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ESSENTIAL STABILITY FOR LARGE GENERALIZED GAMES

SOFÍA CORREA AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. We address the essential stability of Cournot-Nash equilibria for generalized games

with a continuum of players, where only a finite number of them are atomic. Given any set of

generalized games continuously parameterized by a complete metric space, we analyze the robust-

ness of equilibria to perturbations on parameters.
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1. Introduction

In this study we focus on stability properties of Cournot-Nash equilibria for large generalized

games. We analyze how the set of equilibrium allocations changes when some characteristics of the

generalized game are perturbed. We allow for any kind of perturbation, provided that it can be

defined through a continuous parameterization over a complete metric space of parameters.

The concept of essential stability has its origins in the mathematical analysis literature, where

was introduced as a natural property for fixed points of functions and correspondences. In a seminal

paper, Fort (1950) introduces the concept of essential fixed point of a continuous function: a fixed

point is essential if it can be approximated by fixed points of functions closed to the original. In

addition, a continuous function is essential if it has only essential fixed points. Considering the

set of continuous functions from a compact metric space to itself, Fort (1950) ensures that the

set of essential functions is dense. He also proves that continuous functions that have only one

fixed point are essential. These concepts have natural extensions to multivalued mappings and

analogous properties hold, as shown by Jia-He (1962). However, not all mappings are essential

and, therefore, it is natural to analyze the stability of subsets of fixed points. Thus, Kinoshita
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2 S. CORREA AND J.P. TORRES-MARTÍNEZ

(1952) introduces the concept of essential component of the set of fixed points of a function: a

maximal connected set that is stable to perturbations on the characteristics of the function. He

proves that any continuous mapping has at least one essential component. Jia-He (1963) and Yu

and Yang (2004) extend these results to multivalued mappings. They prove that compact-valued

upper hemicontinuous correspondences have at least one essential component, although fixed points

of these correspondences may not be essential. These results are complemented by Yu, Yang, and

Xiang (2005) to analyze not only the existence of essential components, but also how they change

when mappings are perturbed.

This literature motivates the study of stability of equilibria in games. Indeed, since in many non-

cooperative games the set of Nash equilibria coincides with the set of fixed points of a correspondence,

techniques described above allow to analyze stability of solutions in games when payoffs and action

sets are perturbed. In this direction, the essential stability of Nash equilibria for games with finitely

many players is studied by Wu and Jia-He (1962), Yu (1999), Yu, Yang, and Xiang (2005), Zhou,

Yu and Xiang (2007), Yu (2009), and Carbonell-Nicolau (2010).

More precisely, Wu and Jia-He (1962) address the stability of the set of Nash equilibria for finite

games. They ensure that any game can be approximated arbitrarily by a game whose equilibria

are all essential. Yu (1999) formalizes and extends these results for convex games with a finite

number of players, analyzing perturbations in payoffs, in sets of actions, and in correspondences of

admissible strategies. Jia-He (1963), Yu, Yang, and Xiang (2005) and Yu (2009) supplement these

results to analyze the existence of essential components of the set of Nash equilibria for games and

generalized games. Zhou, Yu and Xiang (2007) study the notion of essential stability for mixed-

strategy equilibria in games with compact sets of pure strategies and finitely many players. They

also compare the concept of essential stability with strategic stability, a notion studied by Kohlberg

and Mertens (1986), Hillas (1990), and Al-Najjar (1995). Recently, allowing for discontinuities on

objective functions, Carbonell-Nicolau (2010) analyzes the essential stability of Nash equilibria for

convex games with finitely many players, .

We contribute to this growing literature by address the essential stability of Cournot-Nash equi-

libria in large generalized games. We consider generalized games with two types of players: (i)

a continuum set of non-atomic players, characterized by continuous objective functions, compact

sets of actions, and continuous correspondences of admissible strategies; and (ii) a finite number

of atomic players, with quasi-concave and continuous objective functions, compact and convex sets

of actions, and continuous and convex-valued correspondences of admissible strategies. We assume

that the profile of actions of non-atomic players is codified, and induces messages that may affect

decisions of any player. Thus, while the actions of an atomic player may directly affect the deci-

sions of other players, the decisions of non-atomic players only affect others participants through

messages. These messages are obtained by the integration of codes that reveals information about

the action of non-atomic players.

The previous results of essential stability for games take advantage of the fact that the set of

(pure strategy) equilibria is compact and non-empty. Actually, with these properties, to obtain

some of the main results of essential stability it is sufficient to ensure that the correspondence that
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associates games with equilibrium allocations has closed graph. In our case, under mild conditions

on the characteristics of the generalized game, a Cournot-Nash equilibrium always exists, as was

proved by Schmeidler (1973)—for the case of large games—and by Balder (1999, 2002)—for the case

of generalized games. However, the set of pure strategy equilibria is not necessarily compact (see

footnote 4). Therefore, the traditional analysis of essential stability can not be directly implemented

in our context.

Nevertheless, associated to any Cournot-Nash equilibrium of a large generalized game there is a

vector of messages (generated by the actions of non-atomic players) and a vector of optimal actions

of atomic players. On the one hand, these vectors of messages-actions constitute all the relevant

information that any player takes into account to make optimal decisions. On the other hand, when

there is a compact set of non-atomic players with compact sets of actions, the set of equilibrium

messages-actions coincides with the fixed points of a compact-graph correspondence and, therefore,

it is a compact set too.1 Therefore, we will analyze the stability of messages-actions to perturbations

on the characteristics of the generalized game.

Allowing perturbations on objective functions, sets of actions, and correspondences of admissible

strategies, we prove that there is a dense set of generalized games for which any Cournot-Nash

equilibrium is essentially stable (Theorem 1). Also, unicity of equilibrium messages and actions

for atomic players is a sufficient condition for stability. We also analyze the stability of subsets

of equilibrium messages and actions. We obtain results analogous to those ensured for convex

games with finitely many players: for any generalized game there are essential connected subsets of

Cournot-Nash equilibria (Theorem 2).

In the main contribution of our paper, we extend these results of stability to allow specific

perturbations, that we capture through parameterizations of the set of generalized games. We

assume that the set of parameters constitutes a complete metric space, and that the mapping

which associates parameters with generalized games is continuous. The stability results previously

described still holds (Theorem 3) and, also, we prove that essential sets varies continuously (Theorem

4). As particular cases, we obtain stability results for large games and convex (generalized) games

with finitely many players, extending results of the literature to allow for a great variety of admissible

perturbations.

To obtain most of our results about essential stability, we prove that the correspondence that

associates generalized games with sets of equilibrium messages-actions, referred as Cournot-Nash

correspondence, is closed. We use the fact that the set of non-atomic players has finite measure

and their actions are transformed into finite-dimensional codes (which are integrated to obtain

messages). Indeed, under these conditions, we can ensure the closed graph property of the Cournot-

Nash correspondence applying the multidimensional Fatou’s Lemma (see Hildenbrand (1974, page

52), Theorems 1 and 2).

The rest of the paper is organized as follows: In Section 2 we describe the space of large generalized

games, and we introduce the Cournot-Nash correspondence. In Section 3 we state stability results for

1This property was proved by Riascos and Torres-Mart́ınez (2012), which extend to generalized games the proof

of equilibrium existence in large games due to Rath (1992).
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generalized games, when perturbations on objective functions, sets of strategies, and correspondences

of admissible strategies are allowed. In Section 4 we extend these results to perturbations induced

by continuous parameterizations over complete metric spaces, and we also analyze the stability of

essential sets and components.

2. The space G(T1, T2, (K̂, (K̂t)t∈T2
, H)) of generalized games

In this section we introduce large generalized games, as those studied by Balder (1999, 2002)

and Riascos and Torres-Mart́ınez (2012). Through our model we fix some characteristics of the

generalized game, which are summarized by a vector (T1, T2, (K̂, (K̂t)t∈T2
, H)). The set T1 is a non-

empty and compact metric space of players. Also, for some σ-algebra B of subsets of T1 there is a

measure µ such that, (T1, B, µ) is a finite atomless measure space. T2 is a non-empty and finite set of

atomic players, K̂ is a non-empty and compact metric space and, for any t ∈ T2, K̂t is a non-empty,

convex and compact metric space. Finally, H : T1 × K̂ → R
m is a B-measurable function, which is

also continuous with respect to the product topology induced by the metrics of T1 and K̂.

In a game G = G((Kt,Γt, ut)t∈T1∪T2
) among players in T1 ∪ T2, each t ∈ T1 has associated a

closed and non-empty action space Kt ⊂ K̂, while each t ∈ T2 has a closed, convex and non-empty

action space Kt ⊂ K̂t. A profile of actions for players in T1 is given by a function f : T1 → K̂ such

that f(t) ∈ Kt, for any t ∈ T1. Any vector a = (at; t ∈ T2) ∈
∏

t∈T2

Kt constitutes a profile of actions

for players in T2. For each i ∈ {1, 2}, let F i((Kt)t∈Ti
) be the space of profiles of actions for agents

in Ti. In addition, for any t ∈ T2, let F2
−t((Kj)j∈T2\{t}) be the set of vectors a−t ∈ Πj∈T2\{t}Kj .

Each participant considers aggregated information about the actions taken by players in T1. Thus,

if non-atomic players choose a profile of actions f ∈ F1((Kt)t∈T1
), then the relevant characteristics

of this actions are coded by the function H. Also, each player only take into account, for strategic

purposes, aggregated information about these available characteristics through a message m(f) :=
∫
T1

H(t, f(t))dµ. For this reason, we concentrate our attention only on those action profiles for which

messages are well defined. That is, we only consider actions profiles f ∈ F1((Kt)t∈T1
) such that

H(·, f(·)) is a measurable function from T1 to R
m.2

Therefore, M((Kt)t∈T1
) =

{
∫
T1

H(t, f(t))dµ : f ∈ F1((Kt)t∈T1
) ∧ H(·, f(·)) is measurable

}
is

the set of messages associated with action profiles of non-atomic players. To ensure that M((Kt)t∈T1
)

is non-empty, we assume that there is at least one measurable profile of actions.3

Let M̂ = M((K̂)t∈T1
), F̂2

−t = F2((K̂s)s∈T2\{t}), and F̂ i = F i((K̂t)t∈Ti
), where i ∈ {1, 2}. Mes-

sages and profiles of actions may restrict players admissible strategies. Indeed, the set of strategies

that are available for a player t ∈ T1 is determined by a continuous correspondence Γt : M̂×F̂2
։ Kt

with non-empty and compact values. Analogously, the set of strategies that a player t ∈ T2 can

2That is, for any Borelian set E ⊂ Rm, the set {t ∈ T1 : H(t, f(t)) ∈ E} belongs to B.
3Indeed, given a measurable profile of actions f , the function t → H(t, f(t)) is measurable. Since H is continuous

and {T1, bK} are compact, it follows that t → H(t, f(t)) is bounded. Thus, as T1 has finite measure, we conclude

that the message
R

T1

H(t, f(t))dµ is well defined. Note that, when
T

t∈T1
Kt is non-empty, F1((Kt)t∈T1

) always has

measurable elements.
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choose is determined by a continuous correspondence Γt : M̂ × F̂2
−t ։ Kt, which has non-empty,

compact and convex values.

Given a metric space S, let U(S) be the set of continuous functions u : S → R endowed with the

sup norm topology. We assume that each player t ∈ T1 has a objective function ut ∈ U(K̂×M̂×F̂2),

while each atomic player t ∈ T2 has a objective function ut ∈ U(M̂×F̂2) which is quasi-concave in its

own strategy at (for convenience of notations, we refer to this subset of U(M̂ ×F̂2) as Ut(M̂ ×F̂2)).

Finally, we require the mapping U : T1 → U(K̂ × M̂ × F̂2) defined by U(t) = ut to be measurable.

Definition 1. A Cournot-Nash equilibrium of G((Kt,Γt, ut)t∈T1∪T2
) is given by action profiles

(f∗, a∗) ∈ F1((Kt)t∈T1
) ×F2((Kt)t∈T2

) such that,

ut(f
∗(t), m∗, a∗) ≥ ut(f(t), m∗, a∗), ∀t ∈ T1, ∀f(t) ∈ Γt(m

∗, a∗),

ut(m
∗, a∗) ≥ ut(m

∗, at, a
∗
−t), ∀t ∈ T2, ∀at ∈ Γt(m

∗, a∗
−t),

where the message m∗ :=
∫

T1

H(t, f∗(t))dµ.

Balder (1999, 2002) (see also Riascos and Torres-Mart́ınez (2012)) ensure that, for any generalized

game G((Kt,Γt, ut)t∈T1∪T2
) that satisfies the assumptions described above, the set of Cournot-Nash

equilibria , denoted by CN(G), is non-empty.

2.1. The Cournot-Nash correspondence. We want to analyze the stability of Cournot-Nash

equilibria of a generalized game G((Kt,Γt, ut)t∈T1∪T2
) when parameters (Kt,Γt, ut)t∈T1∪T2

change.

To attempt this objective, we will introduce the Cournot-Nash correspondence, which associates

the parameters that define the generalized game G with the set of messages and actions (m∗, a∗) ∈

M̂ × F̂2 such that, for some f∗ ∈ F̂1, we have m∗ = m(f∗) and (f∗, a∗) ∈ CN(G).

Since action profiles are coded using the function H, there may exist several Cournot-Nash equi-

libria that induce a same message. Despite this, to analyze stability of equilibria we concentrate in

messages and actions of atomic players, since the set of Cournot-Nash equilibria is not necessarily

compact,4 a required property to analyze essential stability. Notice that, given any Cournot-Nash

equilibrium (f∗, a∗) ∈ CN(G), the pair (m(f∗), a∗) contains all the information that players require

to take their decisions.

Given a metric space S, let A(S) be the collection of compact and non-empty subset of S and

Ac(S) ⊂ A(S) the sub-collection that considers only convex sets. Denote by dH the Hausdorff

4For instance, consider a large electoral game with a continuum of non-atomic players, T1 = [0, 1], which vote

for a party in {a, b}. Let xt be the action of player t ∈ T1, and assume that his objective function, ut, only takes

into account the benefits that he receives for any party {vt(a), vt(b)} weighted by the support that each party has

in the population, i.e. ut ≡ vt(a)µ({s ∈ T1 : xs = a}) + vt(b)(1 − µ({s ∈ T1 : xs = a})), where µ denotes the

Lebesgue measure in [0, 1]. That is, his own action does not affect the utility level of a player t ∈ T1 and, therefore,

any measurable profile of actions x : [0, 1] → {a, b} constitutes a Nash equilibrium of the game. As a consequence,

the set of Nash equilibria is not compact. However, if we consider that each player receives as a message the support

that party a has in the population, m = µ({s ∈ T1 : xs = a}), then the set of equilibrium messages is equal to [0, 1],

which is a compact set.



6 S. CORREA AND J.P. TORRES-MARTÍNEZ

metric induced by the metric of S. If S is compact (resp. compact and convex), then (A(S), dH)

(resp. (Ac(S), dH)) is a complete metric space.5 Let Ξ(S) be the collection of correspondences

Γ : M̂ × F̂2
։ S that are continuous, non-empty and compact valued. In addition, denote by

Ξc(S) the subset of Ξ(S) composed by convex valued correspondences. Consider the multivalued

mapping BS : A(S) ։ Ξ(S) (resp. BS,c : Ac(S) ։ Ξc(S)) that associates to any S1 ∈ A(S) (resp.

S1 ∈ Ac(S)) the set of correspondences Γ ∈ Ξ(S) (resp. Γ ∈ Ξc(S)) whose values are in S1.

With the notations above, we can recast a generalized game G((Kt,Γt, ut)t∈T1∪T2
) by a vector

(U,F, (ηt)t∈T2
), where U : T1 → U(K̂ × M̂ × F̂2) is a measurable function, F : T1 → Graph(B bK

) is

a function and, for any t ∈ T2, ηt := (ut, Kt,Γt) ∈ Ut(M̂ × F̂2) × Graph(B bKt,c
).6

Let G = G(T1, T2, (K̂, (K̂t)t∈T2
, H)) be the collection of generalized games.

Given two generalized games G1 = (U1, F 1, (η1
t )t∈T2

) and G2 = (U2, F 2, (η2
t )t∈T2

), we define the

distance between G1 and G2 by

ρ(G1,G2) = max
t∈T1

max
(x,m,a)∈ bK×cM× bF2

|u1
t (x, m, a) − u2

t (x, m, a)|

+ max
t∈T1

max
(m,a)∈cM× bF2

dH(Γ1
t (m, a),Γ2

t (m, a)) + max
t∈T1

dH(K1
t , K2

t )

+ max
t∈T2

max
(m,x,a−t)∈cM× bKt× bF2

−t

|u1
t (m, x, a−t) − u2

t (m, x, a−t)|

+ max
t∈T2

max
(m,a−t)∈cM× bF2

−t

dH(Γ1
t (m, a−t),Γ

2
t (m, a−t)) + max

t∈T2

dH(K1
t , K2

t ),

where, given i ∈ {1, 2}, (U i(t), F i(t))t∈T1
≡ (ui

t, (Γ
i
t, K

i
t))t∈T1

and (ηi
t)t∈T2

≡ (ui
t, K

i
t ,Γ

i
t)t∈T2

. Since

(T1, (K̂, (K̂t)t∈T2
)) are compact sets, T2 is finite and M̂ is a compact set (see Riascos and Torres-

Mart́ınez (2012)), it follows that (G, ρ) is a complete metric space.7

Given a game G = (U,F, (ηt)t∈T2
) ∈ G, consider the correspondence ΦG : M̂ × F̂2

։ M̂ × F̂2

defined by ΦG(m, a) =
(
ΩG(m, a), (BG

t (m, a−t))t∈T2

)
where

ΩG(m, a) =

∫

T1

H(t, BG
t (m, a))dµ;

BG
t (m, a) = argmaxxt∈Γt(m,a)ut(xt, m, a), ∀t ∈ T1;

BG
t (m, a−t) = argmaxxt∈Γt(m,a−t)ut(xt, m, a−t), ∀t ∈ T2.

It follows from Riascos and Torres-Mart́ınez (2012, Theorem 1) that, (f∗, a∗) is a Cournot-Nash

equilibrium of G if and only if (m∗, a∗) ∈ M̂×F̂2 is a fixed point of ΦG , where m∗ =
∫

T1

H(t, f∗(t))dµ.

5Since S is a compact metric spaces, it is complete. It follows from Ok (2005, page 227) that A(S) is a com-

plete metric space under the Hausdorff metric induced by the metric of S. When the space is restricted to Ac(S),

(Ac(S), dH) remains a complete metric space, since the Hausdorff limit of a sequence of compact and convex sets is

still a compact and convex set.
6That is, any t ∈ T1 is characterized by a vector (U(t), F (t)) = (ut, Kt, Γt) ∈ U( bK × cM × bF2) × Graph(B bK

).
7Since T1 is a measurable space and U( bK × cM × bF2) is a metric space, if a sequence of games

˘

(Un, F n, (ηn
t
)t∈T2

)
¯

n∈N
∈ G converges to a game (U, F , (ηt)t∈T2

), it follows from the definition of ρ that {Un}n∈N

uniformly converges to U and, therefore, U is measurable (see Aliprantis and Border (1999, page 139)).
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We denote by FP(ΦG) the set of fixed points of ΦG .

Definition 2. The Cournot-Nash correspondence of G(T1, T2, (K̂, (K̂t)t∈T2
, H)) is given by the

multivalued function Λ : G ։ M̂ × F̂2 that associates to any G ∈ G the set FP(ΦG).

Since for any generalized game G ∈ G the correspondence ΦG is closed, it follows that Λ(G) is a

compact subset of M̂ × F̂2.

3. Essential stability of equilibria in G(T1, T2, (K̂, (K̂t)t∈T2
, H))

We analyze as the set of Cournot-Nash equilibria of a generalized game changes when the param-

eters that define the game are modified. Our analysis is based in the concept of essential stability ,

that was introduced in the literature by Fort (1950), for single valued mappings, and by Jia-He

(1962), for the case of correspondences.

Definition 3. An equilibrium (f∗, a∗) ∈ CN(G) is essential if for any open set O ⊂ M̂ × F̂2

such that (m(f∗), a∗) ∈ O, there exists ǫ > 0 such that Λ(G′) ∩ O 6= ∅, for any G′ ∈ G that satisfies

ρ(G,G′) < ǫ. A generalized game G ∈ G is essential if all its Cournot-Nash equilibrium are essential.

Hence, G is an essential generalized game if, and only if, for any (m∗, a∗) ∈ Λ(G) and for each

δ > 0, there exists ǫ > 0 such that, if ρ(G′,G) < ǫ, then d((m∗, a∗),Λ(G′)) < δ.8 In other words,

G is essential if, and only if, messages and atomic players actions associated to a Cournot-Nash

equilibrium of G can be approximated by equilibrium messages and actions of generalized games

that are closed to G. Unfortunately, as the following example illustrate, not all generalized games

are essential.

Example. Consider the generalized game G characterized by T1 = [0, 1], T2 = {α}, K̂ = {0, 1},

K̂α = [0, 1], for any t ∈ T1 ∪ T2, (Kt,Γt) ≡ (K̂t, K̂t), and H(·, x) ≡ x. In addition, uα(m, x) =

−‖m − x‖2 and, for any t ∈ T1, (ut(0, m, aα), ut(1, m, aα)) = (0.5, 0.5).

Then, there is a continuum of Cournot-Nash equilibria and Λ(G) = {(λ, λ) ∈ R
2 : λ ∈ [0, 1]}.

On the other hand, given ǫ > 0, let Gǫ be the generalized game obtaining from G by only change

the objective functions of non-atomic players to (uǫ
t(0, m, aα), uǫ

t(1, m, aα)) = (0.5(1 + ǫ), 0.5), for

any t ∈ T1. It follows that Gǫ has only one Cournot-Nash equilibrium and Λ(Gǫ) = {(0, 0)}. Since

ρ(G,Gǫ) < ǫ, we conclude that G is not essential. ✷

The following results shows that, despite the example above, essentiality of equilibrium is a

generic property on G(T1, T2, (K̂, (K̂t)t∈T2
, H)).

8Given a metric space (S, σ), fix a ∈ S and E ⊆ S non-empty and compact. Then, we define d(a, E) = min
x∈E

σ(a, x).
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Theorem 1. Given a generalized game G ∈ G, for any ǫ > 0 there exists an essential generalized

game G′ ∈ G such that ρ(G,G′) < ǫ. Moreover, if ΦG has only one fixed point, then G is essential.

Proof. The proof of the theorem is a direct consequence of the following steps.

Step 1. The correspondence Λ : G ։ M̂ × F̂2 is upper hemicontinuous with compact values.

Since M̂×F̂2 is compact and non-empty, we only need to prove that Graph(Λ) is closed in G×M̂×

F̂2, where Graph(Λ) =
{

(G, (m, a)) ∈ G × M̂ × F̂2 : (m, a) ∈ FP(ΦG)
}

. Let {(Gn, (mn, an))}n∈N ⊂

Graph(Λ) such that (Gn, (mn, an)) → (G, (m, a)) ∈ G × M̂ × F̂2, where Gn = (Un, Fn, (ηn
t )t∈T2

)

and (Un(t), Fn(t)) ≡ (un
t , (Γn

t , Kn
t )). To prove that Graph(Λ) is closed is sufficient to ensure that

(m, a) ∈ FP(ΦG).

Since (mn, an) ∈ ΦGn
(mn, an), for any t ∈ T1 there exists fn(t) ∈ Γn

t (mn, an) such that,

mn =

∫

T1

H(t, fn(t))dµ, un
t (fn(t), mn, an) = max

x∈Γn
t (mn,an)

un
t (x, mn, an),

and the function gn(·) = H(·, fn(·)) is measurable.

Claim A. For any t ∈ T1 there exists f(t) ∈ K̂ such that m =
∫

T1

H(t, f(t))dµ.

Proof. Since H is continuous, T1 is compact and, for each t ∈ T1, fn(t) ∈ K̂, it follows that {gn}n∈N is

a uniformly integrable sequence (see Hildenbrand (1974, page 52)). In addition, {
∫

T1

gn(t)dµ}n∈N ⊂

R
m converges to m as n goes to infinity. Therefore, as a consequence of Fatou’s Lemma in m-

dimension (see Hildenbrand (1974, page 69)), there is an integrable function g : T1 → R
m such

that, 9

(1) lim
n→∞

∫
T1

gn(t)dµ =
∫

T1

g(t)dµ

(2) There exists T̃1 ⊆ T1 such that, for any t ∈ T̃1, g(t) ∈ LS(gn(t)), where LS(gn(t)) is the set

of cluster points of {gn(t)}n∈N and T1 \ T̃1 has zero measure.

Fix t ∈ T̃1. Then there is a subsequence {nk}k∈N ⊆ N such that gnk
(t) → g(t). Since

{fnk
(t)}k∈N ⊆ K̂, taking a subsequence again if it is necessary, we can assure that there exists

f(t) ∈ K̂ such that both fnk
(t) → f(t) and g(t) = lim

k→∞
H(t, fnk

(t)) = H(t, f(t)).

Let f : T1 → K̂ such that

f(t) ∈

{
{f(t)} if t ∈ T̃1,

argmaxx∈Γt(m,a) ut(x,m, a) if t /∈ T̃1,

where G = (U,F , (ηt)t∈T2
) and (U(t), F (t)) ≡ (ut, (Γt,Kt)). Thus, m = lim

n→∞

∫
T1

H(t, fn(t))dµ =
∫

T1

H(t, f(t))dµ. ✷

Claim B. For any t ∈ T1, f(t) ∈ Γt(m, a).

Proof. The results follows by definition for any t ∈ T1 \ T̃1. Thus, fix t ∈ T̃1 and let {fnk
(t)}k∈N the

sequence that was obtained in the previous claim and that converges to f(t). We known that, for

9Although functions {gn}n∈N can take negative values, they are uniformly bounded from below (since H is

continuous and { bK, T1} are compact sets). Thus, as T1 has finite Lebesgue measure, we can apply the Fatou’s

Lemma.



ESSENTIAL STABILITY FOR LARGE GENERALIZED GAMES 9

any k ∈ N, fnk
(t) ∈ Γnk

t (mnk
, ank

) and, therefore,

d(f(t),Γt(m, a)) ≤ d̂(f(t), fnk
(t))+d(fnk

(t),Γnk

t (mnk
, ank

))+dH(Γnk

t (mnk
, ank

),Γt(mnk
, ank

))

+dH(Γt(mnk
, ank

),Γt(m, a))

≤ d̂(f(t), fnk
(t)) + ρ(Gnk

,G) + dH(Γt(mnk
, ank

),Γt(m, a)),

where d̂ denotes the metric of the compact metric space K̂. Since Γt is continuous, by taking the

limit as k goes to infinity, we obtain the result. ✷

Claim C. For any t ∈ T1, f(t) ∈ argmaxx∈Γt(m,a) ut(x,m, a).

Proof. As in the previous claim, the case t ∈ T1 \ T̃1 follows from definition. With the same notation

used in the previous claim, we have that, for any t ∈ T̃1,

dH(Γnk

t (mnk
, ank

),Γt(m, a)) ≤ ρ(Gnk
,G) + dH(Γt(mnk

, ank
),Γt(m, a)).

Then Γnk

t (mnk
, ank

) −→k Γt(m, a). Since unk

t converges uniformly to ut, it follows from Yu (1999,

Lemma 2.5) and Aubin (1982, Theorem 3, page 70) that,

unk

t (fnk
(t), mnk

, ank
) = max

x∈Γ
nk
t (mnk

,ank
)
unk

t (x, mnk
, ank

) −→k max
x∈Γt(m,a)

ut(x,m, a)

On the other hand,

|unk

t (fnk
(t), mnk

, ank
) − ut(f(t),m, a)| ≤ ρ(Gnk

,G) + |ut(fnk
(t), mnk

, ank
) − ut(f(t),m, a)|.

Taking the limit as k goes to infinity, we conclude that unk

t (fnk
(t), mnk

, ank
) → ut(f(t),m, a).

Therefore, as a consequence of Claim B, we conclude that f(t) ∈ argmaxx∈Γt(m,a)ut(x,m, a). ✷

Claim D. For any t ∈ T2, at ∈ Γt(m, a−t).

Proof. We known that, for any (t, n) ∈ T2 × N, an,t ∈ Γn
t (mn, an,−t) and, therefore,

d(at,Γt(m, a−t)) ≤ d̂t(at, an,t) + d(an,t,Γ
n
t (mn, an,−t)) + dH(Γn

t (mn, an,−t),Γt(mn, an,−t))

+dH(Γt(mn, an,−t),Γt(m, a−t))

≤ d̂t(at, an,t) + ρ(Gn,G) + dH(Γt(mn, an,−t),Γt(m, a−t)),

where d̂t denotes the metric of the compact metric space K̂t. Taking the limit as n goes to infinity,

we obtain the result. ✷

Claim E. For any t ∈ T2, at ∈ argmaxx∈Γt(m,a−t)
ut(m, x, a−t).

Proof. Following the same arguments of Claim C, we have that

dH(Γn
t (mn, an,−t),Γt(m, a−t)) ≤ ρ(Gn,G) + dH(Γt(mn, an,−t),Γt(m, a−t))

and, therefore, Γn
t (mn, an,−t) converges to Γt(m, a−t) as n goes to infinity. Hence, Yu (1999, Lemma

2.5) ensures that,

un
t (mn, an) = max

x∈Γn
t (mn,an,−t)

un
t (mn, x, an,−t) −→ max

x∈Γt(m,a−t)
ut(m, x, a−t).

Since lim
n→+∞

un
t (mn, an) = ut(m, a),10 it follows that at ∈ argmaxx∈Γt(m,a−t)

ut(m, x, a−t). ✷

10It is a direct consequence of the fact that, for any n ∈ N, we have

|un

t (mn, an) − ut(m, a)| ≤ ρ(Gn,G) + |ut(mn, an) − ut(m, a)|.
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It follows from Claims A, C and E that (m, a) is a fixed point of ΦG . Thus, we ensure that Λ is

an upper hemicontinuous correspondence with compact values.

Step 2. There is a dense Gδ set Q ⊂ G such that Λ is lower hemicontinuous at every point of Q.

As (G, ρ) is a complete metric space, G is a Baire space. Since the correspondence Λ is compact-

valued and upper hemicontinuous with Λ(G) 6= ∅ for all G ∈ G, it follows from Lemma 6 in Carbonell-

Nicolau (2010) (see also Fort (1949) and Jia-He (1962)) that there exists a dense Gδ subset Q of G

in which Λ is lower hemicontinuous.

Step 3. If G is a point lower hemicontinuity of Λ, then G is essential.

Fix a game G1 that is a point of lower hemicontinuity of Λ. We know that for any open set

O ⊂ M̂ × F̂2 such that Λ(G1) ⊂ O we have Λ(G1) ∩ O 6= ∅ and, therefore, the set Λ−(O) :=

{G ∈ G : Λ(G) ∩ O 6= ∅} contains a neighborhood of G1. Then, there exists ǫ > 0 such that, for

any G ∈ G such that ρ(G,G1) < ǫ, we have that Λ(G)∩O 6= ∅. That is, all Cournot-Nash equilibrium

of G1 are essential.

It follows from Steps 2 and 3 that any generalized game in the dense set Q is essential. Therefore,

we can found essential generalized games arbitrarily near of any G ∈ G.

Finally, suppose that for a game G ∈ G, the correspondence ΦG has only one fixed point. Then, Λ

is upper hemicontinuous and single valued at G and, therefore, it is continuous at this point. Using

Step 3, we conclude that G is an essential generalized game. Q.E.D.

We continue with the characterization of essential stability proving that, even unessential gener-

alized games may have subsets of Cournot-Nash equilibria that are stable. To do this, we introduce

concepts of stability for subsets of equilibrium points. Indeed, we adapt to our context the concepts

of essential set and essential component that were introduced, in the context of stability of fixed

point of multivalued mappings, by Jia-He (1963) and Yu and Yang (2004), These concepts were

also addressed by Zhou, Yu, and Xiang (2007), to study stability of mixed strategy equilibria in

non-convex games with finitely many players.

Definition 4. Given G ∈ G, e(G) ⊆ Λ(G) is an essential set if it is non-empty, compact, and for

any open set O ⊂ M̂ × F̂2 with e(G) ⊂ O there is ǫ > 0 such that, for any G′ ∈ G with ρ(G,G′) < ǫ,

Λ(G′) ∩ O 6= ∅. An essential subset of Λ(G) is minimal if it is a minimal element ordered by set

inclusion.

Definition 5. Given G ∈ G, a set Λα is a component of Λ(G) if there exists (m∗, a∗) ∈ Λ(G) such

that, Λα is equal to the union of all connected subsets of Λ(G) that contains (m∗, a∗).

Since Λ is upper hemicontinuous, for any generalized game G ∈ G the set Λ(G) is essential. Also,

given A ⊂ B ⊆ Λ(G), if A is essential and B is compact, then B is essential too. Also, as for any
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G ∈ G the set Λ(G) is compact, it follows that any component of Λ(G) is non-empty, connected and

compact.

Notice that, if (f∗, a∗) ∈ CN(G) is essential, then {(m(f∗), a∗)} is an essential subset of Λ(G).

Thus, it follows from Theorem 1 that there exists a dense collection of generalized games G ∈ G

for which Λ(G) has at least one minimal essential subset that is connected. Furthermore, for any

(f∗, a∗) ∈ CN(G) the component associated to {(m(f∗), a∗)}11 is compact and, therefore, it is an

essential subset of Λ(G). In other words, for a generic set of generalized games, there exists at least

one essential component of the set of equilibrium messages and atomic players actions.

The following result ensures that these properties hold in fact for any generalized game.

Theorem 2. For each generalized game G ∈ G, there exists a minimal essential set of Λ(G). In

addition, every minimal essential set of Λ(G) is connected. Therefore, for each G ∈ G, there exists

at least one essential component of Λ(G).

Proof. We will adapt to our context the arguments used by Yu and Yang (2004, Theorem 3.3)

and Zhou, Yu and Xiang (2007, Theorem 2).

Fix G ∈ G. Let S be the family of essential sets of Λ(G) ordered by set inclusion. Since Λ(G) ∈ S,

S 6= ∅. As any element of S is compact, any totally ordered subset of S has a lower bounded

element. By Zorn’s Lemma, S has a minimal element, and by definition of S, its minimal element

is an essential set of Λ(G).

Fix a minimal essential set of Λ(G), denoted by m(G). We want to prove that m(G) is connected.

By contradiction, if m(G) is not connected, then there are closed and non-empty subsets of Λ(G),

A1 and A2 such that m(G) = A1 ∪A2. Also, there are open sets V1, V2 such that A1 ⊂ V1, A2 ⊂ V2

and V1 ∩ V2 = ∅. Since m(G) is minimal, neither A1 nor A2 are essentials.

Fix i ∈ {1, 2}. It follows that there exists an open set Oi such that Ai ⊂ Oi and for all ǫ > 0

there exists Gi ∈ G such that ρ(G,Gi) < ǫ and Λ(Gi) ∩ Oi = ∅. Since Ai is compact, there exists an

open set Ui such that Ai ⊂ Ui ⊂ U i ⊂ Vi ∩ Oi. Therefore, the essential set m(G) ⊂ U1 ∪ U2.

Thus, there exists ν > 0 such that for every G′ ∈ G with ρ(G,G′) < ν, we have Λ(G′)∩(U1∪U2) 6=

∅. On the other hand, given i ∈ {1, 2}, as Ui ⊂ Oi, there exists G′
i ∈ G such that ρ(G,G′

i) < ν
3 and

Λ(G′
i) ∩ Ui = ∅.

Define a correspondence G : M̂ × F̂2
։ G such that

G(m, a) = λ(m, a)G′
1 + (1 − λ(m, a))G′

2, ∀(m, a) ∈ M̂ × F̂2,

where λ : M̂ × F̂2 → [0, 1] is the continuous function given by,

λ(m, a) =
d((m, a), U2)

d((m, a), U1) + d((m, a), U2)
.

11That is, the set obtained by the union of all connected subsets of Λ(G) that contains {(m(f∗), a∗)}.
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Notice that, (m, a) ∈ Ui if and only if G(m, a) = G′
i. In addition, for any (m, a) ∈ M̂ × F̂2, we have

that,

ρ(G(m, a),G′
1) = ρ (λ(m, a)G′

1 + (1 − λ(m, a))G′
2, λ(m, a)G′

1 + (1 − λ(m, a))G′
1)

≤ ρ(G′
2,G

′
1) ≤ ρ(G′

2,G) + ρ(G,G′
1) <

2ν

3
,

which implies that,

ρ(G, G(m, a)) ≤ ρ(G,G′
1) + ρ(G′

1, G(m, a)) < ν,

and, therefore, for each (m, a) ∈ M̂ × F̂2, Λ(G(m, a)) ∩ (U1 ∪ U2) 6= ∅.

Claim. There exists (m, a) ∈ U1 such that, (m, a) ∈ Λ(G(m, a)).

Proof. Let Ã1 ⊂ U1 be a compact, convex and non-empty set. Define Θ : Ã1 × Ã1 ։ Ã1 × Ã1 by

Θ((m1, a1), (m2, a2)) =
(
ΦG(m1,a1)(m2, a2) ∩ Ã1

)
×{(m1, a1)}. If we ensure that the correspondence

Θ1 : Ã1 × Ã1 ։ Ã1 given by Θ1((m1, a1), (m2, a2)) = ΦG(m1,a1)(m2, a2)∩ Ã1 has closed graph, then

the correspondence Θ is upper hemicontinous and has non-empty, compact and convex values.

Thus, applying the Kakutani’s Fixed Point Theorem we can find (m, a) ∈ Ã1 ⊂ U1 such that,

(m, a) ∈ Λ(G(m, a)).

Thus, let {(zn
1 , zn

2 , (mn, an))}n∈N ⊂ Graph(Θ1) a sequence that converges to (z̃1, z̃2, (m̃, ã)) ∈

Ã1 × Ã1 × Ã1. We want to prove that (m̃, ã) ∈ Θ1(z̃1, z̃2).

Fix t ∈ T2 and let γt : (M̂ × F̂2
−t) × Ã1 ։ K̂t the correspondence characterized by

γt((m, a−t), z) = argmaxx∈Ψ((m,a−t),z)vt(x, (m, a−t), z),

where

Ψ((m, a−t), z) = λ(z)Γ1
t (m, a−t) + (1 − λ(z))Γ2

t (m, a−t);

vt(x, (m, a−t), z) = λ(z)u1
t (m, x, a−t) + (1 − λ(z))u2

t (m, x, a−t),

and, for each i ∈ {1, 2}, G′
i = G′

i((K
i
t ,Γ

i
t, u

i
t)t∈T1∪T2

). Since G′
1,G

′
2 ∈ G and λ is continuous,

it follows that γt is upper hemicountinuous with non-empty and compact values. Therefore, the

correspondence γ : (M̂×F̂2)×Ã1 ։ Πt∈T2
K̂t given by γ((m, a), z2) = Πt∈T2

γt((m, a−t), z) is upper

hemicontinuous with compact and non-empty values. In particular, γ has closed graph. Therefore,

as for any n ∈ N, (zn
1 , zn

2 , an) ∈ Graph(γ), it follows that ã ∈ γ(z̃1, z̃2).

On the other hand, for each n ∈ N there exists fn : T1 → K̂ such that, mn =
∫

T1

H(t, fn(t))dµ

and, for any t ∈ T1, fn(t) ∈ ρt(z
n
1 , zn

2 ) := argmaxx∈Ψ(zn
1

,zn
2
)vt(x, zn

1 , zn
2 ), where we use analogous

notations to those described above. Thus, as in the case of γt, the correspondences (ρt; t ∈ T1) have

closed graph.

Since mn → m̃, analogous arguments to those made in Claim A ensure that, applying the

multidimensional Fatou’s Lemma (see Hildenbrand (1974, page 69)), there exists a zero-measure set

Ṫ1 ⊂ T1 and a function f : T1 → K̂ such that,

(i) For any t ∈ Ṫ1, f(t) ∈ ρt(z̃1, z̃2);

(ii) For any t ∈ T1 \ Ṫ1, there existence a subsequence of {fn(t)}n∈N that converges to f(t);

(iii) m̃ =
∫

T1

H(t, f(t))dµ.
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As for any t ∈ T1 \ Ṫ1, the correspondence ρt is closed, it follows from item (ii) above that

f(t) ∈ ρt(z̃1, z̃2). By items (i) and (iii), jointly with the fact that ã ∈ γ(z̃1, z̃2), we have that

(m̃, ã) ∈ Θ1(z̃1, z̃2). This concludes the proof. ✷

The claim above ensures that G(m, a) = G′
1 and, therefore, Λ(G(m, a)) ∩ U1 = Λ(G′

1) ∩ U1 = ∅.

A contradiction with the fact that (m, a) ∈ Λ(G(m, a)). Thus, the set m(G) is connected.

We proved that there exists at least one minimal essential connected subset m(G) of Λ(G). Fix

(m̂, â) ∈ m(G) and consider the set Λ( bm,ba)(G), defined as the union of all connected subsets of Λ(G)

that contains (m̂, â). By definition, Λ( bm,ba)(G) is a component of Λ(G). Since Λ( bm,ba)(G) is compact

and m(G) ⊂ Λ( bm,ba)(G), the component Λ( bm,ba)(G) is also an essential subset of Λ(G). Q.E.D.

4. Essential stability for parametrized subsets of G(T1, T2, (K̂, (K̂t)t∈T2
, H))

We know that G(T1, T2, (K̂, (K̂t)t∈T2
, H)) has a dense subset of essential generalized games.

Moreover, for any generalized game there exist a minimal essential set and an essential component.

To obtain these results, was assumed that all of the characteristic of the generalized game, namely

(Kt,Γt, ut)t∈T1∪T2
, can be perturbed. However, it is interesting to discuss stability of Cournot-Nash

equilibria when only some of the characteristics that define the game are allowed to be perturbed.

Definition 6. A parametrization T = ((X, τ), κ) of the space of generalized games G is character-

ized by a complete metric space (X, τ) and a continuous function κ : X → G.

Definition 7. Given a parametrization T = ((X, τ), κ) of the space G, fix X ∈ X.

(i) A Cournot-Nash equilibrium (f∗, a∗) ∈ CN(κ(X )) is T -essential if for any open set O ⊂ M̂ ×F̂2

such that (m(f∗), a∗) ∈ O, there exists ǫ > 0 such that Λ(κ(X ′))∩O 6= ∅, for any X ′ ∈ X that satisfies

τ(X ,X ′) < ǫ. The generalized game κ(X ) ∈ G is essential with respect to the parametrization T if

all its Cournot-Nash equilibrium are T -essential.

(ii) A subset E ⊆ Λ(κ(X )) is T -essential if it is non-empty, compact, and for each open set

O ⊂ M̂ × F̂2 there exists ǫ > 0 such that, for any X ′ ∈ X with τ(X ,X ′) < ǫ, Λ(κ(X ′)) ∩ O 6= ∅. A

T -essential subset of Λ(κ(X )) is minimal if it is a minimal element ordered by set inclusion.

Note that, given a parametrization T = ((X, τ), κ) with X ⊆ G, for any X ∈ X, the generalized

game κ(X ) is T -essential if and only if X is essential in the sense of Definition 3. Moreover, if

a generalized game G ∈ G is essential, then G is essential with respect to any parametrization

T = ((X, τ), κ) such that, for some X ∈ X, G = κ(X ).

The following result describes stability properties of Cournot-Nash equilibria when we allow for

changes only in those variables that characterize a parametrization T of G.

Theorem 3. Given a parametrization T = ((X, τ), κ) of the space G, for any X ∈ X we have that,

(i) For each ǫ > 0, there exists X ′ ∈ X such that, κ(X ′) is T -essential and τ(X ,X ′) < ǫ.

(ii) Given X ∈ X, if Λ(κ(X )) is a singleton, then κ(X ) is T -essential.
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(iii) There exists a minimal T -essential subset of Λ(κ(X )) and any of such sets is connected.

(iv) Given a T -essential and connected set m(X ) ⊆ Λ(κ(X )), there exists a T -essential compo-

nent of Λ(κ(X )) that contains m(X ).

Proof. Since κ : X → G is continuous, (X, τ) is a complete metric space, and Λ is a closed

correspondence that has non-empty and compact values. Thus, it follows that the correspondence

Λκ : X ։ M̂ given by Λκ = Λ ◦ κ has closed graph with non-empty and compact values. Therefore,

items (i) and (ii) follow from identical arguments to those made after Step 1 of Theorem 1.

Furthermore, items (iii) and (iv) follow from the same arguments of the proof of Theorem 2,

changing (G, ρ,Λ) by (X, τ, Λκ). Q.E.D.

From Theorem 3 we can obtain stability results of Cournot-Nash equilibria when some but not

all the characteristics that define a generalized game are allowed to change. For instance, when only

the objective functions or the sets of admissible strategies can be perturbed.

More formally, fix a game G = (U, F, (ηt)t∈T2
) ∈ G. Given i ∈ {1, 2}, let Tu

i , T s
i , T a

i ⊆ Ti be,

respectively, the subset of players in Ti for which we allow perturbations in objective functions,

perturbations in strategy sets, and perturbations in correspondences of admissible strategies.

Let GG((Tu
i , T s

i , T a
i )i∈{1,2}) ⊆ G be the set of generalized games G̃ =

(
Ũ , F̃ , (η̃t)t∈T2

)
such that:

(1) For any t ∈ T1 \ Tu
1 , Ũ(t) = U(t).

(2) Given t ∈ T1, F̃ (t) = (K̃t, Γ̃t) and

(2.1) for any t ∈ T1 \ T s
1 , K̃t = Kt,

(2.2) for any t ∈ T1 \ T a
1 , Γ̃t = Γt.

(3) Given t ∈ T2, ηt = (ũt, K̃t, Γ̃t) and

(3.1) for any t ∈ T2 \ Tu
2 , ũt = ut;

(3.2) for any t ∈ T2 \ T s
2 , K̃t = Kt;

(3.3) for any t ∈ T2 \ T a
2 , Γ̃t = Γt.

It follows that (GG((Tu
i , T s

i , T a
i )i∈{1,2}), ρ) is a complete metric space. Also, since the inclusion

I : GG →֒ G is continuous, ((GG , ρ), I) is a parametrization of G. Hence, results of essential stability

when only some perturbations are allowed follows from Theorem 3.

As a particular case of our analysis, we can obtain stability results for non-atomic games. Indeed, a

non-atomic game is a generalized game where (i) there is only non-atomic players; and (ii) admissible

strategies are independent of the actions chosen by the other players. Therefore, we can identify

a non-atomic game with a generalized game where there is only one atomic player, whose actions

have no effect on the decisions of the other players. This identification induce a parametrization of

the space of generalized games and, therefore, the properties of essential stability can be obtained

as a consequence of Theorem 3.12

12In particular, the existence of equilibria in non-atomic games is a consequence of the existence of equilibria in

large generalized games. It is not surprising, since the results of equilibrium existence of Balder (1999, 2002) are a

generalization of the results of Schmeidler (1973) for large games.
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Analogously, if we fix a generalized game where actions chosen by non-atomic players have no ef-

fect on other agents decisions, then the equilibrium actions associated to atomic players are Cournot-

Nash equilibria of a convex generalized game with finitely many players. That is, stability properties

of equilibria in convex generalized games with a finite number of players can be obtained as a par-

ticular cases of our approach. Thus, we ensure that the properties about essential stability studied

by Yu (1999), Yu (2009) and Yu, Yang and Xiang (2005) hold for more sophisticated types of ad-

missible perturbations.

To complete our analysis, we state a result about stability of essential sets and components,

which characterize how soft the components and minimal essential sets move when we perturb a

generalized game. For convenience of notations, given ǫ > 0 and A ∈ M̂ × F̂2, let B[ǫ, A] ={
(m, a) ∈ M̂ × F̂2 : ∃ (m′, a′) ∈ A, σ̂((m, a), (m′, a′)) ≤ ǫ

}
, where σ̂ is the metric associated to the

product topology of R
m ×

∏
t∈T2

K̂t.

The following properties are a direct consequence of Theorem 3 jointly with the results of Yu,

Yang and Xiang (2005, Theorems 4.1 and 4.2).13

Theorem 4. Fix a parametrization T = ((X, τ), κ) of G(T1, T2, (K̂, (K̂t)t∈T2
, H)) and let X ∈ X.

(i) If m(X ) is a minimal T -essential set of Λ(κ(X )), then for any ǫ > 0 there exists δ > 0 such that,

for any X ′ ∈ X with τ(X ,X ′) < δ, there is a minimal essential set m(X ′) of Λ(κ(X ′)) for which

m(X ′) ⊂ B[ǫ, m(X )].

(ii) Suppose that A ⊆ Λ(κ(X )) is an essential component and there is π > 0 such that B[π, A] ∩

B[π,Λ(κ(X )) \ A] = ∅. Then, for any ǫ > 0 there is δ > 0 such that, for any X ′ ∈ X with

τ(X ,X ′) < δ, there exists an essential component A′ ⊆ Λ(κ(X ′)) such that A′ ⊂ B[ǫ, A].

Note that, when Λ(κ(X )) has a finite number of components, there always exists π > 0 such

that, B[π, A] ∩ B[π,Λ(κ(X )) \ A] = ∅ for any component A ⊆ Λ(κ(X )). Thus, in this particular

case, Theorem 4(ii) constitutes a generic result of stability for essential components.

5. Concluding remarks

In this paper we analyzed the essential stability of Cournot-Nash equilibria in large generalized

games with non-atomic players. Departing from the ideas of Rath (1992) and Riascos and Torres-

Mart́ınez (2012), that reduce the proof of equilibrium existence in non-atomic (generalized) games

to find fixed points of correspondences, we use the stability theory of fixed points developed by Fort

(1950) and Jia-He (1962) to address the essential stability of equilibria in non-atomic games.

13In the context of essential stability of components for some non-linear problems—which include convex (gener-

alized) games with a finite number of players—Yu, Yang and Xiang (2005, page e2417) impose a technical condition,

named condition (c), to ensure that the set of solutions of the non-linear problem has a minimal essential sets and

at least one essential component. In Theorem 3, we proved that in our context these two properties hold for any

parametrization.
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We guaranteed that essential stability is a generic property in the space of generalized games.

Also, even unessential generalized games have essential components of the set of equilibria, which

ensures that we always have local stability in a connected subset of Cournot-Nash equilibria. Also,

these connected subsets of essential Cournot-Nash equilibria are locally stable too.

Our results are compatible with general types of perturbations on the characteristics of generalized

games. Indeed, stability properties still hold when (i) admissible perturbation can be captured by a

continuous parametrization of the set of generalized games; and (ii) the set of parameters constitutes

a complete metric space. This generality about the type of admissible perturbations allow us to

obtain, as byproducts of our analysis, extensions of the results of essential stability for non-atomic

games and convex games with finitely many players.
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