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Abstract In this paper we propose a new goodness-of-fit testing scheme for
the marginal distribution of regime-switching models. We consider models with
an observable (like threshold autoregressions), as well as, a latent state process
(like Markov regime-switching). The test is based on the Kolmogorov-Smirnov
supremum-distance statistic and the concept of the weighted empirical distri-
bution function. The motivation for this research comes from a recent stream of
literature in energy economics concerning electricity spot price models. While
the existence of distinct regimes in such data is generally unquestionable (due
to the supply stack structure), the actual goodness-of-fit of the models requires
statistical validation. We illustrate the proposed scheme by testing whether
commonly used Markov regime-switching models fit deseasonalized electricity
prices from the NEPOOL (U.S.) day-ahead market.

Keywords Regime-switching · marginal distribution · goodness-of-fit ·
weighted empirical distribution function · Kolmogorov-Smirnov test ·
conditional independence

1 Introduction

Regime-switching models have attracted a lot of attention in the recent years.
A flexible specification allowing for abrupt changes in model dynamics has
led to its popularity not only in econometrics (Choi, 2009; Hamilton, 2008;
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Lux and Morales-Arias, 2010) but also in other as diverse fields of science
as traffic modeling (Cetin and Comert, 2006), population dynamics (Luo and
Mao, 2007), river flow analysis (Vasas et al., 2007) or earthquake counts (Bulla
and Berzel, 2008). This paper is motivated by yet another stream of literature:
electricity spot price models in energy economics (Bierbrauer et al., 2007; De
Jong, 2006; Huisman and de Jong, 2003; Janczura and Weron, 2010, 2012;
Karakatsani and Bunn, 2008, 2010; Mari, 2008; Misiorek et al., 2006; Weron,
2009). Regime-switching models have seen extensive use in this area due to
their relative parsimony (a prerequisite in derivatives pricing) and the ability
to capture the unique characteristics of electricity prices (in particular, the
spiky and non-linear price behavior). While the existence of distinct regimes
in electricity prices is generally unquestionable (being a consequence of the
non-linear, heterogeneous supply stack structure in the power markets, see
e.g. Eydeland and Wolyniec, 2012; Weron, 2006), the actual goodness-of-fit of
the models requires statistical validation.

However, recent work concerning the statistical fit of regime-switching
models has been mainly devoted to testing parameter stability versus the
regime-switching hypothesis. Several tests have been constructed for the ver-
ification of the number of regimes. Most of them exploit the likelihood ratio
technique (Cho and White, 2007; Garcia, 1998), but there are also approaches
related to recurrence times (Sen and Hsieh, 2009), likelihood criteria (Celeux
and Durand, 2008) or the information matrix (Hu and Shin, 2008). Specifica-
tion tests, like tests for omitted autocorrelation or omitted explanatory vari-
ables based on the score function technique, were proposed earlier by Hamilton
(1996). On the other hand, to our best knowledge, procedures for goodness-
of-fit testing of the marginal distribution of regime-switching models have not
been derived to date (with the exception of Janczura and Weron, 2009, where
an ewedf-type test was introduced in the context of electricity spot price mod-
els, see Section 3.2.1 for details). With this paper we want to fill the gap.
We propose an empirical distribution function (edf) based testing technique
built on the Kolmogorov-Smirnov test. The procedure is readily applicable to
regime-switching models with an observable, as well as, a latent state process.
The derivation of the test in the latter case requires, however, a utilization of
the concept of the weighted empirical distribution function (wedf).

The paper is structured as follows. In Section 2 we describe the structure of
the analyzed regime-switching models and briefly explain the estimation pro-
cess. In Section 3 we introduce goodness-of-fit testing procedures appropriate
for regime-switching models both with observable and latent state processes.
Next, in Section 4 we provide a simulation study and check the performance
of the proposed technique. Since the motivation for this paper comes from the
energy economics literature, in Section 5 we show how the presented testing
procedure can be applied to verify the fit of Markov regime-switching models
to electricity spot prices. Finally, in Section 6 we conclude.



Goodness-of-fit testing for the marginal distribution of regime-switching models 3

2 Regime-switching models

2.1 Model definition

Assume that the observed process Xt may be in one of L states (regimes) at
time t, dependent on the state process Rt:

Xt =











Xt,1 if Rt = 1,
...

...
...

Xt,L if Rt = L.

(1)

Possible specifications of the process Rt may be divided into two classes:
those where the current state of the process is observable (like threshold mod-
els, e.g. TAR, SETAR) and those where it is latent. Probably the most promi-
nent representatives of the second group are the hidden Markov models (HMM;
for a review see e.g. Cappe et al., 2005) and their generalizations allowing for
temporal dependence within the regimes – the Markov regime-switching mod-
els (MRS). Like in HMMs, in MRS models Rt is assumed to be a Markov
chain governed by the transition matrix P containing the probabilities pij of
switching from regime i at time t to regime j at time t+1, for i, j = {1, 2, ..., L}:

P = (pij) =











p11 p12 . . . p1L
p21 p22 . . . p2L
...

...
. . .

...
pL1 pL2 . . . pLL











, with pii = 1 −
∑

j 6=i

pij . (2)

The current state Rt at time t depends on the past only through the most
recent value Rt−1. The probability of being in regime j at time t+m starting
from regime i at time t is given by

P (Rt+m = j | Rt = i) = (P′)m · ei, (3)

where P′ denotes the transpose of P and ei is the ith column of the identity
matrix. In general, L regime models can be considered. However, for clar-
ity of exposition we limit the discussion in this paper to two regime models
only. Note, that this is not a very restrictive limitation – at least in the con-
text of modeling electricity spot prices – since typically two or three regimes
are enough to adequately model the dynamics (Janczura and Weron, 2010;
Karakatsani and Bunn, 2010). Nonetheless, all presented results are also valid
for L > 2.

The definitions of the individual regimes can be arbitrarily chosen depend-
ing on the modeling needs. Again for the sake of clarity, in this paper we focus
only on two commonly used in the energy economics literature specifications
of MRS models (Ethier and Mount, 1998; De Jong, 2006; Hirsch, 2009; Huis-
man and de Jong, 2003; Janczura and Weron, 2010; Mari, 2008). The first
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one (denoted by I) assumes that the process Xt is driven by two independent
regimes: (i) a mean-reverting AR(1) process:

Xt,1 = α + (1 − β)Xt−1,1 + σǫt, (4)

where the residuals ǫt’s are independent, F 1-distributed (in the following we
assume that F 1 is the standard Gaussian cdf) and (ii) an i.i.d. sample from a
specified continuous, strictly monotone distribution F 2:

Xt,2 ∼ F 2(x), (5)

Observe that in such a model specification the values of the first regime Xt,1

become latent when the process is in the second state. In the second specifi-
cation (denoted by II) Xt is described by an AR(1) process having different
parameters in each regime, namely:

Xt = αRt
+ (1 − βRt

)Xt−1 + σRt
ǫt, Rt ∈ {1, 2}, (6)

where the residuals ǫt’s are independent, N(0, 1)-distributed random variables.

2.2 Calibration

Calibration of regime-switching models with an observable state process boils
down to the problem of independently estimating parameters in each regime.
In case of MRS models, though, the calibration process is not straightforward,
since the state process is latent and not directly observable. We have to infer
the parameters and state process values at the same time. In this paper we
use a variant of the Expectation-Maximization (EM) algorithm that was first
applied to MRS models by Hamilton (1990) and later refined by Kim (1994).
It is a two-step iterative procedure, reaching a local maximum of the likelihood
function:

– Step 1: Denote the observation vector by xT = (x1, x2, ..., xT ). For a pa-
rameter vector θ(n) compute the conditional probabilities P (Rt = i|xT; θ(n))
– the so called ‘smoothed inferences’ – for the process being in regime i at
time t.

– Step 2: Calculate new and more exact maximum likelihood estimates
θ(n+1) using the log-likelihood function, weighted with the smoothed infer-
ences from Step 1, i.e.

log
[

L(θ(n+1))
]

=
2

∑

i=1

T
∑

t=1

P (Rt = i|xT; θ(n)) log
[

fi(xt|xt−1; θ(n+1))
]

,

where fi(xt|xt−1; θ(n+1)) is the conditional density of the i-th regime.

For a detailed description of the estimation procedure see the original paper
of Kim (1994) or a recent article of Janczura and Weron (2012), where an
efficient algorithm for MRS models of type I is presented.
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3 Goodness-of-fit testing

In this Section we introduce a goodness-of-fit testing technique, that can be
applied to evaluate the fit of regime-switching models. It is based on the
Kolmogorov-Smirnov (K-S) goodness-of-fit test and verifies whether the null
hypothesis H0 that observations come from the distribution implied by the
model specification cannot be rejected. The procedure can be easily adapted
to other empirical distribution function (edf) type tests, like the Anderson-
Darling test.

3.1 Testing in case of an observable state process

3.1.1 Specification I

I this case the hypothesis H0 states that the sample (x1, x2, ..., xT ) is generated
from a regime-switching model with two independent regimes defined as: an
AR(1) process (first regime) and i.i.d. F 2-distributed random variables (second
regime). Provided that the values of the state process Rt are known, obser-
vations can be split into separate subsamples related to each of the regimes.
Namely, subsample i consists of all values Xt satisfying Rt = i. The regimes are
independent from each other, but the i.i.d. condition must be satisfied within
the subsamples themselves. Therefore the mean-reverting regime observations
are substituted by their respective residuals. Precisely, the following transfor-
mation is applied to each pair of consecutive AR(1) observations in regime
Rt = 1:

h(x, y, k) =
x− (1 − β)ky − α 1−(1−β)k

β

σ
√

1−(1−β)2k

1−(1−β)2

, (7)

where (k − 1) is the number of latent observations from the mean reverting
regime (or equivalently the number of observations from the second regime
that occurred between two consecutive AR(1) observations) and α, β and σ
are the model parameters, see (4). It is straightforward to see that if H0 is true,
transformation h(xt+k,1, xt,1, k) applied to consecutive observations from the
mean-reverting AR(1) regime leads to a sample (y11 , y

1
2 , ..., y

1
n1

) of independent
and N(0, 1)-distributed random variables. Note, that from now on we use the
following notation. The original observed sample is denoted by (x1, x2, ..., xT ).
The i.i.d. (or conditionally i.i.d. in Section 3.2) samples in each of the regimes
are denoted by (y11 , y

1
2 , ..., y

1
n1

) and (y21 , y
2
2 , ..., y

2
n2

), with n1 +n2 = T −1. Note,
that for the mean-reverting regime these samples are obtained by applying
transformation (7).

Further, observe that transformation h(Xt+k,1, Xt,1, k) is based on sub-
tracting the conditional mean from Xt+k,1 and standardizing it with the con-

ditional variance. Indeed, (1−β)kXt,1 +α 1−(1−β)k

β
is the conditional expected
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value of Xt+k,1 given (X1,1, X2,1, ..., Xt,1) and σ2 1−(1−β)2k

1−(1−β)2 is the respective

conditional variance.

Transformation (7) ensures that the subsample containing observations
from the mean-reverting regime is i.i.d. Since the second regime is i.i.d. by
definition, standard goodness-of-fit tests based on the empirical distribution
function (like the Kolmogorov-Smirnov or Anderson-Darling tests, see e.g.
D’Agostino and Stevens, 1986) can be applied to each of the subsamples.
Recall that the Kolmogorov-Smirnov test statistic is given by:

Dn =
√
n sup

x∈R

|Fn(x) − F (x)|, (8)

where n is the sample size, Fn is the empirical distribution function (edf) and F
is the corresponding theoretical cumulative distribution function (cdf). Hence,
having an i.i.d. sample (y1, y2, ..., yn), the test statistic can be calculated as

dn =
√
n max

1≤t≤n

∣

∣

∣

∣

∣

n
∑

k=1

1

n
I{yk≤yt} − F (yt)

∣

∣

∣

∣

∣

, (9)

where I is the indicator function.

The goodness-of-fit of the marginal distribution of the individual regimes
can be formally tested. For the mean-reverting regime, F is the standard
Gaussian cdf and (y1, y2, ..., yn1

) is the subsample of the standardized residu-
als obtained by applying transformation (7), while for the second regime, F is
the model specified cdf (i.e. F 2) and (y1, y2, ..., yn2

) is the subsample of respec-
tive observations. Observe that the ‘whole model’ goodness-of-fit can be also
verified, using the fact that for X ∼ F 2 we have that Y = (F 1)−1[F 2(X)] is F 1-
distributed. Indeed, a sample (y11 , y

1
2 , ..., y

1
n1
, y21 , y

2
2 , ..., y

2
n2

), where y1t ’s are the
standardized residuals of the mean-reverting regime, while y2t ’s are the trans-
formed variables corresponding to the second regime, i.e. y2t = (F 1)−1[F 2(xt,2)],
is i.i.d. N(0, 1)-distributed and, hence, the testing procedure is applicable.

3.1.2 Specification II

The H0 hypothesis now states that the sample (x1, x2, ..., xT ) is driven by a
regime-switching model defined by equation (6) with Rt ∈ {1, 2}. Similarly as
in the independent regimes case, the testing procedure is based on extracting
the residuals of the mean-reverting process. Indeed, observe that under the H0

hypothesis the transformation h(xt, xt−1, 1), defined in (7), with parameters
αRt

, βRt
and σRt

corresponding to the current value of the state process Rt,
yields an i.i.d. N(0, 1) distributed sample. Thus, the Kolmogorov-Smirnov test
can be applied. The test statistic dn, see (9), is calculated with the standard
Gaussian cdf and the sample (y1, y2, .., yT ) of the standardized residuals, i.e.
yt = h(xt, xt−1, 1).
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3.1.3 Critical values

Note, that the described above testing procedure is valid only if the parameters
of the hypothesized distribution are known. Unfortunately in typical applica-
tions the parameters have to be estimated beforehand. If this is the case, then
the critical values for the test must be reduced (Čižek et al., 2011). In other
words, if the value of the test statistics dn is d, then the p-value is overesti-
mated by P (dn ≥ d). Hence, if this probability is small, then the p-value will
be even smaller and the hypothesis will be rejected. However, if it is large then
we have to obtain a more accurate estimate of the p-value.

To cope with this problem, Ross (2002) recommends to use Monte Carlo
simulations. In our case the procedure reduces to the following steps. First,
the parameter vector θ̂ is estimated from the dataset and the test statistic
dn is calculated according to formula (9). Next, θ̂ is used as a parameter
vector for N simulated samples from the assumed model. For each sample
the new parameter vector θ̂i is estimated and the new test statistic din is
calculated using formula (9). Finally, the p-value is obtained as the proportion
of simulated samples with the test statistic values higher or equal to dn, i.e.
p-value = 1

N
#{i : din ≥ dn}.

3.2 Testing in case of a latent state process

3.2.1 The ewedf approach

Now, assume that the sample (x1, x2, ..., xT ) is driven by a MRS model. The
regimes are not directly observable and, hence, the standard edf approach can
be used only if an identification of the state process is performed first. Recall
that, as a result of the estimation procedure described in Section 2.2, the so
called ‘smoothed inferences’ about the state process are derived. The smoothed
inferences are the probabilities that the t-th observation comes from a certain
regime given the whole available information P (Rt = i|x1, x2, ..., xT ). Hence,
a natural choice is to relate each observation with the most probable regime
by letting Rt = i if P (Rt = i|x1, x2, ..., xT ) > 0.5. Then, the testing procedure
described in Section 3.1 is applicable. However, we have to mention, that the
hypothesis H0 now states that (x1, x2, ..., xT ) is driven by a regime-switching
model with known state process values. We call this approach ‘ewedf’, which
stands for ‘equally-weighted empirical distribution function’. It was introduced
by Janczura and Weron (2009) in the context of electricity spot price MRS
models.

3.2.2 The weighted empirical distribution function (wedf)

In the standard goodness-of-fit testing approach based on the edf each obser-
vation is taken into account with weight 1

n
(i.e. inversely proportional to the

size of the sample). However, in MRS models the state process is latent. The
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estimation procedure (the EM algorithm) only yields the probabilities that
a certain observation comes from a given regime. Moreover, in the resulting
marginal distribution of the MRS model each observation is, in fact, weighted
with the corresponding probability. Therefore, a similar approach should be
used in the testing procedure.

For this reason we introduce here the concept of the weighted empirical
distribution function (wedf):

Fn(x) =

n
∑

t=1

wtI{yt<x}
∑n

t=1 wt

, (10)

where (y1, y2, ..., yn) is a sample of observations and (w1, ..., wn) are the cor-
responding weights, such that 0 ≤ wt ≤ M , ∀t=1,...,n. It is interesting to note,
that the notion of the weighted empirical distribution function appears in
the literature in different contexts. Maiboroda (1996, 2000) applied it to the
problem of estimation and testing for homogeneity of components of mixtures
with varying coefficients. Withers and Nadarajah (2010) investigated proper-
ties of distributions of smooth functionals of Fn(x). In both approaches the
weights were assumed to fulfill the condition

∑n
t=1 wt = n. A different choice of

weights was used by Huang and Brill (2004). They proposed the level-crossing
method to find weights improving efficiency of the edf in the distribution tails.
Yet another approach employing the weighted distribution is the generalized
(weighted) bootstrap technique, see e.g. Haeusler et al. (1991), where specified
random weights are used to improve the resampling method.

However, to our best knowledge, none of the applications of wedf is related
to goodness-of-fit testing of Markov regime-switching models. Here we use the
wedf concept to deal with the case when observations cannot be unambiguously
classified to one of the regimes and, hence, a natural choice of weights of wedf
seems to be wt = P (Rt = i|x1, x2, ..., xT ) = E(I{Rt=i}|x1, x2, ..., xT ) for the
i-th regime observations.

3.2.3 The wedf approach for specification II

First, let us focus on the parameter-switching specification. The H0 hypothesis
states that the sample xT = (x1, x2, ..., xT ) is driven by the MRS model defined
by equation (6). Assume that H0 is true and the model parameters are known.
Like in the observable state process case, the test cannot be applied directly to
the observed sample. Let yit’s be the transformed variables corresponding to the
i-th regime, i.e. yit’s are obtained as yit = [xt+1 − αi − (1 − βi)xt]/σi. Observe
that if Rt = i, then yit becomes the residual of the i-th regime and, hence,
has the standard Gaussian distribution. The weighted empirical distribution
function (wedf) is then given by:

Fn(x) =
1

n

n
∑

t=1

[

P (Rt = 1|xT )I{y1

t<x} + P (Rt = 2|xT )I{y2

t<x}

]

, (11)
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where n is the size of the sample (here n = T − 1). Let ℜ be the σ-algebra
generated by the state process {Rt}t=1,2,...,T , i.e. the state process history up
to time T . Observe that the elements of the sum in (11) are conditionally
independent given ℜ. Indeed, if for a given t, Rt = i then the t-th component
of the sum becomes I{yi

t<x} and yit’s given Rt = i form an i.i.d. N(0, 1)-
distributed sample. Moreover, the following lemma ensures that the true cdf
of the residuals can be approximated by the wedf.

Lemma 1 If H0 is true, then Fn given by (11) is an unbiased, consistent
estimator of the distribution of the residuals (in this case Gaussian).

Note, that proofs of all lemmas and theorems formulated in this Section can
be found in the Appendix.

The following theorem yields a version of the K-S test applicable to parameter-
switching MRS model (6). Note, that if the state process was observable, it
would boil down to the standard K-S test (Lehmann and Romano, 2005, p.
584).

Theorem 1 Let Fn be given by (11) and F be the standard Gaussian cdf. If
H0 is true and the model parameters are known, then the statistic

Dn =
√
n sup

x∈R

|Fn(x) − F (x)| (12)

converges (weakly) to the Kolmogorov-Smirnov distribution KS as n → ∞.

If hypothesis H0 is true then, by Theorem 1, the statistic Dn asymptotically
has the Kolmogorov-Smirnov distribution. Therefore if n is large enough, the
following approximation holds

P (Dn ≥ c|H0) ≈ P (κ ≥ c), (13)

where κ ∼ KS and c is the critical value. Hence, the p-value for the sample
(y11 , y

1
2 , ..., y

1
n, y

2
1 , y

2
2 , ..., y

2
n), recall that yit = [xt+1 −αi − (1−βi)xt]/σi, can be

approximated by P (κ ≥ dn), where

dn =
√
n max

1≤t≤n
max
i=1,2

∣

∣Fn(yit) − F (yit)
∣

∣ (14)

is the test statistic. Note that, for a given value of dn, P (κ > dn) is the
standard Kolmogorov-Smirnov test p-value, so that the K-S test tables can be
easily applied in the wedf approach.

The above procedure is applicable to testing the distribution of the resid-
uals of the (whole) model. A similar approach can be used for testing the
distributions of the residuals of the individual regimes. Let the wedf for the
i-th regime be defined as:

F i
n(x) =

n
∑

t=1

P (Rt = i|xT )I{yi
t<x}

∑n
t=1 P (Rt = i|xT )

, (15)

where again yit’s are the transformed variables corresponding to the i-th regime,
i.e. yit = [xt+1−αi−(1−βi)xt]/σi. Further, denote the theoretical distribution
of the i-th regime residuals (here Gaussian) by F i.



10 Joanna Janczura, Rafa l Weron

Lemma 2 If H0 is true, then F i
n(x) given by (15) is an unbiased estimator

of F i(x). Moreover, it is consistent if ∀i,j=1,2 pij < 1.

An analogue of Theorem 1 can be derived.

Theorem 2 Let Fn be given by (15) and assume that Rt is an ergodic Markov
chain. If H0 is true and the model parameters are known, then the statistic

Di
n =

√
wn sup

x∈R

|F i
n(x) − F i(x)|, (16)

where

wn =
∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}

[

∑

{k:ik=i} I{Rk=i}

]2

∑

{k:ik=i} I
2
{Rk=i}

(17)

and I = {(i1, i2, ..., in) : ik ∈ {1, 2}, k = 1, 2, ..., n} converges (weakly) to the
Kolmogorov-Smirnov distribution KS as n → ∞.

Observe that
√
wn can be approximated by

∑n
t=1

P (Rt=i|xT )√
∑

n
t=1

P 2(Rt=i|xT )
. Hence, for a

sample of (yi1, y
i
2, ..., y

i
n) the test statistic is given by

din =

∑n
t=1 P (Rt = i|xT )

√
∑n

t=1 P
2(Rt = i|xT )

max
1≤t≤n

∣

∣F i
n(yit) − F i(yit)

∣

∣ (18)

and the standard testing procedure can be applied.

3.2.4 The wedf approach for specification I

Now, assume that the sample (x1, x2, ..., xT ) is driven by the MRS model with
independent regimes. The results of Theorems 1 and 2 can be applied, however,
slight modifications of the tested sample(s) are required. First, observe that the
values of the mean-reverting regime become latent, when the process is in the
second state. As a consequence, the calculation of the conditional mean and
variance, required for the derivation of the residuals, is not straightforward.
We have:

E(Xt,1|xt−1) = α + (1 − β)E(Xt−1,1|xt−1),

V ar(Xt,1|xt−1) = (1 − β)2V ar(Xt−1,1|xt−1) + σ2,

where xt−1 = (x1, x2, ..., xt−1) is the vector of preceding observations. There-
fore, the standardized residuals are given by the transformation:

g(Xt,1,xt−1) =
Xt,1 − α− (1 − β)E(Xt−1,1|xt−1)
√

(1 − β)2V ar(Xt−1,1|xt−1) + σ2
, (19)
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where E(Xt−1,1|xt−1) and V ar(Xt−1,1|xt−1) can be calculated using the fol-
lowing equalities:

E(Xt,1|xt) = P (Rt = 1|xt)xt +

+P (Rt 6= 1|xt) [α + (1 − β)E(xt−1,1|xt−1)] , (20)

E(X2
t,1|xt) = P (Rt = 1|xt)x

2
t +

+P (Rt 6= 1|xt)
[

α2 + 2α(1 − β)E(Xt−1,1|xt−1) +

+(1 − β)2E(X2
t−1,1|xt−1) + σ2

]

. (21)

The latter formula is a consequence of the law of iterated expectation and basic
properties of conditional expected values. Finally, the values P (Rt = 1|xt)
are calculated from the Bayes rule during the EM estimation procedure (see
e.g. Kim, 1994). Note that the transformed variables (y11 , y

1
2 , ..., y

1
T−1), where

y1t = g(xt,1,xt−1), are ℜ-independent and N(0, 1)-distributed conditionally on
ℜ.

Now, to test the fit of the mean-reverting regime, it is enough to cal-
culate din according to formula (18) with the standard Gaussian cdf and
y1t = g(xt,xt−1). Observe, that the observations from the second regime are
i.i.d. by definition, so the testing procedure is straightforward with F 2 cdf
and sample (x1, x2, ..., xT ). Moreover, the ‘whole model’ goodness-of-fit can
be also verified. Theorem 1 is directly applicable, if the distributions of the
samples corresponding to both regimes are the same F = F 1 = F 2. Ob-
serve that, even if F 1 6= F 2, the test still can be applied using the fact that
for X ∼ F 2 we have that Y = (F 1)−1[F 2(X)] is F 1-distributed. The test
statistic dn is calculated as in (14) with F 1 cdf (here Gaussian) and the
sample (y11 , y

1
2 , ..., y

1
T−1, y

2
1 , y

2
2 , ..., y

2
T ), where (y11 , y

1
2 , ..., y

1
T−1) are the trans-

formed variables of the mean-reverting regime, i.e. y1t = g(xt,1,xt−1), while
(y21 , y

2
2 , ..., y

2
T ) are the variables corresponding to the second regime, i.e. y2t =

(F 1)−1[F 2(xt)].
Note, that like as in the case of an observable state process, in the wedf

approach we face the problem of estimating values that are later used to com-
pute the test statistic. Again, this problem can be circumvented with the help
of Monte Carlo simulations. The p-values can be computed as the proportion
of simulated MRS model trajectories with the test statistic dn, see formulas
(14) and (18), higher or equal to the value of dn obtained from the dataset.

4 Simulations

In this Section we check the performance of the procedures introduced in Sec-
tion 3.2. Due to space limitations, we focus on the more challenging case of a
latent state process. To this end, we generate 10000 trajectories of each of the
two MRS models, Sim #1 and Sim #2, defined in Table 1. The first model
follows specification I, i.e. the first regime is driven by an AR(1) process, while
the second regime is described by an i.i.d. sample of log-normally distributed
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Table 1 Parameters of two MRS models analyzed in the simulation study of Section 4.
The first model (Sim #1) follows specification (I), i.e. the first regime is driven by an AR(1)
model, while the second regime is described by an i.i.d. sample of log-normally distributed
random variables. Sim #2 is simulated from the parameter-switching AR(1) model, i.e. it
follows specification (II).

Parameters Probabilities
α1 β1 σ2

1 α2 β2 σ2
2 p11 p22

Sim #1 10.0 0.8 10.0 4.0 0.5 0.9 0.2
Sim #2 1.0 0.8 1.0 3.0 0.4 0.5 0.6 0.5

random variables (Sim #1; with parameters α2 and σ2
2 , i.e. LN(α2, σ

2
2)). Re-

call, that a random variable X is log-normally distributed, LN(α2, σ
2
2), if

log(X) ∼ N(α2, σ
2
2), for X > 0. Sim #2 is simulated from the parameter-

switching AR(1) model, i.e. it follows specification II, see formula (6). The
length of each trajectory is 2000 observations, which corresponds to 5.5 years
of daily data. Note, that the regimes of MRS models are not directly observable
and, hence, the standard edf approach cannot be used.

4.1 Known model parameters

We apply the ewedf, as well as, the wedf-based goodness-of-fit test to each
simulated trajectory and then calculate the percentage of rejected hypotheses
H0 at the 5% significance level. We assume that the model parameters are
known. In order to apply the test to the ‘whole model’ in case of Sim #1
we transform the second regime values as [log(X)−α2]/σ2. As a consequence
we obtain a N(0, 1)-distributed sample. The computation of E(Xt,1|xt) in
the wedf approach requires backward recursion until the previous observation
from the mean-reverting regime is found, see (21). However, as the number
of observations is limited, the condition P (Rt = 1|xt) = 1 might not be
fulfilled at all. The calibration scheme requires some approximation or an
additional assumption. Here we assume that for each simulated trajectory the
first observation comes from the mean-reverting regime.

In the ewedf approach the tested hypothesis says that the state process is
known (and coincides with the proposed classification of the observations to
the regimes). As a consequence, once the regimes are identified, it is equivalent
to the standard edf approach. To test how it performs for a MRS model with a
latent state process we apply it to the simulated trajectories (we first identify
the regimes, then test whether the sample is generated from the assumed MRS
model).

The results reported in Table 2 indicate that only the wedf-based test yields
correct percent of rejected hypotheses. The values obtained for the ewedf-
based test are far from the expected level of 5%. The ewedf approach is more
restrictive, probably due to the less accurate identification of regimes. This
simple example clearly shows that in case of MRS models the wedf approach
is more reliable.
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Table 2 Percentage of rejected hypotheses H0 at the 5% significance level calculated from
10000 simulated trajectories of 2000 observations of the models defined in Table 1. The re-
sults of the K-S test in the ewedf, as well as, in the wedf approach are reported independently
for the two regimes (First, Second) and the whole model (Model).

ewedf wedf
Regime First Second Model First Second Model
Sim #1 0.0569 0.8688 0.1152 0.0489 0.0470 0.0410
Sim #2 0.2196 0.0794 0.1173 0.0485 0.0501 0.0413
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Fig. 1 Comparison of the weighted empirical distribution function (wedf), the equally-
weighted empirical distribution function (ewedf) and the standard empirical distribution
function (edf) calculated for a sample trajectory of a MRS model with two independent
regimes – Sim #1 (left panel) and with parameter switching specification (II) – Sim #2
(right panel), see Table 1 for parameter values. The distribution functions for the model
Sim #1 are plotted for the i.i.d. log-normal regime. The distribution functions for the model
Sim #2 are plotted for the model residuals.

Further evidence is provided in Figure 1 where we illustrate the different
types of empirical distribution functions. The wedf and ewedf functions are
compared with the true edf. Note, that the edf can be calculated only when
the simulated state process is known. Naturally, when dealing with real data,
the state process is latent and, hence, the standard edf cannot be computed.
The distribution functions are calculated separately for the log-normal regime
of a sample trajectory of the MRS model Sim #1 and for the model residuals
of a sample trajectory of the MRS model Sim #2, see Table 1 for parameter
values. Observe that, while the wedf function replicates the true edf quite
well, the ewedf approximation is not that good. This is in compliance with the
rejection percentages given in Table 2.

4.2 Unknown model parameters

The simulation results presented so far were obtained with the assumption
that model parameters are known. Unfortunately, in typical applications the
parameters have to be estimated before the testing procedure is performed.
This may result in overestimated p-values. To cope with this problem, as rec-
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Table 3 Percentage of rejected hypotheses H0 at the 5% significance level calculated from
500 simulated trajectories of 2000 observations of the models defined in Table 1 with param-
eters estimated from each sample. The results of the K-S test based on the ewedf, as well as,
the wedf approach are reported independently for the two regimes (First, Second) and the
whole model (Model). The test utilizes K-S test tables or Monte Carlo (MC) simulations
with N = 500 repetitions. Note, that the rejection rates are only approximations based on
500 trajectories, not 10000 trajectories as in Table 2.

ewedf wedf
Regime First Second Model First Second Model

Sim #1 K-S test tables 0.0200 0.5900 0.0600 0.0220 0 0.0220
MC simulation 0.0520 0.0020 0.0500 0.0520 0.0380 0.0540

Sim #2 K-S test tables 0.1340 0.0040 0.0180 0 0 0
MC simulation 0.0280 0.0240 0.0340 0.0420 0.0340 0.0540

ommended by Ross (2002), we use Monte Carlo simulations. For a sample
trajectory (of 2000 observations) simulated from model Sim #1 or Sim #2 the
procedure is as follows:

– estimate the parameter vector θ̂ and calculate the test statistic dn according
to formula (9),

– simulate N = 500 trajectories with θ̂,
– for each trajectory estimate the new parameter vector θ̂i and calculate the

new test statistic din,
– calculate p-value as the proportion of simulated trajectories with the test

statistic values higher or equal to dn, i.e. 1
N

#{i : din ≥ dn}.

In Table 3 we report the rejection percentages at the 5% significance level.
Looking at the test results based on the K-S test tables, for the ewedf approach
the rejection percentages deviate significantly from the 5% level. On the other
hand, for the wedf approach the p-values are overestimated, what results in
rejection percentages much lower than the 5% significance level. Observe that
for the model Sim #2 none of the tests were rejected. Therefore, if p-values
obtained with the wedf approach are close to the significance level, the test
may fail to reject a false H0 hypothesis. This is not the case for the wedf
approach with Monte Carlo simulations as the obtained rejection percentages
are close to the 5% significance level. This example clearly shows that the wedf
test based on the K-S test tables can only be used if it returns a p-value below
the significance level (i.e. if it rejects the H0 hypothesis) or well above the
significance level. However, if the obtained p-value is close to the significance
level, Monte Carlo simulations should be performed.

4.3 Power of the tests

In this Section we investigate the power of the proposed tests. To this end,
for a given MRS model we simulate 500 trajectories of 100, 500 or 2000 ob-
servations each. Next, for each trajectory we calibrate a MRS model with an
alternative specification of the regimes and perform goodness-of-fit tests to
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verify if the simulated trajectory can be driven by the alternative model. Fi-
nally, we calculate the percentages of the rejected hypotheses. The tests utilize
both approaches – edf and wedf – and both methods of calculating p-values –
K-S test tables and Monte Carlo simulations. We consider the following three
cases:

– AR-ARG1 vs AR-AR: The trajectories are simulated from a MRS
model defined as:

Xt = αRt
+ (1 − βRt

)Xt−1 + σRt
Xγi

t−1ǫt, Rt ∈ {1, 2},
where α1 = 1, β1 = 0.8, σ2

1 = 1, γ1 = 0, α2 = 3, β2 = 0.4, σ2
2 = 0.05,

γ2 = 1, p11 = 0.6 and p22 = 0.5. The model is denoted by AR-ARG1,
which indicates that the first regime is driven by an AR(1) process and
the second regime by a heteroskedastic autoregressive process with γ = 1
(i.e. ARG1). We test whether the simulated trajectories can be described
by the model defined in equation (6), i.e. following specification II, and
denoted here by AR-AR.

– AR-E vs AR-LN: The trajectories are simulated from a MRS model
following specification I, see (4) and (5), with an exponential distribution
in the second regime, i.e. F 2 ∼ Exp(λ). The model is denoted here by
AR-E and its parameters are given by: α = 10, β = 0.6, σ2 = 10, λ = 30,
p11 = 0.6 and p22 = 0.5. We test whether the simulated trajectories can be
driven by a model following specification I with a log-normal distribution
in the second regime (i.e. AR-LN).

– CIR-LN vs AR-G: The trajectories are simulated from a MRS model
defined as:

Xt,1 = α1 + (1 − β1)Xt−1,1 + σ1

√

Xt−1,1ǫt,

Xt,2 ∼ LN(α2, σ
2
2),

where α1 = 1, β1 = 0.8, σ2
1 = 0.5, α2 = 2, σ2

2 = 0.5, p11 = 0.6 and
p22 = 0.5, i.e. the first regime is a discrete time version of the square root
process, also known as the CIR process (Cox et al., 1985), and the second is
a log-normal random variable. Hence the name CIR-LN. We test whether
the simulated trajectories can be driven by a model following specification
I with a Gaussian distribution in the second regime.

The test results are summarized in Table 4. The values obtained for the
individual regimes are also provided, however, as the simulated and estimated
models differ, these rejection rates are highly dependent on the classification
of observations to the regimes during calibration. Therefore, in the discussion
that follows we focus only on the test results for the whole models. Comparing
the power of the Monte Carlo approach with the one using K-S test tables, we
observe that in most cases the latter method yields lower (or worse) rejection
percentages. This is in compliance with the results obtained in Section 4.2.
The only significant deviations from this pattern can be observed for the AR-
E vs AR-LN test scenario, i.e. when the alternative model is very similar to
the simulated one.



16 Joanna Janczura, Rafa l Weron

Table 4 Percentages of rejected hypotheses H0 at the 5% significance level for the al-
ternative models with parameters estimated for each of the 500 simulated trajectories of
T = 100, 500 or 2000 observations. The results of the K-S test based on the ewedf, as well
as, the wedf approach are reported independently for the two regimes (First, Second) and
the whole model (Model). The test utilizes K-S test tables or Monte Carlo (MC) simulations
with N = 500 repetitions. The whole model rejection rates for the best method, i.e. the wedf
approach with MC simulations, are emphasised in bold.

ewedf wedf
Regime First Second Model First Second Model

AR-ARG1 vs AR-AR
T=2000 K-S test tables 0.6300 1.0000 1.0000 0.0180 1.0000 0.9960

MC simulation 0.0540 1.0000 1.0000 0.3840 1.0000 1.0000

T=500 K-S test tables 0.0520 0.6520 0.4720 0.0080 0.5260 0.1080
MC simulation 0.0860 0.9080 0.8980 0.1360 0.9820 0.9180

T=100 K-S test tables 0.0100 0.0200 0.0120 0 0.0040 0.0020
MC simulation 0.0920 0.2400 0.2120 0.0860 0.3120 0.2040

AR-E vs AR-LN
T=2000 K-S test tables 0.1180 0.9980 0.9980 0.1080 0.9980 0.7700

MC simulation 0.0560 0.9760 0.7280 0.0980 0.9980 0.9720

T=500 K-S test tables 0.0684 0.9738 0.5634 0.0765 0.2052 0.0604
MC simulation 0.0825 0.1891 0.2455 0.0966 0.8873 0.2797

T=100 K-S test tables 0.0287 0.2480 0.0328 0.0287 0.0041 0.0184
MC simulation 0.0389 0.0307 0.0676 0.0697 0.1701 0.1025

CIR-LN vs AR-G
T=2000 K-S test tables 1.0000 0.9491 1.0000 1.0000 0.9633 1.0000

MC simulation 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T=500 K-S test tables 1.0000 0.1566 0.9880 0.9960 0.1908 0.9940
MC simulation 0.9980 0.7369 0.9900 1.0000 0.7771 1.0000

T=100 K-S test tables 0.1556 0.0182 0.0525 0.2747 0.0263 0.1455
MC simulation 0.3071 0.1818 0.3333 0.7394 0.2182 0.7677

Looking at the MC simulation results obtained for the largest samples of
T = 2000 observations, we can see that in almost all cases the false hypothesis
was rejected. The lowest rejection rate for the ewedf approach was 0.7280 and
for the wedf approach it was as high as 0.9720. Both were obtained for the
challenging AR-E vs AR-LN test scenario. However, if the samples are smaller,
the power of the tests apparently decreases. The sample size of T = 100 obser-
vations seems to be not enough, especially if the dynamics of the alternative
models do not differ significantly, like in the AR-E vs AR-LN scenario. This
is not the case if the definitions of both regimes are significantly different, as
for the CIR-LN vs AR-G scenario, for which the power is satisfactory even if
T = 100. Finally, comparing the ewedf and wedf approaches we can observe
that the latter yields higher on average rejection rates.

Overall we can conclude that the power of the wedf approach with MC sim-
ulations is acceptable even for moderately sized samples covering two or more
years of daily values, see the numbers in bold in Table 4. In Section 5 we will
apply this test to evaluate the goodness-of-fit of two MRS models calibrated to
deseasonalized electricity spot prices. The analyzed dataset comprises roughly
1800 daily observations.
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Fig. 2 Calibration results for the 2-regime MRS model with a mean reverting base regime
and independent log-normally distributed ‘spikes’ fitted to NEPOOL log-prices. Observa-
tions with P (Rt = 2|xT ) > 0.5, i.e. the ‘spikes’, are denoted by dots. The lower panel
displays the probability P (Rt = 2|xT ) of being in the ‘spike’ regime.
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Fig. 3 Calibration results for the 3-regime MRS model with a mean reverting base regime
and independent log-normally distributed ‘spikes’ and ‘drops’ fitted to NEPOOL log-prices.
Observations with P (Rt = 2|xT ) > 0.5 or P (Rt = 3|xT ) > 0.5, i.e. the ‘spikes’ or ‘drops’,
are denoted by dots or ’x’ in the upper panel. The lower panels display the probability
P (Rt = 2|xT ) or P (Rt = 2|xT ) of being in the ‘spike’ or ‘drop’ regime, respectively.

5 Application to electricity spot prices

Now, we are ready to apply the new goodness-of-fit technique to electricity spot
price models. We analyze the mean daily (baseload) day-ahead spot prices from
the New England Power Pool SEMASS area (NEPOOL; U.S.). The sample
totals 1827 daily observations (or 261 full weeks) and covers the 5-year period
January 2, 2006 - January 2, 2011, see Figure 2.

It is well known that electricity spot prices exhibit several characteristic
features (Eydeland and Wolyniec, 2012; Weron, 2006), which have to be taken
into account when modeling such processes. These include seasonality on the
annual, weekly and daily level, mean reversion and price spikes. To cope with
the seasonality we use the standard time series decomposition approach and
let the electricity spot price Pt be represented by a sum of two independent
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Table 5 Parameters of the MRS model with mean reverting base regime and independent
log-normally distributed spikes (and inverted log-normal drops in the 3-regime case) fitted
to NEPOOL deseasonalized log-prices.

Model Base regime Spike regime Drop regime Probabilities
α β σ2 α2 s22 α3 s23 p11 p22 p33

2-regime 0.69 0.20 0.0058 -1.23 0.18 - - 0.97 0.75 -
3-regime 0.98 0.29 0.0049 -1.38 0.21 -1.46 0.08 0.96 0.79 0.89

parts: a predictable (seasonal) component ft and a stochastic component Xt,
i.e. Pt = ft + Xt. Further, to address the mean reverting and spiky behavior
we let the log-prices, i.e. Yt = log(Xt), be driven by:

– a 2-regime MRS model with mean-reverting, see (4), base regime (Rt = 1)
and i.i.d. shifted log-normally distributed spikes (Rt = 2)

– or a 3-regime MRS model with mean-reverting, see (4), base regime (Rt =
1), i.i.d. shifted log-normally distributed spikes (Rt = 2) and i.i.d. drops
(Rt = 3) distributed according to the inverted shifted log-normal law.

Recall, that X follows the shifted log-normal law (inverted shifted log-normal
law) if log(X − q) (respectively log(q−X)) has a Gaussian distribution. Note
that q can be arbitrarily chosen, however, here for simplicity we set it to the
median of the dataset.

Following Weron (2009) the deseasonalization is conducted in three steps.
First, the long term seasonal component (LTSC) Tt is estimated from daily
spot prices Pt using a wavelet filter-smoother of order 6 (for details see Trück
et al., 2007). A single non-parametric LTSC is used here to represent the
long-term non-periodic fuel price levels, the changing climate/consumption
conditions throughout the years and strategic bidding practices. As shown by
Janczura and Weron (2010), the wavelet-estimated LTSC pretty well reflects
the ‘average’ fuel price level, understood as a combination of NG, crude oil
and coal prices.

The price series without the LTSC is obtained by subtracting the Tt ap-
proximation from Pt. Next, the weekly periodicity st is removed by subtracting
the ‘average week’ calculated as the mean of prices corresponding to each day
of the week (US national holidays are treated as the eight day of the week).
Finally, the deseasonalized prices, i.e. Xt = Pt − Tt − st, are shifted so that
the minimum of the new process Xt is the same as the minimum of Pt. The
resulting deseasonalized time series can be seen in Figure 2. The estimated
model parameters are presented in Table 5.

For both analyzed models the K-S test based on the ewedf, as well as, the
wedf approach is performed. Moreover, since the standard approach based on
the K-S test tables might produce overestimated p-values, the Monte Carlo
results for both ewedf and wedf are also provided. Again, in order to verify
the ‘whole model’ goodness-of-fit, we transform the spike and drop regime
observations so that both samples are N(0, 1)-distributed. The p-values are
reported in Table 6. For the 2-regime model the p-values obtained from the
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Table 6 p-values of the K-S test based on the ewedf and wedf approach for both models.
Values exceeding the 5% threshold are emphasized in bold.

ewedf wedf
Regime Base Spike Drop Model Base Spike Drop Model

2-regime model
K-S test tables 0.21 0.27 - 0.29 0.08 0.93 - 0.13

MC simulations 0.01 0.11 - 0.07 0.00 0.69 - 0.00
3-regime model

K-S test tables 0.56 0.25 0.98 0.69 0.38 0.71 0.92 0.33

MC simulations 0.19 0.06 0.86 0.42 0.26 0.25 0.49 0.15

K-S test tables indicate that the model cannot be rejected at the 5% signif-
icance level. However, the base regime and the model p-values are still quite
low, so the conclusions of the test should be verified with the Monte Carlo sim-
ulations. Indeed, for the Monte Carlo based test only the spike regime yields
a satisfactory fit, as the p-value is well above the 5% significance level. The
base regime, as well as, the whole model distribution can be rejected at any
reasonable level. Apparently, the base regime process cannot model the sudden
drops in the NEPOOL log-prices. However, if a third regime (modeling price
drops) is introduced, the MRS model yields a satisfactory fit. In the 3-regime
case none of the tests can be rejected at the 5% significance level.

6 Conclusions

While most of the electricity spot price models proposed in the literature are
elegant, their fit to empirical data has either been not examined thoroughly or
the signs of a bad fit ignored. As the empirical study of Section 5 has shown,
even reasonably looking and popular models should be carefully tested before
they are put to use in trading or risk management departments. The goodness-
of-fit wedf-based test introduced in Section 3.2.2 provides an efficient tool for
accepting or rejecting a given Markov regime-switching (MRS) model for a
particular data set.

However, in this paper we have not restricted ourselves to MRS models
but pursued a more general goal. Namely, we have proposed a goodness-of-
fit testing scheme for the marginal distribution of regime-switching models,
including variants with an observable and with a latent state process. For
both specifications we have described the testing procedure. The models with a
latent state process (i.e. MRS models) required the introduction of the concept
of the weighted empirical distribution function (wedf) and a generalization of
the Kolmogorov-Smirnov test to yield an efficient testing tool.

We have focused on two commonly used specifications of regime-switching
models in the energy economics literature – one with dependent autoregressive
states and a second one with independent autoregressive and i.i.d. regimes.
Nonetheless, the proposed approach can be easily applied to other specifi-
cations of regime-switching models (for instance, to 3-regime models with
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heteroscedastic base regime dynamics; see Janczura and Weron, 2010). Very
likely it can be also extended to other goodness-of-fit edf-type tests, like the
Anderson-Darling. As the latter puts more weight to the observations in the
tails of the distribution than the Kolmogorov-Smirnov test, it might be more
discriminatory and provide a better testing tool for extremely spiky data. Fu-
ture work will be devoted to this issue.
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Appendix

Proof (Lemma 1) Let

Fn(x) =
1

n

n
∑

t=1

[

P (Rt = 1|xT )I{y1

t<x} + P (Rt = 2|xT )I{y2

t<x}

]

(22)

and observe that

E[Fn(x)|ℜ] = (23)

=
1

n

n
∑

t=1

(

E[E(I{Rt=1}|xT )I{y1

t<x}|ℜ] + E[E(I{Rt=2}|xT )I{y2

t<x}|ℜ]
)

=

=
1

n

n
∑

t=1

(

I{Rt=1}E(I{y1

t<x}|{Rt = 1}) + I{Rt=2}E(I{y2

t<x}|{Rt = 2})
)

=

=
1

n

n
∑

t=1

(

I{Rt=1}F (x) + I{Rt=2}F (x)
)

= F (x),

where F (x) is the distribution of the residuals and ℜ is the σ-algebra generated by the state
process values. Similarly,

V ar[Fn(x)|ℜ] = (24)

=
1

n2

n
∑

t=1

[

E

{[

E(I{Rt=1}|xT )I{y1

t<x} + E(I{Rt=2}|xT )I{y2

t<x}

]2∣
∣

∣

∣

ℜ
}

−

−[F (x)]2
]

=

=
1

n2

n
∑

t=1

[

I{Rt=1}E[I2{y1

t<x}|{Rt = 1}] + I{Rt=2}E[I2{y2

t<x}|{Rt = 2}]

−[F (x)]2
]

=
1

n2

n
∑

t=1

[

I{Rt=1}F (x) + I{Rt=2}F (x) − [F (x)]2
]

=

=
1

n
F (x)[1 − F (x)].
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Next, from the conditional Kolmogorov inequality (for details see Prakasa Rao, 2009), for
any δ > 0 we have (a.s.):

P

(∣

∣

∣

∣

Fn(x) − E[Fn(x)|ℜ]

∣

∣

∣

∣

> δ

∣

∣

∣

∣

ℜ
)

≤ V ar[Fn(x)|ℜ]

δ2
= (25)

=
F (x)[1 − F (x)]

nδ2
. (26)

As a consequence,

P (|Fn(x) − F (x)| > δ) = E

[

P

(∣

∣

∣

∣

Fn(x) − E[Fn(x)|ℜ]

∣

∣

∣

∣

> δ

∣

∣

∣

∣

ℜ
)]

≤ (27)

≤ F (x)[1 − F (x)]

nδ2
(28)

and Fn(x) converges in probability to F (x) as n → ∞.

Proof (Theorem 1) First, note that F (x) ∈ {0, 1} implies Fn(x) = F (x) and supx∈R |Fn(x)−
F (x)| = supx∈D |Fn(x) − F (x)|, where D = R\{x : F (x) = 0 ∨ F (x) = 1}. Therefore in the
following we will limit ourselves to the case 0 < F (x) < 1.

Let

Yt =
P (Rt = 1|xT )I{Y 1

t <x} + P (Rt = 2|xT )I{Y 2

t <x}

n
,

where Y i
t are the transformed variables of the i-th regime, i.e. Y i

t = [xt+1−αi−(1−βi)xt]/σi.
Observe that, given Rt = i, Yt = 1

n
I{Y i

t <x} and Y i
t becomes the residual of the i-th

regime. Therefore, Y1, Y2, ..., YT are ℜ-independent, where ℜ is the σ-algebra generated by
the state process {Rt}t=1,2,...,T , and have the same conditional distribution. Hence, from
the conditional version of the Central Limit Theorem (for details see Grzenda and Zieba,
2008) we have:

∑n
t=1 Yt − nE[Yt|ℜ]
√
n
√

V ar(Yt|ℜ)

d→ N(0, 1). (29)

Next, note that E(Yt|ℜ) = 1
n
F (x), see equation (23), and V ar(Yt|ℜ) = 1

n2
F (x)[1 − F (x)],

see equation (24). Hence, (29) yields:

Fn(x) − F (x)
1√
n

√

F (x)[1 − F (x)]

d→ N(0, 1). (30)

The latter is equivalent to
√
n[Fn(x) − F (x)]

d→ WB
F (x), (31)

where WB
y is a Brownian bridge, i.e. WB

y ∼ N(0, y(1 − y)), see e.g. Lehmann and Romano
(2005), p. 585. Let y = F (x) and observe that I{yi

t<x} = I{yi
t<F−1(y)} = I{F (yi

t)<y}.

Moreover, if yit are F -distributed, then F (yit) are driven by the uniform distribution on
[0, 1]. Formula (31) ensures that Zn(y) =

√
n[Fn(F−1(y)) − y] converges pointwise to a

Brownian bridge. In order to prove the convergence of Zn(y) in D([0, 1]), i.e. in the space
of right continuous functions that have left-hand limits, it is enough to show: (i) the weak
convergence of the finite dimensional distributions of Zn and that (ii)

E [|Zn(y) − Zn(y1)|γ |Zn(y2) − Zn(y)|γ ] ≤ [g(y2) − g(y1)]2α (32)

for y1 < y < y2 and n ≥ 1, where γ ≥ 0, α > 1/2 and g is a non-decreasing, continuous
function on [0,1] (see Theorem 15.6 in Billingsley, 1968).
(i) Let 0 < y1 < y2 < 1. We will show that (Zn(y1), Zn(y2) − Zn(y1)) converges weakly
to (WB

y1
,WB

y2
− WB

y1
). First, observe that (Zn(y1), Zn(y2) − Zn(y1)) conditional on ℜ is

multinomially distributed with variances (y1(1−y1), (y2−y1)[1− (y2−y1)]) and covariance
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−y1(y2 − y1). This can be calculated using the same arguments as in the proof of Lemma
1. Hence, by the central limit theorem for multinomial trials, as n → ∞, for any s ∈ R

2 we
have

ϕℜ
(Zn(y1),Zn(y2)−Zn(y1))

(s) → ϕ(WB
y1

,WB
y2

−WB
y1

)(s) (33)

where ϕZ is the characteristic function of Z and ϕℜ
Z is the conditional (on ℜ) characteristic

function of Z. Finally, by the dominated convergence theorem, (Zn(y1), Zn(y2) − Zn(y2))
converges weakly to (Wy1 ,Wy2 −Wy1 ). The convergence of finite dimensional distributions
for any 0 < y1 < y2 < ... < ym < 1 follows with the same arguments.
(ii) In order to prove that condition (32) is fulfilled, observe that, given {Rt}t=1,2,...,T , the
wedf Fn becomes the standard edf and, hence, Zn(y) is a standard empirical process. Thus,
we have (for a proof see Billingsley, 1968)

E [|Zn(y) − Zn(y1)|γ |Zn(y2) − Zn(y)|γ | ℜ] ≤ [g(y2) − g(y1)]2α , (34)

what obviously implies (32).
Finally, by (i) and (ii) Zn(y) converges to WB(y) in D([0, 1]) and by the continuous mapping
theorem we obtain that

√
n sup

x∈R

|Fn(x) − F (x)| = sup
y∈[0,1]

|Zn(y)| d→ KS, (35)

where KS is the Kolmogorov-Smirnov distribution, i.e. a distribution of sup0≤y≤1 |WB
y |.

Proof (Lemma 2) Let I = {(i1, i2, ..., in) : ik ∈ {1, 2}} and

F i
n(x) =

n
∑

t=1

P (Rt = i|xT )I{yi
t<x}

∑n
t=1 P (Rt = i|xT )

. (36)

We have

E[F i
n(x)|ℜ] = (37)

=
n
∑

t=1

(

E

[

E(I{Rt=i}|xT )I{yi
t<x}

∑n
t=1 E(I{Rt=i}|xT )

∣

∣

∣

∣

ℜ
])

=

=
n
∑

t=1

∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}
I{Rt=i}

∑

{k:ik=i} I{Rk=i}
E(I{yi

t<x}|{Rt = i}) =

= F (x)
∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}

∑

{k:ik=i} I{Rk=i}
∑

{k:ik=i} I{Rk=i}
=

= F i(x)
∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in} = F i(x),

where ℜ is the σ-algebra generated by the state process values.
Similarly,

V ar[F i
n(x)|ℜ] = (38)

=
n
∑

t=1







∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}
I
2
{Rt=i}

[

∑

{k:ik=i} I{Rk=i}
]2

F i(x) −

−[F i(x)]2







=
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=
n
∑

t=1







∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}
I
2
{Rt=i}

[

∑

{k:ik=i} I{Rk=i}
]2

F i(x) −

−
∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}
I
2
{Rt=i}

[

∑

{k:ik=i} I{Rk=i}
]2

[F i(x)]2







=

= F i(x)[1 − F i(x)]
∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}

∑

{k:ik=i} I
2
{Rk=i}

[

∑

{k:ik=i} I{Rk=i}
]2

.

Using the conditional Kolmogorov inequality we obtain (a.s.):

P

(∣

∣

∣

∣

F i
n(x) − E[F i

n(x)|ℜ]

∣

∣

∣

∣

> δ

∣

∣

∣

∣

ℜ
)

≤ (39)

≤ F i(x)[1 − F i(x)]

δ2

∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}

∑

{k:ik=i} I
2
{Rk=i}

[

∑

{k:ik=i} I{Rk=i}
]2

.

Now, taking the expected value and using the fact that E[F i
n(x)|ℜ] = F i(x) we have

P (|F i
n(x) − F i(x)| > δ) ≤ (40)

≤ F i(x)[1 − F i(x)]

δ2
E







∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}

∑

{k:ik=i} I
2
{Rk=i}

[

∑

{k:ik=i} I{Rk=i}
]2






≤

≤ F i(x)[1 − F i(x)]

δ2

[

max
i,j=1,2

(pij)

]n [(
n
0

)

1

n
+

(

n− 1
1

)

1

n− 1
+ . . . +

(

n
n− 1

)

1

]

≤

≤ F i(x)[1 − F i(x)]

δ2
qnn2.

for q = [maxi,j=1,2(pij)]n. If q < 1, then Fn(x) converges in probability to F (x) for n → ∞.

Proof (Theorem 2) Let

Y j
t =

P (Rt = j|xT )I{yj
t<x}

∑n
t=1 P (Rt = j|xT )

.

Now, observe that the conditional characteristic function of ζ =
F j
n(x)−E[F j

n(x)|ℜ]
√

V ar[F
j
n(x)|ℜ]

is given

by:

ϕℜ
ζ (s) = E






exp






is

∑n
t=1 Yt − E(

∑n
t=1 Yt|ℜ)

√

V ar(F j
n(x)|ℜ)







∣

∣

∣

∣

ℜ






=

= E

[

n
∏

t=1

exp

(

is
Yt − E(Yt|ℜ)
√

V ar(Fn(x)|ℜ)

)

∣

∣

∣

∣

ℜ
]

, (41)

where ℜ is the σ-algebra generated by the state process values.
To focus attention, assume that there were m observations from regime j, i.e.

∑n
t=1 I{Rt=j} =

m and for notational convenience set Rt = j ∀t∈{t1,t2,...,tm}. Consequently, V ar(F j
n(x)|ℜ) =

mV ar(Ytl |ℜ), l = 1, 2, ...,m. Hence, taking a time series expansion of the exponent we obtain

ϕℜ
ζ (s) = (42)

=

tm
∏

t=t1

E

(

1 + is
Yt − E(Yt|ℜ)
√

mV ar(Yt|ℜ)
− s2

[Yt − E(Yt|ℜ)]2

2mV ar(Yt|ℜ)
+ o

[

s2

mV ar(Yt|ℜ)

] ∣

∣

∣

∣

ℜ
)

=

=

{

1 − s2

2m
+ E

(

o

[

s2

mV ar(Yt|ℜ)

] ∣

∣

∣

∣

ℜ
)}m

.
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Since for an ergodic Markov chain
∑n

t=1 I{Rt=j} → ∞ a.s. as n → ∞ and for a fixed s,

limm→∞ E

(

o
[

s2

mV ar(Yt|ℜ)

]

∣

∣

∣

∣

ℜ
)

= 0 a.s., we obtain that

ϕℜ
ζ (s) → e−

s2

2 a.s. with n → ∞. (43)

Moreover, from (37) and (38) we have

F j
n(x) − E[F j

n(x)|ℜ]
√

V ar[F j
n(x)|ℜ]

= wn
F j
n(x) − F j(x)

F j(x)[1 − F j(x)]
, (44)

where

wn =
∑

{i1,i2,...,in}∈I

I{R1=i1,R2=i2,...,Rn=in}

[

∑

{k:ik=i} I{Rk=i}
]2

∑

{k:ik=i} I
2
{Rk=i}

.

Finally, from (43) and (44) we have

wn[Fn(x) − F (x)]
d→ N(0, F (x)[1 − F (x)]) (45)

and the proof is completed with the same arguments as in the proof of Theorem 1.
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