

Nonlinear pricing with imperfectly informed consumers

Armstrong, Mark

University of Oxford

November 1996

Online at https://mpra.ub.uni-muenchen.de/36332/ MPRA Paper No. 36332, posted 01 Feb 2012 16:40 UTC

NONLINEAR PRICING WITH IMPERFECTLY INFORMED CONSUMERS

Mark Armstrong Nuffield College, Oxford

November 1996

A monopolist sells a single product to a population of consumers. The cost per unit of supplying this product is constant and equal to c. Consumers have utility functions of the form $u(q, \theta) - T$, where q is the quantity consumed, θ is a parameter affecting demand, and T is the payment for consumption. The function u satisfies $u(0, \theta) \equiv 0, u_{\theta} \geq 0$ and $u_{q\theta} \geq 0$. Consumers gain information about their preferences in two stages: first they learn a parameter α , which does not enter directly into their utility function, then they learn θ . The distribution of θ depends on α , and write the distribution function for θ given α as $F(\theta, \alpha)$. We assume that higher values of α make higher values of θ more likely, i.e. that $F_{\alpha}(\theta, \alpha) \leq 0$. Crucially, we make the assumption that the support of θ does not depend on α , and say this support is $[\theta_L, \theta_H]$. The distribution function for α is $G(\alpha)$ with support $[\alpha_L, \alpha_H]$.

The firm offers a family of tariffs from which a consumer must choose after α is known but before θ is known. Let the family of tariffs be indexed by α , and so a consumer is free to choose to buy from any tariff $T(q, \alpha)$. Given a particular family of tariffs $T(q, \alpha)$, define

$$s(\theta, \alpha) \equiv \max_{q \ge 0} : u(q, \theta) - T(q, \alpha)$$

and write $q(\theta, \alpha)$ to be the quantity that solves the above problem. Then, in the usual way, if the type α consumer chooses the tariff $T(\cdot, \hat{\alpha})$ she obtains expected surplus

$$v(\alpha, \hat{\alpha}) \equiv \int_{\theta_L}^{\theta^H} u_{\theta}(q(\theta, \hat{\alpha}), \theta) (1 - F(\theta, \alpha)) \, d\theta + s(\theta_L, \hat{\alpha}) \tag{1}$$

and the firm obtains expected profit of

$$\int_{\theta_L}^{\theta_H} \left\{ \left[u(q(\theta, \hat{\alpha}), \theta) - cq(\theta, \hat{\alpha}) \right] f(\theta, \alpha) - u_{\theta}(q(\theta, \hat{\alpha}), \theta) (1 - F(\theta, \alpha)) \right\} d\theta \\ -s(\theta_L, \hat{\alpha}) .$$
(2)

(Here, $f \equiv F_{\theta}$.) Thus in doing this we have eliminated the underlying tariff $T(\cdot, \hat{\alpha})$ and expressed consumer surplus and profit given α and $\hat{\alpha}$ in terms of the demand profile $q(\theta, \hat{\alpha})$ and the minimal surplus term $s(\theta_L, \hat{\alpha})$. Clearly, provided the function $q(\theta, \hat{\alpha})$ is (weakly) increasing in θ , a tariff $T(\cdot, \hat{\alpha})$ can be found that induces the demand profile $q(\theta, \hat{\alpha})$. We can therefore think of the firm as choosing $q(\theta, \hat{\alpha})$ and $s(\theta_L, \hat{\alpha})$ rather a family of tariffs $T(\cdot, \alpha)$.

What remains to do is to ensure that the scheme is incentive compatible and that the type α consumer chooses $\hat{\alpha} = \alpha$. Write

$$V(\alpha) = \max_{\alpha_L \le \hat{\alpha} \le \alpha_H} : v(\alpha, \hat{\alpha})$$

where v is given by (1). Clearly, if the type α chooses $\hat{\alpha} = \alpha$ then

$$V'(\alpha) = -\int_{\theta_L}^{\theta_H} u_{\theta}(q(\theta, \alpha), \theta) F_{\alpha}(\theta, \alpha) \ d\theta \ge 0 \ . \tag{3}$$

In particular, $V(\alpha)$ is increasing in α and so if the participation constraint is satisfied for the lowest type $\alpha = \alpha_L$ it is satisfied for all types. Therefore, it must be optimal from the firm's point of view to set $V(\alpha_L) = 0$. We deduce from (3) that under any incentive compatible scheme that satisfies the participation constraints, the rent of the type α is given by

$$V(\alpha) = -\int_{\alpha_L}^{\alpha} \int_{\theta_L}^{\theta_H} u_{\theta}(q(\theta, \hat{\alpha}), \theta) F_{\alpha}(\theta, \hat{\alpha}) \ d\theta \ d\hat{\alpha} \ . \tag{4}$$

From (1), the term $s(\theta_L, \alpha)$ must then be given by

$$s(\theta_L, \alpha) = V(\alpha) - \int_{\theta_L}^{\theta^H} u_{\theta}(q(\theta, \hat{\alpha}), \theta) (1 - F(\theta, \alpha)) \, d\theta$$
(5)

where $V(\alpha)$ is given by (4).

Lemma 1 If the function $s(\theta_L, \alpha)$ in (1) is given by (5) above, then the type α consumer will choose $\hat{\alpha} = \alpha$ in (1) provided that $q(\theta, \alpha)$ is (weakly) increasing in α .

Proof. Substituting for $s(\theta_L, \hat{\alpha})$ as defined in (5) into (1) and differentiating with respect to $\hat{\alpha}$ yields

$$v_{\hat{\alpha}}(\alpha, \hat{\alpha}) = \int_{\theta_L}^{\theta_H} u_{q\theta}(q(\theta, \hat{\alpha}), \theta) q_{\alpha}(\theta, \hat{\alpha}) [F(\theta, \hat{\alpha}) - F(\theta, \alpha)] d\theta .$$

Therefore, since $u_{q\theta}$ is assumed to be non-negative and q_{α} is assumed in the statement of the lemma to be non-negative, the function $v(\alpha, \hat{\alpha})$ is increasing in $\hat{\alpha}$ for $\hat{\alpha} \leq \alpha$ and increasing in $\hat{\alpha}$ for $\hat{\alpha} \geq \alpha$ and hence is maximized at $\hat{\alpha} = \alpha$ as required. \Box

(Note that, although it is necessary for implementability that q be increasing in θ , we do not claim that it is necessary, only sufficient, that q be increasing in α .)

We can now write the firm's total profit purely in terms of the demand profile $q(\theta, \alpha)$. From (2), the firm's profit from the type α consumer is

$$\int_{\theta_L}^{\theta_H} u(q(\theta, \alpha), \theta) f(\theta, \alpha) \ d\theta - V(\alpha)$$

and so the firm's total profit is just

$$\pi = \int_{\alpha_L}^{\alpha_H} \left\{ \int_{\theta_L}^{\theta_H} \left[u(q(\theta, \alpha), \theta) - cq(\theta, \alpha) \right] f(\theta, \alpha) \, d\theta - V(\alpha) \right\} \, dG(\alpha) \, .$$

But using integration by parts and the relationship (3) yields

$$\int_{\alpha_L}^{\alpha_H} V(\alpha) \, dG(\alpha) = \int_{\alpha_L}^{\alpha_H} \int_{\theta_L}^{\theta_H} -u_\theta(q(\theta, \alpha), \theta) F_\alpha(\theta, \alpha) (1 - G(\alpha)) \, d\theta d\alpha$$

and hence total profits can be expressed as

$$\pi = \int_{\alpha_L}^{\alpha_H} \int_{\theta_L}^{\theta_H} \left\{ \left[u(q(\theta, \alpha), \theta) - cq(\theta, \alpha) \right] f(\theta, \alpha) g(\alpha) + u_{\theta}(q(\theta, \alpha), \theta) F_{\alpha}(\theta, \alpha) (1 - G(\alpha)) \right\} d\theta d\alpha .$$
(6)

Therefore, the candidate for the profit-maximizing quantity profile is

$$q(\theta, \alpha) \text{ maximizes}_{q \ge 0} : u(q, \theta) - cq - u_{\theta}(q, \theta) \frac{-F_{\alpha}(\theta, \alpha)(1 - G(\alpha))}{f(\theta, \alpha)g(\alpha)} .$$
(7)

Provided this function is weakly increasing in both θ and α , and this requires a joint condition on the functional forms of u, F and G, then (7) certainly gives the profit-maximizing demand profile.

EXAMPLE: Let $u(q, \theta) = \theta u(q)$ and $F(\theta, \alpha) = 1 - e^{-\theta/\alpha}$.

In this case the utility function takes the multiplicative form often used in models of nonlinear pricing, and the parameter θ is exponentially distributed with mean α . From (7), the candidate demand profile $q(\theta, \alpha)$ maximizes

$$\theta u(q) - cq - \theta u(q) \frac{1 - G(\alpha)}{\alpha g(\alpha)} = \left[1 - \frac{1 - G(\alpha)}{\alpha g(\alpha)}\right] \theta u(q) - cq.$$

This function is increasing in both θ and α provided the standard hazard rate condition that $(1 - G(\alpha))/(\alpha g(\alpha))$ is decreasing holds. (Demand is zero when $(1 - G(\alpha))/(\alpha g(\alpha)) \ge 1$.) Notice that this example has the feature that each tariff $T(q, \alpha)$ is just a two-part tariff with marginal price equal to

$$\frac{c}{1 - (1 - G(\alpha))/(\alpha g(\alpha))}$$

and so the profit-maximizing strategy is to offer consumers a menu of two-part tariffs.