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1. Introduction

The use of multidimensional panel data sets has received momentum the last few
years. Especially, three dimensional data bases are becoming readily available and
frequently used to analyze different types of economic flows, like capital flows (FDI)
for example, or most predominantly trade relationships (for a recent reviews of the
subject see Anderson [2010] or van Bergeijk and Brakman [2010]). Several model
specifications have been proposed in the literature to deal with the heterogeneity of
these types of data sets, but all of them considered these heterogeneity factors as
fixed effects, i.e., fixed unknown parameters. As it is pretty well understood from
the use of “usual” two dimensional panel data sets, the fixed effects formulations are
more suited to deal with cases when the panel, at least in one dimension, is short.
On the other hand, for large data sets, the random effects specifications seems to be
more suited, where the specific effects are considered as random variables, rather than
parameters.

In this paper we present different types of random effects model specifications
which mirror the fixed effects models used so far in the literature (some earlier versions
were introduced in Davis [2002]), derive proper estimation methods for each of them
and analyze their properties under some data problems. Finally, we present an
interesting application.

2. Different Heterogeneity Formulations

The most widely used fixed effects model specifications have been proposed by Baltagi
et al. [2003], Egger and Pfanffermayr [2003], Baldwin and Taglioni [2006], and Baier
and Bergstrand [2007]. The straightforward direct generalization of the standard fixed
effects panel data model (where the usual individuals are in fact the (ij) country pairs)
takes into account bilateral interaction. The model specification is

yijt:ﬁlfllijt—f—’yij—l—é‘ijt Zzl,,N jzl,...,N, tzl,...,T

where the v;; are the bilateral specific fixed effects. If the specification is used in
a macro trade model, for example, with say 150 countries involved, this explicitly
or implicitly, means the estimation of 150 x 150 = 22,500 parameters. This looks
very much like a textbook over-specification case. Instead we propose, like in a
standard panel data context, the use of the much more parsimonious random effects
specification

yijt:ﬁ'xijt-i-uij-i-eijt t1=1,....,.N, 5=1,....,.N, t=1,....,T (1)



where E(u;;) = 0, the random effects are pairwise uncorrelated, and

2 . ,/ d . -/
B e :{au t=14 and j =
( “ ”) 0 otherwise

A natural extension of this model is to include time effects as well
yijt:ﬂlwijt—l—uij—f—)\t—l—éijt Zzl,,N jzl,...,N, tzl,...,T
where E(\;) =0 and

o2 t=t

0 otherwise

BOW) - {
Another form of heterogeneity is to use individual-time-varying effects
Yijt = ﬁ'l‘ijt + Q¢ + €5t
The corresponding random effects specification now is
Yijt = 5’582']'15 + wjt + €4t
where F(u;:) = 0, the random effects are pairwise uncorrelated, and

2 L Y
0 otherwise

Or alternatively we can also have the following random effects specification
Yijt = B'Tije + vit + €ije

where E(v;;) = 0, the random effects are pairwise uncorrelated, and

E('Uit'l)i/t/) - { 0-12) 7 = 7:/ and t = t/
0  otherwise

The random effects specification containing both the above forms of heterogeneity

now 1is

Yijt = 5’$ijt + Vit + Ujt + Eijt
The model specification which encompasses all above effects is
Yijt = B'ije + vij + i + i + €
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The corresponding random effects specification now is
Yijt = B'Tijt + pij + vie + wje + ije (6)

where E(pi;) = 0, E(ujt) = 0, E(v;iy) = 0, all random effects are pairwise
uncorrelated, and

2 . -/ d . -/
E(pajpa i :{Uu =1 andj =7
( K ZJ) 0 otherwise

SN

j=j and t =1t
0  otherwise

F(vg )_{O' i=14 andt=1
itVirt ) =
o 0  otherwise

Eujiujv) = {U

SE V)

In order to estimate efficiently these random effects models their corresponding

covariance matrices need to be derived

3. Covariance Matrices of the Different Random Effects Specifications

The standard way to estimate these models is with the Feasible GLS (FGLS)
estimator. First, we need to derive the covariance matrix of each of the models
introduced in Section 2, then the unknown variance components of these matrices
need to be estimated.

For model (1) let us denote
uije = pij + €ijt (7)
So for all ¢ observations
ug; = pij @ lr + €
E [ujju*y;] = B(uiy @ lr) (i ® Up)] + E [egjeyy]

= O'iJT + O’?IT
where [7 is the (T x 1) vector of ones, Jr is the (T' x T') matrix of ones and I is the
(T x T') identity matrix. In all the paper matrix J will denote the matrix of ones,

with the size in the index, and I the identity matrix, also with the size in the index.
Now for individual ¢

up = @lr + €
E [ujv*}] = E (1 ® Ir) (p; @ 17)] + E [e;€}]

= O'ZIN ® Jr +o?Int
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And combining all these results we get for the covariance matrix of model (1)

u=p@lr +e
B[] = E(n@1r) (4 ® 1)) + Efe]
= JZIN2 & JT+O‘€21N2T =0

Deriving likewise the covariance matrix for model (2)

uy; = pij @ lr + A+ €5
E [ufju*gj] =F [(ﬂij ® lT) (,uij ® ZT)/} + F [)\)\’] + F [Eijégj}
= UiJT + O‘iIT + O‘?IT

and

uf = Qlr+Iy N+ ¢
Euw*]] = E (k@ lr) (1 ®17) | + E [(In @ A) (Iv ® )] + E €€}
= UZIN ®Jr + 035y @ Iy + o Int

so we obtain

W=puRlr+In2@N+¢€
Eluv] =E[(p®lr) (p® lT)/} +E [(In2 ®A) (In2 ® )\)/} + E[e€]
=0oIN2 ® Jp + 03 N2 @ It + 02 In2p = Q

Let us turn now to models (3) and (4) which can be dealt with in the same way
as they are completely symmetric

Uiy = Uje + €iji (8)

uy; = uj + €
E (ujju*};) = E [uju}] + E [ej€);] = oulr + oll7
ul =u+e€
(u*u*;) 1+ Eleel] = o2 It + 0 InT
* = lN Qu+e€
E () =E[(ly@u) (ly®@u)]+ Eleel = 0o dy ® InT + 02 Iy =



Using the same approach, the covariance matrix for model (5) is
Ufjt = Ujt + Vit 1+ €ijt
uy; = uj +v; + €
E (ujju*y;) = E [ujuf] + E [viv]] + E [e55¢€]

2 2 2
= O‘uIT + UUIT + UEIT

uiy =1y @ v +u+€
E (uju*}) = E[(In @ v;) (Iy © )] + E [u] + E [e;¢}] =
= O‘%JN ® It +O‘ZINT -i-O‘?INT
and so

E(u*u*/) :Ug(IN(XJJN@IT) +03(JN®INT) —l—O'EQINz =Q

And finally the covariance matrix of the all encompassing model (6) is

Ujyy = fij + Uje + Vi + €y 9)

u:j :uij®lT+uj + v; + €5
E (u;ju*;j) = E(pi; @1lr) (i @ Up)] + E [uju;} + Elvvi] + E [eije;j}

= aiJT + aifT + Uf)IT + O’?IT

u; = Qlp+In v +u+e¢
E (uju*}) = E (1 @ Ir) (1; @ 17)] + E[(Iv @ v;) (Iy @ v)] + E [uu'] + E[e;¢] =
= UZIN ® Jr +o2Iny + 02y @ Iy + o’ Int
and so

E (uu*') = 02(In2 ®@ Jp) + 0o(Jn ®@ In7) + 02(In ® Iy ® Ir) + 02 ner = Q2



4. Estimation of the Variance Components and the Feasible GLS Estimator

Turning now to the estimation of the variance components of the different models, let
us start with model (1)

2 2
E [U*ijt} =FE [(Mz‘j + €ijt) } =FE [/ngj} +EB [G?jt] = Ui ‘i‘U? (10)
and let us introduce the appropriate Within transformation
u;jt,within = u:jt - d*ij = €ijt — €ij (11)

where &; = 1/T ), €;j¢ and u*;; = 1/T ), ufj;, so we get

T 2
* - \2 _ 1 1
FE [(uijt — U*ij) } = F [(Gijt — eij)ﬂ =F 6123 2€mT Z €ijt + (T Z Eijt>

t=1

1 <& 1 L
=F [612]1?} - 62]1&? Z €ijt + E (T Z €ijt
t=1 t=1
2 1 1
—UQ—TUE—FTU?—JQ—TU?—U T

Let @* be the OLS residual of model (1) and 4} ,,,,. the Within transformation of
this residual. Then we can estimate the variance components as

T /
~2 ~ % ~ %
Of = ————— U o U
€ T -1 within “within
N N T
/\2 Z ZZ /\*2 /\
o
mo N2T Hijt — T
=1 j=1t=1

These estimators naturally should be adjusted to the actual degrees of freedom.

Continuing with model (2)
E [U*?jt] =FE [(“ij + A + €ijt>2} =E [“U} + B [)‘2} +E [ mt}

2 2 2
:O'H—FO'A—FO'E

1 & ’ 1 &
(T > “*ijt> =k (T > hij A+ 6ijt>
t=1 t=1

2

T T
-]+ e [0 4 o[04
t=1 t=1
24 o2y g2
_U TO-)\ T 6
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t=1
2 2
| NN | NN
B\ 2| | HE| | o 2D | | -
i=1 j=1 i=1 j=1 t=1
7 | NN
—2F Cijit Z fijt] —2E €ijt N2 Z Z €ijt | T
L t=1 i=1 j=1
[ , NN T [ L T | NN
28 € D DL D G| F2E | T e 3 DD e
i i=1 j=1 t=1 |7 =1 i=1 j=1
L I | NN T i N N T
“2E |5 ) iy D2 > cut| —2F | 5 LS e T ) PP BT
L t=1 i=1 j=1t=1 ] =1 j=1 =1 j=1t=1
1 1, 1 5, 2., 2 4
=0t 0l jao b NapTe 7%~ et
2 5 2 5 2 5
T NerT t NepTe T Nep® T Neple =
WDV (T )
e N2T
This leads to the estimation of the variance components
62 = NET w u*
€ — (N — 1)(N + 1)(T — 1) within® within
1 N T 2 7 ,
~2 ~ Kk ~ %
o e (2 (3] -
i=1 j=1 t=1 t=1
1 L 2
A2 ~ ~2 A2
IN T NeT Z Z Z (tf5)" — 6, — 6
i=1 j=1 t=1
Turning now to models (3) and (4)
E [u*2~ } =F [(ujt + Eijt)z] =F [u?t] + FE [efjt} = 03 + ‘752 (12)



and the appropriate Within transformation now is
* I ¢ K — .., .
Wit within — Wijt — W4t = €ijt — €4t (13)

where 4}, = 1/N ), uf;, and €5, = 1/N ), €5 and

E [(U?jt - d*jt)ﬂ =E [(Eijt - Ejtﬂ

1O 1 & ’
= G?jt — 262'th Z €ijt T (N Z 5ijt>

And the estimators for the variance components are

5_2 — N A* ’LAL*
€ N —1 UwithinUwithin
1 N N T
~2 E ~ %2 ~2
o, = u — 0
) N2T . 17t €
=1 j=1t=1

Now for model (5) the Within transformation is

itawithin = (Wi — 1/Nzu:jt - 1/NZ Uy + 1/N? Z Zu:jt> (14)
; j i g

u

so we get
E [(uzjt u* Jjt — u*r it T U/* E szt Gjt — €t + Gt)2:|
2 2
N N 1 N N
=B [e};] + Z em N2 Do | | TE | (22D e | |-
i=1 J=1 =1 j=1
—2F €ijt T Z 61315] 2F EUt Z €ijt +2F €ijt ~7o N2 Z Z €ijt
=1 j=1
1 N
+ 2F N2 Z €ijt Z Eijt | — 2F N3 Z €ijt Z Z Eijt | — 2F N3 Z €ijt Z Z Eijt | =
=1 j=1 =1 j=1

121212222222222222
—a +N"6+NUE+W"6_N"6_NUE+WJE+WJE_WUE_WUE_

2 1 N2 —2N +1 (N —1)?

2 2 _ 2

6(1__+—)_Ue(— Nrg)_o-ei N2
(15)



And, also,

—
<
*
Nl
~
—
I

FE |:(th + vt + Gijt)Q] = 0'3 + O'g + 0'3

| X 2 LN 2
FE (N Z u:;‘t) =F (N Z (ujt + v + Eijt))
= =1

(16)
1 N
=B [uf,] + 35 | D_vh -l-—E Zem]
i=1
PO PR
=0ut 0T N

The estimators of the variance components therefore are

2
(3'2 — N A* a*
€ (N _ 1)2 UwithinYwithin

Finally, to derive the estimators of the variance components for model (6), we

need first the appropriate Within transformation

itawithin = (Uit — 1/Tzufjt - 1/Nzu:jt - 1/Nzu:jt +1/N? ZZU&
t i J Tt g

H/(NT) DY Y uf + 1/(NT)Y D gy — 1/ (N*T)> DY ugy,)
it j t . j ot

Carrying out the derivation as earlier, we get to the following estimators

u

2 N2T N
O = N(N )(T 1) +1 wzthzn wzthzn
1 N T N 2 N )
6, = NN =) DD DI BB
i=1 t=1 j=1 j=1
1 N T N 2 N )
%= NV 1) >0 <ZU*> -
j=1t=1 i=1 i=1

1 N N T
A2 %2 A2 A2 A2
U“_NQTE E E (U
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Now we have all the tools to properly use the FGLS estimators.

5. Unbalanced Data

Like in the case of the usual panel data models, just more frequently, one may be faced
with a situation when the data at hand is unbalance. In our framework of analysis
this means that for all models (1)-(6) in general ¢t = 1,...,Ty;, 37, >, Ti; = T and
T;; often is not equal to Ty ;. For this unbalanced data case, as we did when the
data was balanced, we need to derive the covariance matrices of the models and the
appropriate estimators for the variance components.

For model (1), using decomposition (7) we get

uy; = pij ® lry,; + €55
E [u;ju*;j] =FE [(/“Lij ® sz‘j) (/“L’ij ® lTij),} + B [Gijegj} =
= JZJTU + O’SITZ.J.
and ur = fi; + €

E [uju*}] = E [fiyii'] + E [e;€}]

2 2
=0, A+ 01
1 Z;_V:l T;;
Hi1
Hi1
Hi2 Ir,, O 0
: 0O Ip, ... O N N
where i = ’ , A= ) . ) of size T;; X T;;
Hi2 ; D Zl ’ Zl !
j= j=
: 0 0 I,
HiN
HiN
and finally for the complete model
u=[+e€

E[wu'] = E[ai] + E [e€']

=o0.B+ollr
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H11

H11
H12

fi12 Jr, 0 ... 0

where

=
I
™
I

of size (T'xT)
i

Mij

UNN

UNN

Continuing with model (2)

uy; = pij @ lry; + A+ €
E [uu*ly) = B (4 @ In,) (1 @ 13,)'| + EDN] + B [eizel ]

2

— 2 2
= JMJTij + O')\ITZ-J- + JEITij

wl = fii+ N+ €

where
N = (A Ay oy ATirs oo s AL A2y ey AT )
E [u:u*;] =E[ma'] +E [):1):2,} + E [e;€l]
_ 2 21 | 2
= O-/j,A + O-)\D’L "l_ 06 Izyzl T.L‘j
u =i+ N te
E[wv'] = E i) + E [XX’} + E e
= UiB +03E + oIy
with

E(Ev,Er2,...,Ein, ..., En1,EN2, ..., ENN)
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My, x1; Ir,, Mz, <1y - My xmin
J

MT12 X T ; MT’LZ xXT;1 ITm s MTi2 xTiN
Eij = A and Di = .
MTNN xT;j MT'LN xT;1 MTiN XTia -+ - ITiN
where
0 0 0
0 ... 00 ... 0 ]
Mrsry = 0 . o if Tij; > Ty
0 O 1 0 0
and
1 0
1 0
MTinsz = 0O 0 ... 1 if le < Tij
0 O
0 O 0

Uy = Uj + €

J
E (u;ju*;j) =F [u]uﬂ +FE [eijegj} =oolr, + ol
Uy =u+e€
E (uju*}) = E [uu'] + E [e;€]] = 02T~ ot JSIZN -
j=1 ©J Jj=1 R
u =u+e
and so for the complete model we get
E (vu') = Elat'] + E[ee'] = 0.C + oIy
where
71/ = (uu,...,ulTH,...,uNl,...,uNTlN,...,u11,...,ulTNl,...,uNl,...,uNTNN)

13



C = (Cla 027 03)

Ir,, 0
0 IT12
0 0
MT21 xXT11 0
0 MT22 xT12
0 0
MTNl xT11 0
0 MTN2 XT12
0 0
MT11 xT21 0
0 MT12 XTo2
0 0
Ir,, 0
0 ITzz
0 0
MTNl XT21 0
0 MTNz X T2z
0 0
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0 MT12 XTnN2 0
0 0 MTlN XTNN
MT21 XTnN1 0 0
0 MTzz XTnN2 0
C3 = :
0 0 MTzN XTNN
Iy, 0 . 0
0 Ire, ... 0
0 0 e Ipyy,

Let us now turn to model (4). Following the same steps as above, we get for the
covariance matrix (62D + o2Ir) where

Dy, 0 ... O
D=0 Dy ... 0
0 0 ... Dy

Models (5) and (6) can be dealt with together using decomposition (9)

uy; = pij @ lr + uj + v; + €5
B (uju'ly) = B | (1 @ 1n,) (g @ U, ) | + B [uyu] + B orel] + B [esyely)
= O-;QJ,JTij + JiITij + J?,ITM + U?ITZ.J,
ui = fi; +0; +ut ¢
E (u*u*;) =F [ﬂilli/} +F [@17/} + F [uu'] + E [e;€]

= O'ELA + 02 [—n . T o2D; + O'gij
ij .

. Tij
j=1 j=1
wW=p+0+u+e
where 0" = (Vi1, Viz, - - -, ViTyy s Vit Vis - - s Uiz« « 5 Uil Uiy« + - Uiy )
v = (617?-727"'71)}\]7)
E (u*u*') = E[afi'] + E [08'] + E[0d/] + E [e€] =
= O'ZB +02C + 02D + oIy
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For model (5) the appropriate covariance matrix is the same with B = 0.

Now that we derived the covariance matrices for unbalanced data it is time to

turn to the estimation of the variance components. Using (10) and (11)

| NN o, | XX )
Il DD (e —wryy)| = Nz YD E |:(Eijt — €ij) ]

1=1j=1 i=1 j=1
2
N N
1 2
N ZZE €ijt 2€W § :em + E :Ezyt
i=1 j=1 0y —1
2
| NN 1 Ti; ) Ti;
_ 2 N
~ N2 ZZ E €] —2E Cijt €ijt | + B T €ijt
i=1j=1 W= i
N N N N
15:2: 2 2 1, 2122ng—1
= — o, — O + O, =0, 2
N2 — E] T’L] N — T’L]
i=1 j=1 i=1j=1
so for the variance components we get the following estimators
2
A2 N ! ~ %
Oc = SN N 1,1 YwithinUwithin
> izt j=1"T3,
1 N N Tij )
A2 _ f\* ~92
Ju - T E E u ijt O¢
i=1 j=1t=1

For model (3) (and similarly for model (4)), using (12) and (13) and using the same

derivations as there we get

&2 LU* o
€ N—1 within Ywithin

N ng
1 A*Q a2
mt O¢

=1 j=1t=1

Turning now to model (5), as (14) and (15) are the same in the unbalanced case we
get

2
52 — Lu* o
€ (N—1>2 within Ywithin

SYCH ﬁqlin
[l [l
N[ = 2‘
. —
-
A
WE
>
S Z
| —
mq[;
Lo L=
SN ﬁ
—
==
WE
§>
<
[\
|
N[ =
WE
WE
S
S
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And finally for model (6) we get

E |:'LL*2 ] =F |:(M” —+ Ujt + v + Gijt)z] = O'Z + O'Z + 0'12) + 0'62

17t
e i 1« i
(N Z Ufjt) =FE (N Z (pij + wje + vig + Eijt)>
=1 =1
1 1 1,
Naﬂ-l-a -l-N U-I-Na6
N 2 N 2
1 1
E N Z u:jt = N Z (NZJ + Ujt + vit + Ezjt)
j=1 j=1
1 1 1
Ngi + NO‘Z + 0'12) + NO‘?
1 N 1 Ty 2 1 N N 1 Tij 2
* — *
Blaz 2|z 2t | | = 3z 222 B | | 7 2o v
ij ; ij -
=1 j=1 j=1 =1 j=1 7j=1
1 N N 1 Tij 2]
= WZZW Z(“U +ujt+v’l,t+ezjt)
i=1 j=1 "4 t=1
1 N N 1 Tij ng -Tij TlJ
=g | B Do | B (D HE v HE Y e
i=1j=1 "4 t=1 t=1 | t=1 t=1

N N T N N N N T
.9 1 1 . 1 1 Y 42
g, — u _
; N X2\ 7 it PRI E=D DB B
N Zi_l Zg 1T, i=1 j=1 Y ot=1 i=1j=1 """ i=1 j=1 t=1
N N T N 2 N N Ti
Rl DIEEr BD B D SI B0 95 B) W s
- — PR I —
w N — 1 ZN T N 4 1) T - — — 15t
i=1 j=111j j=1t=1 i=1 i=1 j=1t=1
2
N N ng N N N Tij
e DR B9 Dl B SUT B B B B
- - . I
vON-—-1 N 1 N 4 " T i
J=1 i=17"1% =1 t=1 Jj=1 i=1 j5=1t=1
1 N N Ty
~2 ZZ %2 A2 A2 a2
Ue_f zjt_au_au_av
i=1 j=1 t=1
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5. An Application: Modelling Within EU Trade

In order to highlight the differences between the usual fixed effects (FE) and the
proposed random effects (RE) approach, let us use a typical empirical trade problem.
In a gravity-like panel estimation exercise we explore the effects of geographical
distance and membership in the European Union (EU) on bilateral trade flows. We
compare the RE estimates to FE and Pooled OLS estimates.

We take a balanced panel data set of bilateral trade flows for all pairs formed
by 20 EU member countries for years 2001-2006. Hence, the total number of country
pairs is N2 = 400 and T = 6. Twelve of the countries were members of the EU
in the whole sample period (group A)?2, the remaining eight entered the EU in 2004
(group B)3. Apart from foreign trade, the database also includes self-trade, i.e. trade
of a country within its own borders.* Self-trade for a given year is generated as gross
output minus total exports of a country in that year. All data is in current euros.

A first look at the data suggests that countries in group A trade more with each
other than countries in group B, and trade of group B countries increased much faster
after 2004 than trade of group A countries (Table 1). The first fact can simply reflect
that larger, more advanced and more strongly integrated economies trade more. The
second may be evidence for the trade creating effect of entering the EU.

We fit a simple gravity-type model that explains bilateral trade with country
incomes (GDP), bilateral geographical distance and a dummy for EU membership.
For better tractability we restrict the elasticities of trade to income to unity and use
income adjusted trade, denoted as y, as dependent variable. We take all variables
(except the EU dummy) in logarithms: y;;; = Intrade;j; — Inincome;; — Inincomej,
and the explanatory variables are simply [Indist;;, EU;;;]. The dummy for EU
membership is 1, if both the exporter and the importer countries are EU members,
and 0 otherwise. Formally,

1 (i€ Aand je€ A)or t> 2004
0 otherwise

EU;; = {

2 Group A: Austria, Germany, Denmark, Spain, Finland, France, Greece, Ireland, Italy,
Portugal, Sweden, United Kingdom

3 Group B: Czech Republic, Estonia, Hungary, Lithuania, Latvia, Poland, Slovenia,
Slovakia

4 We include self-trade to avoid bias of the Fixed Effects estimates. As it is stressed in
Hornok [2011] and Mdtyds and Baldzsi [2011], the Fixed Effects within transformation
formulas for some of the error structures considered here give biased estimates if self-
trade is not included in the database.
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Notice that, while distance is time-invariant, the EU dummy is time-varying, changing
from 0 to 1 from 2003 to 2004 for country pairs with at least one type-B country.

The (composite) error term, can take the form of any of the error structures (1)
to (6) discussed in the previous sections. Assuming an error structure, we estimate
the model using FGLS. Estimated coefficients for each error structure (models (1) to
(6)) are reported in Table 2. We report Pooled OLS, FE and RE estimates, as well as
the estimated variances for the error components. Pooled OLS estimates are identical
for each model. The parameter estimates for the distance coefficient are very stable
across all models and methods as this coefficient is always identified from variation
in the country pair dimension. As a consequence, in the FE models with country
pair fixed effects (models (1), (2) and (6)) the distance coefficient is not identified.
This highlights one important drawback of the FE approach: due to the large number
of fixed effects related dummies, other important dummy-like variable often are not
identified.

In contrast, the coefficient for the EU dummy is always identified, but its
estimates vary considerably across models. In models (1), (2) and (6) it is identified
mostly (in the case of FE, only) from the time dimension, i.e., from the change in
trade of type-B countries. In the other three models identification is based more on
the cross-sectional dimension, i.e., comparing EU pairs to non-EU pairs before 2004.
Apart from that, in this case, the RE parameter estimates happen to be quite close
to the FE estimates (except for model (5)).

As a next step we change the estimating equation so that the EU dummy is
broken up into three separate dummies. One for pairs of two type-A countries, one
for pairs of two type-B countries and one for pairs with one type-A and one type-B

country:
EUAA:{l EU=1 and i€ A and j€ A
0 otherwise
EUBB:{l EUzl.and i€B and j€B
0 otherwise
1 EU=1 and EUga # 1 and EUgp # 1
EUsp = ]
0 otherwise

This modification enables us to identify separate effects of the EU on the different
groups of country pairs. Besides, it helps to bring to light again the already mentioned
important disadvantage of the FE approach. When the within transformation nets
out fixed effects in it and jt (and ij) dimensions, identification of other regressors
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(especially dummy variables) may not be possible, even if these regressors vary in
the ijt dimension. This is due to perfect collinearity among the fixed effects and
the regressors.® As reported in Table 3, the FE estimator is not able to identify the
coefficients of EUgp and EU 45 separately under models (5) and (6). In contrast,
the RE method identifies all coefficients and reveals that there are indeed large and
significant differences among the effects of EU on different groups of country pairs.
These differences are in line with the raw data evidence in Table 1. The coefficient
estimates for EUgp are significantly larger than those for EU 45, which are larger
than the coefficient estimates for EU 44. The estimates are in some cases negative,
depending on whether the model identifies them mostly from the time series or from
the cross section dimension. In an empirical research, this has of course important
implications on which model to choose and how to interpret the estimates, an issue
we do not deal with here.

6. Conclusion

In this paper we presented an alternative random effects approach to the usual fixed
effects gravity models of trade, in a three-dimensional panel data setup. We showed
that the random effects and fixed effects specifications, just like in the usual panel
data cases, may lead to substantially different parameter estimates and inference,
although in both cases the corresponding estimators are in fact consistent.

At the end of the day, the main question for an applied researcher, as in any panel
data setup, is whether to use a fixed effects or random effects specification. In three
(or multi-) dimensional models the fixed effects specification (due to the very large
number of dummies to estimate) will result in a massive over-specification, which
implies that much less data information will be available for the estimation of the
main/focus variables. Also, again due to the fixed effects dummy variables, frequently
other (say, for example policy, type, potentially important) dummy variables cannot
be identified. On the other hand, in a random effects specification the data is not
“burdened” by the massive estimation of the fixed effects parameters. In addition
any reasonable covariance structure can be imposed on the disturbance terms, still
the model can be estimated without to much trouble. The down side is, of course,
that one has to keep an eye on the endogeneity problem. The choice unfortunately
not obvious.

® This identification problem is also addressed in Hornok [2011].
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Table 1: Trade of EU Countries Before and After 2004

2001-2003  2004-2006 % change

Foreign trade!

A with A 7,659 8,561 11.8

A with B 1,064 1,471 38.3

B with B 379 712 87.9
Self-trade®

A 268,348 285,006 6.2

B 29,102 32,803 12.7

Notes: Source of trade data (in millions of euros) is Eurostat.

Self-trade is authors’ calculation based on Eurostat and OECD

data. ! Average of annual pair-specific flows within group.

2 Average of annual country self-trade within group.
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Table 2: Comparison of Estimators

model 1 model 2 model 3 model 4 model 5 model 6
Pooled OLS
EU 0.190631
(0.036527)
In dist -1.645467
(0.019266)

Fized Effects
EU -0.030791 0.126275  -0.064553  -0.257496  0.593089 0.006564

(0.011727) (0.018922) (0.054318) (0.057025) (0.072609) (0.033426)
In dist - - -1.681144  -1.609525  -1.608665 -

- - (0.017238)  (0.018097) (0.015311) -

Random Effects
EU -0.034560  0.110319  -0.114367 -0.250177  0.262012  -0.002745

(0.011698) (0.018636) (0.048620) (0.048929) (0.059702) (0.031547)
Indist | -1.647862  -1.650085 -1.677159 -1.616094  -1.627702 -1.645157

(0.045509) (0.045181) (0.017131) (0.017937) (0.014976) (0.035335)
Variance Components
o? 0.052808 0.049494 0.508946 0.560954 0.345769 0.038615
Uﬁ 0.639168 0.630406 0.344412
o3 0.012077
o2 0.183030 0.179277 0.179277
o? 0.131022 0.166930 0.129673

Notes: Dependent variable is log of income-adjusted bilateral trade. Standard errors in parenthesis.

Estimation on a balanced panel of pairs of 20 EU countries for years 2001-2006.
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Table 3: Comparison

of Estimators with Three EU Dummies

model 1 model 2 model 3 model 4 model 5 model 6
Pooled OLS
EUaa -0.425864
(0.039215)
EUgp 0.628679
(0.065105)
EUup -0.250615
(0.043757)
In dist -1.572309
(0.018913)
Fized Effects
EUaqa - - -0.058001  -0.250686  0.626499 -
- - (0.052119)  (0.054984) (0.071516) -
EUgp | 0.041035 0.198101 1.078016 0.843686 - -
(0.023386) (0.027204) (0.098732) (0.104160) - -
EUsp | -0.054733  0.102333 0.228817  -0.024152 - -
(0.013502)  (0.019963) (0.073639) (0.077688) - -
In dist - - -1.631179  -1.557583  -1.577510 -
- - (0.017071)  (0.018009) (0.015482) -
Random Effects
EUga | -0.420115  -0.342579  -0.176215  -0.328905  0.216663  -0.091471
(0.079668)  (0.078380) (0.046842) (0.047293) (0.058454) (0.086561)
EUgp | 0.057348 0.212035 0.870278 0.716491 1.002332 0.426399
(0.023273)  (0.027062) (0.083976) (0.083104) (0.135971) (0.133636)
EUsp | -0.060171 0.095017 0.041347  -0.141667  0.295330 0.202103
(0.013480) (0.019876) (0.061452) (0.060241) (0.082291) (0.067982)
Indist | -1.627487  -1.627523  -1.625481  -1.562311  -1.596464  -1.637897
(0.043166)  (0.042274) (0.016964) (0.017839) (0.015113) (0.035505)
Variance Components
o? 0.052504 0.049187 0.468526 0.521461 0.334464 0.038635
aﬁ 0.571179 0.548059 0.345164
o3 0.026436
o2 0.155157 0.140710 0.140710
o? 0.102222 0.148509 0.099174

Notes: Dependent variable is log of income-adjusted bilateral trade. Standard errors in parenthesis.

Estimation on a balanced panel of pairs of 20 EU countries for years 2001-2006.
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