improvement v1 is decreasing in s for

a given � because of the backloading e¤ect �=(�+ � + �) < 1. In other words, delaying the

income stream reduces its expected present value due to discounting � and the possibility of
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obsolescence �.

Substituting (23) and (24) into v1
�
'q = vn

�
'n from (15) and (19) yields

(hn)
1��n =

 
'n
'q

�+ � + (1 + s)'q(hq)
�q

(1� s)(�+ �) + 'q(hq)
�q

!
(hq)

1��q . (25)

We will refer to (25) as the arbitrage condition. To close the model, we manipulate hn;t +

n�thq;t = 1 to derive

�(1� hn)

'n(hn)
�n
= hq. (26)

We will refer to (26) as the resource constraint. The equilibrium allocation of high-skill labor

is implicitly determined by solving (25) and (26). Taking the total di¤erentials of (26) yields

dhn
dhq

= �
�

1� hn
hn + �n(1� hn)

�
hn
hq

< 0. (27)

In other words, the resource constraint describes a negative relationship between hn and hq.

As for the arbitrage condition in (25), hq has opposing e¤ects on the arbitrage condition.

On the one hand, an increase in hq decreases
�
'q. For a given value of vn=v1, hn must rise

and
�
'n must fall to balance v1

�
'q = vn

�
'n . On the other hand, a larger hq increases � and

decreases vn=v1 when s > 0. If this latter e¤ect is strong enough, it may lead to a decrease

in hn. Taking the total di¤erentials of (25) yields

dhn
dhq

=
1

1� �n

 
1� �q � �q

s2(�+ �)

�+ � + (1 + s)'q(hq)
�q

'q(hq)
�q

(1� s)(�+ �) + 'q(hq)
�q

!
hn
hq
. (28)

(28) shows that dhn=dhq must be positive when hq equals zero or becomes su¢ciently large.

However, at intermediate values of hq, it is possible for dhn=dhq to be negative. In this

case, there may be multiple equilibria. To rule out multiple equilibrium, which is not the

focus of this study, Lemma 2 derives the parameter condition under which (28) is always

positive, which is su¢cient to ensure that the stationary equilibrium is unique. Let�s de�ne
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a parameter threshold �q � [1� 0:5s2=(1 +
p
1� s2)] 2 [0:5; 1].

Lemma 2 If �q < �q, then dhn=dhq > 0 in (28) 8hq > 0.

Proof. See the Appendix A.

Figure 1 plots (25) and (26) in the (hq; hn) space. The resource constraint (RC) is

negatively sloped while the arbitrage condition (AC) is positively sloped given the parameter

condition in Lemma 2.

Therefore, if an equilibrium exists, it must be unique. Also, a larger s increases the

market value of a new variety and decreases that of a quality improvement; consequently,

horizontal R&D hn rises and vertical R&D hq falls. Given this intuitive result (summarized

in Proposition 1), the next section uses the growth-theoretic framework to analyze the e¤ects

of the pro�t-division rule on economic growth and social welfare.

Proposition 1 Given �q <
�

�q, there exists a unique equilibrium (hq; hn). The equilibrium

hn(s) is increasing in s whereas hq(s) is decreasing in s.
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Proof. At hq = 0, hn = 0 in (25) and hn = 1 in (26). As hq approaches in�nity, hn in

(26) approaches zero. Therefore, (25) and (26) must cross exactly once given Lemma 2. An

increase in s shifts up (25) in the (hq; hn) space leading to an increase in hn and a decrease

in hq. See Figure 1.

4 Growth and welfare e¤ects of blocking patents

In this section, we analyze the e¤ects of blocking patents on economic growth and social

welfare. We �rst derive the growth-maximizing pro�t-division rule and then the welfare-

maximizing rule. Finally, we compare them and characterize the condition under which one

is above the other.

4.1 The growth-maximizing pro�t-division rule

To derive the balanced growth rate of the consumption index, we substitute (7) into (2) to

obtain

ln ct =

n�Z

0

[qt(i) ln z + ln l(i)]di =

0
@n�

tZ

0

��d�

1
A ln z + n� ln l. (29)

The second equality of (29) is obtained by (a) applying symmetry l(i) = l from (10), (b)

normalizing q0(i) = 0 for all i, and (c) using the law of large numbers that implies

n�Z

0

qt(i)di =

n�
tZ

0

��d� .
26 Di¤erentiating (29) with respect to time yields the balanced growth rate of the

consumption index given by

g �
:
ct
ct
= n�� ln z, (30)

26Note that at each instant of time, the average quality of new varieties is the same as the average quality
of obsolete varieties because they are drawn from the same quality distribution. In Appendix B, we derive
an expression for ln ct when n

�

t varies over time.
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where the steady-state number of varieties is n� = 'n(hn)
�n=�, and the arrival rate of

productivity improvement in each industry is � = 'q(hq)
�q .

Corollary 1 n� is increasing in s whereas � is decreasing in s.

Proof. Recall that n� = 'n(hn)
�n=� and � = 'q(hq)

�q . Then, from Proposition 1, hn is

increasing in s whereas hq is decreasing in s.

To see why the equilibrium growth rate depends on the number of varieties, let�s consider

the symmetric case of (2) given by ln ct = n� ln yt(i). Di¤erentiating ln ct with respect to

time yields g = n�
:
yt(i)=yt(i). In other words, for a given quality growth rate of each variety,

increasing the number of varieties causes the aggregate consumption index to grow at a

higher rate.27 Given that increasing s has a positive e¤ect on n� and a negative e¤ect on

�, there is generally a growth-maximizing pro�t-division rule. Di¤erentiating the log of (30)

with respect to s yields

1

g

@g

@s
=
�n
hn

@hn
@s

+
�q
hq

@hq
@s
, (31)

where @hn=@s > 0 and @hq=@s < 0 from Proposition 1. From (27), we can derive

1

hn

dhn
ds

= � 1
hq

�
1� hn

hn + �n(1� hn)

�
dhq
ds
. (32)

Substituting (32) into (31) yields

1

g

@g

@s
= � 1

hq

�
�n(1� hn)

hn + �n(1� hn)
� �q

�
dhq
ds
. (33)

27It is useful to note that this result of horizontal innovation a¤ecting long-run growth does not rely on
a stationary number of varieties. In the case of a growing number of varieties, horizontal innovation would
still have an e¤ect on long-run growth if the long-run variety growth rate is endogenous. However, it is
common for studies on R&D-based growth models with vertical and horizontal innovation to assume a setup
in which the long-run variety growth rate is equal to the exogenous population growth rate for the purpose
of eliminating scale e¤ects.
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Therefore,

@g

@s
> 0, hn(s) < � �

�n(1� �q)

�q + �n(1� �q)
. (34)

To gain a better understanding of (34), we maximize (30) by directly choosing hn and

hq subject to (26). Substituting � = 'q(hq)
�q and hq = (1 � hn)=n

� into (30) yields g =

(n�)1��q(1 � hn)
�q'q ln z, where n

� = 'n(hn)
�n=� from (21). It is easy to show that the

growth-maximizing hn is given by �, which is increasing in �n and decreasing in �q. In other

words, as horizontal R&D exhibits a smaller degree of negative duplication externality (i.e.,

a larger �n) or as vertical R&D exhibits a larger degree of duplication externality (i.e., a

smaller �q), the economy should allocate more research labor to horizontal R&D to maximize

economic growth. Therefore, the growth-maximizing pro�t-division rule sg � argmax g(s)

is characterized by moving the equilibrium hn(sg) to as close to � as possible.

Proposition 2 If an interior growth-maximizing pro�t-division rule sg exists, it is implicitly

de�ned by hn(sg) = �. If hn(0) > �, then sg = 0. If hn(1) < �, then sg = 1.

Proof. Note (33) and (34). Also, recall that hn(s) is increasing in s.

4.2 The welfare-maximizing pro�t-division rule

To derive the steady-state welfare,28 we normalize the time index such that time 0 is the

instant when the economy reaches the stationary equilibrium. In this case, (1) becomes29

U =
1

�

�
ln c0 +

g

�

�
=
1

�

�
n� ln l +

n�� ln z

�

�
, (35)

28In this section, we restrict our attention to steady-state welfare. A more complete welfare analysis
would take into account the evolution of households� utility during the transitional path from the initial
state to the steady state, and we will perform this analysis numerically in the next section. However, such
an analysis is analytically much more complicated. Therefore, we �rst follow the usual treatment in the
literature to derive the optimal patent policy that maximizes steady-state welfare. See for example Iwaisako
and Futagami (2003), Grossman and Lai (2004), Futagami and Iwaisako (2007) and Acemoglu and Akcigit
(2011).
29Equation (35) is based on the normalization that q0(i) = 0 for all i. If we modify this normalization to

q0(i) = q > 0 for all i, then there will be an extra term n�q ln z inside the bracket in (35). It can be shown
that q > 0 has the same e¤ect as a larger L on steady-state welfare.
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where l = L=n� is decreasing in s. In other words, social welfare is determined by the growth

rate g as well as the initial level of consumption ln c0. Because of this additional level e¤ect,

the welfare-maximizing pro�t-division rule is generally di¤erent from the growth-maximizing

rule. When s increases, it creates a positive e¤ect as well as a negative e¤ect on ln c0 = n� ln l.

By increasing hn and n
�, a larger s increases the number of varieties available for consumption

on the one hand and decreases output per variety on the other. Di¤erentiating ln c0 with

respect to s yields

@ ln c0
@s

= (ln l � 1) @n
�

@s
, (36)

where n� = 'n(hn)
�n=� so that @n�=@s > 0. Therefore,

@ ln c0
@s

> 0, hn(s) < � �
�
�L

'ne

�1=�n
, (37)

where e = exp(1). In other words, the level of hn that maximizes initial consumption is

given by �: Equation (22) shows that for a given (hn)
�n, a larger �L='n increases l, so that

hn can be larger while initial consumption still rises.

Di¤erentiating (35) with respect to s yields

@U

@s
=
1

�

�
@ ln c0
@s

+
1

�

@g

@s

�
. (38)

Denote the welfare-maximizing pro�t-division rule by su � argmaxU(s).30 In Proposition

3, we show that

su � sg , � � �. (39)

Intuitively, the welfare-maximizing hn balances between the growth e¤ect and the initial-

level e¤ect on welfare. Therefore, it is a weighted average of � and �. If � � �, then the

welfare-maximizing hn is above the growth-maximizing hn, and vice versa. Given that hn(s)

is increasing in s, � � � would also imply su � sg.

30It is useful to note that as in the case of the growth-maximizing pro�t-division rule, the welfare-
maximizing pro�t-division rule can be a corner solution (i.e., su = 0 or su = 1).
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Proposition 3 The welfare-maximizing pro�t-division rule su is below (above) the growth-

maximizing pro�t-division rule sg if � is smaller (larger) than �.

Proof. From (34), we know that @g=@s = 0 at hn(s) = �. From (37), we know that

@ ln c0=@s = 0 at hn(s) = �. Suppose � = �. Then, (38) shows that su = sg. If � � (�)�,

then su � (�)sg because hn(s) is increasing in s.

Finally, we discuss how the supply of unskilled labor L a¤ects the welfare-maximizing

pro�t-division rule. From (25) and (26), we see that neither the arbitrage condition nor

the resource constraint depend on L. Therefore, the supply of unskilled labor has no e¤ect

on the growth-maximizing pro�t-division rule. Furthermore, given that � is increasing in

L, it must be the case that su is increasing in L. Intuitively, a larger supply of unskilled

labor increases output per variety and magni�es the positive e¤ect of n� on the initial level

of consumption ln c0 = n� lnL � n� lnn� through the term n� lnL. Given that the welfare-

maximizing su is increasing in L while the growth-maximizing sg is independent of L, we

have the following result illustrated in Figure 2, in which we de�ne a threshold value of L

given by L � 'n�
�ne=�.
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Corollary 2 If L is smaller (larger) than L, then su is below (above) sg.

Proof. This result follows from Proposition 3 because L � L � 'n�
�ne=� is equivalent to

� � �.

5 Quantitative analysis

In this section, we calibrate the model to illustrate quantitatively the growth and welfare

e¤ects of strengthening blocking patents (i.e., increasing s). First, we evaluate the e¤ects of

increasing s from 0 to 1 on steady-state welfare. Then, we simulate transition dynamics to

compute complete welfare changes. Speci�cally, we consider two types of policy reform: (a)

an immediate increase in s, and (b) a gradual increase in s.

5.1 Steady-state welfare

For the structural parameters, we either consider conventional parameter values or calibrate

their values by using empirical moments in the US before the patent-policy reform in 1982.

For the discount rate �, we set it to 0.03.31 For the R&D externality parameters �q and �n,

we consider the symmetric case of � = �q = �n and follow Jones and Williams (2000) to

consider a value of � = 0:5.32 Similarly, we consider the symmetric case of ' = 'q = 'n for

R&D productivity as in Gersbach et al. (2009).33 To calibrate the values of the remaining

31We have also considered a higher discount rate of 0.05 and found that the qualitative implication of our
results remains unchanged.
32While Kortum�s (1992) estimated value for a parameter similar to � is 0.2, Jones and Williams (2000)

use the empirical estimates of the social return to R&D to show that a lower bound for � is 0:5. Therefore,
we use � = 0:5 as our benchmark.
33In this calibration exercise, we consider the benchmark case of symmetric R&D parameters because

a more detailed calibration requires disaggregate data on vertical and horizontal R&D. Unfortunately, we
do not know of such data. However, if we follow the interpretation of Aghion and Howitt (1996) to treat
horizontal R&D mainly as basic research and vertical R&D as applied research, then we can consider the data
on basic R&D as a benchmark. According to OECD: Main Science and Technology Indicators, basic R&D
is about 0.33% of US GDP in 1982. In our model�s calibration, about 26% of high-skill labor is allocated to
horizontal R&D implying that horizontal R&D as a share of GDP is about 0.39%. Therefore, the calibration
based on symmetric R&D parameters is roughly in line with the data.
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structural parameters ', �, z and L, we use the following four empirical moments: (i) the

arrival rate of vertical innovation, (ii) the average growth rate of total factor productivity, (iii)

R&D as a share of GDP, and (iv) the ratio of R&D scientists and engineers to manufacturing

labor force. For (i), we follow Acemoglu and Akcigit (2011) to consider an innovation-arrival

rate of � = 0:33. For (ii), we consider a value of g = 1:5%. For (iii), we use a value of

R&D=GDP = wh=(wh +wlL+ n
��) = 1:5%. For (iv), there were 711.8 thousands full-time

equivalent R&D scientists and engineers in the US in 1982,34 and there were 17.36 millions

people in the US manufacturing in 198235. Given these empirical moments, we have the

following calibrated values f'; �; z; Lg = f0:64; 0:12; 1:02; 24:38g.

Table 1: E¤ects of s on growth and welfare

s 0:0 0:2 0:4 0:6 0:8 1:0

� 0:33 0:30 0:27 0:25 0:22 0:18

g 1:500% 1:513% 1:505% 1:474% 1:413% 1:301%

U 217:7 228:9 238:9 247:9 256:2 264:0

Table 1 shows that an increase in s would sti�e vertical innovation by decreasing the

arrival rate of productivity improvements. Despite the increase in horizontal innovation, the

overall growth rate eventually decreases. This �nding is consistent with the recent concerns

about patent protection sti�ing the innovation process. However, Table 1 also suggests an

interesting possibility that despite the lower growth rate, steady-state welfare U in (35)

increases due to the higher rate of horizontal innovation.36�37 In this simulation, we �nd that

34This data is obtained from National Science Foundation. See the number of full-time equivalent R&D
scientists and engineers in the US.
35Data from the Bureau of Labour Statistics. It is useful to note that if we use the total labor force

(instead of the manufacturing labor force), the calibrated value of L would be even larger implying even
larger welfare gains.
36It is useful to note that this �nding of a welfare gain is robust to the normalization of q0(i) = 0 for all i.

In the case of q0(i) = q > 0 for all i, the welfare gain would have been more substantial because q > 0 has
the same e¤ect as a larger L as discussed before.
37We have also considered a hypothetical value of s = 1:1 and �nd that welfare continues to increase in s.

This result also applies to the subsequent results with transition dynamics. However, a potential problem
with s > 1 is that if patent infringment occurs only when an entrant launches her product in the market
(rather than when she comes up with the innovation), she may not have the incentives to launch her high-

27



steady-state welfare is maximized as s ! 1, and this result is driven by a relatively large

value of L = 24:38 (recall that L is the number of production workers per each R&D worker).

Holding other parameter values constant, we �nd that in the case of decreasing L to about

12, the welfare-maximizing su becomes an interior solution.
38 If we further decrease L to

about 7, steady-state welfare would be maximized as s! 0. In summary, these illustrative

numerical exercises suggest the importance of taking into consideration the stimulating e¤ect

of s on horizontal innovation in order to perform a proper welfare analysis.

5.2 Immediate patent reform

In the previous section, we evaluated the e¤ects of an increase in s on steady-state welfare.

However, such an analysis neglects the welfare changes during the transition path. Therefore,

in this section, we simulate transition dynamics of the model.39 Given the transition path of

the consumption index, we can then evaluate the complete welfare e¤ects of an immediate

increase in s from s = 0 to s 2 f0:2; 0:4; 0:6; 0:8; 1:0g. Comparing Tables 1 and 2, we see

that increasing s would improve welfare even taking into consideration transition dynamics.

However, the magnitude of the welfare improvement is smaller than in the case of steady-

state welfare.

Table 2: Welfare e¤ects of an immediate increase in s

s 0:0 0:2 0:4 0:6 0:8 1:0

U(transition) 217:7 226:8 235:1 242:5 249:2 255:3

quality product to avoid paying the penality to the incumbent. If every subsequent entrant acts in this way,
then vertical innovation would come to a halt.
38Interestingly, there were 1.1 million full-time equivalent R&D scientists and engineers in 2007, according

to NSF. Since the manufacturing labour force was 13.8 millions, the resulting L = 11:54, which implies an
optimal level of s around 0:8.
39See Appendix B for a description of the dynamic system and the numerical algorithm.
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5.3 Gradual patent reform

In the previous section, we evaluated the welfare e¤ects of an immediate increase in s.

However, in the US, the patent reform may be more accurately described as a gradual

reform. For example, in 1982, the US Congress established the Court of Appeals for the

Federal Circuit (CAFC) as a centralized appellate court for patent cases. "Over the next

decade, in case after case, the court signi�cantly broadened and strengthened the rights

of patent holders."40 Also, the Ginarte-Park index (described in Section 1) shows that the

strength of patent protection in the US gradually increases from 3.8 in 1975 to 4.9 in 1995.41

Table 3: Index of patent rights from Park (2008)

Year 1975 1980 1985 1990 1995 2000 2005

United States 3:83 4:35 4:68 4:68 4:88 4:88 4:88

Therefore, in this section, we evaluate the welfare e¤ects of a gradual increase in s from

s = 0 to s 2 f0:2; 0:4; 0:6; 0:8; 1:0g. Following Cozzi and Galli (2011), we consider a law of

motion for st given by

:
st =  (s� st), (40)

where the parameter  2 (0; 1) determines the speed of the patent reform. In the numerical

exercise, we consider  = 0:05 for illustrative purposes. Table 4 shows that a gradual increase

in s would improve social welfare but by a smaller magnitude than an immediate increase in

s. Furthermore, the welfare gain is increasing in  (i.e., increasing in the speed of reform).

As  approaches one, the welfare gain becomes the same as in Section 5.2.

Table 4: Welfare e¤ects of a gradual increase in s

s 0:0 0:2 0:4 0:6 0:8 1:0

U( = 0:05) 217:7 224:3 230:4 236:0 240:3 245:8

40Ja¤e and Lerner (2004, p. 9-10).
41The Ginarte-Park index is an aggregate measure of patent rights rather than a direct measure of the

pro�t-division rule. Although an empirical measure of "s" is not available, the anecdotal evidence from Ja¤e
and Lerner (2004) seems to suggest that it increases gradually in the US rather than once and for all in the
early 1980�s.
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6 Extensions

In this section, we consider two important extensions of the previous setting. In the �rst

extension, we analyze a di¤erent institutional setting that allows stronger patents to dis-

criminate in favour of horizontal innovation only. In other words, under the basic-research

interpretation of horizontal innovation, in Section 6.1, we consider an alternative pro�t-

division rule under which only the basic researcher can appropriate a fraction of the pro�ts

created by all future applied innovations in the industry.

In Section 6.2, we instead remove the assumption that skilled labor is segregated into

the R&D sectors while unskilled labor is employed only in the manufacturing sector. In this

section, we will consider the case of homogeneous labor employable in all sectors. As we shall

see, both variants of the basic analysis lead to similar conclusions, though they weaken the

calibrated optimal backloading parameter s to a value slightly less than 1, which nevertheless

is still substantially larger than the growth-maximizing share.

6.1 An alternative pro�t-division rule

The results of the numerical analysis of the previous section shows that perfect backload-

ing maximizes welfare. We share the view42 that this depends on our assumption that the

inventors of basic technologies cannot obtain a share of the pro�t following a second improve-

ment in the technology. Within this quite restrictive institutional setting, even the strongest

protection of basic technologies, that is, s = 1, allows the basic innovator in each industry

to appropriate only part of the total pro�t �ow generated by her basic R&D result. If we

instead assume that basic inventors obtain a share s of the industry�s pro�t, i.e., that in each

industry pro�t gets divided between the inventor of the basic technology and the inventor of

the current state-of-the-art quality, our numerical results show that the perfect protection

of basic research patents, that is, s = 1, would not maximize welfare any more.

42We are indebted to a Referee for this very useful suggestion.
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Let us indeed assume that the basic researcher is entitled to a share s of the pro�t of

all future applied researchers using her innovation, that is, a share of the pro�ts of all the

future �rms in the industry until the industry becomes obsolete. We focus on the steady-

state analysis. It can be noticed that, under the new framework, all the previous equations

continue to hold, with the exception of equations (11), (12), (16), (23), (24) and (25).

Let us begin by denoting v2;t(i) as the value of the patent held by the second-most recent

innovator in industry i, provided she was not the �rst innovator in the industry: that is,

who was an applied researcher, not a basic researcher. Then, (11) now becomes v2;t = 0,

because a former incumbent is not entitled to any share of the pro�ts of successive innovators.

Consequently, the previous condition in (12) is modi�ed to

rtv1;t = (1� s)�t +
:
v1;t � (� + �t)v1;t, (41)

because, when the next quality improvement occurs, the most recent applied R&D innovator

is driven out of the market.

The horizontal innovator�s arbitrage equation (16) is now

rtvn;t = �t +
:
vn;t � (� + �t)vn;t + �tvB;t, (42)

where vB;t is the expected discounted value of the stream of royalties s���t from all future

applied innovators in the industry. The no-arbitrage condition for vB;t is

rtvB;t = s�t +
:
vB;t � �vB;t. (43)

Intuitively, (43) equates the interest rate to the per unit asset return given by the sum of

(a) the pro�t received by the horizontal innovator s�t, (b) any potential capital gain
:
vB;t,

and (c) the expected capital loss due to obsolescence �vB;t only (i.e., creative destruction no

longer a¤ects vB;t).
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As in the analysis of Section 4, in a stationary equilibrium, � is constant, rt = �, and

:
�t=�t = 0. Therefore, we can write:

vB;t =
s�

�+ �
� vB. (44)

Applying all previous equations, we derive the new version of previous (23) as

v1 =
(1� s)�

�+ � + �
, (45)

and of previous (24) as

vn =
� + �vB
�+ � + �

=
�

�+ � + �

�
1 +

s�

�+ �

�
. (46)

Substituting these new versions of (23) and (24) into v1
�
'q = vn

�
'n yields

(hn)
1��n =

 
'n
'q

�+ � + s'q(hq)
�q

(1� s)(�+ �)

!
(hq)

1��q . (47)

The resource constraint for skilled labor continues to be

�(1� hn)

'n(hn)
�n
= hq. (48)

Everything else remains unchanged.

Because the new arbitrage condition in (47) represents a positive relationship between

hn and hq as before and the resource constraint remains unchanged, Figure 1 also applies

to this alternative pro�t-division rule. An increase in s rotates the new AC curve upwards

while leaving the RC curve una¤ected; consequently, we obtain the same result as before

that the equilibrium hn(s) is increasing in s whereas hq(s) is decreasing in s. Furthermore,

by comparing the old AC curve (25) and the new AC curve (47), one can see that the two

AC curves are identical when s = 0. Given that the RC curve is the same in both cases, the
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equilibrium allocation under the alternative pro�t-division rule is the same as in the baseline

model when s = 0. However, as s increases above zero, it can be shown that the new AC

curve is positioned above the old AC curve in Figure 1 implying that for each value of s > 0,

the equilibrium hn(s) is higher under the alternative pro�t division rule than under the

baseline model. Given that the growth-maximizing hn(sg) given by � in (34) is independent

of the pro�t-division rule, the growth-maximizing sg must be lower under the alternative

pro�t-division rule than under the baseline model.

Regarding the quantitative analysis, we note that the calibrated parameters are the same

as before, because their derivation is based on the common benchmark case in which s = 0.

Therefore we can use f'; �; z; Lg = f0:64; 0:12; 1:02; 24:38g. We have simulated this variant

of the model and have found qualitative results that are similar to those of the previous

sections. Most notably, a smaller L would be associated with a lower value of the welfare-

maximizing s, as would a lower discount rate. In other words, an economy with relatively

more educated workers (i.e., a smaller L) and/or more patient people (i.e., a smaller �) would

value growth more and would be less avid for varieties. The following Table 5 summarizes

our �ndings for di¤erent levels of s.

Table 5: E¤ects of s on growth and welfare

s 0:0 0:2 0:4 0:6 0:8 1:0

� 0:33 0:25 0:19 0:14 0:08 0

g 1:50% 1:49% 1:35% 1:10% 0:71% 0%

U 217:7 245:4 261:3 270:7 274:8 271:3

From these results we notice that, consistent with what conjectured, it is not convenient

for the economy to suppress vertical innovation, by adopting a con�scatory rate on applied

R&D. Moreover, by comparing the entries of Table 5 with those of Table 2, we can see that

channeling applied R&D pro�ts only to basic research, rather than generically backloading

pro�ts to previous innovators regardless of its research being basic or applied, as we have
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done in the previous sections, would increase the attainable levels of welfare. In fact, steady

state welfare U = 274:8 would not be attainable in the previous simulations. More precisely,

by digging further into this 1982 US scenario, it can be shown that the steady-state welfare

maximizing basic research share would be s = 0:84 (with U = 274:9). Finally, the growth-

maximizing share is s = 0:08, which is substantially smaller than the welfare-maximizing

share.

6.2 Homogeneous Labour

In the previous sections, we have focused on a model in which there are unskilled workers for

production and skilled workers for vertical and horizontal R&D. This exogenous separation

between production workers and R&D workers helps simplifying the analytical derivations.

To examine the robustness of our main results, we consider the case of homogeneous workers

for production, vertical and horizontal R&D in this section.43

Under homogeneous labor, wh;t = wl;t = wt, and the total supply of labor is L + 1. The

rest of the model is the same as in Section 2 except for the new resource constraint (RC) on

labor as follows.

hn;t + n�thq;t + n�t lt = L+ 1. (49)

In the stationary equilibrium, the arbitrage condition (AC) between vertical and horizontal

R&D continues to be given by (25). To close the model, we equate (10) and (15) to obtain

�t
(z � 1)lt

= wt =
�
'q;tv1;t, (50)

where we normalize wt to unity. Substituting (23) and � = 'q(hq)
�q into (50), we obtain

1

l
=
(z � 1)'q(hq)�q�1
�+ � + 'q(hq)

�q

 
1� s+ s

'q(hq)
�q

�+ � + 'q(hq)
�q

!
. (51)

43The authors would like to thank the Referees for this very helpful suggestion.
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Substituting (21) and (51) into (49) and then rearranging terms yield

�(L+ 1� hn)

'n(hn)
�n

= hq + l = hq +

�
(hq)

1��q

(z � 1)'q

�
[�+ � + 'q(hq)

�q ]2

(1� s)(�+ �) + 'q(hq)
�q
. (52)

It can be shown that �q � 0:5 is su¢cient for the new RC in (52) to exhibit a monotonically

negative relationship in the (hq; hn) space for all values of s 2 [0; 1]; therefore, solving the

AC in (25) and the new RC in (52) yields the unique equilibrium allocation of hn and hq as

before. An increase in s rotates the AC upwards as before, whereas it also rotates the new

RC downwards as shown in Figure 3. Therefore, the additional general-equilibrium e¤ect

through a reallocation of production workers strengthens the negative e¤ect of s on vertical

R&D hq and weakens the positive e¤ect of s on horizontal R&D hn. It may seem that the

net e¤ect of a higher level of s on horizontal R&D hn is ambiguous. However, we can prove

the following result:

Lemma 3 The steady-state level of horizontal R&D hn is an increasing function of s.

Proof. See Appendix A.
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The steady-state equilibrium growth rate and welfare continue to be given by (30) and

(35) respectively; however, the equilibrium allocation of l is now given by (51). To examine

how an increase in s a¤ects economic growth and social welfare, we calibrate the parameters

as before. First, we set the discount rate to � = 0:03 and the R&D externality parameter

to � = �q = �n = 0:5. For the remaining parameters f'; �; z; Lg, we calibrate them using

(i) � = 0:33, (ii) g = 1:5%, and (iii) the ratio of R&D workers to labor force given by

(hn + n�hq)=(L+ 1). Finally, we set L = 24:38 as in Section 5.1, so that the two calibrated

economies have the same size of labor force. The calibrated parameter values are f'; �; zg =

f0:48; 0:30; 1:04g. Table 6 reports the results. The qualitative pattern of the results under

homogeneous labor is consistent with the results under heterogeneous labor. As s increases,

the arrival rate of vertical innovation decreases, whereas the equilibrium growth rate becomes

monotonically decreasing in s providing further support for the innovation-sti�ing e¤ect

of blocking patents. Finally, social welfare becomes an inverted-U function in s with a

welfare-maximizing value of 0.93 once again showing the di¤erent implications of growth

maximization versus welfare maximization.

Table 6: E¤ects of s under homogeneous labor

s 0:0 0:2 0:4 0:6 0:8 1:0

� 0:33 0:29 0:25 0:21 0:16 0:06

g 1:50% 1:42% 1:31% 1:16% 0:92% 0:40%

U 129:0 134:1 138:3 141:8 144:4 144:3

7 Conclusion

In this study, we have developed a simple growth model to shed some light on an often

debated question that is whether patent protection stimulates or sti�es innovation. We show

that both sides of the argument are valid. Speci�cally, protecting incumbents at the expense

of entrants would stimulate horizontal innovation but sti�e vertical innovation, and the
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opposite occurs when entrants are protected against incumbents. Although the distinction

between vertical and horizontal innovation is blurred in reality, our point is still valid in

the sense that patent protection has asymmetric e¤ects on di¤erent types of innovation that

carry di¤erent chances of patent infringements, and hence, the traditional tradeo¤ of optimal

patent protection needs to be modi�ed to take into account these asymmetric e¤ects of

patent policy. In other words, optimal patent policy should be innovation-speci�c. If vertical

(horizontal) innovation is crucial to social welfare, then a more frontloading (backloading)

pro�t-division rule should be implemented. Furthermore, if we follow Aghion and Howitt

(1996) to treat horizontal R&D as basic research and vertical R&D as applied research, then

our �nding implies that a gradual increase in the bargaining power of basic researchers could

be welfare-improving, and this �nding is consistent with the two-stage R&D analysis in Cozzi

and Galli (2011), who consider a transition to more upstream bargaining power.

Finally, in this study, we have also considered an alternative pro�t-division rule such

that the variety inventor of an industry always obtains a share s of the monopolistic pro�ts

generated by all subsequent innovations in the industry. This has helped test the robustness

of the main economic e¤ects we have found, and allowed us to discriminate more precisely

regarding the optimality of di¤erent ways of strengthening patent protection. Overall, we

hope that our simple model has served the purpose of highlighting the asymmetric e¤ects of

patent rights on di¤erent types of innovation and the potentially di¤erent policy implications

on economic growth and social welfare.
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Appendix A: Proofs

Proof of Lemma 1. From (23), the value of a quality improvement is v1 =
�

�+�+�

�
1� s+ s �

�+�+�

�

for a �rm that does not own the previous innovation. For an incumbent (i.e., a �rm

that owns the previous innovation), the incremental value of a quality improvement is

vI =
�

�+�+�

�
1 + s �

�+�+�

�
� v2.

44 The �rst term in vI re�ects that the �rm�s new prod-

uct infringes its own patent and hence it does not have to pay any licensing fee. The second

term (i.e., �v2) re�ects that the incumbent�s old invention loses the opportunity to extract

pro�t from the new entrant. Substituting v2 =
�

�+�+�
s into vI yields vI = v1 for s 2 [0; 1],

so that the incumbent is indi¤erent as to where to target innovation. As a result, all the

aggregate variables behave as if quality improvement is targeted only by the entrants (i.e.,

the Arrow replacement e¤ect).45

Proof of Lemma 2. Let�s �rstly de�ne a new variable x � 'q(hq)
�q and a new function

f(x) � 1

�+ � + (1 + s)x

�
x

(1� s)(�+ �) + x

�
. (A1)

Simple di¤erentiation yields

argmax f(x) = (�+ �)

r
1� s

1 + s
. (A2)

Given that dhn=dhq in (28) is decreasing in f(x), maximizing f(x) is equivalent to minimizing

44To be consistent with the assumption of no market-power consolidation, an upper bound of z is imposed
on the markup, so that � is the same in v1 and vI . In the case of market-power consolidation, the markup
would be given by z2 regardless of whether or not the two generations of quality improvement are owned by
the same �rm, so that � would be the same in v1 and vI as well.
45This new interpretation of the Arrow e¤ect is developed by Cozzi (2007), who shows that the incumbent�s

current invention faces the same probability of being displaced regardless of whether or not an incumbent
targets innovation at her own industry. Under the traditional interpretation (i.e., when an incumbent
obtains a new invention, she loses the value of the old invention), it should be v1 (instead of v2) that is

substracted from vI . In this case, vI =
�

�+�+�

�
1 + s �

�+�+�

�
� v1 = �

�+�+�s, and hence vI < v1 () s <

bs � �+�+�
2(�+�)+� 2 [0:5; 1]. Therefore, when s < bs, quality improvement is targeted by entrants only, so that the

Arrow replacement e¤ect is again present.
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the bracketed term in (28). Substituting (A2) into (28) yields

dhn
dhq

=
1

1� �n

�
1� �q � �q

s2

2� s2 + 2
p
1� s2

�
hn
hq
. (A3)

Manipulating (A3) shows that �q < [1� 0:5s2=(1 +
p
1� s2)] 2 [0:5; 1] implies dhn=dhq > 0

in (28) for any value of hq > 0.

Proof of Lemma 3. In what follows, we show that hn is always increasing in s under

homogeneous labour. Recall from the resource constraint (52) that

�(L+ 1� hn)

'n(hn)
�n

= hq + l.

We already know that hq is decreasing in s. Therefore, if we can show that l is also decreasing

in s, then hn must be increasing in s. Also, it is useful to note that @l=ds > 0 is a necessary

condition for @hn=ds < 0. Rewriting (51), we have

l =
(hq)

1��q

(z � 1)'q
[�+ � + 'q(hq)

�q ]2

(1� s)(�+ �) + 'q(hq)
�q
. (51A)

For the special case of � + � ! 0, it is easy to see that @l=@s must have the same sign as

@hq=@s < 0. As for the general case of �+ � > 0, di¤erentiating the log of (51A), we have

1

l

@l

@s
=

 
1� �q
hq

+
2'q�q(hq)

�q�1

�+ � + 'q(hq)
�q
�

'q�q(hq)
�q�1

(1� s)(�+ �) + 'q(hq)
�q

!

| {z }
�A

@hq
@s|{z}
<0

+
(�+ �)

(1� s)(�+ �) + 'q(hq)
�q

It is useful to note that the parameter condition �q � 0:5 that we assume throughout the
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analysis is su¢cient for the term A to be positive. To see this, A can be expressed as

A =
1

hq

"
1� �q + 'q�q(hq)

�q

 
(1� 2s)(�+ �) + 'q(hq)

�q

[�+ � + 'q(hq)
�q ][(1� s)(�+ �) + 'q(hq)

�q ]

!#

=
1

hq

"
[2� (s+ �q + s�q)](�+ �)'q(hq)

�q + (�+ �)2(1� �q)(1� s) + (2� �q)['q(hq)
�q ]2

[�+ � + 'q(hq)
�q ][(1� s)(�+ �) + 'q(hq)

�q ]

#

It is now straightforward to see that the only term in A that can be negative is 2� (s+�q+

s�q), which is positive given �q � 0:5. Given A > 0, it must be the case that @l=@s < 0 if

and only if the following inequality holds: @hq
@s

< �
h

(�+�)

(1�s)(�+�)+'q(hq)
�q

i
1
A
.

From the arbitrage condition in (25), we have

(hn)
1��n =

 
'n
'q

�+ � + (1 + s)'q(hq)
�q

(1� s)(�+ �) + 'q(hq)
�q

!
(hq)

1��q . (25A)

Taking the log of (25A) and then di¤erentiating with respect to s yields

1� �n
hn

@hn
@s

=
(�+ �)

(1� s)(�+ �) + 'q(hq)
�q
+

'q(hq)
�q

�+ � + (1 + s)'q(hq)
�q

+

"
1� �q
hq

�
'q�q(hq)

�q�1

�+ � + (1 + s)'q(hq)
�q

(�+ �)s2

(1� s)(�+ �) + 'q(hq)
�q

#

| {z }
�B

@hq
@s
.

If B < 0, then @hn=@s must be positive because @hq=@s < 0. So, we only have to further

analyze the case in which B > 0, under which the sign of @hn=@s appears to be ambiguous.

Here we consider a proof by contradiction. Suppose @hn=@s < 0. Then, the following

inequality must hold:

@hq
@s

< �
"

(�+ �)

(1� s)(�+ �) + 'q(hq)
�q
+

'q(hq)
�q

�+ � + (1 + s)'q(hq)
�q

#
1

B
(A4)

However, we will show that if this inequality holds, then @l=@s would be negative, contra-

dicting our initial assumption @hn=@s < 0, which requires @l=@s > 0.
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In the remaining analysis, we show that

�
"

(�+ �)

(1� s)(�+ �) + 'q(hq)
�q
+

'q(hq)
�q

�+ � + (1 + s)'q(hq)
�q

#
1

B
< �

"
(�+ �)

(1� s)(�+ �) + 'q(hq)
�q

#
1

A
.

(A5)

Notice that (A5), by (A4), implies @hq
@s

< �
h

(�+�)

(1�s)(�+�)+'q(hq)
�q

i
1
A
, and therefore @l=@s < 0.

Inequality (A5) can be re-expressed as

"
1 +

(1� s)'q(hq)
�q + ['q(hq)

�q ]2=(�+ �)

�+ � + (1 + s)'q(hq)
�q

#
A > B.

Therefore, it su¢ces to show that A � B, which can written as

1 +
s2(�+ �) + (1 + s2)'q(hq)

�q

�+ � + (1 + s)'q(hq)
�q

+
(1 + s)['q(hq)

�q ]2=(�+ �)

�+ � + (1 + s)'q(hq)
�q

� 2s,

which holds if

1 +
s2(�+ �) + (1 + s2)'q(hq)

�q

�+ � + (1 + s)'q(hq)
�q

� 2s.

Since
s2(�+�)+(1+s2)'q(hq)

�q

�+�+(1+s)'q(hq)
�q

is decreasing in (� + �), it su¢ces to show - after letting (� + �)

tend to in�nity - that

1 + s2 � 2s, 1 � s(2� s),

which holds because s(2� s) reaches its maximum at s = 1.
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Appendix B: Transition dynamics

The system of equations that characterizes the dynamics of the model is as follows.

:
n
�

t = 'n(hn;t)
�n � �n�t (B1)

:

�t=�t = �� rt (B2)

:
v2;t = (rt + �t + �)v2;t � s�t (B3)

:
v1;t = (rt + �t + �)v1;t � �tv2;t � (1� s)�t (B4)

:
vn;t = (rt + �t + �)vn;t � �tv2;t � �t (B5)

�t =

�
z � 1
z

�
1

�t
(B6)

�t = 'q(hq;t)
�q (B7)

v1;t'q(hq;t)
�q�1 = vn;t'n(hn;t)

�n�1 (B8)

hn;t + n�thq;t = 1 (B9)

n�t lt = L (B10)

�t = (z � 1)wl;tlt =
�
z � 1
z

�
1

�t
=) zwl;tlt =

1

�t
(B11)

Finally, we choose lt as the numeraire by setting wl;t = 1. The endogenous variables in this

system are fn�t ; �t; v2;t; v1;t; vn;t; �t; �t; hq;t; hn;t; lt; rtg.

In all our numerical simulations, in order to simulate the dynamic transition from one

steady state to another, we �rst compute the initial steady state and the �nal steady state,

associated with the initial and �nal level of s; then we discretize all the di¤erential equations

in system (B1)-(B11), and plug them as well as the remaining equation restrictions in a

.mod �le, which allows Dynare to apply its deterministic routines, needed to compute the

dynamic rational expectations equilibrium transition from the initial to the �nal steady state.
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Since Dynare also analyses the eigenvalues of the Jacobian matrix at the �nal steady state,

while simulating the transitional path we always make sure that in all our simulations the

conditions for the determinacy of the steady state are satis�ed, that is the number of stable

eigenvalues is equal to the number of predetermined variables. Hence, all the transitional

paths we have obtained are along the unique equilibrium of the economy analyzed.

In order to calculate the complete change in welfare, we need to keep track of the evolution

of the consumption index.

ln ct =

n�tZ

0

(qt(i) ln z + ln lt(i))di =

0
@

n�tZ

0

qt(i)di

1
A ln z + n�t ln lt. (B12)

Normalizing q0(i) = 0 for all i, we can re-express the level of aggregate technology as

n�tZ

0

qt(i)di =

tZ

0

n����d� +

tZ

0

:
n
�

�

0
@

�Z

0

��d�

1
A d� . (B13)

The �rst term on the right hand side of (B13) is the accumulated number of productivity

improvements that have occurred from time 0 to time t. The second term on the right

hand side of (B13) is the change in aggregate technology due to the introduction of new

varieties net of obsolescence. Using the data generated by Dynare, we could then compute

the discretized version of the welfare integral, which allowed the welfare experiments reported

in the tables of Section 5.

Notice that by normalizing q0(i) = 0 for all i, in light of (B13), we are minimizing the

e¤ect of
:
n
�

t on welfare. This proves the robustness of the welfare comparisons in Tables

2 and 4. Given that n�t increases from the initial steady state to the new steady state in

our numerical exercises, any alternative positive level of the q0(i)�s would imply a higher

transitional welfare e¤ect of an increase in s.
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