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Abstract

This paper studies a class of judgment aggregation rules, to be called ‘scoring rules’ after

their famous counterpart in preference aggregation theory. A scoring rule delivers the

collective judgments which reach the highest total ‘score’ across the individuals, subject

to the judgments having to be rational. Depending on how we define ‘scores’, we obtain

several (old and new) solutions to the judgment aggregation problem, such as distance-

based aggregation, premise- and conclusion-based aggregation, truth-tracking rules, and

a Borda-type rule. Scoring rules are shown to generalize the classical scoring rules of

preference aggregation theory.

JEL Classification: D70, D71

Keywords: judgment aggregation, social choice, scoring rules, Hamming rule, Borda rule,

premise- and conclusion-based rules

1 Introduction

The judgment aggregation problem consists in merging many individuals’ yes/no judgments

on some interconnected propositions into collective yes/no judgments on these propositions.

The classical example, born in legal theory, is that three jurors in a court trial disagree on

which of the following three propositions are true: the defendant has broken the contract

(p); the contract is legally valid (q); the defendant is liable (r). According to a univer-

sally accepted legal doctrine, r (the ‘conclusion’) is true if and only if p and r (the two

‘premises’) are both true. So, r is logically equivalent to p ∧ q. The simplest rule to ag-

gregate the jurors’ judgments — namely propositionwise majority voting — may generate

logically inconsistent collective judgments, as Table 1 illustrates. There are of course nu-

premise p premise q conclusion r (⇔ p ∧ q)

Individual 1 Yes Yes Yes

Individual 2 Yes No No

Individual 3 No Yes No

Majority Yes Yes No

Table 1: The classical example of logically inconsistent majority judgments

merous other possible ‘agendas’, i.e., kinds of interconnected propositions a group might

face. Preference aggregation is a special case with propositions of the form ‘x is better than

1 CNRS, Cerses, Paris, France & UEA, Norwich, U.K. Mail: post@franzdietrich.net. Web:

www.franzdietrich.net.
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y’ (for many alternatives x and y), where these propositions are interconnected through

standard conditions such as transitivity. In this context, Condorcet’s classical voting para-

dox about cyclical majority preferences is nothing but another example of inconsistent

majority judgments. Starting with List and Pettit’s (2002) seminal paper, a whole series

of contributions have explored which judgment aggregation rules can be used, depending

on, firstly, the agenda in question, and, secondly, the requirements placed on aggregation,

such as anonymity, and of course the consistency of collective judgments. Some theorems

generalize Arrow’s Theorem from preference to judgment aggregation (Dietrich and List

2007, Dokow and Holzman 2010; both build on Nehring and Puppe 2010a and strengthen

Wilson 1975). Other theorems have no immediate counterparts in classical social choice

theory (e.g., List 2004, Dietrich 2006a, 2010, Nehring and Puppe 2010b, Dietrich and

Mongin 2010).

It is fair to say that judgment aggregation theory has until recently been dominated

by ‘impossibility’ findings, as is evident from the Symposium on Judgment Aggregation in

Journal of Economic Theory (C. List and B. Polak eds., 2010, vol. 145(2)). The recent

conference ‘Judgment aggregation and voting’ (Freudenstadt, 2011) however marks a visible

shift of attention towards constructing concrete aggregation rules and finding ‘second best’

solutions in the face of impossibility results. The new proposals range from a first Borda-

type aggregation rule (Zwicker 2011) to, among others, new distance-based rules (Duddy

and Piggins 2011) and rules which approximate the majority judgments when these are

inconsistent (Nehring, Pivato and Puppe 2011). The more traditional proposals include

premise- and conclusion-based rules (e.g., Kornhauser and Sager 1986, Pettit 2001, List &

Pettit 2002, Dietrich 2006, Dietrich and Mongin 2010), sequential rules (e.g., List 2004,

Dietrich and List 2007b), distance-based rules (e.g., Konieszni and Pino-Perez 2002, Pigozzi

2006, Miller and Osherson 2008, Eckert and Klamler 2009), and quota rules with well-

calibrated acceptance thresholds and varous degrees of collective rationality (e.g., Dietrich

and List 2007b; see also Nehring and Puppe 2010a).

The present paper contributes to the theory’s current ‘constructive’ effort by investi-

gating a class of aggregation rules to be called scoring rules. The inspiration comes from

classical scoring rules in preference aggregation theory. These rules generate collective pref-

erences which rank each alternative according to the sum-total ‘score’ it receives from the

group members, where the ‘score’ could be defined in different ways, leading to different

classical scoring rules such as Borda rule (see Smith 1973, Young 1975, and for abstract

generalizations Myerson 1995, Zwicker 2008 and Pivato 2011b). In a general judgment

aggregation framework, however, there are no ‘alternatives’; so our scoring rules are based

on assigning scores to propositions, not alternatives. Nonetheless, our scoring rules are

related to classical scoring rules, and generalize them, as will be shown.

The paradigm underlying our scoring rules — i.e., the maximization of total score of

collective judgments — differs from standard paradigms in judgment aggregation, such as

the premise-, conclusion- or distance-based paradigms. Nonetheless, it will turn out that

several existing rules can be re-modelled as scoring rules, and can thus be ‘rationalized’ in

terms of the maximization of total scores. Of course, the way scores are being assigned

to propositions — the ‘scoring’ — differs strongly across rules; for instance, the Hamming

rule and the premise-based rule can each be viewed as a scoring rule, but with respect

to two very different scorings. This paper explores various plausible scorings. It uncovers

the scorings which implicitly underlie several well-known aggregation rules, and suggests

other scorings which generate novel aggregation rules. For instance, a particularly natural
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scoring, to be called reversal scoring, will lead to a new generalization of Borda rule from

preference aggregation to judgment aggregation. The problem of how to generalize Borda

rule has been a long-lasting open question in judgment aggregation theory. Recently, an

interesting, though so far incomplete, proposal was made by Zwicker (2011) (who told me

that also Conal Duddy and Ashley Piggins have independent work in progress about this).

Surprisingly, Zwicker’s and the present Borda generalizations are distinctively different.

Though large, the class of scoring rules is far from universal: some important aggrega-

tion rules fall outside this class (notably the mentioned rule approximating the majority

judgments, by Nehring, Pivato and Puppe 2011). I will also investigate a natural general-

ization of scoring rules, to be called set scoring rules, which are based on assigning scores

to entire judgment sets rather than single propositions (judgments). Set scoring rules are

for instance interesting in the context of epistemic (‘truth-tracking’) aggregation models,

where they have recently been studied by Pivato (2011a).

I could have written this paper by focusing exclusively on one specific application of

scoring rules (for instance, the problem of extending Borda rule). However, I chose to give

the paper a broader scope, not only to do justice to the diverse applications of scoring rules,

but also to be useful at the theory’s current stage of searching for concrete mechanisms. I

hope that the ideas and perspectives offered below will be stimulating and inspiring.

After this introduction, Section 2 defines the general framework, Section 3 analyses

various scoring rules, Section 4 goes on to analyse several set scoring rules, and Section 5

draws some conclusions about where we stand in terms of concrete aggregation procedures.

2 Agenda, aggregation rules, and examples

I now introduce the framework, following List and Pettit (2002) and Dietrich (2007).2 We

consider a set of n (≥ 2) individuals, denoted N = {1, ..., n}. They need to decide which of

certain interconnected propositions to ‘believe’ or ‘accept’. The set of propositions under

consideration — the agenda — is closed under negation, which ensures that whenever, say,

‘it rains’ is a candidate for belief, so is ‘it does not rain’. The agenda is thus a (disjoint)

union of binary ‘issues’ {p,¬p} involving a proposition and its negation. Rationally, ex-

actly one proposition from each issue is accepted, and this in accordance with the logical

interconnections. Formally, the agenda is simply an arbitrary set X (whose elements we

call ‘propositions’) which is

• closed under negation: for every proposition p in X there is a specified proposition

denoted ¬p (‘not p’) in X such that ¬p �= p = ¬¬p (i.e., such that X is partitioned

into binary issues {p,¬p});
• endowed with logical interconnections: there is a specification of which subsets of X

are ‘consistent’, i.e., formally, there is a system C of subsets called ‘consistent’.

A ‘judgment set’ A ⊆ X is complete if it contains a member of each pair p,¬p ∈ X,

and (fully) rational if it is complete and consistent. The set of all rational judgment sets

is denote by D.3

2 To be precise, I use a slimmer variant of their models: I do not explicitly introduce the logic L in which

propositions are formed.
3 Our notion of an ‘agenda’ is very general. The propositions in X typically represent what an agent

may or may not believe; but alternatively, they could represent arbitrary attributes which an agent may

or may not possess such as the attribute of being rich (in which case ‘judgment sets’ are in fact ‘attribute
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As usual in the theory, we assume that the consistency notion is regular. Regularity can

be expressed by three conditions: no set {p,¬p} is consistent (C1, ‘self-entailment’); subsets

of consistent sets are consistent (C2, ‘monotonicity’); ∅ is consistent and each consistent

set can be extended to a complete and consistent set (C3, ‘completability’). Equivalently,

regularity can be expressed by a single condition: C = {C ⊆ A : A ∈ D} �= ∅, i.e.,

the consistent sets are precisely the subsets of rational sets. The systems D and C are

thus interdefinable, so that, given regularity, we could start from D instead of C as the

primitive.4

Further, let X be finite. Notationally, a judgment set A ⊆ X is often abbreviated

by concatenating its members in any order (so, p¬q¬r is short for {p,¬q,¬r}); and the

negation-closure of a set Y ⊆ X is denoted

Y ± ≡ {p,¬p : p ∈ Y }.

I now give two standard examples, to which I shall repeatedly refer.

Example 1: the standard ‘doctrinal paradox agenda’. The agenda is

X = {p, q, r}±.

Logical interconnections are defined relative to the external constraint r↔ (p ∧ q). So,

D = {pqr, p¬q¬r,¬pq¬r,¬p¬q¬r}.

Example 2: the preference agenda. For an arbitrary, finite set of alternatives K, the

preference agenda is defined as

X = XK = {xPy : x, y ∈ K,x �= y},

where the negation of a proposition xPy is of course ¬xPy = yPx, and where logical

interconnections are defined relative to the usual conditions of transitivity, asymmetry and

connectedness, which define a strict linear order. Formally, to each binary relation ≻ over

K uniquely corresponds a judgment set, denoted A≻ = {xPy ∈ X : x ≻ y}, and the set of

all rational judgment sets is

D = {A≻ : ≻ is a strict linear order over K}.

A (multi-valued) aggregation rule is a correspondence F which to every profile of

‘individual’ judgment sets (A1, ..., An) (from some domain, usually Dn) assigns a set

sets’). The propositions could be thought of for instance as being syntactic objects (logical expressions)

or semantic objects (e.g., sets of worlds). It is often natural to regard the agenda X as a subset of a logic

L from which it inherits the negation operator and the logical interconnections. This logic is general: it

could for instance be standard propositional logic, standard predicate logic, or various modal or conditional

logics (see Dietrich 2007).
4 Instead of starting from the system of consistent sets C satisfying C1-C3 and deriving the system D of

rational judgment sets, we could equivalently have started from D (any non-empty system of sets containing

exactly one member from each pair p,¬p ∈ X) and derived the system C := ∪A∈D{C : C ⊆ A} (which

then automatically satisfies C1-C3). So, in algebraic terms, the agenda is definable either as the structure

(X,¬, C) or, equivalently, as the structure (X,¬,D). A future challenge is to relax the conditions C1-C3

by studying, e.g., judgment aggregation in non-monotonic logics (in which case C must be the primitive).
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F (A1, ..., An) of ‘collective’ judgment sets. Typically, the output F (A1, ..., An) is a sin-

gleton set {C}, in which case we identify this set with C and write F (A1, ..., An) = C. If

F (A1, ..., An) contains more than one judgment set, there is a ‘tie’ between these judgment

sets. An aggregation rule is called single-valued or tie-free if it always generates a single

judgment set. A standard (single-valued) aggregation rule is majority rule; it is given by

F (A1, ..., An) = {p ∈ X : p ∈ Ai for more than half of the individuals i}

and generates inconsistent collective judgment sets for many agendas and profiles. If both

individual and collective judgment sets are rational (i.e., in D), the aggregation rule defines

a correspondences Dn ⇒ D, and in the case of single-valuedness a function Dn →D.5

3 Scoring rules

Scoring rules are particular judgment aggregation rules, defined on the basis of a so-called

scoring function. A scoring function — or simply a scoring — is a function s : X ×D → R

which to each proposition p and rational judgment set A assigns a number sA(p), called

the score of p given A and measuring how p performs (‘scores’) from the perspective of

holding judgment set A. As an elementary example, so-called simple scoring is given by:

sA(p) =

�
1 if p ∈ A

0 if p �∈ A,
(1)

so that all accepted propositions score 1, whereas all rejected propositions score 0. This

and many other scorings will be analysed. Let us think of the score of a set of propositions

as the sum of the scores of its members. So, the scoring s is extended to a function which

(given the agent’s judgment set A ∈ D) assigns to each set C ⊆ X the score

sA(C) ≡
�

p∈C

sA(p).

A scoring s gives rise to an aggregation rule, called the scoring rule w.r.t. s and denoted

Fs. Given a profile (A1, ..., An) ∈ Dn, this rule determines the collective judgments by

selecting the rational judgment set(s) with the highest sum-total score across all judgments

and all individuals:

Fs(A1, ..., An) = judgment set(s) in D with highest total score

= argmaxC∈D
�

p∈C,i∈N

sAi(p) = argmaxC∈D
�

i∈N

sAi(C).

By a scoring rule simpliciter we of course mean an aggregation rule which is a scoring

rule w.r.t. some scoring. Different scorings s and s′ can generate the same scoring rule

Fs = Fs′ , in which case they are called equivalent. For instance, s is equivalent to s′ = 2s.6

5 More generally, dropping the requirement of collective rationality, we have a correspondence Dn ⇒ 2X ,

where 2X is the set of all judgment sets, rational or not. As usual, I write ‘⇒’ instead of ‘→’ to indicate

a multi -function.
6 More generally, certain increasing transformations have no effect. As one may show, scorings s and s′

are equivalent (i.e., Fs = Fs′) whenever there are coefficients a > 0 and bp ∈ R (p ∈ X) with bp = b¬p for

all p ∈ X such that s′ is given by s′A(p) = asA(p) + bp.
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3.1 Simple scoring and the Hamming rule

We first consider the most elementary definition of scoring, namely simple scoring (1).

Table 2 illustrates the corresponding scoring rule Fs for the case of the agenda and profile

of our doctrinal paradox example. The entries in Table 2 are derived as follows. First, enter

Score of...

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r
Indiv. 1 (pqr) 1 0 1 0 1 0 3 1 1 0

Indiv. 2 (p¬q¬r) 1 0 0 1 0 1 1 3 1 2

Indiv. 3 (¬pq¬r) 0 1 1 0 0 1 1 1 3 2

Group 2 1 2 1 1 2 5* 5* 5* 4

Table 2: Simple scoring (1) for the doctrinal paradox agenda and profile

the score of each proposition (p,¬p, q, ...) from each individual (1, 2 and 3). Second, enter

each individual’s score of each judgment set by taking the row-wise sum. For instance,

individual 1’s score of pqr is 1 + 1+ 1 = 3, and his score of p¬q¬r is 1+ 0+ 0 = 1. Third,

enter the group’s score of each proposition by taking the column-wise sum. For instance,

the group’s score of p is 1 + 1 + 0 = 2. Finally, enter the group’s score of each judgment

set, by taking either a vertical or a horizontal sum (the two give the same result), and

add a star ‘*’ in the field(s) with maximal score to indicate the winning judgment set(s).

For instance, the group’s score of pqr using a vertical sum is 3 + 1 + 1 = 5, and using a

horizontal sum it is 2+ 2+1 = 5. Since the judgment sets pqr, p¬q¬r and ¬pq¬r all have

maximal group score, the scoring rule delivers a tie:

F (A1, A2, A3) = {pqr, p¬q¬r,¬pq¬r}.
This is a tie between the premise-based outcome pqr and the conclusion-based outcomes

p¬q¬r and ¬pq¬r. Were we to add more individuals, the tie would presumably be broken

in one way or the other. In large groups, ties are a rare coincidence.

To link simple scoring to distance-based aggregation, suppose we measure the distance

between two rational judgment sets by using some distance function (‘metric’) d over D.7

The most common example is Hamming distance d = dHam , defined as follows (where by

a ‘judgment reversal’ I mean the replacement of an accepted proposition by its negation):

dHam (A,B) = number of judgment reversals needed to transform A into B

= |A\B| = |B\A| = 1

2
|A△B| .

For instance, the Hamming-distance between pqr and p¬q¬r (for our doctrinal paradox

agenda) is 2.

Now the distance-based rule w.r.t. distance d is the aggregation rule Fd which for

any profile (A1, ..., An) ∈ Dn determines the collective judgment set(s) by minimizing the

sum-total distance to the individual judgment sets:

Fd(A1, ...,An) = judgment set(s) in D with minimal sum-distance to the profile

= argminC∈D
�

i∈N

d(C,Ai).

7 A distance function or metric over D is a function d : D × D → [0,∞) satisfying three conditions:

for all A,B,C ∈ D, (i) d(A,B) = 0 ⇔ A = B, (ii) d(A,B) = d(B,A) (‘symmetry’), and (iii) d(A,C) ≤

d(A,B) + d(B,C) (‘triangle inequality’).
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The most popular example, Hamming rule FdH a m
, can be characterized as a scoring rule:

Proposition 1 The simple scoring rule is the Hamming rule.

3.2 Classical scoring rules for preference aggregation

I now show that our scoring rules generalize the classical scoring rules of preference ag-

gregation theory. Consider the preference agenda X for a given set of alternatives K of

finite size k. Classical scoring rules (such as Borda rule) are defined by assigning scores

to alternatives in K, not to propositions xPy in X. Given a strict linear order ≻ over K,

each alternative x ∈ K is assigned a score SCO≻(x) ∈ R. The most popular example is of

course Borda scoring, for which the highest ranked alternative in K scores k, the second-

highest k − 1, the third-highest k − 2, ..., and the lowest 1. Given a profile (≻1, ...,≻n)
of individual preferences (strict linear orders), the collective ranks the alternatives x ∈ X

according to their sum-total score
�
i∈N SCO≻i

(x). To translate this into the judgment

aggregation formalism, recall that each strict linear order ≻ over K uniquely corresponds

to a rational judgment set A ∈ D (given by xPy ∈ A ⇔ x ≻ y); we may therefore write

SCOA(x) instead of SCO≻(x), and view the classical scoring SCO as a function of (x,A)

in K×D. Formally, I define a classical scoring as an arbitrary function SCO : K×D → R,

and the classical scoring rule w.r.t. it as the judgment aggregation rule F ≡ FSCO for the

preference agenda which for every profile (A1, ..., An) ∈ Dn returns the rational judgment

set(s) that rank an alternative x over another y whenever x has a higher sum-total score

than y:8

F (A1, ..., An) = {C ∈ D : C contains all xPy ∈ X s.t.
�

i∈N

SCOAi(x) >
�

i∈N

SCOAi(y)}.

Now, any given classical scoring SCO induces a scoring s in our (proposition-based) sense.

In fact, there are two canonical (and, as we will see, equivalent) ways to define s: one might

define s either by

sA(xPy) = SCOA(x)− SCOA(y), (2)

or, if one would like the lowest achievable score to be zero, by

sA(xPy) = max{SCOA(x)− SCOA(y), 0} =
�

SCOA(x)− SCOA(y) if xPy ∈ A

0 if xPy �∈ A
(3)

(where the last equality assumes that SCOA(x) > SCOA(y) ⇔ xPy ∈ A for all x, y

and A, a property that is so natural that we might have built it into the definition of a

‘classical scoring’ SCO). This allows us to characterize classical scoring rules in terms of

proposition-based rather than alternative-based scoring:

8 A technical difference between the standard notion of a scoring rule in preference aggregation theory

and our judgment-theoretic rendition of it arises when there happen to exist distinct alternatives with

identical sum-total score. In such cases, the standard scoring rule returns collective indifferences, whereas

our FSCO returns a tie between strict preferences. From a formal perspective, however, the two definitions

are equivalent, since to any weak order corresponds the set (tie) of all strict linear orders which linearize

the weak order by breaking its indifferences (in any cycle-free way). The structural asymmetry between

input and output preferences of scoring rules as defined standardly (i.e., the possibility of indifferences at

the collective level) may have been one of the obstacles — albeit only a small, mainly psychological one —

for importing scoring rules and Borda aggregation into judgment aggregation theory.
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Proposition 2 In the case of the preference agenda (for any finite set of alternatives),

every classical scoring rule is a scoring rule, namely one with respect to a scoring s derived

from the classical scoring SCO via (2) or via (3).

3.3 Reversal scoring and a Borda rule for judgment aggregation

Given the agent’s judgment set A, let us think of the score of a proposition p ∈ X as a

measure of how ‘distant’ the negation ¬p is from A; so, p scores high if ¬p is far from A, and

low if ¬p is contained in A. More precisely, let the score of a proposition p given A ∈ D be

the number of judgment reversals needed to reject p, i.e., the number of propositions in A

that must (minimally) be negated in order to obtain a consistent judgment set containing

¬p. So, denoting the judgment set arising from A by negating the propositions in a subset

R ⊆ A by A¬R = (A\R) ∪ {¬r : r ∈ R}, so-called reversal scoring is defined by

sA(p) = number of judgment reversals needed to reject p (4)

= min
R⊆A:A¬R∈D&p�∈A¬R

|R| = min
A′∈D:p�∈A′

|A\A′| = min
A′∈D:p�∈A′

dHam(A,A
′).

For instance, a rejected proposition p �∈ A scores zero, since A itself contains ¬p so that

it suffices to negate zero propositions (R = ∅). An accepted proposition p ∈ A scores

1 if A remains consistent by negating p (R = {p}), and scores more than 1 otherwise

(R � {p}). Table 3 illustrates reversal scoring for our doctrinal paradox example. For

instance, individual 1’s judgment set pqr leads to a score of 2 for proposition p, since in

order for him to reject p he needs to negate not just p (as ¬pqr is inconsistent), but also

r (where ¬pq¬r is consistent). The scoring rule delivers a tie between the judgment sets

Score of...

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r
Indiv. 1 (pqr) 2 0 2 0 2 0 6 2 2 0

Indiv. 2 (p¬q¬r) 1 0 0 2 0 2 1 5 2 4

Indiv. 3 (¬pq¬r) 0 2 1 0 0 2 1 2 5 4

Group 3 2 3 2 2 4 8 9* 9* 8

Table 3: Reversal scoring (4) for the doctrinal paradox agenda and profile

p¬q¬r and ¬pq¬r. This is a tie between two conclusion-based outcomes; the premise-based

outcome pqr is rejected (unlike for simple scoring in Section 3.1).

The remarkable feature of reversal scoring rule is that it generalizes Borda rule from

preference to judgment aggregation. Borda rule is initially only defined for the preference

agenda X (for a given finite set of alternatives), namely as the classical scoring rule w.r.t.

Borda scoring; see the last subsection. The key observation is that reversal scoring is

intimately linked to Borda scoring:

Remark 1 In the case of the preference agenda (for any finite set of alternatives), reversal

scoring s is given by (3) with SCO defined as classical Borda scoring.

Let me sketch the simple argument — it should sound familiar to social choice theorists.

Let s be reversal scoring, X the preference agenda for a set of alternatives K of size k <∞,

and SCO classical Borda scoring. Consider any xPy ∈ X and A ∈ D. If xPy ∈ X\A, then

8



¬xPy = yPx ∈ A, which implies sA(xPy) = 0, as required by (3). Now suppose xPy ∈ A.

Clearly, SCOA(x) > SCOA(y). Consider the alternatives in the order ≻ established by A:

xk ≻ xk−1 ≻ · · · ≻ x ≻ · · · ≻ y ≻ · · · ≻ x1,

where xj is the alternative with SCOA(xj) = j. Step by step, we now move y up in the

ranking, where each step consists in raising the position (score) of y by one. Each step

corresponds to negating one proposition in A, namely the proposition zPy where z is the

alternative that is currently being ‘overtaken’ by y. After exactly SCOA(x) − SCOA(y)

steps, y has ‘overtaken’ x, i.e., xPy has been negated. So, sA(xPy) is at most SCOA(x)−
SCOA(y). It is exactly SCOA(x)− SCOA(y), since, as the reader may check, no smaller

number of judgment reversals allows y to ‘overtake’ x in the ranking.

Remark 1 and Proposition 2 imply that reversal scoring allows us to extend Borda rule

to arbitrary judgment aggregation problems:

Proposition 3 The reversal scoring rule generalizes Borda rule, i.e., matches it in the

case of the preference agenda (for any finite set of alternatives).

I note that one could use a perfectly equivalent variant of reversal scoring s which, in

the case of the preference agenda, is related to classical Borda scoring SCO via (2) instead

of (3):

Remark 2 Reversal scoring s is equivalent (in terms of the resulting scoring rule) to the

scoring s′ given by

s′A(p) = sA(p)− sA(¬p) =
�

sA(p) if p ∈ A

−sA(¬p) if p �∈ A,

and in the case of the preference agenda (for any finite set of alternatives) this scoring is

given by

s′A(xPy) = SCOA(x)− SCOA(y)

with SCO defined as classical Borda scoring.

For comparison, I now sketch Zwicker’s (2011) interesting approach to extending Borda

rule to judgment aggregation — let me call such an extension a ‘Borda-Zwicker’ rule. The

motivation derives from a geometric characterization of Borda preference aggregation ob-

tained by Zwicker (1991). Let me write the agenda as X = {p1,¬p1, p2,¬p2, ..., pm,¬pm},
where m is the number of ‘issues’. Each profile gives rise to a vector v ≡ (v1, ..., vm) in Rm

whose jth entry vj is the net support for pj , i.e., the number of individuals accepting pj mi-

nus the same number for ¬pj . Now if X is the preference agenda for any finite set of alterna-

tives K, then each pj takes the form xPy for certain alternatives x, y ∈ K. Each preference

cycle can be mapped to a vector in Rm; for instance, if p1 = xPy, p2 = yPz and p3 = xPz,

then the cycle x ≻ y ≻ z ≻ x becomes the vector (1, 1,−1, 0, ..., 0) ∈ Rm. The linear

span of all vectors corresponding to preference cycles defines the so-called ‘cycle space’

Vcycle ⊆ Rm, and its orthogonal complement defines the ‘cocycle space’ Vcocycle ⊆ Rm.

Let vcocycle be the orthogonal projection of v on the cocycle space Vcocycle. Intuitively,

vcocycle contains the ‘consistent’ or ‘acyclic’ part of v. The upshot is that the Borda out-

come can be read off from vcocyle: for each pj = xPy, the Borda group preference ranks x

9



above (below) y if the jth entry of vcocyle is positive (negative). Zwicker’s strategy for ex-

tending Borda rule to judgment aggregation is to define a subspace Vcycle analogously for

agendas other than the preference agenda; one can then again project v on the orthogonal

complement of Vcycle and determine collective ‘Borda’ judgments according to the signs of

the entries of this projection. This approach has proved successful for simple agendas, in

which there is a natural way to define Vcycle. Whether the approach is viable for general

agendas (i.e., whether Vcycle has a useful general definition) seems to be open so far.9

A Borda-Zwicker rule is not just constructed differently from a scoring rule in our sense,

but, as I conjecture, it also cannot generally be remodelled as a scoring rule, since most

interesting scoring rules use information that goes beyond the information contained in

the profile’s ‘net support vector’ v ∈ Rm. (Even more does the required information go

beyond the projection of v on the orthogonal complement of Vcycle.)

In summary, there seem to exist two quite different approaches to generalizing Borda

aggregation. One approach, taken by Zwicker, seeks to filter out the profile’s ‘inconsistent

component’ along the lines of the just-described geometric technique. The other approach,

taken here, seeks to retain the principle of score-maximization inherent in Borda aggrega-

tion (with scoring now defined at the level of propositions, not alternatives, as these do

not exist outside the world of preferences). The normative core of the scoring approach is

to use information about someone’s strength of accepting a proposition (as measured by

the score), just as Borda preference aggregation uses information about someone’s strength

of preferring one alternative x over another y (as measured by the score of xPy, i.e., the

difference between x’s and y’s score). Whether strength or intensity of preference is a

permissible or even meaningful concept is a notoriously controversial question; the purely

ordinalist approach takes a sceptical stance here. This is where Borda preference aggrega-

tion differs from Condorcet’s rule of pairwise majority voting, which uses only the (ordinal)

information of whether someone prefers an alternative over another, without attempting

to extract strength-of-preference information from that person’s full preference relation.

3.4 A generalization of reversal scoring

Recall that the reversal score of a proposition p can be characterized as the distance by

which one must deviate from the current judgment set in order to reject p — where ‘distance’

is understood as Hamming-distance. It is natural to also consider other kinds of a distance.

Relative to any given distance function d over D, one may define a corresponding scoring

by

sA(p) = distance by which one must depart from A to reject p (5)

= min
A′∈D:p�∈A′

d(A,A′).

This provides us with a whole class of scoring rules, all of which are variants of our

judgment-theoretic Borda rule. In the special case of the preference agenda, we thus

obtain new variants of classical Borda rule.

Interestingly, if we adopt Duddy and Piggins’ (2011) distance function, i.e., if d(A,A′)

is the number of minimal consistent modifications needed to transform A into A′,10 then

9 One might at first be tempted to generally define Vcycle as the linear span of those vectors which

correspond to the agenda’s minimal inconsistent subsets. Unfortunately, this span is often the entire space

Rm, an example for this being our doctrinal paradox agenda.
10 Judgment sets A,B ∈ D are minimal consistent modifications of each other if the set S = A\B of
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scoring (5) reduces to simple scoring (1), and so the scoring rule reduces to the Hamming

rule by Proposition 1. So, ironically, while Duddy and Piggins had introduced their distance

in the different context of distance-based aggregation to develop an alternative to Hamming

rule, when we use their distance (instead of Hamming’s) in our context of scoring rules we

are led back to Hamming rule.

3.5 Scoring based on logical entrenchment

We now consider scoring rules which explicitly exploit the logical structure of the agenda.

Let us think of the score of a proposition p (∈ X) given the judgment set A (∈ D) as the

degree to which p is logically entrenched in the belief system A, i.e., as the ‘strength’ with

which A entails p. We measure this strength by the number of ways in which p is entailed

by A, where each ‘way’ is given by a particular judgment subset S ⊆ A which entails p,

i.e., for which S ∪ {¬p} is inconsistent. If A does not contain p, then no judgment subset

— not even the full set A — can entail p; so the strength of entailment (score) of p is zero.

If A contains p, then p is entailed by the judgment subset {p}, and perhaps also by very

different judgment subsets; so the strength of entailment (score) of p is positive and more

or less high.

There are different ways to formalise this idea, depending on precisely which of the

judgment subsets that entail p are deemed relevant. I now propose four formalizations.

Two of them will once again allow us to generalize Borda rule from preference to judgment

aggregation. These generalizations differ from that based on reversal scoring in Section

3.3.

Our first, naive approach is to count each judgment subset which entails p as a separate,

full-fledged ‘way’ in which p is entailed. This leads to so-called entailment scoring, defined

by:

sA(p) = number of judgment subsets which entail p (6)

= |{S ⊆ A : S entails p}| .

If p �∈ A then sA(p) = 0, while if p ∈ A then sA(p) ≥ 2|X|/2−1 since p is entailed by at least

all sets S ⊆ A which contain p, i.e., by at least 2|A|−1 = 2|X|/2−1 sets. One might object

that this definition of scoring involves redundancies, i.e., ‘multiple counting’. Suppose for

instance p belongs to A and is logically independent of all other propositions in A. Then p

is entailed by several subsets S of A — all S ⊆ A which contain p — and yet these entailments

are essentially identical since all premises in S other than p are irrelevant.

I now present three refinements of scoring (6), each of which responds differently to the

mentioned redundancy objection. In the first refinement, we count two entailments of p

as different only if they have no premise in common. This leads to what I call disjoint-

entailment scoring, formally defined by:

sA(p) = number of mutually disjoint judgment subsets entailing p (7)

= max{m : A has m mutually disjoint subsets each entailing p}.
propositions in A which need to be negated to transform A into B is non-empty and minimal (i.e., A

couldn’t have been transformed into a consistent set by negating only a strict non-empty subset of S). For

our doctrinal paradox agenda, the judgment sets pqr and p¬q¬r are minimal consistent modifications of

each other, and hence have Duddy-Piggins-distance of 1.

11



In the mentioned case where p (∈ A) is logically independent of all other propositions in

A, we now avoid ‘multiple counting’: sA(p) is only 1, as one cannot find different mutually

disjoint judgment subsets entailing p. For our doctrinal paradox agenda and profile, the

scoring rule delivers a tie between the two conclusion-based outcomes p¬q¬r and ¬pq¬r,

Score of...

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r
Indiv. 1 (pqr) 2 0 2 0 2 0 6 2 2 0

Indiv. 2 (p¬q¬r) 1 0 0 2 0 2 1 5 2 4

Indiv. 3 (¬pq¬r) 0 2 1 0 0 2 1 2 5 4

Group 3 2 3 2 2 4 8 9* 9* 8

Table 4: Disjoint-entailment scoring (7) for the doctrinal paradox agenda and profile

as illustrated in Table 4. For instance, individual 2 has judgment set p¬q¬r, so that p

sores 1 (it is entailed by {p} but by no other disjoint judgment subset), ¬q scores 2 (it

is disjointly entailed by {¬q} and {p,¬r}), ¬r scores 2 (it is disjointly entailed by {¬r}
and {¬q}), and all rejected propositions score zero (they are not entailed by any judgment

subsets).

Disjoint-entailment scoring turns out to match reversal scoring for our doctrinal paradox

agenda (check that Tables 3 and 4 coincide), as well as for the preference agenda (as shown

later). Is this pure coincidence? The general relationship is that the disjoint-entailment

score of a proposition p is always at most the reversal score, as one may show.11

While this refinement of naive entailment scoring (6) avoids ‘multiple counting’ by only

counting entailments with mutually disjoint sets of premises, the next two refinements use

a different strategy to avoid ‘multiple counting’. The new strategy is to count only those

entailments whose sets of premises are minimal — with minimality understood either in the

sense that no premises can be removed, or in the sense that no premises can be logically

weakened. To begin with the first sense of minimality, I say that a set minimally entails

p (∈ X) if it entails p but no strict subset of it entails p, and I define minimal-entailment

scoring by

sA(p) = number of judgment subsets which minimally entail p (8)

= |{S ⊆ A : S minimally entails p}| .

If for instance p is contained in A, then {p} minimally entails p,12 but strict supersets of

{p} do not and are therefore not counted. For our doctrinal paradox agenda, this scoring

happens to coincide with reversal scoring and disjoint-entailment scoring. Indeed, Table 3

resp. 4 still applies; e.g., for individual 2 with judgment set p¬q¬r, p still scores 1 (it is

minimally entailed only by {p}), ¬q still scores 2 (it is minimally entailed by {¬q} and by

{p,¬r}), ¬r still scores 2 (it is minimally entailed by {¬r} and by {¬q}), and all rejected

propositions still score zero (they are not minimally entailed by any judgment subsets).

Scoring (8) is certainly appealing. Nonetheless, one might complain that it still al-

lows for certain redundancies, albeit of a different kind. Consider the preference agenda

with set of alternatives K = {x, y, z,w}, and the judgment set A = {xPy, yPz, zPw,

11 The reason is that, given m mutually disjoint judgment subsets which each entail p, the reversal score

of p is at least m since one must negate at least one proposition from each of these m sets in order to

consistently reject p.
12 Assuming that p is not a tautology, i.e., that {¬p} is consistent. (Otherwise, ∅ minimally entails p.)
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xPz, yPw, xPw} (∈ D). The proposition xPw is minimally entailed by the subset

S = {xPy, yPz, zPw}. While this entailment is minimal in the (set-theoretic) sense that

we cannot remove premises, it is non-minimal in the (logical) sense that we can weaken

some of its premises: if we replace xPy and yPz in S by their logical implication xPz,

then we obtain a weaker set of premises S′ = {xPz, zPw} which still entails xPw. We

shall say that S fails to ‘irreducibly’ entail xPw, in spite of minimally entailing it. In

general, a set of propositions is called weaker than another one (which is called stronger)

if the second set entails each member of the first set, but not vice versa. A set S (⊆ X)

is defined to irreducibly (or logically minimally) entail p if S entails p, and moreover there

is no subset Y � S which can be weakened (i.e., for which there is a weaker set Y ′ ⊆ X

such that (S\Y )∪ Y ′ still entails p). Each irreducible entailment is a minimal entailment,

as is seen by taking Y ′ = ∅.13 In the previous example, the set {xPy, yPz, zPw} mini-

mally, but not irreducibly entails xPw, and the set {xPz, zPw} irreducibly entails xPw.

Irreducible-entailment scoring is naturally defined by

sA(p) = number of judgment subsets which irreducibly entail p (9)

= |{S ⊆ A : S irreducibly entails p}| .

This scoring matches reversal scoring and both previous scorings in the case of our doc-

trinal paradox example: Table 3 resp. 4 still applies. But for many other agendas these

scorings all deviate from one another, resulting in different collective judgments. As for

the preference agenda, we have already announced the following result:

Proposition 4 Disjoint-entailment scoring (7) and irreducible-entailment scoring (9) match

reversal scoring (4) in the case of the preference agenda (for any finite set of alternatives).

Propositions 3 and 4 jointly have an immediate corollary.

Corollary 1 The scoring rules w.r.t. scorings (7) and (9) both generalize Borda rule, i.e.,

match it in the case of the preference agenda (for any finite set of alternatives).

3.6 Propositionwise scoring and a way to repair quota rules with

non-rational outputs

We now consider a special class of scorings: propositionwise scorings. This will allow us to

relate scoring rules to the well-known judgment aggregation rules called quota rules — in

fact, to ‘repair’ these rules by rendering their outcomes rational across all profiles.

I call scoring s propositionwise if the score of a proposition p ∈ X only depends on

whether p is accepted, i.e., if sA(p) = sB(p) whenever A and B (in D) both contain p or

both do not contain p. Equivalently, scoring is propositionwise just in case for each p ∈ X

there is a pair of real numbers s+(p), s−(p) such that

sA(p) =

�
s+(p) for all A ∈ D containing p

s−(p) for all A ∈ D not containing p.
(10)

Intuitively, s+(p) is the score of an accepted proposition p, and s−(p) is the score of a

rejected proposition p. Typically, of course, s+(p) > s−(p). An example is simple scoring:

there, s+(p) = 1 and s−(p) = 0.

13 Assuming X contains no tautology, i.e., no p such that {¬p} is inconsistent.
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How do propositionwise scoring rules behave? They derive a proposition p’s sum-total

score ‘locally’, i.e., based only on people’s judgments about p. This property stands in

obvious analogy to a well-studied axiom on aggregation rules, namely the axiom of propo-

sitionwise or independent aggregation, which prescribes that the collective judgment about

any given proposition p is derived ‘locally’, i.e., again based only on people’s judgments

about p. Can we therefore relate propositionwise scoring to independent aggregation?

The paradigmatic independent aggregation rules are the quota rules.14 A quota rule is a

(single-valued) aggregation rule which is given by an acceptance threshold mp ∈ {1, ..., n}
for each proposition p ∈ X. The quota rule corresponding to the so-called threshold family

(mp)p∈X is denoted F(mp)p∈X and accepts those propositions p which are supported by at

least mp individuals: for each profile (A1, ..., An) ∈ Dn,

F(mp)p∈X (A1, ..., An) = {p ∈ X : |{i : p ∈ Ai}| ≥mp}.
Special cases are unanimity rule (given by mp = n for all p), majority rule (given by

the majority threshold mp = ⌈(n+ 1)/2⌉ for all p), and more generally, uniform quota

rules (given by a uniform threshold mp ≡ m for all p). A uniform quota rules is also

referred to as a supermajority rule if m exceeds the majority threshold, and a submajority

rule if m is below the majority threshold. Note that supermajority rules may generate

incomplete collective judgment sets, while submajority rule may accept both members of

a pair p,¬p ∈ X, a drastic form of inconsistency. If one wishes that exactly one member

of each pair p,¬p ∈ X is accepted, the thresholds of p and ¬p should be ‘complements’ of

each other: mp = n+ 1−m¬p.

A non-trivial question is how the acceptance thresholds would have to be set to ensure

that the collective judgment set satisfies some given degree of rationality, such as to be (i)

consistent, or (ii) deductively closed, or (iii) consistent and deductively closed, or even (iv)

fully rational, i.e., in D. These questions have been settled (see Nehring and Puppe 2010a

for (iv), and, subsequently, Dietrich and List 2007b for (i)-(iv)). Unfortunately, for many

agendas the thresholds would have to be set at ‘extreme’ and normatively unattractive

levels. Worse, often no thresholds achieve (iv) (see Nehring and Puppe 2010a). For our

doctrinal paradox agenda X = {p, q, r}± only the extreme thresholds mp = mq = mr = n

and m¬p = m¬q = m¬r = 1 achieve (iv), and for the preference agenda (with more than

two alternatives) no thresholds achieve (iv).

Given that quota rules with ‘reasonable’ thresholds typically violate many of the condi-

tions (i)-(iv), one may want to depart from ordinary quota rules by modifying (‘repairing’)

them so that they always generate rational outputs. This can be done by using proposi-

tionwise scoring rules. Given an arbitrary quota rule with threshold family (mp)p∈X , one

can specify a propositionwise scoring such that the scoring rule replicates the quota rule

whenever the quota rule generates a rational output, while ‘repairing’ the output other-

wise. How must we calibrate s+(p) and s−(p) in order to achieve this? The idea is that

individuals who accept p should contribute a positive score s+(p) > 0, while those who

reject p should contribute a negative score s−(p) < 0. The absolute sizes of s+(p) and

s−(p) should be calibrated such that the sum-total score of p becomes positive (helping

the scoring rule to accept p) exactly when the quota rule accepts p, i.e., when at least mp
individuals accept p. Specifically, we set:

sA(p) =

�
s+(p) = n+ 1−mp for all A ∈ D containing p

s−(p) = −mp for all A ∈ D not containing p.
(11)

14 They are the only independent rules which are anonymous, monotonic and unanimity-preserving.

14



Intuitively, the higher the acceptance threshold mp is, the smaller the positive contribution

s+(p) is and the larger the negative contribution s−(p) is (in absolute value); hence, the

more individuals accepting p are needed for p’s sum-total score to get positive, and the

harder it becomes for the scoring rule to accept p. This scoring does the intended job:

Proposition 5 For every threshold family (mp)p∈X , the scoring rule w.r.t. scoring (11)

matches the quota rule F(mp)p∈X at all profiles where the quota rule generates rational

outputs (and still generates rational outputs at all other profiles).

As an example, consider our doctrinal paradox agenda X = {p, q, r}± with n = 3

individuals, and suppose the quota rule departs only slightly from propositionwise majority

voting: all propositions t in X\{¬r} keep a majority threshold of mt = 2, but ¬r receives

a unanimity threshold m¬r = 3. This quota rule manages to never generate logically

inconsistent collective judgment sets,15 but does so at the expense of allowing collective

incompleteness. Indeed, for our example profile, the quota rule returns the collective

judgment set pq, which is silent on the choice between r nor ¬r. As illustrated in Table 5,

the scoring rule w.r.t. (11) restores collective rationality by leading to the premise-based

Score of...

p ¬p q ¬q r ¬r pqr p¬q¬r ¬pq¬r ¬p¬q¬r
Indiv. 1 (pqr) 2 -2 2 -2 2 -3 6 -3 -3 -7

Indiv. 2 (p¬q¬r) 2 -2 -2 2 -2 1 -2 5 -3 1

Indiv. 3 (¬pq¬r) -2 2 2 -2 -2 1 -2 -3 5 1

Group 2 -2 2 -2 -2 -1 2* -1 -1 -5

Table 5: Scoring (11) for the doctrinal paradox agenda and profile

outcome pqr. To read the table, note that scoring (11) is given by s+(t) = 2 and s−(t) = −2
for all t in X\{¬r}, s+(¬r) = 1 and s−(¬r) = −3.

How does our scoring rule ‘repair’ those special quota rules which use a uniform thresh-

old m ≡mp (p ∈ X), such as majority rule?

Remark 3 For a uniform threshold m ≡ mp, the scoring rule w.r.t. scoring (11) is the

Hamming rule, or equivalently, the simple scoring rule.

This remark follows from Proposition 1 and the fact that, for a uniform threshold

m ≡ mp, scoring (11) is equivalent to simple scoring by footnote 6.

Finally, I note that the scoring rules w.r.t. (11) is not the only scoring rule which can

‘repair’ the quota rule F(mp)p∈X — though it might be the most plausible one, as long as we

do not wish to introduce additional parameters. If, however, we are prepared to introduce

additional parameters, scoring (11) can be generalized: for each p ∈ X let αp > 0 be a

coefficient measuring how important it is that the scoring rule is faithful to the quota rule’s

collective judgment on p; and let scoring be defined by

sA(p) =

�
s+(p) = αp(n+ 1−mp) if p ∈ A

s−(p) = −αpmp if p �∈ A.
(12)

15 This follows from Nehring and Puppe’s (2010) intersection property, generalized to possibly incomplete

collective judgment sets (Dietrich and List 2007b).
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The earlier scoring (11) is obviously a special case in which all αp are 1. Proposition

5 still holds for this generalized kind of propositionwise scoring. The scoring rule will

tend to match the quota rule on propositions p with high importance coefficient αp, while

modifying (‘repairing’) the quota rule at propositions p with low αp.

3.7 Premise- and conclusion-based aggregation

I have just mentioned the possibility of a differential treatment of propositions when ‘re-

pairing’ a quota rule. This possibility is particularly salient in the popular context of

premise- or conclusion-based aggregation.16 One may indeed view the classical premise-

and conclusion-based rules as two (rival) ways of repairing the simplest of all quota rules —

majority rule — by privileging certain propositions over others, namely premise propositions

or conclusion propositions, respectively.

Let me put this precisely. Consider majority voting, i.e., the quota rule with a uniform

majority threshold m ≡ mp (the smallest integer above n/2). To restore collective ratio-

nality, we again endow each proposition p ∈ X with a ‘coefficient of importance’, but now

let this coefficient be determined by whether p has a ‘premise’ or ‘conclusion’ status. For-

mally, suppose the agenda is partitioned into two negation-closed sets, the set P of ‘premise

propositions’ and the set X\P of ‘conclusion propositions’. In the case of our doctrinal

paradox agenda X = {p, q, r}±, we have P = {p, q}±. Each premise proposition p ∈ P has

the importance coefficient αp ≡ αpremise, and each conclusion proposition p ∈ X\P has

the importance coefficient αp ≡ αconclusion, for fixed parameters αpremise, αconclusion ≥ 0.
In this scenario, the scoring (12) becomes equivalent (by footnote 6) to the scoring given

by

sA(p) =






αpremise for accepted premise propositions p ∈ A ∩ P

αconclusion for accepted conclusion propositions p ∈ A\P
0 for rejected propositions p �∈ A.

(13)

By calibrating the two importance coefficients, we can influence the relative weights of

premises and conclusions. If we give far more importance to premise propositions (αpremise ≫
αcoclusion) or to conclusion propositions (αcoclusion ≫ αpremise), the scoring rule reduces to

the premise- or conclusion-based rule, respectively. To substantiate this claim, one needs

to define both rules. For simplicity, I restrict attention to our doctrinal paradox agenda

X = {p, q, r}± with P = {p, q}± (though more general X and P could be considered17).

In this case, assuming for simplicity that the group size n is odd,

• the premise-based rule is the aggregation rule which for each profile in Dn delivers

the (unique) judgment set in D containing each premise proposition accepted by a

majority;

• the conclusion-based rule is the aggregation rule which for each profile in Dn delivers

the judgment set (or sets) in D containing the conclusion proposition accepted by a

majority.18

These two rules have the following characterizations as scoring rules:

16 See for instance List (2004), Dietrich and Mongin (2010) and Nehring and Puppe (2010b).
17 Our analysis generalizes easily to any X and P such that (i) the premise propositions in P are logically

independent, and (ii) complete judgments across the premise propositions in P uniquely determine the

judgments on the conclusion propositions in X\P .
18 In the literature, the conclusion-based procedure is usually taken to be silent on the premises, i.e., to

return an incomplete judgment set not in D. I have replaced this silence by a tie between all compatible

judgments on the premise propositions.
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Remark 4 For our doctrinal paradox agenda X = {p, q, r}± with set of premise proposi-

tions P = {p, q}±, and for an odd group size, the scoring rule w.r.t. scoring (13) is

• the premise-based rule if and only if αpremise > (n− 2)αconclusion,
• the conclusion-based rule if and only if αconclusion > αpremise = 0.

This result lets premise- and conclusion-based aggregation appear in a rather ex-

treme light: each rule is based on somewhat unequal importance coefficients αpremise and

αconclusion, deeming one type of proposition to be overwhelmingly more important than

the other. It might therefore be interesting to consider more equilibrated values of the

importance coefficients, so as to achieve a compromise between democracy at the premise

level and democracy at the conclusion level.

4 Set scoring rules: assigning scores to entire judgment

sets

An interesting generalization of scoring rules is obtained by assigning scores directly to

entire judgment sets rather than single propositions. A set scoring function — or simply set

scoring — is a function σ which to every pair of rational judgment sets C and A assigns a

real number σA(C), the score of C given A, which measures how well C performs (‘scores’)

from the perspective of holding the judgment set A. Formally, σ : D ×D → R. The most

elementary example, to be called naive set scoring, is given by

σA(C) =

�
1 if C = A

0 if C �= A.
(14)

Any set scoring σ gives rise to an aggregation rule Fσ, the set scoring rule (or general-

ized scoring rule) w.r.t. σ, which for each profile (A1, ..., An) ∈ Dn selects the collective

judgment set(s) C in D having maximal sum-total score across individuals:

Fσ(A1, ..., An) = argmaxC∈D
�

i∈N

σAi(C).

An aggregation rule is a set scoring rule simpliciter if it is the set scoring rule w.r.t. to

some set scoring σ. Set scoring rules generalize ordinary scoring rules, since to any ordinary

scoring s corresponds a set scoring σ, given by

σA(C) ≡
�

p∈C

sA(p),

and the ordinary scoring rule w.r.t. s coincides with the set scoring rule w.r.t. σ.

4.1 Naive set scoring and plurality voting

Plurality rule is the aggregation rule F which for every profile (A1, ..., An) ∈ Dn declares

the most often submitted judgment set(s) as the collective judgment set(s):

F (A1, ..., An) = most frequently submitted judgment set(s)

= argmaxC∈D |{i : Ai = C}| .
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This rule is of course normatively questionable;19 but it deserves our attention, if only

because of its simplicity and the recognized importance of plurality voting in social choice

theory more broadly. Plurality rule can be construed as a set scoring rule:

Remark 5 The naive set scoring rule is plurality rule.

4.2 Distance-based set scoring

Set scoring rules generalize distance-based aggregation. Given an arbitrary distance func-

tion d over D (not necessarily the Hamming-distance), all that is needed is to consider

what I call distance-based set scoring, defined by

σA(C) = −d(C,A). (15)

So, C scores high if it is close to the judgment set held, A. This renders sum-score-

maximization equivalent to sum-distance-minimization:

Remark 6 For every given distance function over D, the distance-based set scoring rule

is the distance-based rule.

So, all distance-based rules can be modelled as set scoring rules (but not vice versa20).

As an example, consider the so-called discrete distance,21 defined by

d(A,B) =

�
0 if A = B

1 if A �= B.

Here, distance-based set scoring (15) is equivalent to naive set scoring (14), since the two

differ only by a constant (of one). So, joining Remarks 5 and 6, we may view plurality rule

either as the naive set scoring rule or as the discrete-distance-based rule.

4.3 Approximating the ‘average voter’

Given an ordinary scoring s, we have so far aimed for collective judgments with high total

score. But this is not the only plausible aim or approach. We now turn to an altogether

different approach. Rather than using s to assign scores only from each individual’s per-

spective, we now care about how propositions score under the collective judgment set.

Instead of wanting the collective judgments to get highest total score from individuals,

we now want them to resemble an ‘average individual’s judgments’ in the sense that the

collective judgments should lead (approximately) to the same scores of propositions as the

individual judgments do on average. In short, any proposition p’s collective score should be

(approximately) p’s average individual score. This approach has its own, rather different

intuitive appeal. But is it really totally different? As will turn out, aggregation rules which

19 It ignores the internal structure of judgment sets, hence ‘throws away’ much information.
20 In trying to re-model an arbitrary set scoring rule Fσ as a distance-based rule, one might be tempted

to define the ‘distance’ between A and B as dσ(A,B) := σA(A)−σA(B). If dσ turns out to define a proper

distance function (see fn. 7), then we obtain a distance-based rule Fdσ , which coincides with the set scoring

rule Fσ . But for many plausible set scorings σ, dσ has little in common with a distance function, violating

up to all three axioms, notably symmetry and the triangle inequality.
21 This metric derives its name from the fact that it induces the discrete topology on whatever set it is

defined on (such as R instead of D).
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follow this approach — I call them ‘average-score rules’ as opposed to ‘scoring rules’ — can

be viewed as a particular kind of set scoring rules. This result is in fact a special case of a

powerful precursor result by Zwicker (2008), as Marcus Pivato kindly pointed out to me.22

Given an ordinary scoring s, we can represent judgment sets in D as vectors in RX , by

identifying each judgment set A in D with its score vector, i.e., the vector in RX whose pth

component is the score of p, sA(p).
23 The score vector corresponding to A ∈ D is denoted

As ≡ (sA(p))p∈X ∈ RX . Having represented judgment sets as vectors of numbers, we can

apply standard algebraic and geometric operations, such as adding judgment sets, taking

their average, or measuring their distance — where, of course, sums or averages of (score

vectors of) judgment sets in D may be ‘infeasible’, i.e., not correspond to any judgment

set in D.

The average-score rule w.r.t. scoring s is defined as the aggregation rule F which for

every profile (A1, ...,An) ∈ Dn chooses the collective judgment set(s) whose score vector

comes closest to the group’s average score vector 1
n

�
i∈N Asi in the sense of Euclidean

distance in RX :

F (A1, ..., An) = j.s. closest to the average individual j.s. in score vector terms

= argminC∈D

�����
Cs − 1

n

�

i∈N

Asi

�����
.

Viewed geometrically as an operation in RX , the collective score vector is the orthogonal

projection of the average score vector 1
n

�
iA
s
i on the set Ds ≡ {As : A ∈ D} ⊆ RX of

feasible score vectors.24

As an illustration, consider once again reversal scoring for our doctrinal paradox agenda.

Table 6 reports the score vector of each judgment set (including the one not submitted by

p ¬p q ¬q r ¬r distance to group’s average

pqr (indiv. 1) 2 0 2 0 2 0
√
58/3 ≈ 2.54

p¬q¬r (indiv. 2) 1 0 0 2 0 2
√
37/3 ≈ 2.03

¬pq¬r (indiv. 3) 0 2 1 0 0 2
√
37/3 ≈ 2.03

¬p¬q¬r (no indiv.) 0 1 0 1 0 3 7/3 ≈ 2.33
group’s average 1 2

3 1 2
3

2
3

4
3

Table 6: The average-score rule (w.r.t. reversal scoring) for the doctrinal paradox agenda

and profile

any individual), and its distance to the group’s average score vector. By minimizing this

distance, the rule delivers a tie between the two conclusion-based outcomes p¬q¬r and

¬pq¬r. The premise-based outcome pqr looks worse than ever: it is even farther from the

average than the never-submitted outcome ¬p¬q¬r.

Now that we have two rival ways of aggregating based on a scoring s — namely, the

scoring rule and the average-score rule — the question is whether any connection can be

22 Average-score rules are special cases of Zwicker’s ‘mean proximity rules’ in his abstract, more gen-

eral aggregation framework. Zwicker’s Theorem 4.2.1 (more precisely, its proof) reveals that any ‘mean

proximity rule’ can be given a representation which essentially corresponds to our representation of an

average-score rule in Proposition 6.
23 This identification is one-to-one as long as the scoring has the (very plausible) property that sA(p) >

sA(¬p) whenever p ∈ A.
24 Formally, F (A1, ..., An)s = PROJDs( 1

n

�
iA

s
i ), where the orthogonal projection of x ∈ RX on Y ⊆ RX

is defined as PROJY (x) := argminy∈Y �y − x�.
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established. The average-score rule can be construed as a set scoring rule, namely in virtue

of the set scoring given by

σA(C) = −�Cs −As�2 . (16)

Here, C is taken to score high if it is close to A in terms of the squared Euclidean distance

of score vectors.

Proposition 6 For any scoring s, the average-score rule w.r.t. s is the set scoring rule

w.r.t. set scoring (16).

As an application, let s be simple scoring (1). Here, the set scoring (16) is expressible

as an increasing affine transformation of the set scoring corresponding to simple scoring,

i.e., of the set scoring σ′ given by25

σ′A(C) =
�

p∈C

sA(p) = |C ∩A| .

So, the set scoring rule Fσ coincides with the simple scoring rule Fs, and hence with the

Hamming rule FdH a m
by Proposition 1. Thus, as a corollary of Propositions 1 and 6, the

Hamming rule can be characterized not just as a scoring rule but also as an average-score

rule, both times using the same scoring:

Corollary 2 The Hamming rule is the scoring rule and the average-score rule, both times

w.r.t. simple scoring.

4.4 Probability-based set scoring

I close the analysis by taking a brief (skippable) excursion into an important, but differ-

ent approach to judgment aggregation: the epistemic or truth-tracking approach. In this

approach, each proposition p ∈ X is taken to have an objective, but unknown truth value

(‘true’ or ‘false’), and the goal of aggregation is to track the truth, i.e., to generate true

collective judgments.26 The truth-tracking perspective has a long history elsewhere in so-

cial choice theory (e.g., Condorcet 1785, Grofman et al. 1983, Austen-Smith and Banks

1996, Dietrich 2006b, Pivato 2011a); but within judgment aggregation theory specifically,

rather little work has been done on the epistemic side (e.g., Bovens and Rabinowicz 2006b,

List 2005, Bozbay et al. 2011).

The epistemic approach warrants the use of particular set scoring rules. To show this, I

import standard statistical estimation techniques (such as maximum-likelihood estimation),

following the path taken by other authors in the context of preference aggregation (e.g.,

Young 1995) and other aggregation problems (e.g., Dietrich 2006b, Pivato 2011a). My goal

is to give no more than a brief introduction to what could be done. The results given below

are essentially variants of existing results; see in particular Pivato (2011a).27

25 Since σA(C) = −
��

|C △A|
�2
= −|C △A| = −2 |C\A| = −2 (|C| − |C ∩A|) = −|X|+ 2 |C ∩A|.

26 The epistemic perspective is usually contrasted with the procedural perspective, which takes the goal of

aggregation to be to generate collective judgments which reflect the individuals’ judgments in a procedurally

fair way. To illustrate the contrast between the two perspectives, suppose that all individuals hold the same

judgment set A. Then A is clearly the right collective judgment set from the perspective of procedural

fairness. But from an epistemic perspective, all depends on whether people’s unanimous endorsement of

A is sufficient evidence for A being true.
27 Proposition 7 follows from proofs in Pivato (2011a), and is also related to Dietrich (2006).
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For each combination (A1, ..., An, T ) ∈ Dn×D of n+1 judgment sets, let Pr(A1, ..., An, T )

> 0 measure the probability that people submit the profile (A1, ..., An) and the set of true

propositions is T , where of course
�
(A1,...,An,T )∈Dn×D Pr(A1, ..., An, T ) = 1. From this

joint probability function we can, as usual, derive various marginal and conditional prob-

abilities, such as the probability that the truth is T ∈ D, Pr(T ) =
�
(A1,...,An)∈Dn Pr(A1, ...,

An, T ), the probability that the profile is (A1, ..., An), Pr(A1, ..., An) =
�
T∈D Pr(A1, ..., An,

T ), the conditional probability Pr(T |A1, ..., An) = Pr(A1,...,An,T )
Pr(A1,...,An)

(called the posterior prob-

ability of T given the ‘data’ A1, ..., An), and the conditional probability Pr(A1, ..., An|T ) =
Pr(A1,...,An,T )

Pr(T ) (called the likelihood of the ‘data’ A1, ..., An given T ).

The maximum-likelihood rule is the aggregation rule F : Dn ⇒ D which for each profile

(A1, ..., An) ∈ Dn defines the collective judgments such that their truth would make the

observed profile (‘data’) maximally likely:

F (A1, ..., An) = argmaxT∈D Pr(A1, ..., An|T ).

The maximum-posterior rule is the aggregation rule F : Dn ⇒ D which for each profile

(A1, ..., An) ∈ Dn defines the collective judgments such that they have maximal posterior

probability of truth conditional on the observed profile (‘data’):

F (A1, ..., An) = argmaxT∈D Pr(T |A1, ...,An).

Both of these rules correspond to well-established statistical estimation procedures.

Let us now make two standard, but restrictive assumptions on probabilities. We assume

that voters are ‘independent’ and ‘equally competent’ (in analogy to the assumptions of

Condorcet’s classical jury theorem28). Formally, for every T ∈ D,

(IND) the individual judgment sets are independent conditional on T being the true judg-

ment set, i.e., Pr(A1, ..., An|T ) = Pr(A1|T ) · · ·Pr(An|T ) for all A1, ..., An ∈ D (‘in-

dependence’)

(COM) for each A ∈ D, each individual has the same probability, denoted Pr(A|T ), of

submitting the judgment set A conditional on T being the true judgment set (‘equal

competence’).

Condition (COM) in particular implies that individuals have the same (conditional)

probability of holding the true judgment set; but nothing is assumed about the size of

this probability of ‘getting it right’. The just-defined aggregation rules turn out to be set

scoring rules in virtue of defining the score of T ∈ D given A ∈ D by, respectively,

σA(T ) = log Pr(A|T ) (17)

σA(T ) = log Pr(A|T ) + 1

n
log Pr(T ). (18)

Proposition 7 If voters are independent (IND) and equally competent (COM), then

• the maximum-likelihood rule is the set scoring rule w.r.t. set scoring (17),

• the maximum-posterior rule is the set scoring w.r.t. set scoring (18).

28 The classical Condorcet jury theorem is essentially concerned with a simple judgment aggregation

problem with a binary agenda X = {p,¬p}.
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5 Concluding remarks

I hope to have convinced the reader that scoring rules, and more generally set scoring

rules, form interesting positive solutions to the judgment aggregation problem. They for

instance allow us to generalize Borda aggregation to judgment aggregation (the simplest

method being to use reversal scoring). Figure 1 summarizes where we stand by depicting

different classes of rules (scoring rules, set scoring rules, and distance-based rules) and

positioning several concrete rules (such as Hamming rule). While the positions of most

arbitrary rules 

distance-base
rules

scoring
rules

set scoring
rules 

the Condorcet-

admissibility rule

the “truth-tracking”

rules of Section 4.4

the Hamming rule

generalized 

Borda rule 

using, e.g., 

reversal scoring
non-anonymous 

rules

plurality rule
propositionwise

scoring rules

entailment-based

scoring rules (Section 3.4)

average-score

rules 

the premise-

and conclusion-

based rules 
(and other 

priority rules)

Figure 1: A map of judgment aggregation possibilities

rules in Figure 1 have been established above or follow easily, a few positions are of the

order of conjectures. This is so for the placement of our Borda generalization outside the

class of distance-based rules.29

Though several old and new aggregation rules are scoring rules (or at least set scoring

rules), there are important counterexamples. One counterexample is the mentioned rule

introduced by Nehring et al. (2011) (the so-called Condorcet-admissibility rule, which

generates rational judgment set(s) that ‘approximate’ the majority judgment set). Other

counterexamples are non-anonymous rules (such as rules prioritizing experts), and rules

that return boundedly rational collective judgments (such as rules returning incomplete but

still consistent and deductively closed judgments). The last two kinds of counterexamples

suggest two generalizations of the notion of a scoring rule. Firstly, scoring might be allowed

to depend on the individual; this leads to ‘non-anonymous scoring rules’. Secondly, the

search for a collective judgment set with maximal total score might be done within a larger

set than the set D of fully rational judgment sets (such as the set of consistent but possibly

incomplete judgment sets); this leads to ‘boundedly rational scoring rules’. The same

generalizations could of course be made for set scoring rules. Much work is ahead of us.

29 For technical correctness, I also note two details about how to read Figure 1. First, for trivial agendas,

such as a single-issue agenda X = {p,¬p}, several rules of course become equivalent, and distinctions

drawn in Figure 1 disappear. More precisely, by positioning a rule outside a class of rules (e.g., by

positioning plurality rule outside the class of scoring rules), I am of course not implying that for all

agendas the rule does not belong to the class, but that for some (in fact, most) agendas this is so. Second,

in placing propositionwise scoring rules among the distance-based rules, I made a very plausible restriction:

s+(p) > s−(p) for each p ∈ X.
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7 Appendix: proofs

Proof of Proposition 1. The Hamming-distance between A,C ∈ D can be written as

dHam (A,C) =
1

2
|A△B| = 1

2
(|X| − (|A ∩B|+

��A ∩B
��)).

Now, since A and C each contains exactly one member of each pair {p,¬p} ⊆ X, we

have p ∈ A ∩ C ⇔ ¬p ∈ A ∩ C, and so, |A ∩C| =
��A ∩C

��. Hence, dHam (A,C) =
1
2 |X| − |A ∩C|. So, for each profile (A1, ..., An) ∈ Dn, minimizing

�
i∈N dHam (Ai, C) is

equivalent to maximizing
�
i∈N |Ai ∩C|. Hence, rewriting each |Ai ∩C| as

�
p∈C sAi(p)

where s is simple scoring (1), it follows that FdH a m (A1, ..., An) = Fs(A1, ..., An). �

Before proving Proposition 2, I start with a lemma.

Lemma 1 Consider the preference agenda (for any finite set of alternatives K), any clas-

sical scoring SCO, and the scoring s given by (3). For all distinct x, y ∈ K and all A ∈ D,

SCOA(x)− SCOA(y) = sA(xPy)− sA(yPx). (19)
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Proof. This follows easily from (3). �

Two elements of a set of alternatives K are called neighbours w.r.t. a strict linear order

≻ over K if they differ and no alternative in K is ranked strictly between them. In the

case of the preference agenda (for a set of alternatives K), the strict linear order over K

corresponding to any A ∈ D is denoted ≻A.

Proof of Proposition 2. Consider the preference agenda X for a set of alternatives K of

finite size k, and let SCO be any classical scoring. I show that FSCO = Fs for each scoring

s satisfying (19), and hence for the scoring (3) (since it satisfies (19) by Lemma 1) and the

scoring (2) (since a half times it satisfies (19)).

Consider any scoring s satisfying (19). Fix a profile (A1, ..., An) ∈ Dn; I show Fs(A1, ...,

An) = FSCO(A1, ..., An). The proof is in three claims.

Claim 1. For all a, b ∈ K and C,C ′ ∈ D, if C\C ′ = {aPb}, then
�

i∈N

SCOAi(a)−
�

i∈N

SCOAi(b) =
�

i∈N,p∈C

sAi(p)−
�

i∈N,p∈C′

sAi(p).

Consider a, b ∈ K and C,C′ ∈ D such that C\C′ = {aPb}. For each individual i ∈ N ,

we by (19) have

SCOAi(a)− SCOAi(b) = sAi(aPb)− sAi(bPa),

which, noting that C′ = (C\{aPb}) ∪ {bPa}, implies that

SCOAi(a)− SCOAi(b) =
�

p∈C

sAi(p)−
�

p∈C′

sAi(p).

Summing over all individuals, the claim follows, q.e.d.

Claim 2. Fs(A1, ..., An) ⊆ FSCO(A1, ..., An).

Consider any C ∈ Fs(A1, ...,An). We have to show that C ∈ FSCO(A1, ..., An), i.e.,

that for all distinct x, y ∈ K,

�

i∈N

SCOAi(x) >
�

i∈N

SCOAi(y)⇒ xPy ∈ C,

or equivalently,

yPx ∈ C ⇒
�

i∈N

SCOAi(y) ≥
�

i∈N

SCOAi(x).

Said in yet another way, we have to show that

�

i∈N

SCOAi(xk) ≥
�

i∈N

SCOAi(xk−1) ≥ · · · ≥
�

i∈N

SCOAi(x1),

where I have labelled the alternatives x1, x2, ..., xk such that xk ≻C xk−1 ≻C · · · ≻C x1.

Consider any t ∈ {1, ..., k − 1}, and write a for xt+1 and b for xt. Let C′ be the judgment

set arising from C by replacing aPb with its negation bPa. Now C ′ ∈ D; this is because

a and b are neighbours w.r.t. ≻C , which guarantees that C ′ corresponds to a strict linear

order (namely to the same one as for C except that b now ranks above a). Since C ∈
Fs(A1, ..., An), C has maximal sum-total score within D; in particular,

�

i∈N,p∈C

sAi(p) ≥
�

i∈N,p∈C′

sAi(p),
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which by Claim 1 implies the desired inequality,
�

i∈N

SCOAi(a) ≥
�

i∈N

SCOAi(b), q.e.d.

Claim 3. FSCO(A1, ...,An) ⊆ Fs(A1, ..., An).

Consider any C ∈ FSCO(A1, ..., An). To show that C ∈ Fs(A1, ..., An), we consider an

arbitrary C′ ∈ D\{C} and have to show that C has an at least as high sum-total score as

C′: �

i∈N,p∈C

sAi(p) ≥
�

i∈N,p∈C′

sAi(p). (20)

To prove this, we first transform C gradually into C ′ in m ≡ |C′\C| steps, where each

step consists in a single judgment reversal, i.e., in the replacement of a single proposition

xPy (∈ C\C′) by its negation yPx (∈ C ′\C). This defines a sequence of judgment sets

C0, ..., Cm, where C0 = C and Cm = C ′, and where for each step t ∈ {1, ...,m} there is

a proposition xtPyt such that Ct = (Ct−1\{xtPyt}) ∪ {ytPxt}. Note that {xtPyt : t =

1, ...,m} = C\C′. By a standard relation-theoretic argument, we may assume that in each

step t the judgment reversal consists in switching the relative order of two neighbouring

alternatives; i.e., xt, yt are neighbours w.r.t. the old and new relations ≻Ct−1 and ≻Ct .
This guarantees that each step t generates a set Ct such that ≻Ct is still a strict linear

order, i.e., such that Ct ∈ D.

Now for each step t, by Claim 1 we have
�

i∈N

SCOAi(xt)−
�

i∈N

SCOAi(yt) =
�

i∈N,p∈Ct−1

sAi(p)−
�

i∈N,p∈Ct

sAi(p),

and also, since ytPxt �∈ C and C ∈ FSCO(A1, ..., An), we have
�

i∈N

SCOAi(yt) ≤
�

i∈N

SCOAi(xt);

it follows that �

i∈N,p∈Ct−1

sAi(p)−
�

i∈N,p∈Ct

sAi(p) ≥ 0.

Summing this inequality over all steps t ∈ {1, ...,m}, we obtain
�

i∈N,p∈C0

sAi(p)−
�

i∈N,p∈Cm

sAi(p) ≥ 0,

which is equivalent to the desired inequality (20) since C0 = C and Cm = C′. �

Proof of Remark 2. Let s′ be defined from reversal scoring s in the specified way.

Claim 1. s′ and s are equivalent.

Consider any profile (A1, ..., An) ∈ Dn. I show for all C,D ∈ D that
�

i∈N,p∈C

sAi(p) ≥
�

i∈N,p∈D

sAi(p)⇔
�

i∈N,p∈C

s′Ai(p) ≥
�

i∈N,p∈D

s′Ai(p).

Consider any C,D ∈ D. I prove that ∆ ≥ 0⇔ ∆′ ≥ 0, where

∆ ≡
�

i∈N,p∈C

sAi(p)−
�

i∈N,p∈D

sAi(p) ≥ 0,

∆′ ≡
�

i∈N,p∈C

s′Ai(p)−
�

i∈N,p∈D

s′Ai(p) ≥ 0.
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We have

∆ =
�

i∈N






�

p∈C

sAi(p)−
�

p∈D

sAi(p)





=
�

i∈N






�

p∈C\D

sAi(p)−
�

p∈D\C

sAi(p)





.

So, noting that D\C = {¬p : p ∈ C\D}, we obtain

∆ =
�

i∈N

�

p∈C\D

(sAi(p)− sAi(¬p)).

By an analogous reasoning,

∆′ =
�

i∈N

�

p∈C\D

(s′Ai(p)− s′Ai(¬p)).

Hence, using the definition of s′,

∆′ =
�

i∈N

�

p∈C\D

([sAi(p)− sAi(¬p)]− [sAi(¬p)− sAi(p)])

= 2
�

i∈N

�

p∈C\D

(sAi(p)− sAi(¬p))

= 2∆.

So, ∆ ≥ 0⇔ ∆′ ≥ 0, q.e.d.

Claim 2. If X is the preference agenda, SCO is classical Borda scoring, A ∈ D, and

xPy ∈ X, then s′A(xPy) = SCOA(x)− SCOA(y).

Let X, SCO, A and xPy be as specified. If xPy ∈ A, then

s′(xPy) = s(xPy) by definition of s′

= SCOA(x)− SCOA(y) by Remark 1, as xPy ∈ A.

If xPy �∈ A, i.e., yPx ∈ A, then

s′(xPy) = −s(yPx) by definition of s′

= −(SCOA(y)− SCOA(x)) by Remark 1, as yPx ∈ A

= SCOA(x)− SCOA(y). �

Proof of Proposition 4. Let X be the preference agenda for some set of alternatives

K of size k < ∞. Let srev , sdis and sirr be reversal, disjoint-entailment, and irreducible-

entailment scoring, respectively. Consider any A ∈ D, denote the corresponding strict linear

order by ≻, let x1, ..., xk be the alternatives in the order given by xk ≻ xk−1 ≻ · · · ≻ x1,

and consider any p ∈ X, say p = xiPxi′ ∈ X.

Claim 1. srev
A (p) = sirr

A (p).

By the argument given in footnote 11, srev
A (p) ≥ sdis

A (p). I now show that sdis
A (p) ≥

srev
A (p). This inequality is trivial if p �∈ A, since then srev

A (p) = 0 (as ¬p ∈ A). Now suppose

p ∈ A. By Remark 1, srev
A (p) = i− i′. So we need to show that sdis

A (p) ≥ i− i′. Consider

the i− i′ judgment subsets S1, ..., Si−i′ ⊆ A defined as follows: for each j ∈ {1, ..., i− i′},

Sj ≡ {xiPxi−j , xi−jPxi′} ⊆ A,
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where Si−i′ is interpreted as the set {xiPxi′} (rather than the set {xiPxi′ , xi′Pxi′}, which

is not well-defined since xi′Pxi′ is not a proposition in X). Since these judgment subsets

are pairwise disjoint and each of them entails p (= xiPxi′), we have sdis
A (p) ≥ i− i′, q.e.d.

Claim 2. srev
A (p) = sirr

A (p).

If p �∈ A, then srev
A (p) = sirr

A (p) since srev
A (p) = 0 (as ¬p ∈ A) and sirr

A (p) = 0 (as A

does not entail p). Now suppose p ∈ A. Then, as already mentioned, srev
A (p) = i − i′

by Remark 1. So we need to show that sirr
A (p) = i − i′. As one may show, each of

the just-defined sets S1, ..., Si−i′ irreducibly entails p (= xiPxi′). So it remains to show

that no other judgment subset irreducibly entails p. Suppose S ⊆ A irreducibly en-

tails p. I have to show that S ∈ {S1, ..., Si−i′}. As is easily checked, the set S ∪ {¬p}
(= S ∪ {xi′Pxi}) is minimal inconsistent. Hence, this set is cyclic, i.e., of the form

S ∪ {¬p} = {y1Py2, y2Py3, ..., ym−1Pym, ymPy1} for some m ≥ 2 and some distinct al-

ternatives y1, ..., ym ∈ K (see Dietrich and List 2010). Without loss of generality, assume

y1 = xi and ym = xi′ , so that ymPy1 = xi′Pxi and

S = {y1Py2, y2Py3, ..., ym−1Pym}.

If m = 2, then S = {y1Py2} = {xiPxi′}, which equals Si−i′ , and we are done. If m = 3,

then S = {y1Py2, y2Py3} = {xiPy2, y2Pxi′}. Since S is by assumption included in A,

it follows that A ranks y2 between xi and xi′ . So there is a j ∈ {1, ..., i − i′ − 1} such

that y2 = xi−j . Hence, S is the set {xiPxi−j , xi−jPxi′} = Sj , and we are done again.

Finally, m cannot exceed 3, since otherwise the set S (= {xiPy2, y2Py3, ..., ym−1Pxi′})
would entail p (= xiPxi′) non-irreducibly, since the set arising from S by replacing xiPy2
and y2Py3 with their implication xiPy3 still entails p. �

Proof of Proposition 5. Consider any threshold family (mp)p∈X (∈ {1, ..., n}X), and de-

fine scoring s by (11). Consider a profile (A1, ..., An) ∈ Dn for which C∗ ≡ F(mp)p∈X (A1, ...,

An) belongs to D. We have to show that Fs(A1, ..., An) = C∗. For each proposition p ∈ X,

writing the number of individuals accepting p as np ≡ |{i : p ∈ Ai}|, the sum-total score

of p is given by

�

i∈N

sAi(p) =
�

i∈N:p∈Ai

(n+ 1−mp) +
�

i∈N:p�∈Ai

(−mp)

= np(n+ 1−mp) + (n− np)(−mp)
= nnp + np − nmp.

= n(np −mp) + np;

and so,
�

i∈N

sAi(p)

�
> 0 if np ≥ mp, i.e., if p ∈ C∗

< 0 if np < mp, i.e., if p �∈ C∗.
(21)

Now we have {C∗} = argmaxC∈D
�
p∈C,i∈N sAi(p), because for each C ∈ D\{C∗},

�

p∈C∗,i∈N

sAi(p)−
�

p∈C,i∈N

sAi(p) =
�

p∈C∗\C

�

i∈N

sAi(p)

� 
� �
>0 by (21)

−
�

p∈C\C∗

�

i∈N

sAi(p)

� 
� �
<0 by (21)

> 0.

So, Fs(A1, ..., An) = {C∗} ≡ C∗. �
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Proof of Remark 4. Consider this X and P , let n be odd, and let s be scoring (13). I

write αpr for αpremise and αco for αconclusion. Whenever I consider a profile (A1, ..., An) ∈
Dn, I write Nt := {i : t ∈ Ai} for all t ∈ X, and I write MAJ , PRE, CON and SCO for

the outcome of majority rule, premise-based rule, conclusion-based rule, and the scoring

rule w.r.t. (13), respectively. Note that for all (A1, ..., An) ∈ Dn the sum-total score of a

C = {p′, q′, r′} ∈ D (where p′ ∈ {p,¬p}, q′ ∈ {q,¬q} and r′ ∈ {r,¬r}) is given by
�

i∈N,t∈C

sAi(t) = (|Np′ |+ |Nq′ |)αpr + |Nr|αco. (22)

Claim 1. [PRE = SCO for all profiles in Dn] if and only if αpr > (n− 2)αco.
First, assume PRE = SCO for all profile in Dn. As one may check, there is a profile

such that |Np| = |Nq| = n+1
2 and |Nr| = 1. For this profile, PRE = {p, q, r}. So,

SCO = {p, q, r}. Hence, the sum-total score of {p, q, r} exceeds that of {¬p, q,¬r}. By

(22), these two sum-total scores can be written, respectively, as

�

i∈N,t∈{p,q,r}

sAi(t) =
n+ 1

2
αpr +

n+ 1

2
αpr + αco = (n+ 1)αpr + αco

�

i∈N,t∈{¬p,q,¬r}

sAi(t) =
n− 1
2

αpr +
n+ 1

2
αpr + (n− 1)αco = nαpr + (n− 1)αco.

Hence,

(n+ 1)αpr + αco > nαpr + (n− 1)αco,
or equivalently, αpr > (n− 2)αco.

Conversely, assume αpr > (n − 2)αco. Consider any profile. We have to show that

PRE = SCO.

Case 1 : MAJ ∈ D. Check that it follows that PRE =MAJ , and also that SCO =
MAJ . So, PRE = SCO.

Case 2 : MAJ �∈ D. Check that it follows that MAJ = {p, q,¬r}. Hence PRE =
{p, q, r}. We thus have to show that SCO = {p, q, r}, i.e., that

∆1 ≡
�

i∈N,t∈{p,q,r}

sAi(t)−
�

i∈N,t∈{¬p,q,¬r}

sAi(t) > 0

∆2 ≡
�

i∈N,t∈{p,q,r}

sAi(t)−
�

i∈N,t∈{p,¬q,¬r}

sAi(t) > 0

∆3 ≡
�

i∈N,t∈{p,q,r}

sAi(t)−
�

i∈N,t∈{¬p,¬q,¬r}

sAi(t) > 0.

By (22),

∆1 = (|Np| − |N¬p|)αpr + (|Nr| − |N¬r|)αco = (2 |Np| − n)αpr + (2 |Nr| − n)αco. (23)

In this, as p ∈ MAJ we have |Np| ≥ (n+ 1)/2; and further, as p, q ∈ MAJ the sets Np
and Nq each contain a majority, so that Np ∩Nq �= ∅, which (since Np ∩Nq ⊆ Nr) implies

|Nr| ≥ 1. Using these lower bounds for |Np| and |Nr|, we obtain

∆1 ≥ ((n+ 1)− n)αpr + (2− n)αco = αpr + (2− n)αco > 0.

The proof that ∆2 > 0 is analogous. Finally, by (22),

∆3 = (|Np| − |N¬p|)αpr + (|Nq| − |N¬q|)αpr + (|Nr| − |N¬r|)αco.
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Since |Nq| > |N¬q| (since q ∈MAJ ), it follows using (23) that ∆3 > ∆2, and hence, that

∆3 > 0, q.e.d.

Claim 2. [CON = SCO for all profiles in Dn] if and only if αco > αpr = 0.

Unlike in the proof of Claim, there may be ties, and so we treat CON and SCO
as subsets of D, not elements. First, if αco > αpr = 0, then it is easy to show that

CON = SCO for each profile. Conversely, suppose it is not the case that αco > αpr =

0. Then either αco = αpr = 0 or αpr > 0. In the first case, clearly CON �= SCO
for some profiles, since SCO is always D. In the second case, again CON �= SCO for

some profiles: for instance, if each individual submits ¬pq¬r then SCO = {¬pq¬r} while

CON = {¬pq¬r, p¬q¬r,¬p¬q¬r}. �

Proof of Proposition 6. It will sometimes be convenient to write a vector D = (D1, ...,Dn)

∈ Rn as +Di,. The mean and variance of this vector D are denoted and defined by, respec-

tively,

D ≡ 1

n

�

i∈N

Di and V ar(D) ≡ 1

n

�

i∈N

(Di −D)2.

In this notation, the average square deviation of a constant c ∈ R from the components in

D is +(c−Di)2, and satisfies

+(c−Di)2, = (c−D)2 + V ar(D), (24)

by the following argument borrowed from statistics:

+(c−Di)2, =
�
(c−D +D−Di)2

�

=
�
(c−D)2 + 2(c−D)(D −Di) + (D −Di)2

�

= (c−D)2 + 2(c−D)
�
D−Di

�
+
�
(D−Di)2

�

= (c−D)2 + 0 + V ar(D).

Now consider any scoring s and let the set scoring σ be defined by (16). Consider any

profile (A1, ..., An) ∈ Dn and any C ∈ D. Under σ, the sum-total score of C can be written

as
�

i∈N

σAi(C) = −
�

i∈N

�Cs −Asi�2

= −
�

i∈N

�

p∈X

(Csp −Asip)
2

= −n
�

p∈X

1

n

�

i∈N

(Csp −Asip)
2.

Here, the inner expression can be re-expressed as

1

n

�

i∈N

(Csp −Asip)
2 =

�
(Csp −Asip)

2
�
= (Csp −

�
Asip
�
)2 + V ar(

�
Asip
�
),

where the last equality applies (24) with c = Csp and D =
�
Asip
�
. It follows that

�

i∈N

σAi(C) = −n
�

p∈X

�
(Csp −

�
Asip
�
)2 + V ar(

�
Asip
�
)
�

= −n
�

p∈X

(Csp −
�
Asip
�
)2 + d (for some d independent of C)

= −n
���C − +Asi ,

���
2

+ d.
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Maximizing this expression w.r.t. C ∈ D is equivalent to minimizing its strictly decreasing

transformation
���C − +Asi ,

��� w.r.t. C ∈ D. So, the set scoring rule w.r.t. σ delivers the

same collective judgment set(s) C as the average-score rule w.r.t. s. �

Proof of Proposition 7. Assume (IND) and (COM) and consider a profile (A1, ..., An) ∈
Dn.

Firstly, using (IND), the likelihood of the profile given C ∈ D can be written as

Pr(A1, ..., An|T ) =
�

i∈N

Pr(Ai|T ).

Maximizing this expression (w.r.t. T ∈ D) is equivalent to maximizing its logarithm,

�

i∈N

logPr(Ai|T ),

which is precisely the sum-total score of T under set scoring (17).

Secondly, writing π for the profile’s probability Pr(A1, ..., An), the posterior probability

of T ∈ D given the profile can be written as

Pr(T |A1, ..., An) =
1

π
Pr(T )Pr(A1, ..., An|T ) =

1

π
Pr(T )

�

i∈N

Pr(Ai|T ).

Maximizing this expression (w.r.t. T ∈ D) is equivalent to maximizing its logarithm, and

hence, to maximizing

logPr(T ) +
�

i∈N

logPr(Ai|T ) =
�

i∈N

(logPr(Ai|T ) +
1

n
log Pr(T )),

which is the sum-total score of T under set scoring (18). �
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