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Abstract

Within New Keynesian economics, the optimality of a monetary policy that aims at zero in�ation

is surprisingly robust. Full price stability is optimal despite the ine¢ciency of the nonstochastic steady

state and the existence of a positively sloped long-run Phillips-curve trade-o¤. Even under in�ation

persistence due to backward-looking price indexation by price setters, zero in�ation remains optimal.

We show how backward-looking rule-of-thumb behaviour by price setters results in optimal positive

long-run in�ation. Comparing theoretical explanations for structural in�ation persistence, the features

that seem capable of delivering an endogenously optimal positive in�ation target are costly disin�ation,

long-run Phillips-curve trade-o¤, and steady-state distortions.
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It follows that the chances that a shock would push the nominal interest rate to zero are

negligible. This result poses the challenge for future researchers of �nding a theoretical ex-

planation for the optimality of positive in�ation targets. Schmitt-Grohé and Uribe (2005, p.

52)

1 Introduction

There is much debate among both economists and central bankers about the appropriate in�ation target

for monetary policy. This paper contributes to the debate by analytically deriving the optimal, under

commitment, long-run in�ation target when there is structural in�ation persistence due to backward-

looking rule-of-thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la

Steinsson (2003).

The problem of what constitutes optimal in�ation in the long-run is not trivial as monetary policy

cannot simultaneously eliminate steady-state distortions and distortions resulting from staggered price-

setting1. Of course, discretionary conduct of monetary policy would result in the well-known in�ation

bias stressed by Kydland and Prescott (1977) and Barro and Gordon (1983).

The combination of ine¢cient nonstochastic steady state, from which stems the central bank�s desire

to stabilise output around a level that is higher than the ine¢cient natural level of output (Friedman,

1968), and long-run Phillips-curve trade-o¤ makes positive in�ation forever in principles desirable as it

would result in positive output gap forever.

This paper owes a lot to the landmark contribution by Woodford (2003) as it builds upon the basic

neo-Wicksellian model. Furthermore, we employ many of the techniques used in that work such as the

utility-based framework for the evaluation of monetary policy and the concept of optimality from a timeless

perspective (Woodford, 1999).

This paper makes two distinct contributions to the literature on structural in�ation persistence and

optimal monetary policy.

First, we show how extending an otherwise basic New Keynesian model to the case of in�ation persis-

tence due to backward-looking rule-of-thumb behaviour by price setters breaks the surprising robustness

of zero long-run in�ation target, namely backward-looking rule-of-thumb behaviour by price setters results

in optimal positive long-run in�ation.

1Long-run and steady-state are used interchangeably in this paper.
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Second, comparing theoretical explanations for structural in�ation persistence, which share the as-

sumption of backward-looking behaviour, suggests that the features that seem capable of delivering an

endogenously optimal positive in�ation target are costly disin�ation, long-run Phillips-curve trade-o¤,

and steady-state distortions.

It is often argued that the New Keynesian Phillips Curve (Roberts, 1995) de�es belief as it cannot

explain in�ation persistence: once the factors bringing about high in�ation have passed, in�ation can

return immediately to target without incurring any loss in output. Since Fuhrer and Moore (1995) the

literature has been concerned with providing theoretical explanations for structural in�ation persistence.

A widely used explanation relies on the assumption that a subset of price setters behave in a backward-

looking manner2. Fuhrer and Moore (1995) appeal to a relative contracting model where nominal wages

are set so to match the relative wages of other workers. Christiano et al. (2005) and Smets and Wouters

(2003) put forward a model with backward-looking price indexation where �rms are continually indexing

prices to past in�ation between any two pricing decisions. Galì and Gertler (1999) and Steinsson (2003)

propose a model with rule-of-thumb behaviour where some price setters abide to a simple backward-

looking rule-of-thumb when resetting their prices.

Comparing these theoretical explanations for structural in�ation persistence, the features that seem

capable of delivering an endogenously optimal positive long-run in�ation target are costly disin�ation,

long-run Phillips-curve trade-o¤, and steady-state distortions. Indeed, under backward-looking rule-of-

thumb behaviour by price setters, optimal steady-state in�ation is zero in the absence of backward-looking

rule-of-thumb behaviour, in the absence of long-run Phillips-curve trade-o¤, and in the absence of steady-

state distortions.

The importance of costly disin�ation is established by comparing the optimal plan �rst-order condition

for in�ation implied by backward-looking rule-of-thumb behaviour with the one that obtains in the basic

neo-Wicksellian model with backward-looking price indexation. The relevance of a long-run Phillips-curve

trade-o¤ is established by comparing the hybrid Phillips curve that obtains in Fuhrer and Moore�s relative

contracting model vis-a-vis the one reported in Walsh (2003).

The remainder of the paper is organised in three sections. Section 2 presents the theoretical economy.

Section 3 studies the long-run in�ation target under the optimal commitment policy. Section 4 provides

concluding remarks.

2A second explanation hinges on in�ation expectations not being formed rationally. See Woodford (2007) and the refer-
ences therein.
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2 The Model

The New Keynesian model laid out here is the basic neo-Wicksellian model in Woodford (2003). It shares

the basic neo-Wicksellian model �s notation3, assumptions, and general formalism. It integrates it with the

hybrid Phillips curve and the central bank�s objective that obtain under backward-looking rule-of-thumb

behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la Steinsson (2003)4.

2.1 Households and market structure

There is a continuum of households of size one. The representative household seeks to maximize a

discounted sum of utility of the form

E0

1X

t=0

�tUt � E0

1X

t=0

�t

2
4u (Ct; �t)�

1Z

0

v(ht(i); �t)di

3
5 (1)

where 0 < � � 1 is the discount factor, Ct is an aggregate of the household�s consumption of each of the

individual goods that are supplied (indexed by i over the unit interval), �t is a vector of exogenous real

shocks (i.e. exogenous shocks to household�s impatience to consume and to the household�s willingness to

supply labour), and ht(i) is the supply of type i labour.

Following Dixit and Stiglitz (1977), the consumption aggregate is de�ned as

Ct =

2
4

1Z

0

ct(i)
(��1)=�di

3
5
�=(��1)

(2)

where ct(i) is the consumption of good i and � > 1 is the constant elasticity of substitution between

goods. For any given realisation of �t, the period utility function, u (Ct; �t), is assumed to be concave and

strictly increasing in Ct whereas the period disutility of supplying labour of type i, v(ht(i); �t), is assumed

to be convex and increasing in ht(i). Furthermore, we assume speci�c labour markets, namely type i

labour is only used in the production of good i , and that the representative household simultaneously

supplies all types of labour.

3This is precisely true for all variables and structural parameters but two. First, we denote with ! the degree of backward-
looking rule-of-thumb behaviour by price setters rather than the elasticity of real marginal cost with respect to own output,
which we denote with $. Second, to avoid confusion with the Lagrangian multiplier associated with the period t hybrid
Phillips Curve, 't, we denote with % the parameter vector that indexes aspects of policy that determine steady-state values
of in�ation and output gap, � and x.

4The hybrid Phillips curve and the central bank�s objective in the case of backward-looking rule-of-thumb behaviour a là
Steinsson (2003) correct the ones reported in Steinsson (2003). The hybrid Phillips curve and the central bank�s objective in
the case of backward-looking rule-of-thumb behaviour a là Galì and Gertler (1999) coincide (up to x�) with the ones reported
in Amato and Laubach (2003). A literally step-by-step derivation is available upon request.
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We assume full �nancial markets, such that, through risk sharing, households face the same budget

constraint, which is given by

1Z

0

pt(i)ct(i)di+ Et [Qt;t+1Bt+1] � Bt +

1Z

0

wt(i)ht(i)di+

1Z

0

�t(i)di� Tt (3)

where pt(i) is the price of good i , Bt is the nominal value of �nancial wealth brought into the period,

Qt;t+1 is the stochastic discount factor for one period ahead payo¤, Tt is net nominal tax collection by the

Government, wt(i) is the nominal wage for labour of type i , and �t(i) is the nominal pro�ts from sales

of good i. The budget constraint states that, in any period, �nancial wealth carried into the subsequent

period plus consumption cannot be worth more than the value of �nancial wealth brought into the period

plus after-tax non�nancial income earned during the period. Note that we assume that every household

owns an equal share of all the �rms operating in the economy. The assumption of complete �nancial

markets implies that the assumed �rms� ownership and the �ction that the representative household

supplies all types of labour directly are innocuous; dropping the assumptions would not change the

conditions that determine equilibrium prices and quantities.

Optimal household�s behaviour is described by three sets of requirements.

First, households face a decision in each period about how much to consume of each individual good.

They adjust the share of a particular good in their consumption bundle so to exploit any di¤erence in the

relative price. Minimising the level of total expenditure, given the consumption aggregate in (2), yields

the demand for each individual good

ct(i) =

�
pt(i)

Pt

���
Ct (4)

where the aggregate price level, Pt, is given by

Pt =

2
4

1Z

0

pt(i)
1��di

3
5
1=1��

(5)

This speci�cation of the price index has by construction the property that PtCt gives the minimum price

for which an amount Ct of the aggregate consumption can be purchased.

Market clearing implies that the total non�nancial income (i.e. the economy-wide sales revenues) can

be written as PtYt where Yt is an aggregate of the quantities supplied of the various di¤erentiated goods,

de�ned as in (2). The budget constraint can thus be rewritten as
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PtCt + Et [Qt;t+1Bt+1] � Bt + PtYt � Tt (6)

The absence of arbitrage opportunities implies that there exists a unique stochastic discount factor,

Qt;t+1. The riskless short-term nominal interest rate, it, has a simple representation in terms of the

stochastic discount factor, namely 1=(1 + it) = Et [Qt;t+1]. A complete description of the household�s

budget constraint requires ruling out Ponzi schemes. The implied constraint for �nancial wealth carried

into the subsequent period, Bt+1, is given by

Bt+1 � �

1X

T=t+1

Et+1 [Qt+1;T (PtYt � Tt)] <1 (7)

with certainty, that is, in each state of the world that may be reached in the subsequent period. (7) implies

that a household�s debt in any state of the world is bounded by the present value of all future after-tax

non�nancial income, which is assumed to be �nite. Furthermore, preventing unlimited consumption also

requires that the nominal interest rate satis�es the zero lower bound, it � 0, at all times: a negative

nominal interest rate would in fact allow to �nance unbounded consumption by selling enough bonds.

The entire in�nite series of �ow budget constraints and borrowing constraints in turn de�nes the lifetime

budget constraint for the household

1X

t=0

E0Q0;t [PtCt] � B0 +
1X

t=0

E0Q0;t [(PtYt � Tt)] (8)

We can now complete the description of optimal household behaviour. Maximising utility (1) subject

to the intertemporal budget constraint (8) delivers the familiar Euler equation for consumption

�Et

"
uc
�
Ct+1; �t+1

�

uc (Ct; �t)

Pt
Pt+1

#
=

1

1 + it
(9)

and the optimal supply of labour of type i

vh(ht(i); �t)

uc (Ct; �t)
=
wt(i)

Pt
(10)

where uc and vh denote respectively the partial derivative of u with respect to the level of consumption

and the partial derivative of v with respect to the supply of labour. Rational consumers are attempting

to smooth consumption over time such that the marginal utility of consumption is equal across periods.
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2.2 Firms

We assume that each good i has the linearly homogeneous production function

yt(i) = Atht(i) (11)

where At is an exogenous technology factor. It follows that the nominal marginal cost of supplying a

quantity yt(i) of good i is given by

MCt(i) = wt(i)A
�1
t (12)

Note that the assumption of speci�c labour markets does not imply that each price setter is a

monopsonist in her labour market. The possibility of �rms having any market power in their labour

market is ruled out by assuming that price setters that change their prices at the same time also hire labour

from the same market. Speci�cally, this is achieved by assuming a double continuum of di¤erentiated

goods, indexed by (I , j) with an elasticity of substitution of � between any two goods. Goods belonging

to the same industry (i.e. with the same index I) are then assumed to change their prices at the same

time and to be produced using the same type of labour (type I labour)5. The fact that now a continuum

of price setters demand type I labour eliminates the possibility of market power in their labour market

without any change for the degree of market power of each price setter in her product market.

Substituting (10) in (12) yields the real marginal cost speci�cation

mc(yt(i);Ct;e�t) �
MCt(i)

Pt
=
vh(yt(i)=At; �t)

uc (Ct; �t)At
(13)

where labour is expressed in terms of output and e�t denotes the vector of exogenous disturbances, which

includes exogenous real shocks to technology, to household�s impatience to consume, and to the household�s

willingness to supply labour.

2.3 Market clearing

Goods market clearing requires, for each good i and at all times

yt(i) = ct(i) + gt(i) (14)

5The Calvo lottery is over industries� prices rather than goods� prices.
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equivalently, in aggregate terms

Yt = Ct +Gt (15)

where Gt, which is such that Gt < Yt at all dates, is the exogenous process that describes Government

purchases of the aggregate good.

Substituting the market clearing condition into (9) and (13) yields the equilibrium conditions

�Et

"
euc(Yt+1;e�t+1)
euc(Yt;e�t)

Pt
Pt+1

#
=

1

1 + it
(16)

mct(i) = mc(yt(i);Yt;e�t) =
evy(yt(i);e�t)
euc(Yt;e�t)

(17)

where eu(Yt;e�t) � u(Yt � Gt; �t) and ev(yt(i);e�t) � v(yt(i)=At; �t) are the indirect utility functions. The

former, which is increasing and concave in Yt for each possible realisation of vector e�t, indicates the utility

�ow to the representative household as a function of its aggregate demand for resources, where aggregate

demand adds the household�s share of Government purchases to the household�s private consumption.

Under the assumption of Gt being exogenously determined, variations in the level of Government expen-

diture are simply another source of exogenous variation in the Euler equation for consumption6. The

latter, which is increasing and convex in yt(i) for each possible realisation of vector e�t, converts the house-

hold�s disutility of supplying labour used for the production of good i into the household�s disutility of

directly supplying good i. Accordingly, the model laid out here is identical to the one that obtains under

the assumption of a single yeoman farmer (i.e. continuum of yeoman farmers).

We now turn to the description of pricesetting behaviour. Following Calvo (1983), we assume that

only a fraction 1 � � of industries� prices are reset in each period. The probability of not resetting the

price in each period, 0 < � < 1, is independent of both the time that has gone by since the last price

revision and the misalignment between the actual price and the price that would be optimal to charge,

namely pricing decisions in any period are independent of past pricing decisions. Furthermore, we assume

that pro�ts are discounted using a stochastic discount factor that equals on average �. Firms allowed to

change their price at time t set it so to maximise expected future pro�ts subject to the demand they face.

6Henceforth, the vector e�t includes exogenous real shocks to technology, to Government purchases, to household�s impa-
tience to consume, and to the household�s willingness to supply labour.
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The price setter�s objective is given by

Et

1X

s=0

(��)s�(pt(i); p
I
t+s; Pt+s; Yt+s;

e�t+s) (18)

The price setter�s nominal pro�t function, �, is linearly homogeneous in its �rst three arguments (i.e.

good�s price, industry�s price, pIt , and aggregate price level) and, for any value of the industry price and

the aggregate price level, single-peaked for some positive value of the good�s price7.

We now depart from full rationality by introducing backward-looking rule-of-thumb behaviour by price

setters. Following Galì and Gertler (1999), we assume that only a fraction 1 � ! of industries behave

optimally (i.e. in a forward-looking manner) when setting the price, the remaining fraction of industries

use the same backward-looking rule-of-thumb when revising their prices. The degree of backward-looking

rule-of-thumb behaviour, 0 � ! < 1, is thus constant over time and price setters cannot switch between

backward-looking and forward-looking behaviour.

If follows that in each period all forward-looking price setters will set the same price, which we denote

with pft , and all backward-looking price setters will as well charge a common price, which we denote with

pbt . The common forward-looking reset price, p
f
t , is implicitly de�ned by the relation

Et

1X

s=0

�sQt;t+s�1(p
f
t ; p

f
t ; Pt+s; Yt+s;

e�t+s) = 0 (19)

where �1(p
f
t ; p

f
t ; Pt+s; Yt+s;

e�t+s) = 0 (i.e. the �rst-order condition for optimal pricing by all the suppliers

of good i, which belongs to industry I) implicitly de�nes what Woodford (2003) labels the notional Short-

Run Aggregate Supply curve. The common rule-of-thumb backward-looking reset price, pbt , is speci�ed as

in Steinsson (2003)

pbt = p
�
t�1

Pt�1
Pt�2

�
Yt�1
Y nt�1

��
(20)

where 0 � � � 1 is the degree of indexation to past demand conditions. Rule-of-thumb price setters thus

index the previous period overall reset price, p�t�1, to past in�ation (fully) and past demand conditions

7Under (11), the nominal pro�t function is given by

�(pt(i); p
I
t ; Pt; Yt;e�t) � pt(i)yt(i)� w

I
t ht(i) � pt(i)

�
pt(i)

Pt

���
Yt �

vh(
�
pIt=Pt

���
Yt=At); �t)

uc (Ct; �t)
Pt

�
pt(i)

Pt

���
Yt
At
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(according to �). The aggregate price level hence evolves according to

Pt =
n
(1� �)(p�t )

1�� + �P 1��t�1

o 1

1��
(21)

where

p�t = (1� !)p
f
t + !p

b
t (22)

denotes the overall reset price.

2.4 Log-linearised model

Pro�t-maximising behaviour under perfectly �exible prices (i.e. all industries adjust prices optimally each

period, taking the path of aggregate variables as given) implies that �rms will operate at the point at

which the relative price is a mark-up over the real marginal cost

pt(i)

Pt
= mc(yt(i);Yt;e�t)� (23)

where � = �=1� � > 1 is the desired constant mark-up. The relative supply of good i must satisfy

�
yt(i)

Yt

��1=�
= mc(yt(i);Yt;e�t)� (24)

In a symmetric equilibrium, each good is supplied in the same quantity, which we denote with Yt.

Equilibrium output is then given by Yt = Y nt (
e�t), where the natural level of output, Y nt (e�t), is implicitly

de�ned by

mc(Y nt ;Y
n
t ;
e�t) = ��1 (25)

In the case of fully �exible prices, equilibrium output equals the natural level of output at all times. The

natural level of output in turn depends only on the exogenous real shocks, namely equilibrium output

under perfectly �exible prices is completely independent of monetary policy.

The natural steady-state level of output is the equilibrium level of output that obtains in the absence

of sticky prices and in the absence of exogenous real shocks (i.e. e�t = 0 at all times). The natural

steady-state level of output, Y , is implicitly de�ned by
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mc(Y ;Y ; 0) = ��1 (26)

Henceforth, we log-linearise the structural equations around the natural steady-state level of output,

Y . If e�t = 0 and Yt = Y at all times, (21) has a solution with zero in�ation at all times (i.e. Pt = p
�
t =

pft = p
b
t = Pt�1 = P at all times). In the case of small enough �uctuations in e�t and Yt around 0 and Y

respectively, the solution to the log-linear approximate model is one in which any variable�s log-deviation

from its natural steady-state value (for instance, bPt � log(Pt=P )) remains always close to 08.

Log-linearising (16) yields the intertemporal expectational IS relation

bYt = Et bYt+1 � �
h
bit � Et�t+1 � ��1(gt � Etgt+1)

i
(27)

where bit � log[(1 + it)=(1 + i)], �t � bPt � bPt�1 � log(Pt=Pt�1), � � �eu(euccY )�1 > 0 measures the

constant intertemporal elasticity of substitution of aggregate expenditure, and the disturbance term gt �

�euc��t(euccY )�1 indicates the percentage variation in output required to keep the marginal utility of

expenditure at its natural steady-state level (given shocks to Government purchases and to household�s

impatience to consume).

Log-linearising (17) yields

cmct(i) = $ (byt(i)� qt) + ��1(bYt � gt) (28)

where cmct(i) � log(mct(i)=�), $ � evyyY ev�1y > 0 measures the constant elasticity of real marginal cost

with respect to own output, and the disturbance term qt � �evy�e�t(evyyY )�1 indicates the percentage

variation in output required to keep the marginal disutility of labour supply at its natural steady-state

level (given shocks to technology and to the household�s willingness to supply labour).

Under perfectly �exible prices, (28) reduces to

log

�
��1

��1

�
= $

�
bY nt � qt

�
+ ��1(bY nt � gt) (29)

Solving for bY nt � log(Y nt =Y ) yields

bY nt =
$qt + �

�1gt
$ + ��1

(30)

8Henceforth, a variable�s log-deviation from its natural steady-state value, which is denoted with a bar, is denoted with
a hat.
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In the presence of a constant elasticity of substitution, percentage �uctuations in the natural level of output

are equal to the percentage �uctuations in the e¢cient level of output, namely the equilibrium level of

output under perfect competition and perfectly �exible prices. The e¢cient level of output, Y �t (
e�t), is

implicitly de�ned by

mc(Y �t ;Y
�
t ;
e�t) = 1 (31)

Accordingly, the e¢cient steady-state level of output, Y
�
, is implicitly de�ned by

mc(Y
�
;Y

�
; 0) = 1 (32)

Using (28), percentage �uctuations in the e¢cient level of output are then given by

bY �t =
$qt + �

�1gt
$ + ��1

(33)

which equals percentage �uctuations in the natural level of output (i.e. (30)).

The natural steady-state level of output, Y , can be rewritten as

mc(Y ;Y ; 0) = ��1 � 1� �y (34)

where the parameter �y summarises the distortions in the natural steady-state level of output due to

monopolistic competition. When �y is small enough, the steady-state (i.e. constant over time) e¢ciency

gap, x� � log(Y
�
=Y ) = O (k�yk), can be log-linearised as

log(Y
�
=Y ) =

�y
$ + ��1

(35)

Output gap, xt � bYt � bY nt � log(Yt=Y
n
t ), is the deviation of actual output from the natural level of

output. (27) can be expressed in terms of output gap as

xt = Etxt+1 � �
�
bit � Et�t+1 � brnt

�
(36)

where

brnt = ��1
h
(gt � bY nt )� Et(gt+1 � bY nt+1)

i
(37)
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is the natural rate of interest, namely the real interest rate consistent with output equalling the natural

level of output at all times. The interest rate gap, brt � brnt (with brt = bit � Et�t+1), thus indicates the

e¤ects on the actual level of output due to sticky prices.

We can now turn to the aggregate supply function. The aggregate in�ation rate, �t, and the aggregate

output gap, xt, in any period satisfy an aggregate supply relation of the form
9

�t = �f�Et�t+1 + �b�t�1 + �1xt + �2xt�1 (38)

with

� = �+ ! � (1� �)!�;�f =
�

�
;�b =

!

�
;�2 =

(1� �)!�

�
(39)

�1 =
(1� !)��� (1� �)��!�

�
;� =

(1� �)(1� ��)(��1 +$)

(1 +$�)�

If ! = 0, (38) and (39) collapse to Woodford (2003, 2:12 and 2:13, p. 187). If the fraction ! is reset

according to backward-looking rule-of-thumb behaviour à la Galì-Gertler (1999) (i.e. � = 0), (38), standing

(39), collapses to

�t = �f�Et�t+1 + �b�t�1 + �1xt (40)

2.5 Central bank�s loss function

In the case of small enough �uctuations in the production of each good around the natural steady-state

level of output, small enough exogenous real shocks, and small enough steady-state distortions, the period

utility Ut can be approximated to second order as in Woodford (2003, 2:13, p. 396)

Ut = �
Y euc
2

�
(��1 +$)(xt � x

�)2 + (1 +$�)�vari log pt(i)
�
+ t:i:p+O

��y;e�; %

3
�

(41)

where vari log pt(i) is a measure of the degree of price dispersion across industries (i.e. goods), t:i:p

collect terms that are independent of monetary policy (i.e. irrelevant to the welfare ranking of alternative

equilibria), and % is the parameter vector that indexes aspects of policy that determine the steady-state

values of in�ation and output gap, � and x. In addition to stabilising output gap, around a level that

exceeds the ine¢cient natural level of output by the steady-state e¢ciency gap, it is also appropriate for

monetary policy to aim to curb price dispersion. This is achieved by stabilising the aggregate price level,

9See Appendix A.
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but how �uctuations in the general price level a¤ect price dispersion, hence welfare, depend upon the

details of the pricesetting10.

The discounted sum of utility of the representative household can then be approximated to second-

order by

1X

t=0

�tUt = �

1X

t=0

�t

2
64

�2t + �1(xt � x
�)2

+�2 [�t � (�t�1 + (1� �)�xt�1)]
2

3
75+ t:i:p+O

��y;e�; %;�1=2�1

3
�

(42)

The de�nition of � in (39) holds. The constant 
 is given by 
 = Y euc(��1+$)�=2�. The relative weight

on output �uctuations is given by �1 = �=�. The relative weight on [�t � (�t�1 + (1� �)�xt�1)]
2 is given

by �2 = != [(1� !)�]. If ! = 0, (42) collapses to Woodford (2003, 2:21 and 2:22, p. 400). In the presence

of backward-looking rule-of-thumb behaviour a là Galì-Gertler (1999) (i.e. � = 0), (42) collapses to

1X

t=0

�tUt = �

1X

t=0

�t
�
�2t + �1(xt � x

�)2 + �2(�t � �t�1)
2
�
+ t:i:p+O

��y;e�; %;�1=2�1

3
�

(43)

Interestingly, in the presence of backward-looking rule-of thumb behaviour by price setters, the utility-

based central bank�s loss function can now be seen as penalising variations in in�ation as well as variations

in the di¤erence between general in�ation and rule-of-thumb price increases.

3 The Optimal Long-run In�ation

Following the theoretical literature on optimal monetary policy, we assume that the central bank�s policy

instrument is the short-term nominal interest rate. The assumption re�ects the actual practice of monetary

policy by large central banks such as the European Central Bank, the Federal Reserve, and the Bank

of England. The combination of cashless economy (i.e. there are no costs associated with varying the

nominal interest rate) and central�s bank control of the nominal interest rate implies that the intertemporal

expectational IS relation imposes no real constraint on the central bank. Given the central bank�s optimal

choices for in�ation and output gap, the expectational IS equation simply determines the path of nominal

interest rate necessary to achieve the optimal path for the output gap. As a consequence, it is more

convenient to treat output gap as if it were the central bank�s policy instrument. The analysis is conducted

in a purely deterministic setting, certainty equivalence guarantees that the results obtained hold in the

presence of random disturbances.

10See Appendix A.
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Under the optimal commitment policy, the central bank chooses paths for in�ation and output gap to

minimise the future discounted sum of losses from date 0 (i.e. when the policy is implemented) onward

subject to the constraint that the paths must satisfy the aggregate supply relation each period. In the

basic neo-Wicksellian model, the hybrid Phillips curve, namely a log-linear approximation to the model

structural equations, su¢ces for a correct linear approximation to the optimal commitment policy only

in the case of small steady-state distortions (i.e. x� is small enough). Given the assumed deterministic

setting, the solution for the optimal paths of in�ation and output is accurate up to a residual that is only

of second order. This is enough for a characterisation of the �rst-order consequences of allowing for the

empirically realistic case of steady-state distortions (i.e. for ine¢ciency of the natural rate of output).

Precisely, we analytically derive the unique long-run in�ation targets that are optimal from a timeless

perspective, �.

A constant in�ation target � is optimal from a timeless perspective if the problem of min-

imising the discounted sum of losses subject to the constraint that the bounded sequences,

f�t; xtg
1
t=0, satisfy the aggregate supply curve for each t � 0, and the additional constraint

that �0 = �, has a solution in which �t = � for all t. Woodford (2003, p. 475).

The two commitment policies (i.e. timeless-perspective and zero-optimal) in the literature di¤er

as the requirement that �0 = � under timeless-perspective is replaced by the initial condition '�1 =

0 (i.e. no ful�lment of expectations existing prior to the policy implementation) in the case of zero-

optimal commitment policy. The two commitment policies in the literature thus share the same target11.

Accordingly, we also assume that both in�ation and output gap in the period before policy is implemented

(i.e. date �1) are at their values of zero (i.e. the optimal paths for in�ation and output gap are �at at

their respective long-run optimal targets). As long as in�ation at date �1 is nonzero, and/or output gap

at date �1 is nonzero under Steinsson�s rule-of-thumb, backward-looking rule-of-thumb behaviour implies

that the optimal commitment policy, either zero-optimal or timeless-perspective, involves transition paths

for in�ation and the output gap to their respective long-run targets.

Under backward-looking rule-of-thumb behaviour by price setters a là Steinsson (2003), a central bank

acting under commitment faces the problem of choosing bounded deterministic paths for in�ation and

the output gap, f�t; xtg
1
t=0, to minimise (42) subject to the constraint that the sequences must satisfy

(38) each period. We form the following Lagrangian.

11There is a unique optimal long-run in�ation target. Hence, we can refer to it as the optimal long-run in�ation (i.e.
optimal steady-state in�ation).
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L =

1X

t=0

�t

8
><
>:

1
2�

2
t +

�1
2 (xt � x

�)2 + �2
2 [�t � (�t�1 + (1� �)�xt�1)]

2

+'t
�
�t � �f��t+1 � �b�t�1 � �1xt � �2xt�1

�

9
>=
>;

(44)

where 't is the Lagrangian multiplier associated with the hybrid Phillips Curve. Di¤erentiating with

respect to �t and xt, we get the two �rst-order conditions

�t + �2 [�t � (�t�1 + (1� �)�xt�1)]� ��2 [�t+1 � (�t + (1� �)�xt)] + 't � �f't�1 � ��b't+1 = 0 (45)

�1(xt � x
�)� ��2(1� �)� [�t+1 � (�t + (1� �)�xt)]� �1't � ��2't+1 = 0 (46)

for each t � 0.

Proposition 1 Consider a cashless economy with �exible wages, Calvo pricing, backward-looking rule-

of-thumb behaviour a là Steinsson (2003) by price setters, and no real disturbances. Assume that the

initial price dispersion of prices ��1 � var
�
log�1(I)

	
is small, initial in�ation is zero ��1 = 0, initial

output gap is zero x�1 = 0, and steady-state distortions (measured by �y) are small as well, so that an an

approximation to the welfare of the representative household of the form (42) is possible, with the steady-

state e¢ciency gap, x�, a small parameter (x� = O(k�yk)). Then, at least among in�ation paths in which

in�ation remains forever in a certain interval around zero, there is a unique policy that is optimal from

a timeless perspective. Under this policy, the positive optimal long-run in�ation is given by

� =
(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�]8

><
>:

(1� !)(1� �)(��1 � �)(1� �)2�!�+
�
(1� !)��+ (1� �)2�!�

�
[(1� !)��+ (1� �)(1� ��)!�]

9
>=
>;

x� +O(
�1=2�1 ;�y


2
) (b)

Under backward-looking rule-of-thumb behaviour by price setters a là Galì and Gertler (1999) (i.e. � = 0),

the positive optimal long-run in�ation is given by

� =
(1� �)(1� �)!�

(1� !)���+ (1� �)(1� �)2!
x� +O(

�1=2�1 ;�y

2
) (a)

Under backward-looking rule-of-thumb behaviour by price setters, optimal steady-state in�ation is zero in

the absence of backward-looking rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run Phillips
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curve trade o¤ (i.e. � = 1), and in the absence of steady-state distortions (i.e. x� = 0).

Proof. See appendix B

The combination of steady-state distortions, from which stems the central bank�s desire to stabilise

output around a level that is higher than the ine¢cient natural level of output, and long-run Phillips-curve

trade-o¤ makes positive in�ation forever in principles desirable as it would result in positive output gap

forever.

Positive in�ation forever obtains if and only if there is a steady-state incentive for positive in�ation,

namely the stimulative e¤ect of in�ation on output is not o¤set by the output cost of in�ation. In all

the variants of the basic neo-Wicksellian model, the optimal plan �rst-order condition for output gap

determines a positive relationship between the long-run value of the Lagrange multiplier, ', and the

long-run value of the output gap, x. Precisely, ' is found to be a positive function of the di¤erence

between the long-run value of the output gap and the steady-state e¢ciency gap, x�. Analysing the

absence/presence of long-run incentive for positive in�ation thus amounts to consider whether there is a

steady-state relationship between in�ation and the Lagrange multiplier. If the stimulative e¤ect of higher

in�ation on output is greater than the output cost of higher in�ation, � would then be negatively related

to '. Hence, optimal long-run in�ation would be found to be a positive function of the steady-state

e¢ciency gap. In what follows, we are analysing the optimal plan �rst-order condition for in�ation so to

check whether the coe¢cients on the Lagrange multipliers add up to zero.

In the basic neo-Wicksellian model with backward-looking rule-of-thumb behaviour a là Galì and

Gertler (1999) the optimal plan implies that in�ation evolves according to (94)12. Substituting for �f

and �b in terms of structural parameters yields

�t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't �
�

�
't�1 �

�!

�
't+1 = 0 (47)

Higher in�ation in any period results in output increase in the same period, 't, and reduction in output in

both the previous period as a result of expected higher in�ation, (�=�)'t�1, and the subsequent period,

(�!=�)'t�1. Recalling that � � � + ! [1� �(1� �)] ; the absolute value of the overall output cost of

higher in�ation in any period is given by

�+ �!

�+ ! [1� �(1� �)]
(48)

12See appendix B.
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Checking the relationship between the stimulative e¤ect of higher in�ation on output and the output cost

of higher in�ation amounts to solve the inequality

1 �
�+ �!

�+ ! [1� �(1� �)]
(49)

The solution is given by

!(1� �)(1� �) � 0 (50)

Note that (50) equally applies to the basic neo-Wicksellian model with backward-looking rule-of-thumb

behaviour a là Steinsson (2003) as the Lagrange multipliers enter the optimal plan �rst-order condition

for in�ation in the same way. Backward-looking rule-of-thumb behaviour results in the stimulative e¤ect

of higher in�ation being generally greater than the output cost of higher in�ation. Not surprisingly, the

stimulative e¤ect of higher in�ation equals the output cost of higher in�ation in the absence of backward-

looking rule-of-thumb behaviour (i.e. ! = 0) or in the absence of long-run Phillips curve trade o¤ (i.e.

� = 1). Otherwise, there exists a long-run incentive for positive in�ation and the optimal long-run

in�ation, �, is then found to be a positive function of the steady-state e¢ciency gap, x�.

In the purely forward-looking basic neo-Wicksellian model, the optimal plan implies that in�ation

evolves according to

�t + 't � 't�1 = 0 (51)

The increase in output in any period caused by higher in�ation in the same period, 't, is thus o¤set by

the cost of the reduction in output in the previous period as a result of expected higher in�ation, 't�1.

Hence, there is no long-run incentive for positive in�ation, the optimal long-run in�ation is zero.

The same conclusion holds in the basic neo-Wicksellian model with backward-looking price indexation.

As in Woodford (2003, Ch. 6, Ch. 7), the conclusion can be reached directly from the result for the Calvo

pricesetting. Alternatively, the optimal plan implies that in�ation evolves according to

(�t � �t�1)� �(�t � �t�1) + 't � 't�1 + �'t � �'t+1 = 0 (52)

As in the purely-forward looking basic neo-Wicksellian model, the increase in output in any period resulting

from higher in�ation in the same period, 't, is o¤set by the cost of the reduction in output in the previous

period as a result of expected higher in�ation, 't�1. Moreover, the additional increase in output in any
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period resulting from in�ation in the same period, �'t, is also o¤set by the reduction in output in the

subsequent period, �'t+1. Once again, there is no long-run incentive for positive in�ation, the optimal

steady-state in�ation is zero.

Fuhrer and Moore�s relative contracting model implies an hybrid Phillips curve of the form

�t = (1� ")Et�t+1 + "�t�1 + knxt (53)

whereas the hybrid Phillips curve reported in Walsh (2003, 5:65, p. 242) is given by

�t = (1� ")�Et�t+1 + "�t�1 + knxt (54)

where " is a measure of the degree of backward-looking behaviour in pricesetting13. It is interesting to

note that under �n = �1, �n = �1, and �f + �b = 1 (i.e. (1 � ") = �f and " = �b) (40) coincides

with (54). �f + �b = 1 is then satis�ed for !�(1 � �) = 0, namely the sum of the coe¢cients on future

expected in�ation and lagged in�ation in the hybrid Phillips curve implied by backward-looking rule-of-

thumb behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la Steinsson (2003),

is generally greater than one. Given the rigour of mathematics (i.e. � = 0 is outside the range for �),

the coe¢cients on future expected in�ation and lagged in�ation add up to one only in the absence of

backward-looking rule-of-thumb behaviour (i.e. ! = 0) or in the absence of long-run Phillips curve trade

o¤ (i.e. � = 1).

It must be stressed that (54) is simply the NKPC augmented with lagged in�ation: the motivation

for in�ation persistence in (54) is purely empirical. The two Phillips curves di¤er only for one respect:

(54) displays a long-run Phillips-curve trade-o¤, (53) does not. Assuming the monetary policy objective

1X

t=0

�t
�
�2t + �n(xt � x

�)2
�

(55)

the optimal steady-state in�ation is then easily seen to be given by14

� =
(1� �)"�n�n

�2n + (1� ")(1� �)
2"�n

x� (c)

Given kn > 0 and �n > 0, optimal long-run in�ation is always positive and collapses to zero in the absence

13We use " in both Phillips curves because the only goal at hand is stressing the importance of a long-run Phillips-curve
trade-o¤.
14See Appendix C.
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of backward-looking behaviour in pricesetting (i.e. " = 0), in the absence of steady-state distortions (i.e.

x� = 0), and in the absence of long-run Phillips curve trade o¤ (i.e. � = 1, namely when 53 replaces 54).

3.1 Calibration

Equation (a) contains six structural parameters (�, �, �, $, ��1, !) for which values must be speci�ed15.

Four parameters are chosen to equal those used by Woodford (2003, p. 431), which stem from the

estimation results in Rotemberg and Woodford (1997). These values are given in Table 1.

Structural parameter � � $ ��1

Value 0:99 7:88 0:47 0:16

Table 1. Benchmark structural estimates (quarterly)

The steady-state e¢ciency gap, x�, is accordingly set equal to 0:2, which is the value implied by

x� = �y=($+�
�1), namely the steady-state distortions are only due to monopolistic competition. Letting

� and ! vary over their respective ranges, annualized percentage optimal steady-state in�ation is then

observed to spike for low values of �, which are empirically unrealistic. Figure 1 thus reports the annualized

percentage optimal steady-state in�ation for empirically realistic values of the degree of price stickiness

(between 2 and 5 quarters, 0:5 � � � 0:8). As for !, Galì and Gertler (1999) report estimates of !

between 0:077 and 0:552, but we extend the range up to ! = 0:7, which implies that the hybrid Phillips

curve corresponds closely to the one in Fuhrer and Moore (1995) (i.e. " = 0:5).

The deviation from full price stability is observed to be minimal. In e¤ect, in developed countries

in�ation targets vary between 2% and 4% per year whereas slightly higher targets are observed in devel-

oping countries. However, low levels of annualized optimal steady-state in�ation hinge on the extremely

low relative weight on output �uctuations (i.e. �1 = 0:003 under the benchmark structural estimates).

Indeed, (c), which, under the three conditions above, generalises (a), is easily seen to be increasing in

�n. Equation (c) contains �ve parameters (�, ", �n, �n, x
�) for which values must be speci�ed. Keeping

� and x� set equal to 0:99 and 0:2 respectively, the remaining parameters are chosen to equal those used

in Walsh (2003, p. 527, p. 539). These values are given in table 2.

Parameter " �n �n

Value 0:5 0:25 0:05

Table 2. Benchmark estimates (quarterly)

15Under Steinsson�s rule-of-thumb the structural parameters are seven (�, �, �, �, $, ��1, !). Given the absence of an
estimate for �, we focus on Galì and Gertler�s rule-of-thumb. Note that we use the same terminology in Altissimo et al.
(2006) thus distinguishing between estimates and structural estimates.
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Under benchmark estimates, optimal steady-state in�ation is 1:995% per year. Figure 2 reports the

annualized percentage optimal steady-state in�ation for values of " up to 0:7 and values of �n up to 0:5
16.

4 Conclusion and Discussion

This paper makes two distinct contributions to the literature on structural in�ation persistence and

optimal monetary policy.

First, we show how backward-looking rule-of-thumb behaviour by price setters, speci�ed either à

la Galì and Gertler (1999) or à la Steinsson (2003), breaks the surprising robustness of zero long-run

in�ation target, namely backward-looking rule-of-thumb behaviour by price setters results in optimal

positive long-run in�ation.

The result gives a blow to skepticism about the application of existing New Keynesian models to policy

advice and to empirical analysis. New Keynesian economics is undoubtedly providing a major input to

our understanding of how central banks and governments interact in the macroeconomic policy arena,

using their own policy instruments.

Second, comparing theoretical explanations for structural in�ation persistence, which share the as-

sumption of backward-looking behaviour, suggests that the features that seem capable of delivering an

endogenously optimal positive in�ation target are costly disin�ation, long-run Phillips-curve trade-o¤,

and steady-state distortions.

On the one hand, this paper highlights the trickiness of microfounding structural in�ation persistence;

on the other hand, costly disin�ation seems capable of bringing the short-run in line with the long-run.

Given a long-run Phillips-curve trade-o¤, the dichotomy short-run and long-run is, to say the least,

weakened. Arguably, the biggest virtue of New Keynesian economics is having tackled the conventional

wisdom regarding the steady-state Phillips curve.

Last but not least, this paper reveals that the widespread practice in the New Keynesian literature

on optimal monetary policy of restricting the attention to the case of an e¢cient nonstochastic steady

state is far from being innocuous . What we show here is that a policy that is optimal for an economy

with an e¢cient steady state di¤ers from what is optimal in an economy where the empirically unrealistic

subsidies that achieve Pareto e¢ciency are unavailable. Overall, �scal policy shall not be assumed to fully

o¤set steady-state distortions, �scal policy can either exacerbate or ameliorate steady-state distortions.

16The annualized percentage optimal steady-state in�ation is an arithmetic progression in ".
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The result is obviously sensitive to Calvo�s (1983) assumption of a constant probability of price ad-

justment, irrespective of the duration of prices. Sheedy (2007a) drops such assumption and derives a

simple and tractable expression for the Phillips curve that exhibits intrinsic in�ation persistence. In�a-

tion persistence is intrinsic, rather than structural, in the sense that in�ation determination is partially

backward-looking even though all agents remain forward-looking. Sheedy (2007b) goes on to analyse

optimal monetary policy in response to shocks, but the steady state he considers is Pareto e¢cient. Ex-

tending the analysis to the case of an ine¢cient steady state is a natural way to con�rm the importance

of steady-state distortions for the optimality of positive in�ation targets.

It should be stressed however that the model studied in this paper is a basic closed economy New

Keynesian model. Papers such as Khan et al. (2003) and Altig et al. (2005) also consider other features

such as transaction frictions, wage stickiness, capital goods, and investment in addition to price stickiness.

In future research, we are particularly interested in extending the analysis to a model that is capable to

account fairly well for business-cycle �uctuations.
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6 Figures

Figure 1: The annualized percentage optimal steady-state in�ation as a function of � and !.

Figure 2: The annualized percentage optimal steady-state in�ation as a function of " and �n.
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7 Appendix A. Derivations

7.1 The hybrid Phillips curve

(21) can be log-linearised as

bPt = (1� �)bp�t + � bPt�1 (56)

with

bp�t = (1� !)bpft + !bpbt (57)

A log-linearisation to the notional SRAS is given by

log(pft =Pt) = �xt (58)

where � is the elasticity of the notional SRAS curve, which, under the assumption of speci�c labour

markets, is given by � = (��1 + $) (1 +$�)�1 > 0. Substituting (58) in (19) and quasi-di¤erencing

yields

bpft = (1� ��)�xt + (1� ��) bPt + ��Etbpft+1 (59)

Log-linearising (20) yields

bpbt = bp�t�1 + �t�1 + �xt�1 (60)

(56) and (57) imply that the aggregate in�ation rate, �t, evolves according to

�t =
1� �

�

h
(1� !)(bpft � bPt) + !(bpbt � bPt)

i
(61)

Using (56), bpbt � bPt is given by

bpbt � bPt =
1

1� �
�t�1 � �t + �xt�1 (62)

Rewriting (59) in terms of bpft � bPt yields

bpft � bPt = (1� ��)�xt + ��Et(bpft+1 � bPt) (63)

Combining (56), (57), and (62), Et(bpft+1 � bPt) is given by

Et(bpft+1 � bPt) =
1

(1� �)(1� !)
Et(�t+1 � !�t)�

!�

(1� !)
xt (64)

26



Substituting (64) in (63), bpft � bPt is given by

bpft � bPt = (1� ��)�xt +
��

(1� �)(1� !)
Et(�t+1 � !�t)�

��!�

(1� !)
xt (65)

Substituting (62) and (65) in (61) yields the hybrid Phillips curve for price in�ation

�t = �f�Et�t+1 + �b�t�1 + �1xt + �2xt�1 (66)

where the parameters are

8
><
>:
� = �+ ! � (1� �)!�;�f =

�
� ;�b =

!
� ;�2 =

(1��)!�
�

�1 =
(1�!)���(1��)��!�

� ;� = (1��)(1���)(��1+$)
(1+$�)�

9
>=
>;

(67)

7.2 The second-order approximation to the period utility

We pick on the �choice of variables� issue (Woodford (2003), p. 388). The scenario is the one of small

steady-state distortions, namely

Uc(Y ; 0) = O (k�yk) (68)

What we show here is that, when (68) holds, a linear approximation to the production function is indeed

accurate for the purpose of policy analysis. Considering a �rst-order and not a second-order approximation

to the production function does not alter the approximate welfare measure, still given by (41). The period

utility of the representative household, as a function solely of all yt(i), is given by

Ut = eu(Yt;e�t)�
Z 1

0
ev(yt(i);e�t)di (69)

The �rst term in (69) can be approximated to second order by

eu(Yt;e�t) = u+ euc eYt + eu�e�t +
1

2
eucc eY 2t + euc� eYte�t +

1

2
e�0teu��e�t +O

��y;e�; %

3
�

(70)

Substituting eYt = Y bYt and dropping the terms that are higher than second order, yields

eu(Yt;e�t) = u+ Y euc bYt + eu�e�t +
1

2
Y
2eucc bY 2t + Y euc�e�t bYt +

1

2
e�0teu��e�t +O

��y;e�; %

3
�

(71)

Taking all the steps as in Woodford (2003, Appendix E:1) yields
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eu(Yt;e�t) = Y euc
�
bYt �

1

2
��1 bY 2t + ��1gt bYt

�
+ t:i:p+O

��y;e�; %

3
�

(72)

The second term in (69), using eYt = Y bYt, can be approximated to second order by

ev(yt(i);e�t) = v+Y euc(1��y)byt(i)+ev�e�t+
1

2
Y
2evyybyt(i)2+Y evy�e�tbyt(i)+

1

2
e�0teu��e�t+O

��y;e�; %

3
�
(73)

(73) delivers

Z 1

0
ev(yt(i);e�t)di = Y euc

8
><
>:
(1� �y)bYt + 1

2$
bY 2t �$qt bYt

+1
2(�

�1 +$)varibyt(i)

9
>=
>;
+ t:i:p+O

��y;e�; %

3
�

(74)

Combining (72) and (74) yields

Ut = Y euc

8
><
>:
�y bYt � 1

2(�
�1 +$)bY 2t + ($qt + ��1gt)bYt
�1
2(�

�1 +$)varibyt(i)

9
>=
>;
+ t:i:p+O

��y;e�; %

3
�

(75)

which then results in (41).

7.3 The second-order approximation to the discounted sum of utility

Under Calvo (1983) staggered pricesetting and backward-looking rule-of-thumb behaviour by price setters,

the distribution of prices in any period, fpt(i)g, consists of � times the distribution of prices in the previous

period, fpt�1(i)g, an atom of size (1 � �)(1 � !) at the forward-looking reset price, pft , and an atom of

size (1� �)! at the rule-of-thumb backward-looking reset price, pbt

fpt(i)g = � fpt�1(i)g+ (1� �)(1� !)p
f
t + (1� �)!p

b
t (76)

Let �t � vari log pt(i) denote the degree of price dispersion and P t � Ei flog pt(i)g denote the average

price, hence P t � P t�1 = Ei
�
log fpt(i)g � P t�1

�
. Recalling log p�t = (1 � !) log pft + ! log p

b
t and using

(76), P t � P t�1 can be rewritten as

P t � P t�1 =

0z }| {
�Ei

�
flog pt�1(i)g � P t�1

�
+ (1� �)(1� !)(log pft � P t�1) + (1� �)!(log p

b
t � P t�1)

= (1� �)(log p�t � P t�1) (77)
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Similarly, �t can be rewritten as

�t = vari
�
log fpt(i)g � P t�1

�
= Ei

n�
log fpt(i)g � P t�1

�2o
�
�
Ei log fpt(i)g � P t�1

�2

=

2
64
�Ei

n�
log fpt�1(i)g � P t�1

�2o
+ (1� �)(1� !)(log pft � P t�1)

2

+(1� �)!(log pbt � P t�1)
2 � (P t � P t�1)

2

3
75 (78)

P t is related to the Constant Elasticity of Substitution Dixit-Stiglitz (1967) price index through the

log-linear approximation

P t = logPt +O

��1=2�1 ;e�; %

2
�

(79)

the second-order residual follows from the fact that the equilibrium in�ation process (as the equilibrium

output process) satis�es a bound of second order O(
e�; %


2
) together with a second-order bound on

the initial (i.e. date �1, policy is implemented at date 0) degree of price dispersion, ��1. Note that,

as in Woodford (2003), ��1 is assumed to be of second order (that is why it enters the second-order

residual in (79) to the power of 1=2). It then follows that this measure of price dispersion continues to

be only of second order in the case of �rst-order deviations of in�ation from zero. Recalling log pbt =

log p�t�1 + �t�1 + �xt�1 and using (79), log p
b
t � P t�1 is given by

log pbt � P t�1 = log p�t�1 � P t�2 � (P t�1 � P t�2) + �t�1 + �xt�1

= log p�t�1 � P t�2 + �xt�1 +O

��1=2�1 ;e�; %

2
�

(80)

Recalling log p�t = (1� !) log p
f
t + ! log p

b
t , log p

b
t = log p

�
t�1 + �t�1 + �xt�1, and using (79), log p

f
t � P t�1

is given by

log pft � P t�1 =
1

1� !
log p�t �

!

1� !
(log p�t�1 + �t�1 + �xt�1)� P t�1

=

2
64

1
1�! (log p

�
t � P t�1)�

!
1�! (log p

�
t�1 � P t�2)

� !�
1�!xt�1 +O

��1=2�1 ;e�; %

2
�

3
75 (81)

Using (79), (77) becomes

�t = (1� �)(log p
�
t � P t�1) +O

��1=2�1 ;e�; %

2
�

(82)
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Accordingly, (80) and (81) become respectively

log pbt � P t�1 =
1

1� �
�t�1 + �xt�1 +O

��1=2�1 ;e�; %

2
�

(83)

log pft � P t�1 =
1

(1� !)(1� �)
�t �

!

(1� !)(1� �)
�t�1 �

!�

(1� !)
xt�1 +O

��1=2�1 ;e�; %

2
�

(84)

Substituting (79), (83), and (84) in (78) yields

�t = ��t�1 +
�

(1� �)
�2t +

!

(1� !)(1� �)
[�t � �t�1 � (1� �)�xt�1]

2 +O

��1=2�1 ;e�; %

3
�

Integrating forward, starting from any small initial degree of price dispersion, ��1, the degree of price

dispersion in any period t � 0 is given by

�t =
1X

s=0

�t�s

2
64

�
(1��)�

2
t+

!
(1�!)(1��) [�t � �t�1 � (1� �)�xt�1]

2

3
75+ �t�1��1 +O

��1=2�1 ;e�; %

3
�

(85)

The term �t�1��1 is independent of monetary policy. Taking the discounted value of (85) over all periods

t � 0 gives

1X

t=0

�t�t =
1

1� ��

1X

t=0

�t

2
66664

�
(1��)�

2
t+

!
(1�!)(1��)

2
64

�t � �t�1

�(1� �)�xt�1

3
75

2

3
77775
+ t:i:p+O

��1=2�1 ;e�; %

3
�

(86)

Taking the discounted value of (41) over all periods t � 0 yields

1X

t=0

�tUt = �
Y euc
2

"
(��1 +$)

1X

t=0

�t(xt � x
�)2 + (1 +$�)�

1X

t=0

�t�t

#
+ t:i:p+O

��y;e�; %

3
�

(87)

Substituting (86) in (87) and normalizing on in�ation, the discounted sum of utility of the representative

household can be approximated to second-order by

1X

t=0

�tUt = �
Y euc(��1 +$)�

2�

1X

t=0

�t

2
66664

�2t +
�
� (xt � x

�)2

+ !
(1�!)�

2
64

�t � �t�1

�(1� �)�xt�1

3
75

2

3
77775
+t:i:p+O(

�y;e�; %;�1=2�1

3
) (88)
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8 Appendix B. Proof of Proposition 1

Proof. Condition (45) has a solution with in�ation constant over time only if the Lagrange multiplier is

also constant over time. Substituting a constant value for the Lagrange multiplier in (45) and (46), the

two conditions can be simultaneously satis�ed only if

� =

8
><
>:

f(�1+��2)[(1��)(1��)��2]g+f(1��f���b)[�1���2(1��)2�2]g
(�2+��3)

x

+
(1��f���b)�1
(�2+��3)

9
>=
>;

(89)

The hybrid Phillips curve (38) implies an upward-sloping relation

x =
(1� ��f � �b)

(�2 + �3)
� (90)

between long-run in�ation and long-run output gap. Combining (89) and (90) yields the optimal steady-

state in�ation

� =
(1� �f � ��b)(�2 + �3)�1

(�2 + ��3)(�2 + �3) + (1� �f� � �b)

8
><
>:

�
(1� �f � ��b)

�
�1 � ��2(1� �)

2�2
�	

�f(�2 + ��3) [(1� �)(1� �)��2]g

9
>=
>;

x� (91)

The sign of the relationship is more easily determined by substituting for all the parameters in (91) in

terms of structural parameters (keeping � implicit)

� =
(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�]8

><
>:

(1� !)(1� �)(��1 � �)(1� �)2�!�
�
(1� !)��+ (1� �)2�!�

�
[(1� !)��+ (1� �)(1� ��)!�]

9
>=
>;

x� (92)

which is (b). Given k > 0 and the rigour of mathematics (i.e. � = 1 is outside the range for � as it would

imply dividing by zero in deriving (38)), optimal long-run in�ation is always positive and collapses to

zero in the absence of backward-looking rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run

Phillips curve trade o¤ (i.e. � = 1), and in the absence of steady-state distortions (i.e. x� = 0). We

now turn to the case of backward-looking rule-of-thumb behaviour by price setters a là Galì and Gertler

(1999). What constitutes optimal long-run in�ation is implied by setting � = 0 in (b). Here we prefer to

derive it. A central bank acting under commitment faces the problem of choosing bounded deterministic
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paths for in�ation and the output gap, f�t; xtg
1
t=0, to minimise (43) subject to the constraint that the

sequences must satisfy (40) each period. We form the following Lagrangian

L =
1X

t=0

�t
�
1

2

�
�2t + �1(xt � x

�)2 + �2(��t)
2
�
+ 't

�
�t � �f��t+1 � �b�t�1 � �1xt

��
(93)

Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

�t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't � �f't�1 � ��b't+1 = 0 (94)

�1(xt � x
�)� �1't = 0 (95)

for each t � 0. Condition (94) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier in (94)

and (95), the two conditions can be simultaneously satis�ed only if

� = �
(1� �f � ��b)�1

�1
(x� x�) (96)

The hybrid Phillips curve (40) implies an upward-sloping relation

x =
(1� ��f � �b)

�1
� (97)

between long-run in�ation and long-run output gap. Combining (96) and (97) yields the optimal long-run

in�ation target

� =
(1� �f � ��b)�1�1

�21 + (1� �f � ��b)(1� ��f � �b)�1
x� (98)

The sign of the relationship is more easily determined by substituting for all the parameters in (98)

in terms of structural parameters (keeping � implicit). Here, rather than simply substituting, we can

double-check the result obtained. Combining (95) and (94), optimal paths for in�ation and output gap

satisfy 2
64
�t +

!
�(1�!)(�t � �t�1)

� �!
�(1�!)(�t+1 � �t)

3
75 = 1

(1� !)��

2
64
�(xt�1 � x

�) + !�(xt+1 � x
�)

��(xt � x
�)

3
75 (99)

Solving analytically for the optimal paths for in�ation and output gap would require combining (99) with

(40) and solve the resulting di¤erence equation. Here we are content with deriving the optimal long-run
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in�ation. The hybrid Phillips Curve (40) can be rewritten in terms of structural parameters as

xt =
1

�
(�t � ��t+1)�

!�

(1� !)�
(�t+1 � �t) +

!

(1� !)��
(�t � �t�1) (100)

where the equivalence �t+1 � !�t+1 � (1 � !)�t+1 is used to obtain a term in the rate of in�ation

acceleration at date t+ 1. Combining (99) and (100) optimal long-run in�ation is given by

� =
!(1� �)(1� �)�

(1� !)���+ !(1� �)(1� �)2
x� (101)

which is (a) (i.e. (98) in terms of structural parameters, (b) under � = 0). Given k > 0 and the rigour of

mathematics (i.e. � = 1 is outside the range for � as it would imply dividing by zero in deriving (40)),

optimal long-run in�ation is always positive and collapses to zero in the absence of backward-looking

rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run Phillips curve trade o¤ (i.e. � = 1), and

in the absence of steady-state distortions (i.e. x� = 0).

9 Appendix C

A central bank acting under commitment faces the problem of choosing bounded deterministic paths for

in�ation and the output gap, f�t; xtg
1
t=0, to minimise (55) subject to the constraint that the sequences

must satisfy (54) each period. We form the following Lagrangian.

L =
1X

t=0

�t

8
><
>:

1
2

�
�2t + �n(xt � x

�)2
�

+'t [�t � (1� ")��t+1 � "�t�1 � knxt]

9
>=
>;

(102)

Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

�t + 't � (1� ")'t�1 � �"'t+1 = 0 (103)

�n(xt � x
�)� �n't = 0 (104)

for each t � 0. Condition (103) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier in (103)
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and (104), the two conditions can be simultaneously satis�ed only if

� = �
(1� �)"�n

�n
(x� x�) (105)

The hybrid Phillips curve (54) implies an upward-sloping relation

x =
(1� �)(1� ")

�n
� (106)

between long-run in�ation and long-run output gap. Combining (105) and (106) yields the optimal

long-run in�ation target

� =
(1� �)"�n�n

�2n + (1� ")(1� �)
2"�n

x� (107)

which is (c).
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