
Munich Personal RePEc Archive

Bienenfeld’s approximation of production

prices and eigenvalue distribution: some

more evidence from five European

economies

Iliadi, Fotoula and Mariolis, Theodore and Soklis, George

and Tsoulfidis, Lefteris

Department of Public Administration, Panteion University, Athens,

Greece, Department of Economics, University of Macedonia,

Thessaloniki, Greece

30 January 2012

Online at https://mpra.ub.uni-muenchen.de/36282/

MPRA Paper No. 36282, posted 30 Jan 2012 07:43 UTC



1 

 

Bienenfeld’s Approximation of Production Prices and Eigenvalue 

Distribution: Some More Evidence from Five European Economies
*
 

 

Fotoula Iliadi,
1
 Theodore Mariolis,

1
 George Soklis

1
 & Lefteris Tsoulfidis

2 

1Department of Public Administration, Panteion University, Athens, Greece 
2Department of Economics, University of Macedonia, Thessaloniki, Greece 

 
 

Abstract 

This paper tests Bienenfeld’s polynomial approximation of production prices using data from 

ten symmetric input-output tables of five European economies. The empirical results show that 

the quadratic formula works extremely well and its accuracy is connected to the actual 

distribution of the eigenvalues of the matrices of vertically integrated technical coefficients. 
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1. Introduction  

It is well known that, in a world of production of commodities by means of 

commodities, the pattern of the price-variations arising from a change in distribution 

may be complex (Sraffa, 1960, §§19-20 and 48). However, typical findings in many 

empirical studies of single-product systems are that (i) the production price-profit rate 

curves are, more often than not, monotonic; (ii) non-monotonic production price-profit 

rate curves are not only rare but also have no more than one extremum point; therefore, 

(iii) the approximation of the production prices through Bienenfeld’s (1988) linear and, 

a fortiori, quadratic formulae works pretty well; and (iv) the so-called ‘wage-profit 

curves’ are almost linear irrespective of the numeraire chosen (i.e. the correlation 

coefficients between the wage and profit rates tend to be above 99%), which implies, in 

its turn, that there is empirical basis for searching for an ‘approximate surrogate 

production function’.1
 As it has recently been argued, these findings could be connected 

to the distribution of the eigenvalues of the ‘matrices of vertically integrated technical 
                                                             

Address for correspondence: Theodore Mariolis, Department of Public Administration, Panteion 
University, 136, Syngrou Ave, Athens 17671, Greece; Email: mariolis@hotmail.gr 

 
* A first draft of this paper (see Mariolis et al. 2010) was presented at a Workshop of the ‘Study Group on 

Sraffian Economics’ at the Panteion University, in June 2010: we are indebted to Antonia Christodoulaki, 

Nikolaos Rodousakis and Eugenia Zouvela for helpful comments and suggestions. 
1 See, for example, Petrović (1991), Shaikh (1998, 2010), Tsoulfidis and Mariolis (2007), Schefold 

(2008a) (and the references provided there). To our knowledge, there are only two empirical studies, 

based on Supply and Use Tables (SUT) and, therefore, on models of joint production, which show that 

the relevant actual systems do not necessarily have the usual properties of single-product systems (see 

Mariolis and Soklis, 2010, and Soklis, 2011). However, when the wage-profit curves are strictly 

decreasing, they tend to be almost linear (see Soklis, 2011, pp. 554-557). 
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coefficients’ (Pasinetti, 1973), i.e. to the fact that the moduli of the first non-dominant 

eigenvalues fall quite rapidly and the rest constellate in much lower values (see 

Schefold, 2008b, c, and Mariolis and Tsoulfidis, 2009, 2011). 

 This paper tests Bienenfeld’s polynomial approximation with data from the 

Symmetric Input-Output Tables (SIOT) of the Danish (for the years 2000 and 2004), 

Finnish (for the years 1995 and 2004), French (for the years 1995 and 2005), German 

(for the years 2000 and 2002) and Swedish (for the years 1995 and 2005) economies, 

and connects its accuracy to the actual eigenvalue distributions. It should be noted that 

we decided to use the SIOT of the above five countries mainly because (i) they include 

all the data required for such an investigation; (ii) the selected input-output tables are 

comparable to each other in terms of  industry detail, but also there are cases where the 

length of the time span between the selected years for each country is large enough to 

allow for technological change to take place and give rise to possible differential results; 

and (iii) as far as we know, input-output data from these countries have not been used 

neither for testing Bienenfeld’s approximation nor in other related questions. The 

investigation is carried out on the basis of a circulating capital model, as there are no 

available data for the construction of the matrices of fixed capital stocks. 

 The remainder of the paper is structured as follows. Section 2 presents 

Bienenfeld’s approximation. Section 3 brings in the empirical evidence and evaluates 

the results. Section 4 concludes.   

 

2. Bienenfeld’s approximation 

Consider a closed, linear system involving only single products, basic commodities (in 

the sense of Sraffa 1960, §6) and circulating capital. Furthermore, assume that (i) the 

input-output coefficients are fixed; (ii) the system is viable, i.e. the Perron-Frobenius (P-

F hereafter) eigenvalue of the irreducible n n  matrix of input-output coefficients, A , 

is less than 1;
2
 (iii) the profit  rate, r , is uniform; (iv) labour is not an input to the 

                                                             

2 Matrices (and vectors) are delineated in boldface letters. The transpose of an 1n  vector [ ]ixx  is 

denoted by 
Tx , and the diagonal matrix formed from the elements of x  is denoted by x̂ . 1A  denotes 

the P-F eigenvalue of a semi-positive n n  matrix A  and 
T

1 1( , )A Ax y  the corresponding eigenvectors, 

whilst kA , 2,...,k n  and 
2 3 ... n    A A A

, denotes the non-dominant eigenvalues of A  

and 
T( , )k kA Ax y  the corresponding eigenvectors. Finally, jA  denotes the j – th column of A , and e  

the summation vector, i.e. 
T[1,1,...,1]e . 
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household sector and may be treated as homogeneous because relative wage rates are 

invariant (see Sraffa, 1960, §10; Kurz and Salvadori, 1995, pp. 322-325); and (v) the net 

product is distributed to profits and wages that are paid at the beginning of the common 

production period and there are no savings out of this income. Finally, the following are 

given: (i) the technical conditions of production, that is the pair [ ,  ]A l , where l  ( 0 ) 

denotes the vector of direct labour coefficients; and (ii) the real wage rate, which is 

denoted by the (semi-) positive vector b .  

         On the basis of these assumptions, we can write: 

            
T T T(1 )( )r w  p l p A                                      (1) 

where p  denotes a vector of production prices and w  the money wage rate. Substituting 

aT
w  p b , where ap  denotes the vector of the actual prices of production, in equation 

(1) yields  

  aT a aT(1 )r p p C  (2) 

where 
a

r  denotes the actual profit rate and T C A bl  the matrix of the ‘augmented’ 

input-output coefficients. Since a non-positive vector of commodity prices is 

economically insignificant, it follows that a 1

1 1r   C  and aT T

1 Cp y . 

 Furthermore, equation (1) after rearrangement gives:  

         
T T T(1 )r w r  p v p H                      (3)  

where 
1[ ] H A I A  ( 0 ) denotes the vertically integrated technical coefficients 

matrix, I  the identity matrix, and 
T T 1[ ] v l I A  

T( ) 0  the vector of  vertically 

integrated labour coefficients or ‘labour values’. If Sraffa’s (1960, ch. 4) Standard 

commodity is chosen as the standard of value or numeraire, i.e. T

1[ ] 1Ap I - A x , with 

T

1 1Al x , then equation (1) implies that 

 
1 1 1(1 ) (1 ) (1 ) (1 )w r rR r          (4) 

which gives a non-linear ‘wage-profit curve’, the result of our assumption that wages 

are being paid ex ante (see also Burmeister, 1968): 1

1 1R   A  ( 1

1  Η ) denotes the 

maximum rate of profits, i.e. the rate of profits corresponding to 0w   and p 0 , 
1

R


 

equals the ratio of means of production to labour in the Standard system (which is 

independent of prices and distribution), and 
1

rR  , 0 1  , denotes the ‘relative 

rate of profits’, which is no greater than the share of profits in this system (see Sraffa, 

1960, §§29-32). Substituting equation (4) in equation (3) yields 
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 T T T(1 )   p v p J                                                       (5) 

where RJ H , with 1 1 1R  J H  and 1k J
,
3
 is similar to the column stochastic 

matrix 1

1 1
ˆ ˆ  J JM y Jy  (the elements of which are independent of the choice of physical 

measurement units and the normalization of 1Ay ). Equation (5) implies that jp  is a 

convex combination of jv  and T

jp J , where the latter equals the ratio of means of 

production in the vertically integrated industry producing commodity j  to means of 

production in the Standard system. At 0  , we obtain  

   T T(0) p v                                                           (6) 

whereas at the other extreme case, 1  , we obtain  

 T T(1) (1)p p J                    (7)  

from which it follows that T T

1(1)  Jp y . Iff 
Tl (and, therefore, Tv ) is the left P-F 

eigenvector of A , then 
T T (0)p p , i.e. the ‘pure labour theory of value’ (Pasinetti, 

1977, pp. 76-78) holds true. Finally, if  , then from equations (5) and (6) we derive  

 
T T 1 T

0

(1 ) (0)[ ] (1 ) (0) h h

h

   






     p p I J p J  (8) 

This is the so-called the ‘reduction of prices to dated quantities of embodied labour’ 

(Kurz and Salvadori, 1995, p. 175) in terms of (1 ) h  , where (Steedman, 1999, pp. 

315-316): (i) 
0

(1 ) 1h

h

 




  ; (ii) the term (1 ) h  , 2h  , takes its maximum value 

of 
( 1)( 1)h h

h h
   ( 0 , i.e. tends to zero as h  tends to infinity) at 

1( 1)h h   , and its 

‘inflection value’ of ( 1)2( 1) ( 1)h h
h h

    ( 0 ) at 
1( 1)( 1)h h    ); (iii) the ratio of 

the inflection value to the maximum value tends to 12 0.736e
  ; (iv) the first term (the 

sum of the first two terms) is greater than the sum of all the remaining terms for 

12 0.5    (for 
0.52 0.707   ); and, therefore, (v) only the very early terms are 

                                                             

3 If kA  is positive, then 1k A A . If it is negative or complex, then 
1k A A

 (the equality holds iff 

A  is imprimitive) and 1 1k k   A A
. Hence,    

 
1 11 (1 ) 1k k k k kR R         J A A A A   

holds for all k . 
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important in determining the prices of production, provided that one is interested only in 

relatively low, i.e. realistic, values of  .
4
  

 For any semi-positive Ty , T hy J  tends to the left P-F eigenvector of J  as h  tends 

to infinity, i.e.  

   T T T 1 T

1 1( )( (1) ) (1)h  A Ay J y x p x p     (9) 

(see, e.g. Seneta, 2006, pp. 9-11) and, therefore, for a sufficiently large value of t  such 

that  

   T T 1 T(0) (0) ... (1)t t  p J p J p  (10) 

equation (8) can be written as 

         
1

T T T 1 T T 1

1

(0) ( (0) (0) ) ( (1) (0) )
t

h h h t t

h

 


 



    p p p J p J p p J   (11) 

Τhis is Bienenfeld’s approximate formula, which is exact at the extreme, economically 

significant, values of  , and gives the correct slope of the jp   curves at 0   (for 

alternative derivations, see Mariolis and Tsoulfidis, 2009, pp. 7-9, and, 2011, pp. 98-

99). Setting 1t  , it reduces to the linear formula 

   
T T T T(0) ( (1) (0))  p p p p     (12) 

and substituting relation (12) into  

   T 1( (0))j j jk p
p H   (13) 

which expresses the capital-intensity of the vertically integrated industry producing 

commodity j , yields (0)j jk k , since 
T T(0) (1)p J p , i.e. the approximate jk 

 

relationships are constant. Setting 2t  , it reduces to the quadratic formula 

   
T T T T 2 T T(0) ( (0) (0)) ( (1) (0) )     p p p J p p p J         (14) 

and substituting relation (14) into equation (13) yields 

    (0) ( (1) (0))j j j jk k k k     (15) 

i.e. the approximate jp   curves have at most one extremum point, at  

          * 1 T T 1 1 1 12 ( (0) (0) )( (1) (0) ) 2 ( (0))( (1) (0))j j j j j j j jp p R k k k          p J p J  

where *0 1j   does not necessarily hold true, and the approximate jk 
 

relationships are linear. 

                                                             
4 To our knowledge, there is no relevant empirical study where   is considerably greater than 0.4 (than 

0.5), provided that wages are paid at the beginning (end) of the production period (see Mariolis and 

Tsoulfidis, 2010a, and Mariolis and Soklis, 2011, pp. 616-617). 
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 The accuracy of relation (10) and, therefore, the accuracy of a t  – th order 

approximation is directly related to the rate of convergence in (9), which in its turn is 

directly related to the magnitudes of 
1

k 
J

. In fact, the convergence is asymptotically 

exponential, at a rate at least as fast as 
1

2log  
J

(the number 
1

2 
J

 is known as the 

‘damping ratio’ in population dynamics theory; see, e.g. Keyfitz and Caswell, 2005, pp. 

165-166). Theoretically speaking, there are two extreme cases: (i) if A  has rank 1, then 

0k J , for all k , 
T T(0) (1)p J p  and, therefore, relation (12) holds exactly;

5
 and (ii) if 

1k J , for all k , then T T(0) (0)p J p  and, therefore, T T (0)p p (see also Hartfiel and 

Meyer, 1998; Mariolis and Tsoulfidis, 2010b, Appendix, and, 2011, pp. 96-98). In more 

general terms, the Hopf-Ostrowski and Deutsch upper bounds (or ‘coefficients of 

ergodicity’; Seneta, 2006, pp. 63-64) imply that 

                     
1 1 1

2

1

2 max{ } ( 1)( 1) ( )( ) 1
n

fi fj

f

m m L s L s    



        J  

where 2 1max{( ( ) )}ij gl il gjm m m m   and L ( s ) represents the largest (smallest) element 

of [ ]ijmM  (see Ostrowski, 1963, and Maitre, 1970). Thus, we may conclude that 

when the columns of M  tend to be close to each other, a low-order approximation 

works pretty well.
6
 

 

3. Results and their evaluation 

The application of the previous analysis to the SIOT of the Danish (for the years 2000, 

56n  , and 2004, 56n  ), Finnish (for the years 1995, 57n  , and 2004, 57n  ), 

French (for the years 1995, 58n  , and 2005, 57n  ), German (for the years 2000, 

57n  , and 2002, 57n  ) and Swedish (for the years 1995, 53n  , and 2005, 51n  ) 

economies gives the results summarized in Tables 1 to 4.
7
 

                                                             

5 In that case all the columns of M  are equal to each other. It may also be noted that, when J  is a 

random matrix, with identically and independently distributed entries, Bródy’s (1997) conjecture implies 

that 
2J

 tends to zero, with speed 1/ n , when n  tends to infinity (as Sun, 2008, shows, Bródy’s 
conjecture can be proved using theorems provided by Goldberg et al., 2000; see also Goldberg and 
Neumann, 2003). 
6 For an alternative, but rather different approximation formula (the ‘spectral approximation’), which is 

also exact at the extreme values of  , and its accuracy is also directly related to the magnitudes of 

1

k 
J

, see Mariolis and Tsoulfidis (2011, pp. 99-100 and 112-115). 
7 The SIOT and the corresponding levels of sectoral employment are provided via the Eurostat website 

(http://ec.europa.eu/eurostat). The degree of disaggregation is such that 59 product/industry groups are 

http://ec.europa.eu/eurostat
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 Table 1 reports (i) the maximum, actual and relative profit rates (estimated from 

equations (1), with 0w  , and (2)); and (ii) the deviation between the vector of the 

actual production prices, aTp (see equation (2)), and the vector of the approximate 

production prices, a T

Bp , which is estimated from Bienenfeld’s quadratic approximation 

(see relation (14)) and a  . This deviation is measured by the ‘ d – distance’ 

(Steedman and Tomkins, 1998; see also Mariolis and Soklis, 2011), which is 

independent of the choice of numeraire and physical measurement units, and defined as 

a a2(1 cos )d   , where a  denotes the Euclidean angle between the vectors 

aT a 1

B
ˆ( )p p  and e . Since, however, the SIOT have different dimensions and the 

theoretically minimum value of acos  equals 1/ n , Table 1 also reports the 

‘normalized d - distance’ (Mariolis and Soklis, 2010, p. 94), defined as 
a a 1

nd d D
 , 

where 2[1 (1/ )]D n   denotes the theoretically maximum value of the ‘ d -

distance’. 

 

 
Table 1. The actual profit rates and the deviation between the actual production prices and their 

quadratic approximation 

 

  

 Table 2 reports the Euclidean angles (measured in degrees), which depend on the 

choice of physical measurement units,  and the ‘ d – distances’ between T (1)p  and 
Tl , 

                                                                                                                                                                                   

identified. However, there are cases in which all the elements or only the labour inputs associated with 

certain industries equal zero. Therefore, we remove them from our analysis or we make the appropriate 
aggregations, respectively (see also Soklis, 2009, Appendix 1). Finally, for the construction of the 

relevant variables ( A , l  and b ) we follow the usual procedure (see, e.g. Ochoa, 1989, Appendix). 

Mathematica 7.0 is used in the calculations, whilst the precision in internal calculations is set to 16 digits. 

The analytical results are available on request from the authors. 

Denmark Finland France Germany Sweden 

 2000 2004 1995 2004 1995 2005 2000 2002 1995 2005 

R  0.920 0.867 0.699 0.645 0.899 0.855 1.000 1.052 0.859 0.807 

a
r  0.344 0.326 0.323 0.325 0.322 0.308 0.342 0.362 0.336 0.297 

a  0.374 0.376 0.462 0.504 0.358 0.360 0.342 0.344 0.392 0.368 

a
d  0.325 0.372 0.012 0.057 0.007 0.028 0.034 0.033 0.247 0.436 

a
nd  

0.247 0.283 0.009 0.043 0.005 0.021 0.026 0.025 0.188 0.333 
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and between T (1)p  and T (0) tp J , 0,1,2,...,5t   (see relation (10)): the angles (distances) 

are denoted by l  ( d l ) and t ( td ), respectively. 

 

Table 2. Indicators of the accuracy of Bienenfeld’s approximation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 3 reports 
1

2 
J

, 
1

3 
J

, 
1

n 
J

 (see also Figure 1, which displays the 

location of all the eigenvalues in the complex plane) and the following measures of the 

distribution of the moduli of the non-dominant eigenvalues of J : (i) the arithmetic 

mean, AM, that gives equal weight to all moduli; (ii) the standard deviation, SD; (iii) the 

coefficient of variation, CV SD(AM)
-1

; (iv) the geometric mean, GM, which in our case 

can be written as 
1( 1)

det
n 

J and assigns more weight to lower moduli, and, therefore, is 

more appropriate for detecting the central tendency of an exponential set of numbers; 

(v) the so-called spectral flatness, SFGM(AM)
-1

; (vi) 
1

2

2

max{ ( ) }
n

k k k

k

    



  J J , 

where k
  represents a set of relative frequencies; (vii) the relative (or normalized) 

Denmark Finland France Germany Sweden 

 2000 2004 1995 2004 1995 2005 2000 2002 1995 2005 

l  47.96o 51.73o 54.83o 61.23o 46.99o 51.72o 49.67o 49.59o 46.03o 48.07o 

0  28.50o 33.06o 36.34o 47.96o 28.82o 31.22o 30.87o 31.14o 27.11o 27.01o 

1  8.33o 13.67o 13.81o 35.77o 9.27o 11.51o 9.65o 9.99o 6.71o 5.35o 

2  3.75o 7.64o 7.04o 31.12o 3.90o 6.46o 4.80o 5.31o 3.01o 2.13o 

3  1.86o 4.48o 3.84o 27.32o 1.64o 3.83o 2.51o 3.03o 1.46o 0.91o 

4  0.98o 2.72o 2.18o 23.89o 0.72o 2.33o 1.34o 1.76o 0.72o 0.39o 

5  0.52o 1.68o 1.26o 20.79o 0.35o 1.41 o 0.72o 1.03o 0.36o 0.17o 

dl  0.686 0.792 0.838 0.915 0.782 0.801 0.731 0.729 0.765 0.923 

0d  0.419 0.502 0.557 0.729 0.478 0.483 0.472 0.485 0.408 0.404 

1d  0.151 0.230 0.218 0.438 0.177 0.186 0.186 0.201 0.120 0.101 

2d  0.066 0.122 0.099 0.307 0.072 0.087 0.084 0.093 0.049 0.034 

3d  0.030 0.067 0.052 0.241 0.027 0.042 0.044 0.051 0.022 0.013 

4d  0.014 0.038 0.029 0.198 0.010 0.023 0.024 0.030 0.011 0.005 

5d  0.007 0.023 0.017 0.166 0.004 0.013 0.013 0.018 0.005 0.002 
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entropy, RE, defined as the ratio of the ‘information content or Shannon entropy’, E, to 

its maximum possible value, i.e.
 

1

max( )RE E E
 , where 

2

log
n

k k

k

E  


 
 

and 

max log( 1)E n   is the maximum value of E corresponding to 
1( 1)k n    for all k; 

and (viii) the relative ‘equivalent number’, REN   EN(n – 1)
-1

, where EN denotes the 

so-called equivalent number, which is determined by the equation log EN E
 
and 

represents the number of eigenvalues with equal moduli that would result in the same 

amount of entropy. SF and RE are known to be alternative, but different, measures of 

similarity (or closeness) of the moduli and take on values from near zero to one: when 

all 
kJ

 are equal to each other, then AM = GM, 
1( 1)k n  
 
and, therefore, SF = RE = 

REN = 1.
8
 However, a low SF

 
rather reflects the presence of a much lower than the 

average n
 , whereas a low RE rather reflects the presence of a much higher than the 

average 2 .  

 

 

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

 

 

Figure 1. The location of all the eigenvalues in the complex plane 

 

 

 

                                                             
8 For a connection between SF and entropy expressions, see Mariolis and Tsoulfidis (2011, p. 104, 

footnote 24). 
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 Table 3. The distribution of the moduli of the non-dominant eigenvalues 

 

  

 Finally, in all cases the moduli of the first non-dominant eigenvalues fall quite 

rapidly and the rest constellate in much lower values forming a ‘long tail’. In plotting 

these data for each of the countries and years we found, after various experimentations, 

that a single exponential functional form fits all the data quite well, as this can be 

judged by the high R – squared, 
2

R , and the fact that all the estimated coefficients are 

statistically significant, with zero probability values. The equation that captures this 

configuration of eigenvalues is of the following form: 

  exp( )a
y c b x   

where a = – 0.3, 0.630 (Sweden, 2005) b 0.754 (France, 1995), – 1.012 (Finland, 

2004) c – 0.857 (Sweden, 2005), and 0.959 (Germany, 2000)
2

R  0.994 (Finland, 

1995) (see Table 4, which also reports the values of the parameter  a  that approximately 

maximize 
2

R , as well as the relevant values of b, c, and 
2

R , and Figure 2). It is 

expected, therefore, that the SF would be relatively low and that the opposite would 

hold true regarding RE. In fact, the results (see Table 3) show that (i) the SF is in the 

range of 0.450 (France, 1995)-0.624 (Germany, 2002); (ii) the RE is in the range of 

0.821 (Finland, 2004)-0.900 (Germany, 2000 and 2002), and the relevant 2 ’s are 15% 

and 6%, respectively; and (iii) the linear regressions between SF and RE, and between 

Denmark Finland France Germany Sweden 

 2000 2004 1995 2004 1995 2005 2000 2002 1995 2005 

1

2 
J  

1.914 1.568 1.676 1.177 1.636 1.702 1.753 1.641 1.881 2.369 

1

3 
J  

2.057 1.990 2.308 1.990 1.889 2.208 2.013 1.939 2.302 2.563 

1

n 
J  

1541.750 815.370 735.900 2517.050 29324.400 817.635 729.625 158.114 299.881 1092.060 

AM 0.118 0.108 0.100 0.103 0.131 0.128 0.178 0.178 0.098 0.099 

SD 0.014 0.013 0.015 0.020 0.021 0.015 0.023 0.023 0.014 0.010 

CV 0.119 0.120 0.150 0.194 0.160 0.117 0.129 0.129 0.143 0.101 

GM 0.069 0.065 0.047 0.047 0.059 0.076 0.106 0.111 0.050 0.052 

SF 0.585 0.602 0.470 0.456 0.450 0.594 0.596 0.624 0.510 0.525 

2  (%) 8 11 11 15 8 8 6 6 10 9 

RE 0.870 0.863 0.825 0.821 0.856 0.880 0.900 0.900 0.828 0.849 

R          

EN (%) 

60 58 50 48 57 63 66 66 50 56 
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GM and RE (both not reported), give statistically significant R
2
 values of 0.692 and 

0.883, respectively. Thus, it could be concluded that these measures, both separate and 

combined, give a quite good description of the central tendency and also the skewness 

of the distribution of the moduli. 

 

 Table 4. Estimates of the exponential fit of the moduli of the eigenvalues  
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Denmark Finland France Germany Sweden 

 2000 2004 1995 2004 1995 2005 2000 2002 1995 2005 

a -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 

b 0.679 0.675 0.702 0.742 0.754 0.680 0.730 0.737 0.682 0.630 

c -0.902 -0.906 -0.956 -1.012 -1.000 -0.892 -0.918 -0.930 -0.934 -0.857 

R
2 0.991 0.987 0.994 0.977 0.987 0.987 0.959 0.964 0.992 0.975 

a
* -0.3 -0.4 -0.3 -0.4 -0.2 -0.3 -0.1 -0.1 -0.4 -0.5 

b
* – 0.653 – 0.717 0.845 – 1.168 1.177 0.656 0.601 

c
* – -0.781 – -0.873 -1.323 – -2.254 -2.273 -0.801 -0.668 

(R2)* –  0.993 – 0.979 0.994 – 0.982 0.985 0.995 0.983 
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Figure 2. Exponential fit (a = – 0.3) of the moduli of the eigenvalues; (a) Germany, 2000; and 

(b) Finland, 1995 

 

 

 From these tables and figures, the associated numerical results and the hitherto 

analysis we arrive at the following conclusions: 

(i). Although 
a  is relatively low, i.e. in the range of 0.342-0.504, there are cases 

(Denmark and Sweden) where the deviation between the actual production prices and 

their quadratic approximation is considerably high (see Table 1). It need hardly be 

reminded, however, that Bienenfeld’s approximation is certainly exact only at the 

extreme values of  . 

(ii). In all cases, 
T (1)p  deviates considerably from 

Tl  (see Table 2). However, setting 

aside the Finnish economy for the year 2004, 
T (0) tp J  tends rather quickly to 

T (1)p : 5  

is in the range of 0.17
ο
 (Sweden, 2005)-1.68

ο
 (Denmark, 2004), 5d  is in the range of 

0.002 (Sweden, 2005)-0.023 (Denmark, 2004) and, as it is easily checked, the average 

percentage decrease of td , i.e. 
4

1 1

1

0

ˆ 5 1 t t

t

d d d
 




  ,  is in the range of 45.8% (Denmark, 

2004)-64.9% (Sweden, 2005), whilst for the Finnish economy, 2004, 5d  is almost 0.166 

and d̂  is almost 25.1%. Thus, it is expected that low-order Bienenfeld’s approximations 

would be adequate. Finally, it should be noted that there is a direct relationship between 



13 

 

1

2 
J

and d̂ : Spearman’s coefficient is almost 0.721 and the regression a
y bx  gives 

an R
2
 value of 0.989 and statistically significant coefficients ( 0.990a   and 0.296b  ). 

 (iii). Non-monotonic price-profit rate curves could not only be considered as rare but 

also have no more than one extremum point and, therefore, Bienenfeld’s quadratic 

approximation track down accurately enough the trajectories of the actual prices of 

production. More specifically, there are 105 cases of non-monotonic price movement 

(i.e. 105/559   18.8% of the tested cases) and the arithmetic mean of the mean of the 

relative errors, MRE , between the actual, ( )jp   (see equation (8)), and the 

approximate, B ( )jp   (see relation (14)), curves, i.e.  

                     1

1

n

j

j

MRE n MRE




  , where 

1

1

B

0

( ( ) ( ))( ( ))j j j jMRE p p p d     ,  

is in the range of 0.267% (Sweden, 2005)-7.069% (Finland, 2004) (see Table 5, which 

reports the percentage of non-monotonic curves, indicated by n.-m., min{ }jMRE , 

max{ }jMRE  and MRE ). For reasons of  clarity of presentation and economy of space, 

in Figure 3 we display only a set of three graphs associated with the Danish, 2004, 

Finnish, 2004, and Swedish, 2005, economies, respectively, and some of the actual 

(depicted by solid lines) and the approximate (depicted by dotted lines) curves. Finally, 

it should be noted that there is an inverse relationship between 
1

2 
J

 (or d̂ ) and  

MRE : Spearman’s coefficient is almost  – 0.770 (or – 0.976) and the regression 

a
y bx  gives an  R

2
 value of 0.993 (or 0.995) and statistically significant coefficients 

( 5.870a   (or – 2.985) and 18.370b   (or  0.114); see Figure 4). 

 

 

Table 5. The percentage of non-monotonic price-profit rate curves and the accuracy of 
Bienenfeld’s quadratic approximation 

 

Denmark Finland France Germany Sweden 

 2000 2004 1995 2004 1995 2005 2000 2002 1995 2005 

n.-m. (%) 23.2 32.1 15.8 22.8 18.9 14.0 15.8 12.3 20.8 11.8 

min {MREj} (%) 0.042 0.042 0.023 2.152 0.015 0.012 0.042 0.003 0.020 0.000 

max {MREj} (%) 2.243 4.431 2.667 17.199 3.096 6.947 3.926 5.264 1.897 1.498 

   MRE  (%) 0.651 1.394 1.208 7.069 0.614 0.712 0.757 0.818 0.517 0.267 
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(c) 

 

Figure 3. Actual and approximate price-profit rate curves: (a) Denmark, 2004; (b) Finland, 
2004; and (c) Sweden, 2005 
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Figure 4. Mean error of Bienenfeld’s quadratic approximation vs. damping ratio 

 

 

 

(iv). Since Bienenfeld’s quadratic approximation works extremely well, the jk 
 

curves are almost linear (see relation (15)). Figure 5 is representative and displays the 
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capital-intensities of the French economy, T T 1( )k
y p Hy v y , where y  denotes the net 

output vector of the economy, as functions of  : they are strictly increasing functions 

(the same holds true for the German economy, whilst the functions associated with all 

the other economies are strictly decreasing) and the mean of the relative errors between 

the actual and the linear curves are in the range of 0.129% (1995)-0.548% (2005).   
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Figure 5. The capital-intensities of the French economy as functions of the relative profit rate 

 

 

(v). Our results on the distribution of the moduli of the eigenvalues are in absolute 

accordance, both qualitatively and quantitatively, with those on many diverse 

economies (i.e. Canada, China, Greece, Japan, Korea, UK, USA, where 19 100n  ; 

see Mariolis and Tsoulfidis, 2011, pp. 101-109; Schefold, 2008c, pp. 34-36). Thus, it is 

reasonable to expect that there is a strong tendency towards uniformity in the eigenvalue 

distribution across countries and over time. Furthermore, moving from the flow to (the 

more realistic) stock input-output data, it has been found that the damping ratios rise 

even more abruptly, whilst the third or fourth eigenvalues become ‘indistinguishable’ 

from the rest (see Steenge and Thissen, 2005; Mariolis and Tsoulfidis, 2011, pp. 109-

111), lending support to the idea of approximating the actual price curves linearly (see 

also Shaikh, 1998, 2010). 
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4. Concluding remarks 

Using data from ten symmetric input-output tables of five European economies, it has 

been found that Bienenfeld’s quadratic formula track down accurately enough the actual 

prices of production as functions of the profit rate. More specifically, (i) non-monotonic 

functions are observed in about 19% of the tested cases; (ii) there is no function with 

more than one extremum point; and (iii) the arithmetic mean of the mean of the relative 

errors between the actual and the approximate functions is in the range of 0.3%-7.1%. 

These findings have been connected to the distribution of the eigenvalues of the 

matrices of vertically integrated technical coefficients, and, in fact, it has been detected 

statistically significant relationships between the damping ratio and indicators of the 

accuracy of Bienenfeld’s approximation. 

 Since there is no little evidence that actual economies exhibit the said attributes 

and since the production price-profit rate curves associated with an n  – sector system 

may admit up to 2 4n  extremum points, it seems that there is basis for hypothesizing 

that the effective dimensions of actual economies are between 2 and 3. In that case, 

although the ‘neoclassical parable relations’ do not necessarily hold, there are 

implications for the empirical counterparts of some capital theory propositions. 
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