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This paper describes the process of ML-estimating of the equity correlations which can be used as proxies
for asset correlations. In a Gaussian framework the ML-estimators are given in closed form. On this basis the impact
of the Lehman’s collapse on the dynamics of correlations is investigated: after the Lehman failure in September 2008

the rise in correlations took place across all economic sectors.
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1 Empirical analysis of equity time series

A natural way to estimate credit quality correlations using historical data is to examine price histories of stocks as the
equity returns are one fundamental and very observable source of firm-specific correlation information. Our main data
source is the Bloomberg data feed. As of 03.09.2010 it contains 7652 North-American issuers from 19 distinct ICB

industry sectors listed in Table 1.

1D ICB sector name # of firms
1]0il & Gas 495
2|Chemicals 144
3|Basic Resources 246
4|Construction & Materials 126
5|Industrial Goods & Services 1087
6|Automobiles & Parts 75
7|Food & Beverage 227
8|Personal & Household Goods 381
9|Health Care 900
10| Retail 363
11]|Media 286
12|Travel & Leisure 249
13| Telecommunications 113
14| Utilities 125
15|Banks 805
16]Insurance 114
17[Real Estate 65
18|Financial Services 775
19| Technology 1070

Table 1: Industry sector classification
For each issuer we retrieve the 190 weekly log-returns v, covering period: 12.01.2007 - 03.09.2010.

1.1  Kolmogorov-Smirnov test and mixture of distributions

We construct an empirical distribution function for 7 observations w(i) of Fth stock

and calculate the Kolmogorov-Smirnov statistic D;"):sup‘FT(")(x)— F(x){7 where F is a theoretical cumulative

distribution. Here we assume the normality of the data, i.e. F(x)=®(x).

On the next step we compare KS-statistic for every obligor from sector s with the critical values of Kolmogorov
distribution for a 5%-significance level and count obligor, if KS-test accepts the normality hypothesis. Table 2 shows
the distributions of a number of firms having “normal” data across sectors for two groups of firms namely belonging

to DJ STOXX Amer 600 or not.



"nostoxx" firms "stoxx" firms
#of firms n |# of "normal" firms nks | nks/n [#of firms n|# of "normal" firms nks| nks/n

Qil & Gas 460 122 0,27 35 30 0,86
Chemicals 129 44{ 0,34 15 12 0,80
Basic Resources 233 49 0,21 14 14 1,00
Construction & Materials 117 46| 0,39 9 9 1,00
Industrial Goods & Services 1022 413] 0,40 65 59 0,91
Automobiles & Parts 70 20{ 0,29 5 4 0,80
Food & Beverage 209 51( 0,24 18 15 0,83
Personal & Household Goods 358 102| 0,29 23 22 0,96
Health Care 848 255] 0,30 52 34 0,65
Retail 322 128 0,40 4 39 0,95
Media 271 45| 0,17 15 11 0,73
Travel & Leisure 235 61f 0,26 14 10 0,71
Telecommunications 101 20] 0,20 12 3 0,25
Utilities 91 50] 0,55 34 29 0,85
Banks 786 203] 0,26 19 7 0,37
Insurance 92 39| 0,42 22 6 0,27
Real Estate 65 13] 0,20 0 0[N/A

Financial Services 758 85 0,11 22 14 0,64
Technology 1013 317] 0,31 57 51 0,89

)

Table 2: Distribution of number of “nostoxx” and “stoxx” firms vs KS-test

The calculations of KS-statistic for every sector specific empirical distribution function

F.(x) =13 F(x)

n

s =1

lead to the following table

nostoxx firms |stoxx firms

Oil & Gas
Chemicals
Basic Resources
Construction & Materials
Industrial Goods & Services
Automobiles & Parts
Food & Beverage
Personal & Household Goods
Health Care
Retail
Media
Travel & Leisure
Telecommunications
Utilities
Banks
Insurance
Real Estate
Financial Services
Technology

Table 3: KS-test results across sectors
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Thus the Kolmogorov-Smirnov test with the 5%-significance level rejects (“0”) both the normality and t-hypothesis
for the data of “NO STOXX” firms (excluding “Utilities”) and accepts (“1”) the null hypothesis on normality of data of
“STOXX” firms excluding three cases for sectors "Banks”, “Insurance” and “Real Estate”.

Quality of data

Here we introduce the following ratio



where T, is a number of all the distinct elements that appear in a time series of log-returns. The parameter 0< <1

reflects a liquidity or tradability of share. Clear for the largest stocks @ =1. At the same time the stocks of low liquid
names having repeated quotes are characterised by small 8<<1 .

Table 4 contains the histograms of @ for “no stoxx” firms before and after “KS”- adjustment with a 5% - significance

level

theta # of "no stoxx" firms [# of firms after KS-test

0<6<10% 317 0
10<6<20% 644 0
20<6<30% 739 0
30<6<40% 756 0
40<6<50% 662 0
50<6<60% 462 5
60<6<70% 375 24
70<6<80% 478 60
80<6<90% 797 91
90<6<=100% 1950 1883
Total 7180 2063

Table 4: distribution of number of “no stoxx” firms w.r.t. the parameter &

Thus the more tradable a stock the more likely its price follows a geometric Brownian motion as well as the
Kolmogorov-Smirnov test is a suitable tool to filter the data according to the assumption of a normality.

In sequel for purposes of the calibration of a single factor model we will use the dataset of the “normal” time series of
log-returns of 2063 firms (see right column of Table 4). Here we plot their mean empirical distribution functions

across sectors

-2 -1 1 2
Fig. 1: the mean EDFs (blue curves) across sectors vs normal (green)
and Student (red) t-distribution with 3 degrees of freedom

and calculate the average
1 19
F(x)=—2F.x)
1973

for the set of 19 empiric CDFs from Fig. 1 as well as find its least-square fit in a family of normal distributions with

zero mean and unknown variance. Fig. 2 depicts these two curves
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Fig. 2. Mean CDF (blue) and its fit (red)

Thus the standardized log-returns on a whole period T are surprisingly described by a normal distribution function

with a nonunit variance:
F(x)= q{ﬁj,a =0.856974-
o

A such phenomenon can be explained by a mixture of normal distributions given on the subintervals T;

F(x)zgﬂycp[x;f”fJ,

i

where ;3 —

NS

!
i and ZI‘,&' —1a 7= ZT; . The log-returns in an observation period T; are assumed to be normally

i=1 i=l
distributed with mean m, and variance 0'21. .

So, if we divide our data into two periods T; =90 weeks (12.01.07 — 3.10.08) and T3, =100 weeks (10.10.08 - 03.09.10)

and then estimate the mean CDFs for both periods we come to

Fx)=2-®, | —— |+(1=2)-®,, (x) = ® X Eq)(;j,
() 71(0.698056J+( ) ®r () [ﬂ~0.698056+(1—/1)J 0.856974

L _90.
T 190

where j —

A natural choice of T; as a point of regime change behaviour in a period September/October 2008 can be

mathematically confirmed by a change point analysis of a kurtosis

Lo (;)+(1—tj~a;‘(t)

T

(;.af (t)+(1—;)0§ (t)J2

k(t)=3

as well as KS-statistic




where the fit parameters {0'1 (t),0'2 (t)} on the observable periods (0, t) and (t +1, T), respectively, are shown in Fig. 3
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Fig. 3 Evolution of the std. deviations o (;) (blue), o, (t) (red) and their weighted sum ¢ (green)

We depict both KS-statistic and kurtosis
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Fig.4 Kurtosis and KS-statistic of mixture of normal distributions over time

and note that the kurtosis is always greater than 3 since the mixture of two zero-mean normal densities always has a
higher peak and heavier tails than the normal density of the same variance on the one hand. On the other hand the
kurtosis as well as KS-statistic oscillates around two different values. Here we also define a period (T; = 87 (12.09.08),
T, =98 (28.11.08)) of a transition from one magnitude of oscillations of the statistics to another one. What was

remarkable during this period was the Lehman Brother’s collapse.



2 Correlation estimation
2.1.1 One Factor Model

Assume we have a set of p_obligors (stocks) belonging to an industry sector s. Associated with an obligor 7is a latent
variable v?, which represents the normalized log-return on an obligor’s assets at £ v is given by

VO = pf,, +i=p-el, W
where 1, is a systematic risk factor (eg, industy s specific indice) at time #. gl(i) represents 7 -th obligor-specific risk.
Based on above empirical evidence for the kurtosis for log-returns (Fig. 4) which can be approximated by a constant
of 3 as well as according to the KS-test both fis and gl(i) are here assumed to have a standard normal distribution and

are jointly independent and gl(i) is independent across obligors.

We also assume that obligors in a given industry have a single common risk factor and measure the sensitivity of each

obligor to f, by a factor loading, p. For two industries iand j, the corresponding factors f, and f,are assumed to be
correlated and to possess a correlation coefficient p, I

The correlation estimation procedure uses the two-step MLE method described in [Kalkbrenner, Onwunta 20091. First
the correlations of firms within each of the industry sectors are calculated (intra-sector correlations). Using these

results, the correlations of firms within different industry sectors (inter-sector correlations) are calculated.

2.1.2 Estimation of the intra-sector correlations

Given a dataset of 2063 “normal” time series of log-returns V,([) we define the maximum likelihood estimator to the
one-factor model (1) or more precisely to the model parameter p in the following three steps:
1. By construction (1) for an obligor 7 from sector s we get: Vz(i) _\/;ﬁ .~ N(O, /l—p) or immediately in

terms of a likelihood function at a time £

(v ~Jpr)
o 2-p) . (2)

() - 1 .
L (f.p) \/ﬂm

2. The marginal likelihood for V during an observation period T is thus:

L) (f.p)f )

3. Estimate of p can be obtained by maximizing the marginal likelihood for each sector



p, =argmax A, (p): (4)

0<p<l
We note that both the integration schemes in calculation of likelihood (3) (e.g. Gauss-Hermite scheme) and numerical
methods in searching of its extremes (4) can lead to significant errors. Fortunately the likelihood (3) can be both
integrated and maximized analytically.

In Appendix we derive from (3)

T(1-n,)/2
A (p)e L2P) | P (T =)+ (= ptnp) (T=D)n, | (5)
T (l=pnp)” 2(1-p)-(1-p+n,p)
where
1 IRNIN (6)
u=—=X(R)=—=>>r,
n noT T
is a mass of a correlation matrix P with elements
st ZT:V(i)V(j)' (7)
i,j T—ll:l t t

n is a Pearson’s correlation of weekly log-returns for a pair (i,j) of firms from sector s.

Following Diillmann et al. (2008) asset correlations are estimated by p, “the mean of the pair-wise correlation of all

firms”. It is referred as “direct” estimation method. For the parameter u holds n;l <up<l.

A first derivative of the likelihood (5) is factorized into product of cubic polynomial and exponential function.
Hence the maximizing of the MLE (5) leads to searching of the root of a cubic equation. Omitting technical details we

present a Cardano’s formula for optimum (4):

) N y a 8)
= A _3_—+\/5+§/———\/5——= oI i) (
p,=uremax A, (p)={|- ! b= p(n. 1.1

0<p<l

where

’ : 2 3 ~1)(2+n,=3T)+n* (T -1)-
D:(ﬁj +(1j >0, p=b—a—;q=2i—a—b+c; az(n‘ )2+, =3T)+n, (2 )ﬂ;
3 3 27 3 (n,—=1)=T(n,-1)
34m, -2 2n,—T-1+n (T -1)-u
(n,=1)=T (n,=1)" (n,=1)"=T(n,~1)

Tables 5 and 6 collect the results of (6)-(8) calculations for three groups of firms.



ICB sectors/North America all firms DJ STOXX companies
# of firms rho # of firms rho

QOil & Gas 152 37.44 30 71.58
Chemicals 56 38.99 12 64.01
Basic Resources 63 39.18 14 67.12
Construction & Materials 55 40.43 9 64.91
Industrial Goods & Services 472 31.95 59 58.61
Automobiles & Parts 24 38.01 4 92.67
Food & Beverage 66 24.12 15 45.99
Personal & Household Goods 124 34.77 22 48.60
Health Care 289 21.64 34 44.55
Retail 167 34.15 39 46.81
Media 56 30.61 11 62.23
Travel & Leisure 71 35.54 10 55.35
Telecommunications 23 31.95 3|-

Utilities 79 53.50 29 69.90
Banks 210 31.02 7 65.62
Insurance 45 40.75 6 64.53
Real Estate 13 38.41 0[-

Financial Services 99 34.84 14 61.50
Technology 368 27.81 51 49.65
Average 128.00 35.01 19.42 60.80

Table 5: Intra-sector correlations in %

# of firms |mass mju rhos
Oil & Gas 122 30.89 31.82
Chemicals 44 33.52 34.89
Basic Resources 49 32.94 34.28
Construction & Materials 46 36.60 37.67
Industrial Goods & Services 413 28.59 29.19
Automobiles & Parts 20 32.77 34.94
Food & Beverage 51 18.99 22.01
Personal & Household Goods 102 32.48 33.41
Health Care 255 18.93 20.16
Retail 128 31.18 32.07
Media 45 24.15 26.60
Travel & Leisure 61 32.69 33.90
Telecommunications 20 26.94 30.01
Utilities 50 47.10 47.48
Banks 203 29.68 30.45
Insurance 39 39.43 40.36
Real Estate 13 35.59 38.41
Financial Services 85 31.07 32.19
Technology 317 24.69 25.50
Average 108.58 30.96 32.39

Table 6: intra-sector correlations [%] of “no stoxx” firms
Assume for every sector

pa/l = Vl pstaxx + V2pnosloxx (9)

where the weights are normalized to sum up to a parameter v such that }, — Myoxe .y, v, = Mosioxs .1, From the results
b

o n

all
in Tables 6 — 7 we derive an almost uniform distribution of the weight coefficient v across sectors as shown in Table

7.



ICB sectors/North America [weight coefficient

Oil & Gas 0,944
Chemicals 0,948
Basic Resources 0,942
Construction & Materials 0,960
Industrial Goods & Services 0,972
Automobiles & Parts 0,853
Food & Beverage 0,878
Personal & Household Goods 0,963
Health Care 0,940
Retail 0,962
Media 0,911
Travel & Leisure 0,963
Telecommunications 0,816
Utilities 0,960
Banks 0,981
Insurance 0,935
Real Estate N/A

Financial Services 0,959
Technology 0,964

Table 7: distribution of the weight parameter across sectors

Denote y= Msoxx and rewrite (9) in the following form

ny

pa/l :7.V'(psm,\:x_pnosto,\:x)-'_vlpnosmxx' (10)

Hence a common intra-sector correlation linearly increases with y (or a number of “stoxx” firms n,,.. ) on the interval
VP,osione < Pt SVP,one - THUS €.9. to estimate a quintile-based credit/market risk measure for a portfolio containing both

liquid and illiquid names two components of the intra-sector correlations are to be used according above weighted
rule (9) - (10).

In Appendix: Tables A1 and A3 we also collect the MLE-results for different aggregations of “no stoxx” firms across
sectors and note that the intra-sector correlations for companies with greater market capitalization / high credit
quality / number of employees are bigger ones for companies with smaller capitalization / low credit quality / number
of employees.

Fig. 6 gives a geometric interpretation of dependency of the MLE (8) on the mass g (6) across ICB sectors as given in

Table 7.
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Fig. 6. MLE vs



A “cloud” of the intra-sector correlations is bounded by two curves pm{m(n17 =13,T =190, ,u) (red curve) and
p’wmx(n5 =413,T =190, ﬂ) (green curve) with minimal and maximal number of firms (stocks) in sector s=17 (“Real
Estate”) and s=5 (“Industrial Goods & Services”), respectively. Note also that for the same fixed number ' of firms in
every sector the all intra-correlations lie on a unique Cardano’s curve p(nj,T =190, ﬂ) .

The Cardano’s curve approaches line p(n,T,u) — u

ng—00,T—00

Proof. Due to L'Hopital's rule we have the following chain of the limits:

2

b—>0;c—>0;a—>w—>—,u:>p - —’u—andq 24

ny—>o0 ng—eo ng—ee DT Toeo ny—o0,T—c0 3 n =0, T—e0 D]

3

leading first to zero discriminant D and then to a double zero root and a simple root

9c—dabta’ o 9:0-4(4)-0-4' a2 3p=42-3.020.
3b—a2 pS n, —>o0, T —o0 N 2 _ﬂ
Y 3:0—(-u)

It means that asymptotically

P =l an
or by other words an asymptotic MLE of the intra-sector correlation is given by a mass of a matrix with the Pearson’s
correlations (7).

If we admit the heavy tails for the risk factors distributions for each of the 19 industry sectors the estimates for intra-
correlations can be also calculated in above three steps with the likelihoods (2)-(3) modified according to the

distributions assumptions: e.g. the systematic factor follows a normal mixture distribution and the idiosyncratic

factors are normally distributed and hence a latent variable Vz(i) by (1) has a normal mixture distribution.

2.1.3 Impact of Lehman Brother’s collapse on the correlations

Taking into account the statistical analysis of log-returns time-series the intra-sector correlations can be decomposed
into three components for ( 12.01.07, 12.09.08 ), (19.09.08, 28.11.08) and (4.12.08, 3.09.10) periods .

Applying the methodology (2)-(5) separately to every period one can obtain the following results:



12.01.07 - 12.09.08 19.09.08 - 28.11.08 04.12.08 - 03.09.10
# of firms fmass mju rhos mass mju rhos mass mju rhos
Oil & Gas 122 18.02 20.39 50.51 54.96 28.75 30.16
Chemicals 44 21.82 24.96 50.06 54.50 33.82 35.47
Basic Resources 49 21.72 24.73 49.32 53.84 30.92 32.77
Construction & Materig 46 25.18 27.80 56.85 60.64 35.22 36.71
Industrial Goods & Se 413 17.35 18.85 46.76 51.59 27.65 28.67
Automobiles & Parts 20 19.01 24.75 51.37 55.67 29.87 32.74
Food & Beverage 51 13.92 18.03 34.78 40.87 17.32 20.89
Personal & Household| 102 22.80 24.86 48.66 53.27 31.20 32.55
Health Care 255 9.63 12.15 39.09 44.63 17.26 19.01
Retail 128 22.78 24.65 53.51 57.68 27.32 28.79
Media 45 16.12 20.09 47.20 51.92 20.13 23.45
Travel & Leisure 61 24.99 27.32 51.69 55.99 28.47 30.39
Telecommunications 20 17.08 23.41 41.96 47.34 25.93 29.43
Utilities 50 37.36 38.66 59.10 62.69 49.81 50.35
Banks 203 24.86 26.29 38.49 44.09 30.32 31.43
Insurance 39 26.55 29.18 57.00 60.76 40.07 41.24
Real Estate 13 25.22 31.99 43.23 48.60 37.14 39.29
Financial Services 85 22.11 24.42 48.13 52.79 29.27 30.87
Technology 317 15.70 17.46 44.45 49.49 22.43 23.73

Table 8: Variation of intra-sector correlations over time

After the Lehman failure in September 2008 the rise in correlations took place across all economic sectors. In order to
investigate an impact of the Lehman’s perturbation on the dynamics of correlations we substitute into the marginal

likelihood (3) the time series with a variable number of the log-returns {‘/ﬂ[:l’“.‘[} covering period ( 12.01.07,

12.01.07 + ¢ weeks ) and calculate the MLEs replacing in (8) T by 7. Fig. 7 shows a perturbed dynamics of the

estimates of correlations across sectors for a period ( 25.05.07, 25.08.10), i.e. 7=19,....,T—1 .

60.00 Oil & Gas

Chemicals

Basic Resources
50.00 Construction & Materials

Industrial Goods & Services

Automobiles & Parts
40.00

Food & Beverage

Personal & Household Goods
Health Care

30.00 = Retail

Media

A A
/ ’//“M Travel & Leisure
20.00 W - — Telecommunications
~

R-squared[%]

Utilities
Banks
10.00 Insurance
Real Estate
Financial Services
0.00 Technology

25.05.2007
25.07.2007
25.09.2007
25.11.2007
25.01.2008
25.03.2008
25.05.2008
25.07.2008
25.09.2008
25.11.2008
25.01.2009
25.03.2009
25.05.2009
25.07.2009
25.09.2009
25.11.2009
25.01.2010
25.03.2010
25.05.2010
25.07.2010

o
2
T

Fig. 7. Evolution of the intra-sector correlations across ICB sectors
as well as Fig.8 depicts their average curve (blue) in comparison to a dynamics of the correlations derived from the

log-returns data in a post-Lehman episode.
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Fig. 8. Variation of average R-squared over time

Our research indicates that the estimates smoothly vary over time before as well as after Lehman failure. At the same
time the increase in correlations during the Lehman episode goes exponentially. In a post-Lehman episode the
correlations don’t return to the values before the Lehman Brother’s collapse and stabilize around a new magnitude in
32%.

2.1.4 Bias adjustment : parade of correlations

The ML-estimate (8) and the mass (6) have the following biases [see details in appendix]

~4.029p J:?_-SSSP 064 1 2 159p% ~4.654p° +2.65p ~0.551p+0.00093, 10<n <100
n if p<0.3;
—‘1-28155 0546 58173 +2.6720% ~0.375p+0.0136, 100< 21000
bias (1) = 5.129p% —5.482p+1.66 6 4 2
' = 00 1107.98p° -85.624p% +36.89p2 ~14.12p+1.487, 10<n <100
2 if 03<p<06
1.31987p ‘1'\/7;4476/’ 0608 , 4337 +0.4920° ~2.79346p° ~0.0068, 100 <n <1000
—‘0'4253@ 04T 5 543 4126542 ~0.1394—0.0292, 10<n<100
Z ) if £<0.3;
42.168u ‘4-6345; 0492440106 _ 4 75,3 11,6244 —0.183462+0.00313,  100< 1 <1000
pidsy, (n)= 0.90342 —1.1474+0.553 6 4 2
: S 010740 708104 42071 1126404 1073, 1005100
2 if 03<u<06
0.249u —%29“ 0219 1 194578 ~12.6054% +7.06742 ~3.1641+0.406, 100< <1000

which can be fitted from synthetic standard normally distributed time series f and € generated by (1) with a given

“true” parameter p. Note also that a standard deviation goes to zero as ~1/+/n .



The bias adjustment of both parameters leads to a simple approximate Ibzp_biasp (n) zﬂ:ﬂ—biasﬂ (n) as shown

in Fig. 9 and Table 9.

o
)
05
n4r
03r
nar
0.1
L L ! " L M
0.1 03 03 04 0s ¥
Fig. 9. Parade of intra-sector correlations
# of firms |mass mju rhos
QOil & Gas 122 29.87 29.99
Chemicals 44 31.69 31.57
Basic Resources 49 31.48 31.35
Construction & Materials 46 34.19 34.19
Industrial Goods & Services 413 29.03 29.63
Automobiles & Parts 20 29.14 28.91
Food & Beverage 51 17.07 17.62
Personal & Household Goods 102 31.49 31.51
Health Care 255 18.48 18.47
Retail 128 30.20 30.30
Media 45 21.97 22.46
Travel & Leisure 61 31.70 31.61
Telecommunications 20 22.68 23.72
Utilities 50 45.93 45.99
Banks 203 29.96 28.97
Insurance 39 36.49 36.62
Real Estate 13 30.00 30.88
Financial Services 85 31.07 31.05
Technology 317 24.57 24.75
Average 108.58 29.32 29.45

Table 9: Nostoxx firms: adjusted intra-sector correlations and masses of correlation matrices across sectors
2.1.5 Estimation of the inter-sector correlations

The above methodology can be extended to cross- correlations of obligors in different sectors, say 7 and j. We
assume that all obligors in sector 7depend only on the systematic factor f and have the same R = p,. The systematic

factors f and fi follow a bivariate normal distribution with correlation p. Thus we obtain the following likelihood

function

-
AP (P)=TT] [ Lo (3.0 p,)d®, (x.7.0) (12)

t=1

cross

i B " i . _ _ . eee
where (x, y,,0,-,,0j) Z[H LE,,-) (x, ,0,-)}- IIJL(”) (y, ,0,-) with the pre-calculated sector-specific conditional

likelihoods (2) at time t. In Appendix we derive from (12)



1
J=2)" (1=, (4922 (1-0°) - )

inter Q . (13)
Al (p)e< }

= Exp{X+ 17

Maximizing (13) leads to

_ mer (Y 14
P —argf)ga?/\,-,} (p) a4
<p<

We apply (14) and calculate the inter-correlations for each pair of the 19 industries as shown in Table 10.

Oil & Gas |Chemicals |Basic Reso|Constructio{Industrial GAutomobilgFood & Be{Personal 8{Health Car{Retail ~ [Media  [Travel & L{Telecomm{Utilities  [Banks |Insurance |Real EstatFinancial §Technolog
Qil & Gas 100,00%|- - - - - - - 20,63%|  69,06%]- - - - 24,69%|- - - 13,28%
Chemicals - 100,00%|  81,25%| 90,63%|- - 8047%| 17,97%|- 11,09%|  93,75%| 52.81%|- 68.91%|  4,06%]- - 27.50%]-
Basic Resources - 81,25%| 100,00%|- - - 83,91%| 20,63%|- 12,66%|  97,34%| 59,84%|- 73,28%|  4,06%]- - 32,50%|-
Construction & Materials |- 90,63%|- 100,00%]- - 84.38%| 20,63%|- 12,81%]- 59,84%]- 68,13%|  4,53%]- - 30,63%]-
Industrial Goods & Services |- - - - 100,00%|- - - - - - - - - - - - - -
Automobiles & Parts - - - - 100,00%|  16,88%)  391%|- 2,34%|  21,72%| 1047%) 90,31%| 11,72%|  0,78%| 22,03%]- 5,63%|-
Food & Beverage - 8047%| 8391%|  84,38%|- 16,88%| 100,00%] 23,44%- 14,53%]- 68,91%]- 89,69%|  531%]- - 36,72%|-
Personal & Household Goods|- 17.97%|  2063%| 20,63%|- 3,91%|  23.44%| 100,00%|- 69,69%|- - - - 22,81%|- - - -
Health Care 20,63%|- - - - - - - 100,00%|- - - - - - -
Retail 69,06%| 11,09%| 12.66%| 12,81%|- 2,34%|  14,53% 69,69%|- 100,00%]- - - - 35,31%]- - - -
Media - 93,75%|  97,34%]- - 21,72%)- - - - 100,00%|  56,41%|- 67,03%|  4,06%]- - 28,75%|-
Travel & Leisure - 52,81%| 59,84%) 59,84%|- 10,47%|  68,91%|- - - 56,41%| 100,00%]- - 7.81%]- - 55,16%]-
Telecommunications - - - - - 90,31%]- - - - - - 100,00%) 13.28%|  0,78%| 23,91%]- 5.31%|-
Utilties - 68.91%|  73,28%| 68,13%|- 11,72%|  89,69%|- - - 67,03%|- 13,28%] 100,00%|  4,84%]- - 31,25%|-
Banks 24,69%)  406%  4,06%|  453%|- 0.78%|  531%| 2281%|- 3531%|  4.06%|  7.81%|  0.78%|  484%| 100,00%- - - -
Insurance - - - - - 22,03%)- - - - - - 23,91%]- - 100,00%]- 21,25%|-
Real Estate - - - - - - - - - - - - - - - - 100,00%]  2,66%]-
Financial Services - 2750%|  32,50%| 30,63%|- 5,63%| 36,72%|- - - 28,75%|  55,16%|  5,31%| 31,25%|- 21,25%)  2,66%| 100,00%|-
Technology 13,28%)- - - - - 100,00%

Table 10: inter-sector correlations of “nostoxx” firms
The average inter-sector correlation is then equal to 17.82%.

3 Regression Analysis

An alternative way to estimate the intra/inter correlations p_  for “stoxx” firms is to resolve the following standard

linear regression equation
V,(i) =Bf. _,_g’(i) (15)

with respect to “beta” in analogy to the capital asset pricing model (CAPM). Thus the correlations will be calculated
on the data of the largest North American stocks from STOXX Americas 600 Index.

The returns Vt(")are exclusively correlated by means of their composite factors f which are modelled by industry

specific indices. We denote the t-th week's return on the s-th index by f,,and for each of the indices, we consider the

last 190 weekly returns and compute the Pearson’s correlations of weekly returns for all pairs of indices by
1 <
R =—— f .
i, T_ltzz;»ft,l»ft,]

Minimizing residuals gf") in (15) leads first to an optimal beta for i-th stock (obligor) in sector s:

B =argminy (v - £,
B



4t

Fig. 10. The log-returns of Exxon Mobil Corp vs DJS Amer 600 Oil & Gas

and then to the natural estimate of the intra-sector correlation

1 ng ;
B = _ZIBS( ) (16)
ng iz
and finally to the inter-sector covariate
Ioi,j zﬂlﬁ_]RI,] . (17)

Direct comparison of two models (1) and (15) gives an obvious linking equation:
B =p,

which can be used to test both models.
Tables 11 and 12 collect the intra- and inter-sector correlations computed by (16) and (17), respectively.



ID |ICB sector name DJ STOXX companies: betas
11.11.03-10.12.09 | 12.01.07-03.09.10
1]0il & Gas 71,68 74,45
2|Chemicals 75,23 75,61
3|Basic Resources 62,59 64,47
4|Construction & Materials 70,03 76,44
5|Industrial Goods & Servic 60,26 72,95
6|Automobiles & Parts 73,87 77,25
7|Food & Beverage 55,32 58,94
8|Personal & Household Gg 51,34 63,03
9|Health Care 56,64 64,74
10| Retail 57,74 63,40
11|Media 67,85 72,07
12| Travel & Leisure 61,74 68,83
13| Telecommunications 59,17 62,04
14| Utilities 74,6 77,89
15|Banks 68,52 76,17
16|Insurance 63 67,97
17|Real Estate 87,04 86,07
18| Financial Services 68,45 72,94
19]Technology 63,06 66,85
Average 65,69 70,64

Table 11: “beta”’-version of the intra-sector correlations

0i & Gas [Chemicals|Basic Res{ConstructiqIndustrial qAutomobigFood & BelPersonal {Health CaRetall  [Media  [Travel & L{Telecomm|Utiities [Banks  [Insurance |Real Estat{Financial §Technolog
Qil & Gas 100000 7863] 8185  7ieel e o34 7028 e690] 6313] 6339 7728 6040 6984 8443 5675  7206]NA 66,63 7327,
Chemicals 7863 100000 7838 8644 8165( 7194 6751 6332 5811 7046] 7497 7100] 6267 6703] 5961]  7055|NA 739 7714
Basic Resources 8185 7838 10000] 7426 6465 5764 5242 4774 4552 50.75] 61300 5277 4990| 6359 3989 S5411|NA 5285 6349
Construction & Materials 7762)  8644] 74260 100001 8821[ 8019 6706 6974 6303 7827] 8292 8092 69,02| 6694 7264  80,05|NA NI
Industrial Goods & Services 7251] 8165 6465 8821 10000{ 8621[ 7580 7867 70,56| 8543] 89.86] 8788 7297|6894 77,02] 84 15|NA 87,5 8589
Automobiles & Parts 6324 7194 5764 8019 8621[ 10000[ 6302] 6793 5542 79.99] 8220 81,14] 6455 6157 7381] 779I|NA 82,07 8046
Food & Beverage 7025 6751 5242)  67,06] 7580[ 6302[ 10000Q 89,000 8354 7705 8137 7209 7573 7687| 5925]  7559|NA 72800 721
Personal & Household Goods 6690 6332 4774 6974| 7867|6793 8900 10000] 8255 8401| 8283 7957 7661 7324 6212] 76.35|NA 7586] 7495
Health Care 6313 5601 4552 6303 7056 5542l 8354 8255 10000] 7443 7688|6967 7342 7344] 5944 7727[NA 7183 6946
Retal 6339 7046] 5075 7827|8543 7999 7705 8401 7443 10000 86,80 8838 76,15 6698] 6897 7861|NA 86,15 84,06
Media 7723 7497 6130] 8292 8986 8220 8137 8283 7688 8680 10000 8434 8001 7479|7665 86,60[NA 88,04 8443
Travel & Leisure 6040] 71000 5277 80,92 8788 8114 7209 7957 6967 8838 8434 10000] 69,04 6040| 7322[ 7829|NA 84,70 80,19
Telecommunications 6084 6267 4990] 6902 7297 6455 7573 761 7342 7615 001 69,04 100000 7335  62.98] 74 38[NA 7456] 7494
Utilties 8443 6703 6359 694 6894 6157 7esr 7324 7344 60| 747l 6040] 7335 10000] 5251 7351[NA 6472l 7123
Banks 5675  5961] 3989 7264l  7702f 7381] 5925 6212 5914 6897 7665 7322 6298  5251| 100,00[ 8599|NA 88,96| 6224
Insurance 7206 7055 5411 80,05  8415| 77 91[ 7559 7635 7727l 7861|8660 7829 7438 7351|8539 100,00[NA 89,67) 7328
Real Estate NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA - [NA 100,00|N/A NA
Financial Services o663 7139 5285 e310] 6756|6207 7280 7586l 7183 8615|8804 8470 7456 6472  88.96]  8967NA 100,00] 8091
Technology 7327 74 349 8018 @589 8046l 727|495 6946  s406| 4dd] 8019 7404 7123 6224 7328[NA 80,91] 100,00,

Table 12: "beta”-version of the inter-sector correlations on a period: 11.11.2003 — 10.12.2009

4 Value at Risk (VaR) of equity portfolio with normal mixtures

It is known that if all k equities of a portfolio are mapped to the same single risk factor (e.g. the market index, see

details in section 3) the normal VaR at the (1-a )-confidence level is simply equal to

k
VaR =-d"(a)-P- LY wp
aR, (@) \/;Z[: Y

where P is a total portfolio value, g =i, y, is market value of i-th equity. At the same time the normal assumption

could lead to the underestimation of VaR as it will be shown in sequel. We have already seen that the degree of
excess kurtosis in the stocks return time series is considerably higher before than after crisis (Lehman failure). Here
we qualitatively investigate an impact of “tail behaviour” of stocks returns distributions on VaR of a linear equity

P

portfolio with a portfolio mean g, and a volatility of & over n-day horizon.



We assume the three distributions of the portfolio P&Ls: normal, normal mixture and normal with the weighted mean
and deviation such that a n-day VaR at a significance level a has three possible values as roots of the following
nonlinear algebraic equations:

pl, (VaRa)E q)(_vaRa/P_'uNj , v~ N(0,1)
O.N

a=Pi(P&L<-VaR,)= ﬂxwmgsp«%fvmﬂ/P_MWj+0—p)¢(4mR“P_”N}x¢~NM1
O-N M O-N

pl; (VaRa)zd{ V,~N(0,0,)

_VaRa/P_[ptuNM +(1_p)'xuN]J
POy +(1_P)'O-N

(18)

where p is the probability of regime 1 (before crisis), g,, is a n-day portfolio return and ¢, is a n-day standard
deviation in regime 1. Regime 2 characterizes ordinary market circumstances with a pair g, and g, .

For fixed parameters: P =100Mio; pt,,, =—0.3;0,, = ! _ 015 02 :n=10we resolve (18) w.r.t.

iy = Oy =

V250707 250707 250/
VaR for two significance levels a = 5% (dashed) and 10%(solid) and arbitrary probability of crash p as shown on Fig.
11.
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Fig. 11. VaR, vs probability p for normal (green), NM (red) and equivalent normal (blue)

Thus ignoring the possibility of a crash can seriously underestimate the VaR. For low significance levels (e.g.
10% or 20%), the normal assumption ( p,(VaR,) ) can overestimate VaR if p<a .

The parameters of a normal mixture density function can be estimated from historical data by use of the
expectation—maximization (EM) algorithm [7]. Thus we would be able to quantify the probability p.
Another case of study is to fix the probability p, e.g. 1% and 10%. Then we get

o=1% p=10%

VaR [Mio ] VaR [Mio]
100 - 100

80 80
60 60
40 40

20

20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L L L L L L L L L L 1 L L L L L L L a
0.000 0.002 0.004 0.006 0.008 0.010 ¢ 0.000 0.002 0.004 0.006 0.008 0.010




We see that for higher significance level NM VaR is considerably bigger both normal VaRs even for small
probability of crash.

5 Conclusions

In this work we first carried out an empirical analysis of the equity time series covering a 4y period from 2007 to

2010. Then we consider a normal distribution assumption for the risk factors within a two-state version of the

CreditMetrics framework and derive the maximum likelihood estimator in closed form. Concurrent to MLE asset

correlations are estimated by mass yp or the mean of pair wise equity sample correlations. We show that the sample

correlations are less biased than the ML-estimates and asymptotically both methods lead to the same correlations.

Based on the ICB industry classification we computed the bias adjusted intra- and inter - correlations for the 19

industry sectors with an average value of 29.45% and 17.82%, respectively. We also investigated a dynamics of the

correlations and correlation changes under stressed market conditions (Lehman failure in September 2008) and

studied an impact of normal mixture assumption on the VaR of simple equity portfolio .
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Appendix.

Proof of Eq. (5):

The integrand in (3) is

2 L ) 2 R W L o TS m}
_/,[ 1 J e z(l‘p.\)z(vz J;f) - -n,/2 2“*#)[%"[(% )W/ ps, } A(p)»e‘ﬁz-f2+q.f,

27 (1-7) T ey



H —¥i(v,"’)z
where we denoted A(p) :(27[(1_10))‘”»\ Lo PG

and p2=1_p+”s/7 \/7 ZV

2(1-p)

Since

w '
J‘ o P gy = g4 ﬁ [Gradsteyn&Ryzhik, p.3371
et p

r ﬁz(lp) {]

2(1-p)(1-p+nyp)

we get a likelihood in a form:

Thus

T o T ()’
p (1-p)" " (1-p+np) 2 3(v.") +,0~Z(ZV,()J (A1)

then (A.1) transforms to (5).

MLE-results for different aggregations of “no stoxx” firms across sectors



Oil & Gas 29.52 59.76|- 29.06 59.43
Chemicals 27.39 54.29|- 29.95 63.44
Basic Resources 33.87 53.55]- 37.58 52.37
Construction & Materials 29.75 50.41 62.03 31.71 55.44
Industrial Goods & Services 17.15 41.53 52.24 24.28 51.74
Automobiles & Parts 40.25 52.66 84.27 36.70 84.27
Food & Beverage 21.09 30.40 83.30 22.01 37.36
Personal & Household Goods 26.20 40.72 64.85 29.66 52.85
Health Care 18.92 31.92 46.70 19.83 40.20
Retail 22.26 37.38 42.89 29.23 42.84
Media 26.08 36.50 88.95 27.44 45.68
Travel & Leisure 27.90 39.24 50.63 31.61 52.95
Telecommunications 30.54 59.61]- 33.00 65.74
Utilities 43.49 56.51|- 38.55 58.56
Banks 24.21 64.99|- 13.70 45.73
Insurance 37.58 54.81]- 34.84 49.13
Real Estate 38.56 100.00{- 45.41 85.57
Financial Services 27.60 46.76|- 33.13 48.74
Technology 21.77 37.20 59.88 24.95 45.19
Average 28.64 49.91 63.57 30.14 54.59

Table A1l: Intra-sector correlations for different aggregations of “no stoxx” firms across sectors

employees <1000 [1000<employees <10000 |10000<employees|iM<assets<iMrd [assets >1Mrd
Oil & Gas 80 33 1 74 36
Chemicals 19 23 0 28 14
Basic Resources 19 22 2 26 16
Construction & Materials 14 24 7 25 20
Industrial Goods & Services 166 206 43 291 112
Automobiles & Parts 7 9 4 15 4
Food & Beverage 21 27 3 36 13
Personal & Household Goods 39 57 6 76 26
Health Care 184 54 10 216 31
Retail 26 63 40 81 45
Media 19 19 4 28 13
Travel & Leisure 19 23 21 44 16
Telecommunications 11 7 1 12 6
Utilities 19 31 0 11 38
Banks 152 50 0 55 147
Insurance 27 12 1 11 28
Real Estate 11 0 2 8 4
Financial Services 36 26 0 36 23
Technology 188 114 7 255 47
Total 1057 800 152 1328 639
Table A2: number of firms in buckets
# of firms rated < BBB _|sub-investment grade [investment grade # of firms rated >=BBB
QOil & Gas 30 60.86 74.31 5
Chemicals 7 58.45 7317 6
Basic Resources 9 53.08 78.77 5
Construction & Materials 9 56.12 74.16 5
Industrial Goods & Services 55 46.63 56.61 29
Automobiles & Parts 6 65.21]- 0
Food & Beverage 5 61.04 55.00 5
Personal & Household Goods 23 51.21 57.95 9
Health Care 19 34.51 77.32 4
Retail 24 43.38|- 1
Media 12 42.32|- 3
Travel & Leisure 18 48.22]- 1
Telecommunications 6 60.87]- 2
Utilities 6 59.60 63.24 26
Banks 4 92.89 72.33 14
Insurance 0[- - 1
Real Estate 0[- - 1
Financial Services 3|- 54.17 8
Technology 19 45.29 71.48 5
Total 255 130
Average 54.98 67.37

Table A3: Intra-sector correlations vs number of firms in buckets




Comments to bias for MLE (8) and for a mass y (6):

1.

Set a triple {p,n,T} and simulate n mutually independent standard normally distributed time series for
idiosyncratic factors gl(i),{[:1,.._,T;i:1,,_,n} and a time series for a common factor f;’{t:L___’T}.
Generate the “log-returns” {Vz(i)’f =1,..T:i= 1,___,;1} by (1).

For the given set of time series find both an optimal p from (4) and a mass g from (6)-(7), keep them and then
repeat (1) NVtimes.

Calculate the mean values p(n),z(n) and standard deviations O'p(”)’o'u(") from the samples

{pii),izl,...,N} of p and {,ui"),izl,...,N} of p, respectively.

Set a new value for n and repeat (1)-(3) Ktimes.

Set a new value for p and repeat (1)-(4) L times.

As a result we get the following tables

number of firms\rhos 5,00%| 10,00%| 15,00%| 20,00%| 25,00%
100 9,82%| 14,09%| 18,37%| 22,69%| 27,03%

200]  8,48%| 12,75%| 17,17%| 21,77%| 26,24%

300 7,84%| 12,19%| 16,80%| 21,40%| 25,94%

400[  7,46%| 11,82%| 16,49%| 21,17%| 2573%

500 7,23%| 11,59%| 16,30%| 21,11%| 25,58%

600 7,03%| 11,46%| 16,20%| 21,00%] 25,53%

700 6,87%| 11,34%| 16,12%| 20,93%| 25,48%

800 6,75%| 11,25%| 16,07%| 20,87%| 25,47%

900 6,67%| 11,18%| 16,00%| 20,83%]| 25,46%

1000 6,57%| 11,12%| 15,96%| 20,82%]| 25,42%

Table A4. Empirical distribution of a MLE (8) vs number of firms and given rhos

number of firms\mju 5,00%| 10,00%| 15,00%| 20,00%| 25,00%
100 6,00%| 10,89%| 15,87%| 20,78%]| 25,58%

200]  556%| 10,45%| 1544%| 20,47%| 25,24%

300 5,38%| 10,31%| 15,41%| 20,35%| 25,11%

400 5,30%| 10,21%| 15,30%| 20,26%]| 25,00%

500 5,29%| 10,15%| 15,23%| 20,29%| 24,92%

600]  524%| 10,16%| 1522%| 20,24%| 24,91%

700 5,20%| 10,13%| 15,21%| 20,22%| 24,89%

800 5,19%| 10,12%| 15,22%| 20,19%]| 24,90%

900 5,19%| 10,11%| 15,19%| 20,17%| 24,91%

1000 5,16%| 10,11%| 15,18%| 20,19%| 24.89%

Table A5. Empirical distribution of mass y(6) vs number of firms and given rhos

We first find the best fits to these data in a form b(p)n’”2+p+a(p)- Then from the fits we get the series

B={b(5%),b(10%),6(15%),b(20%),b(25%)} as well as A ={a(5%),a(10%),a(15%),a(20%),a(25%)} which can be easily

approximated by suitable polynomials as shown on Fig. A1 and Fig. A2 for MLE (8) and Fig. A3 and Fig. A4 for MLE

and mass g, respectively.

b(p)=—1.28119p +0.546 a(p)=—5.817p* +2.672p* —0.375p+0.0136
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—0001F \ —

\
-0002 - \
\
\\
-0003 - A —

-0.004 -

Fig.A2 Shift A of MLE and its polynomial fit

Table A6: Plots of the MLE-fit's components and their approximates

b,(p)=42.168p* —4.634p> +0.492p +0.106

a,(p)=-4.075p" +1.624p" —0.18346p+0.00313
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Fig.A3 Drift B of mass g and its polynomial fit
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Table A7: Plots of the mass-fit's components and their approximates

Proof of Eq. (13):

First we derive

(v0-Jor] (vi-da)

oo, e )

L,. (x, Y, Py P, ) =

where

2(1-p))

k=1

Then an internal integral in (12) calculates as
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An external integral is then given by

Ilzzl-dyzefef;%% ;
where
propi-— P - LY , APB and £= pb /.
api(1-p7) " 20i(1=p))(1=p7) (1=P) api(i=p) 20-p) 2(1-p)
Since

. r(1— 2 - .—n//2 . X B h T §+L,22
Ain;er(p)z [ ( pz)zﬂ.\/l(_pff) J] We come to A:";er(p)x [(l—p,) ' (l_pj) / [32-17,2' (1—[02)} H@ 4p°

Denoting
&=y F=X50)5,=380)50)
_ pjﬁjz a, a;
api(1-p,) 20=p) 2(1-p))
Q:iqz_ P.Bp : ﬁl.j\/pjpiz’p 4 ,0,-,3,-22
=1 4pj( —pj) (l—pz) P,(l_ j)(l_P (1-p) (1-p)
we get
AT (p) — TEx,{m 4%]
Ju=p)" (1-p)" (492} (1)) !

As the log-returns time series are standardized we have

1 m N . . 3 _ . T (k) (1) .
where U = erk, is a mass of a matrix of the Pearson’s cross-correlations n, :_ZV.' v! for a pair

. 1
= ] 1
N1 =1 i=1 T-13

ij

(k) of firms from sectors 7and j, respectively.

Collecting the above formulas we finally come to (13).



