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A Generalization of Sen’s Unification Theorem:
Avoiding the Necessity of Pairs and Triplets

Junnan He1

Abstract

This paper is concerned with the axiomatic foundation of the revealed preference theory.

Many well-known results in literature rest upon the ability to choose over budget sets that

contains only 2 or 3 elements, the situations which are not observable in real life. In order

to give a more realistic approach, this paper shows that many of the famous consistency

requirements, such as those proposed by Arrow, Sen, Samuelson etc., are equivalent if the

domain of choice functions satisfy some set theoretical properties. And these properties,

unions and inclusions for example, are proposed in a way that gives observability.

1 Introduction

Revealed preference theory started off as an approach to explain consumers’

behaviors by the revealed preference through their actions (Samuelson 1938).

Defining preference relations on the bundles rather than specific goods, revealed

preference theoriests have been able to avoid notions such as marginal utilities,

and to construct a theory based only on a notion of preference. They also have

been trying to pin down necessary and sufficient conditions for the relations to

be rationalizable and the interlinks between the conditions. In Sen’s (1971) pa-

per "Choice Functions and Revealed Preference", the famous theorem that unites

many rationality conditions for a choice function has limitations on to what extent

we can believe in our assumptions or axioms. The dispute lies in the assumptions

on the domain of choice functions and it was first suggested by Arrow (1959).

The assumptions of choice function implied that the axioms on rationality (Sen

1971) should be trusted over all budgets of pairs and triplets, situations that are

unlikely to be observed. This leads to a philosophical problem. Despite the effort

in justifying the issue (Sen 1973), the theory remains unsatisfying for some (See

Suzumura 1976). Suzumura attempted in adopting a domain of choice functions

with no restriction, and his result was recognized as the more general result (Sen
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1997 pp.776). However, because no assumptions were made, the results were not

as strong and unifying.

In this paper, we seek to largely avoid the philosophical problems by changing

Arrow’s and Sen’s assumptions. Instead of adopting a domain of budgets that in-

cludes all the pairs and triplets, we would prove a result similar to Sen’s, based on

other general set theoretical properties of the domain and of the choice function.

The merit of the approach is to realize that the equivalency of the rationality

requirements rests on the more subtle set theoretical properties of the domain of

choice functions, other than the inclusion of all the pairs and triplets. Hence, we

hope this generalized version would enhance our confidence in consumer choice

theory because the requirements of previously mentioned properties would be

much observable in real life, and hence that concerns about the extent of belief

in the axioms would be dispelled.

2 Notations and Definitions.

This paper, we will adopt the following notations. Consider X 6= ∅ as the set

of all bundles, the choice function C(.) is defined on a nonempty subset of the

powerset of X, B, called the set of budgets. For any budget B ∈ B, we require

that C(B) ⊂ B and C(B) is not empty, so ∅ /∈ B (i.e. the empty set cannot

be a budget set). Throughout the paper, we use the symbol ¬ for mathematical

negation.

Based on the choice function, the following definitions for a relation on X have

been much discussed in the literature. For the first ones, we should interpret re-

lations R as “at least as good as”, P as “strictly preferred to”.

Definition 1 For any x, y ∈ X, xRy if and only if ∃B ∈ B such that x ∈ C(B)

and y ∈ B.

Definition 2 For any x, y ∈ X, xPy if and only if xRy and ¬yRx.
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Another definition for a relation was given by Arrow’s (1959) "revealed pref-

erence". It was denoted as P̃ .

Definition 3 For any x, y ∈ X, xP̃y if and only if ∃B ∈ B such that x ∈ C(B)

and y ∈ B − C(B).

Definition 4 For any x, y ∈ X, xR̃y if and only if ¬yP̃x.

Other than the above definitions, there are also some notations about the

“wide sense” relations, or, the “transitive closures” of R and P̃ defined as follows

(Ritchter 1966):

Definition 5 For any x, y ∈ X, n ∈ N+, xWy if and only if there exists a

sequence of x1, x2, . . . , xn such that x1 = x, xn = y and xi−1Rxi.

Definition 6 For any x, y ∈ X, n ∈ N+, xṼ y if and only if there exists a

sequence of x1, x2, . . . , xn such that x1 = x, xn = y and xi−1P̃ xi.

Given that we have the above definitions on relations, we can start stating

definitions and axioms on rationality and consistency.

Definition 7 a choice function C(.) is normal if and only if ∀B ∈ B, C(B) =

{x ∈ B|xRy ∀y ∈ B}.

Definition 8 a binary relation on X is called an ordering if and only if it is

transitive and complete (or some author referrs to as connected).

If a choice function is normal with respect to some ordering R, we say C(.) is

rational or rationalizable.

Definition 9 A choice function is said to satisfy the Weak Axiom of Revealed

Preference (WARP, Samuelson 1938) if for every x, y ∈ X: xP̃y ⇒ ¬yRx (or

equivalently yRx ⇒ ¬xP̃y).
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Definition 10 A choice function is said to satisfy the Strong Axiom of Revealed

Preference (SARP, Houthakker 1950) if for every x, y ∈ X: xṼ y ⇒ ¬yRx.

Definition 11 A choice function is said to satisfy the Weak Congruence Ax-

iom (WCA, Sen 1971) if for every x, y ∈ X: suppose xRy, then for any B ∈ B,

(x ∈ B and y ∈ C(B) ) ⇒ x ∈ C(B).

Definition 12 A choice function is said to satisfy the Strong Congruence Ax-

iom (SCA, Richter 1966) if for every x, y ∈ X: suppose xWy, then for any

B ∈ B, (x ∈ B and y ∈ C(B) ) ⇒ x ∈ C(B).

3 Motivation

We hope that, from proving the results, we would be able to prove Sen’s uni-

fication theorem (1971) as an direct application. Therefore we want to capture

the essence of Sen’s assumption. Sen included in B all the budgets with exactly

2 elements in order to compare each pair, and all the budgets with exactly 3 ele-

ments in order to avoid cycles. This suggests that first, if we are able to compare

each two elements of X, not necessarily in a pair but in any sets, then we should

be able to achieve completeness. Secondly, if we are also able to avoid cycles by

choosing from more than 3 bundles, we should be able to reach a satisfying result.

To compare every two bundles a and b, it would be intuitive that when a is

chosen from the set A, and b is chosen from the set B, then we would have im-

plicitly compared a and b by choosing from the set A∪B. Similarly, for a, b and

c, we can try to choose from the set A ∪ B ∪ C. This seems promising because

if one let the domain B to include all the singletons, then every element should

be chosen in some singleton (by the assumption that C(.) is never the empty

set). Now by including the union of 2 or 3 singletons into the domain of C(.), we

would have included all the pairs and triplets and Sen’s theorem can be proved.

As it turns out, this union condition is almost enough, but not sufficient as will

be seen in Theorem 2.
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In the context of consumer theory, the benefit of the union condition is that it

seems more plausible than requiring all the pairs and triplets. The usual setting

is that given disposible income I and the price Pi, 1 ≤ i ≤ n of n number of

goods in the market, the consumer is facing a polyhedron shape budget under

the constraint of
∑n

i=1 PiQi = I, where Qi is the quantity of the ith goods. Here,

the union of budget sets would become some concave polyhedra, which can be

observed in price cut or whole sale situations.

4 Construction and Main Results

Under the above motivation, we make the following assumption on B as below:

Assumption 1 For any domain B for a choice function C(.), there exists B1 ⊆ B

such that B3 = {B1 ∪ B2 ∪ B3|B1, B2, B3 ∈ B1} ⊆ B; moreover, for any bundle

x ∈ X, there exists a budget Bx ∈ B1 such that x ∈ C(Bx).

Theorem 1. Supposed C(.) is defined on B and Assumption 1 is satisfied, then

the following are equivalent:

(i) C(.) satisfies Strong Axiom of Revealed Preference;

(ii) C(.) satisfies Weak Axiom of Revealed Preference;

(iii) R is an ordering and C(.) is normal;

(iv) C(.) satisfies Strong Congruence Axiom;

(v) C(.) satisfies Weak Congruence Axiom;

(vi) R=R̃;

In the proof of theorem 1, we make use of the following lemma.

Lemma 1. Suppose that the WARP holds. Suppose that x ∈ C(Bx), y ∈ C(By)

for some budget sets Bx, By ∈ B. If Bx ∪ By ∈ B, then at least one of x or y

belongs to C(Bx ∪ By).
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There are two equivalent conditions in Sen’s 1971 paper that are not covered

by theorem 1 because they do not fit in the context. They will be covered in the

next result together with some other rationality conditions. However, additional

definitions and notations are necessary. In order to be consistent with the moti-

vation and the previous discussion, we mimic Uzawa (1956) and Arrow’s (1959)

definition of a relation "generated by comparison over all pairs" to be noted by R:

Definition 13 For any x, y ∈ X, xRy if and only if there exists Bx, By ∈ B1

such that x ∈ C(Bx), y ∈ C(By) and x ∈ C(Bx ∪ By).

Additionally, in the following generalization, we require some additional as-

sumptions on a proper subset of B and the choice function C(.) for some of the

definitions to be meaningful or applicable.

Assumption 2 Finiteness: for each B ∈ B, the number of elements in B is

finite.

Assumption 3 Pre-rationality: ∀Bx, By ∈ B1, C(Bx ∪ By) ⊆ C(Bx) ∪ C(By).

Assumption 4 Closed Under Finite Union: if A,B ∈ B, then A ∪ B ∈ B.

Lemma 2. Assumption 3 is satisfied if and only if for some 1 ≤ i ≤ n, Bi ∈ B,

then
⋃n

i=1Bi ∈ B.

It can be seen that all the above assumptions can be implied from assuming

that B consists of all finite subsets of X. In particular, Assumption 2 and 3

are required for the following consistency requirement to be meaningful in the

context.

Axiom of Sequential Path Independence was a rationality condition originally

proposed by Bandyopadhyay (1988). The idea was that if a choice function is

rational, it should be necessary and sufficient that comparing each two bundles

in a budget in different orders would give the same final choice. In order to fit

in the above settings, we would use the following notations to give a modified

version. For all B ∈ B, let Ω(B) be the set of all permutations of elements of B,

and |B| denote the cardinality of B. Let Br denote some budget in B1 such that

r ∈ C(Br). Suppose assumption 2 holds, for any choice function C(.) and any

ω ∈ Ω(B), define the following sets recursively:
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1. ω̂(1) = {ω(1)}

2. For any positive integer i ≤ |B|, ω̂(i+1) = B ∩
⋃

a∈ω̂(i)C(Ba ∪Bω(i+1)) for

any Ba, Bω(i) ∈ B1.

Definition 14 If assumptions 2 and 3 are satisfied, a choice function C(.) is said

to satisfy the Axiom of Sequential Path Independence (ASPI, Bandyopadhyay

1988) if for any B ∈ B and for all ω ∈ Ω(B), C(B) = ω̂(|B|).

We have moderately adjusted the original notation. For any ω ∈ Ω(B), ω̂(i)

can be interpreted as the ith ω estimate for what is chosen from B. It is clear that

purpose of having finiteness is so that the above version of Axiom of Sequential

Path Independence adapted from Bandyopadhyay (1988) would fit in the con-

text. Even though we require finiteness, this is very different from requiring B3

including all the pairs and triplets. In fact, these finite numbers can be of huge

scale so that the condition does little harm in terms of realizability. In other

words, the number of bundles in B ∈ B can be large enough to fill in a budget

polyhedron of infinite many bundles in a way that a consumer cannot distinguish

between choosing from each one of them. Assumption 3 is a restriction for the

choice function on a proper subset of B, which in itself is in some sense a weak

consistency requirement. It is critical for determining what is chosen given the

choice function satisfies ASPI. If put back into the original context where all pairs

and triplets are included in the domain of the choice function and take all Bx to

be sinigleton {x}, then the definition above gives the same meaning as those in

Bandyopadhyay’s (1988) paper.

Another consistency condition first given by Arrow (1959) is modified as below:

Definition 15 If assumption 4 is satisfied, a choice function C(.) is said to satisfy

the Arrow’s Condition if for any A,B ∈ B, when A ⊆ B and A∩C(B) 6= ∅, then

C(A) = C(B) ∩ A.

In Arrow’s (1959) formulation, if we want to derive rationalizability from Ar-

row’s Condition, it would heavily rely on the domain of choice function consisting

of all finite subsets of X. Because for Arrow’s Condition to be meaningful, for
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any A ∈ B, there needs to be a proper superset or proper subset of A, and the

intersection of their chosen elements is not empty. In the following result, we see

that if B is closed under finite union, then Arrow’s Condition is also equivalent

to C(.) being rational.

Theorem 2. Supposed C(.) is defined on B and Assumption 1 is satisfied, then

the following are equivalent:

(i) R is an ordering and C(.) is normal;

(ii) R is an ordering and C(B) = {x ∈ B|xRb ∀b ∈ B};

(iii) R = R̃ and C(B) = {x ∈ B|xRb ∀b ∈ B};

(iv) C(.) satisfies Axiom of Sequential Path Independence.

(v) C(.) satisfies Arrow’s Condition;

Remark 1. (ii), (iii) are modified from Sen’s (1971) formulations “R is an order-

ing, C(.) is normal” and “R = R̃ and C(.) is normal”. But they are respectively

equivalent if the domain of choice function consists of all finite subsets of X. To

see this, (ii), (iii) imply the corresponding formulations because they imply (i).

And if B1 is all the singletons, then nomality would give R = R when considering

choosing over the pairs. So they are respectively equivalent statements.

The above assumptions is enough to prove Sen’s (1971) classic result, because

it can be verified that choice functions defined on all pairs and triplets is a model

of the theories in this paper. When every element Bx ∈ B1 is a singleton x, then

obviously all of our assumptions are satisfied and all budgets of pairs and triplets

are in B3 ⊆ B, hence theorems 1 and 2 together give the desired equivalencies.

Sen′s Corollary : Suppose B consists of all finite budgets, then all the equiva-

lent conditions in theorem 1 and 2 are equivalent.

Moreover, it can also be seen that this is not the only model for the theory.

There are many different models, for the purpose of this paper, we would consider

the following model in the context of consumer theory:
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Example1 : Let X = {a, b, c, d}, B1 = {{a, b, d}, {b, c, d}, {a, c, d}, {d}}. Let

B = B3. So Assumptions 2, 4 are satisfied. If Assumptions 1 and 3 are also sat-

isfied, then all the above equivalencies hold. For example, for any C(.) such that

a ∈ C({a, b, d}), b ∈ C({b, c, d}), c ∈ C({a, c, d}), {d} = C({d}), Assumption 1

would force one to choose from {a, b, c, d} = X. If one of a, b, c is chosen from X,

then WARP would force this chosen one to be the chosen in every budget, and

so R would be an ordering. If, on the other hand, d is chose, then WARP forces

everything to be chosen at every budgets, so R is also an ordering.

Example2 : Fix a positive integer n, let X = Nn be the n-cartesian product of

natural numbers. Fix the price vector (p1, p2, . . . , pn) ∈ (R+)n. Let B1 consists

of the budgets of the form {(q1, q2, . . . , qn) |qi ∈ N,
∑n

i=1 piqi ≤ I} for any I such

that mini{pi} ≤ I. I.e. B1 is the set of so called budget triangles. Let B be the

smallest superset of B1 that is closed under finite union and intersection. Define

the choice function C(.) restricted on B3 to be for every B ∈ B3,

C(B) = {(q1, q2, . . . , qn) ∈ B|

n∏

i=1

qi ≥

n∏

i=1

q′i, ∀
(
q′1, q

′

2, . . . , q
′

n

)
∈ B}

It can be checked that all Assumptions 1 to 4 are satisfied. So theorems 1 and

2 ensure that the rationality conditions discussed are equivalent.

5 Discussion

We extend the equivalence results in Sen (1971) by allowing more flexibility

in assumptions. In terms of the proofs given, some of them are similar to what

there were in the literature because in some directions, no specific assumptions

on the domain of choice functions are needed. However, in the other directions it

is necessarily to check that the equivalencies still holds under the above settings.

In particular, some proves are more technical then the original ones. It is as

Arrow (1959) who first suggested that “the demand-function point of view would

be greatly simplified if the range over which the choice functions are considered

to be determined is brodened to include all finite sets”.
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However, there is a need to derive the theory based on some more observ-

able assumptions. Resuming the discussion in Sen (1973) and Suzumura (1976),

admittedly, no matter how general our theorems are, all the above conditions

and axioms can never be verified, as there can be only finitely many data and

situations are uncountably infinite. But this is a constraint of verifiability for all

scientific theories, not limited to economics. And this is also the reason for theo-

rizing, trying to give the simplest assumptions to explain and predict effectively

in situations that are similar, but not exactly the same as those happened previ-

ously (Hempel, et al. 1948). Axioms and assumptions should also be abstraction

of the physical world and be based on observable events and objects. Aligned

with this perspective, it could be problematic if scope of our assumptions is not

restricted to the more realizable circumstances. One of the examples was that

the mathematical "axiom of choice" was intuitively true in considering only finite

sets (so it is not called an axiom in this situation), but if it is believed to be true

for arbitrary sets, many pathological objects arise (See Dudley 1989i). In addi-

tion, even if we do believe our conditions of choice functions to hold in the less

realizable situations, it would be unsatisfying and problematic if the theorems

have to be proven based on unrealistic assumptions that are made for the proof

to work. In terms of the rationality conditions, our paper says they do not. In

general, if it is possible to achieve the same theories basing on more realizable

constructions, while the results are not invalidated by data, we can be more con-

fident and certain about the implications of the theory.

Given that the theories can be tested in realizable situations, future research

can be conducted on how the theories can be interpreted in heuristic documents,

and whether the empirical data admits the consistency conditions.
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7 Appendix

7.1 Proof of Lemma 1

Proof. Suppose for contradiction, x, y /∈ C(Bx∪By). Then by property of choice

function, ∃z ∈ C(Bx∪By). Without loss of generality, suppose z ∈ Bx. Then by

definition, we have zP̃x. Since we also have xRz, this contradicts WARP.

7.2 Proof of Theorem 1

Proof. Theorem 1 will be proven in the following fashion (“
∗

⇒” indicates the proof

requires Assumption 1 on B):

(ii)
∗

⇒ (iii) ⇒ (vi) ⇒ (ii)

(ii)
∗

⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (ii)

(ii)
∗

⇒ (iii) ⇒ (i) ⇒ (ii)

(ii)
∗

⇒ (iii): Suppose WARP holds, we want to show: 1,C(.) is normal; 2, R is

a complete binary relation; 3, R is transitive.

To show 1, on one hand, x ∈ C(B) ⇒ xRy for every y ∈ B. Therefore x ∈

{x ∈ B|∀y ∈ B, xRy}. On the other hand, x ∈ {x ∈ B|∀y ∈ B, xRy} ⇒ ¬yP̃x

for any y ∈ B by WARP. If x /∈ C(B), then zP̃x for some z ∈ C(B) leads to a

contradiction. Hence C(.) is normal.

To show 2, suppose x, y ∈ X, then there exists Bx, By ∈ B1 such that

x ∈ C(Bx), y ∈ C(By). By Lemma 1, we have x or y belonging to C(Bx ∪ By).

So we have xRy or yRx.

To show 3, suppose xRy and yRz. By construction, we can consider the

budgets Bx, By, Bz ∈ B1 such that

r ∈ C(Br) ∀r ∈ {x, y, z}

Let B = Bx ∪ By ∪ Bz ∈ B3 ⊆ B, lemma 1 implies either x, y or z ∈ C(B). In

the view of WARP, z ∈ C(B) ⇒ y ∈ C(B) and y ∈ C(B) ⇒ x ∈ C(B). So we

must have xRz.
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(iii) ⇒ (vi): R is an ordering and C(.) is normal, we want to show R = R̃.

Suppose xR̃y, so ¬yP̃x. We know R is complete. So we have either yRx or

xRy or both. So ¬yP̃x implies we must have xRy.

Suppose xRy, by the normality of C(.), whenever x, y ∈ B and y ∈ C(B), we

must have x ∈ C(B) by transitivity of R. So it is impossible that yP̃x. Hence

we have xR̃y.

(vi) ⇒ (ii):

xRy ⇒ xR̃y ⇒ ¬yP̃x.

(iii) ⇒ (iv): Assuming R is an ordering and C(.) is normal, we want to show SCA.

Suppose we have x1Rx2R . . . Rxn, and for some B ∈ B we have x1, xn ∈ B

and xn ∈ C(B). R being an ordering implies x1Rxn. xn ∈ C(B) and C(.) is

normal implies ∀z ∈ B, xnRz. Therefore x1Rz by transitivity and x1 ∈ C(B)

by normality.

(iv) ⇒ (v): (trivial).

(v) ⇒ (ii): want to show WCA ⇒ WARP.

Suppose xRy, by WCA: ∀B ∈ B, if x, y ∈ B and y ∈ C(B), then x ∈ C(B).

So it is impossible that yP̃x. Hence WCA ⇒ WARP.

(iii) ⇒ (i): Assuming R is an ordering and C(.) is normal, we want to show

SARP.

Suppose x1P̃ x2 . . . P̃ xn, by transitivity of R, we have x1Rxn. Now suppose

for contradiction, xnRx1, then transitivity implies xiRxj for any 1 ≤ i, j ≤ n.

In particular, x2Rx1. Now, by (iii) ⇒ (vi) we have R = R̃. Hence x2R̃x1 which
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contradicts x1P̃ x2.

(i) ⇒ (ii): (trivial).

The above completes the proof.

7.3 Proof of Lemma 2

Trivial.

7.4 Proof of Theorem 2

When it is clear from the context, we will write Bx for the some budget in B1

where x is chosen. The result will be proven in the following sequence (The “∗”

on the arrow shows when Assumption 1 is used).

(i)
∗

⇒ (iv)
∗

⇒ (i)

(i) ⇒ (v)
∗

⇒ (i)

(i)
∗

⇒ (iii)
∗

⇒ (ii)
∗

⇒ (i)

Proof.

(i)
∗

⇒ (iv): this proof is adapeted from the one given by Bandyopadhyay.

Let R be an ordering and C(.) be normal. Therefore x ∈ C(B) ⇒ xRb ∀b ∈

B. Choose an arbitrary ω ∈ Ω(B) and that ω(i) = x, then ω̂(i) = B ∩
⋃

a∈ω̂(i−1)C(Ba ∪ Bx). By R being an ordering and C(.) is normal, we have

x ∈ ω̂(i). Similarly, we see that x ∈ ω̂(j) for every j ≥ i. So C(B) ⊆ ω̂(|B|).

Now suppose x /∈ C(B), then ∀y ∈ C(B) transitivity and normality implies

yPx. Moreover, normality ensures that x /∈ C(B) if and only if yPx. So it fol-

lows that ω(i) = y ⇒ x /∈ ω̂(i). Similar reasoning gives x /∈ ω̂(j) ∀j ≥ i. Hence

x /∈ ω̂(|B|) and C(B) ⊇ ω̂(|B|).

(iv)
∗

⇒ (i):given that ASPI holds, try to show WCA, then by Theorem 1, the

claim is proven.



14

In order to show WCA, suppose xRy, and for some B ∈ B there is x ∈ B,

y ∈ C(B), we will try to show x ∈ C(B).

xRy ⇒ ∃A ∈ B such that x ∈ C(A) and y ∈ A. But by ASPI, this

means ¬ (∃a ∈ A such that for some Ba ∈ B1, x /∈ C(Ba ∪ Bx) ∀Bx ∈ B1). Be-

cause otherwise by letting ω(|A|) = a, assumption 3 gives that x /∈ ω̂(|A|). In

other words, ∀a ∈ A, ∀Ba ∈ B1, ∃Bx ∈ B1 such that x ∈ C(Bx ∪Ba); in particu-

lar, x ∈ C(By ∪ Bx).

Similarly, by hypothesis y ∈ C(B), if b ∈ B, then ∀Bb ∈ B1, ∃By ∈ B1 y ∈

C(Bb ∪By). So choose ω ∈ Ω(B) such that y = ω(|B| − 1), x = ω(|B|). Then we

have y ∈ ω̂(|B| − 1). By the previous paragraph, we can choose By, Bx ∈ B1 so

that x ∈ C(By ∪ Bx) and hence x ∈ ω̂(|B|) = C(B).

(i)⇒(v): assuming R is an ordering and C(.) is normal, we want to prove AC.

Suppose A,B ∈ B3, A ⊂ B and A∩C(B) 6= ∅. By normality and ordering, it

is obvious that C(A) ⊃ C(B) ∩ A.

Now suppose y ∈ C(A) and a ∈ A∩C(B). C(.) is normal implies aRx ∀x ∈ B

and yRa. Now transitivity implies yRx ∀x ∈ B. So normality gives y ∈ C(B)

and C(A) ⊂ C(B) ∩ A.

(v)
∗

⇒ (i): Assuming Arrow’s Condition, we want to show Weak Congruence

Axiom, and by theorem 1 (where the “∗” is used) we have (i).

Let xRy and y ∈ C(B), x ∈ B for some B ∈ B, we want to show x ∈ C(B).

Let A ∈ B such that x ∈ C(A) and y ∈ A. Consider C(A ∪ B). If

C(A ∪ B) ∩ A = ∅, then it is necessary that C(A ∪ B) ∩ B 6= ∅ and so C(B) =

C(A∪B)∩B. But y ∈ C(B), so y ∈ C(A∪B) and y ∈ A, which a contradiction.

Hence we have to have C(A ∪ B) ∩ A 6= ∅. Then x ∈ C(A) = C(A ∪ B) ∩ A.

Because x ∈ B, so x ∈ C(B) = C(A ∪ B) ∩ B.
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(i)
∗

⇒ (iii): it suffices to show R = R̃ = R.

xRy ⇒ xRy. Since R is an ordering and C(.) is normal, theorem 1 says WARP

holds. Therefore xRy ⇒ ¬yP̃x and hence xR̃y.

xR̃y ⇒ ¬yP̃x. Because R is an ordering and C(.) is normal, we must have

x or y ∈ C(Bx ∪ By). So ¬yP̃x ⇒ xRy. Therefore R = R̃.

xRy ⇒ xRy by definition. For the other direction, suppose xRy, normality

and transitivity implies x ∈ C(Bx ∪ By). Hence xRy.

(iii)
∗

⇒ (ii): it suffices to show that R is an ordering.

To show R is complete, suppose x, y /∈ C(Bx ∪ By) for contradiction. Let

z ∈ C(Bx ∪By). Since x ∈ C(Bx), we have ∀a ∈ Bx, xRa and hence ¬aP̃x. But

zP̃x, so z /∈ Bx, similarly, z /∈ By, which is impossible. So R is complete. This ar-

gument also shows that for any Ba, Bb, Bc ∈ B1, either a, b or c ∈ C(Ba∪Bb∪Bc).

For transitivity, suppose xRy, yRz. It follws that xR̃y, yR̃z and ¬yP̃x, ¬zP̃ y.

It follows from the above argument that we must have x ∈ C(Bx ∪ By ∪ Bz).

Therefore ∀t ∈ Bx ∪ By ∪Bz, xRt. So we have xRz as desired.

(ii)
∗

⇒ (i): It suffices to show that R = R.

xRy ⇒ xRy by definition. Suppose xRy, then ∃B ∈ B such that y ∈ B,

x ∈ C(B). So xRy.

This completes the proof.



16

8 References

Arrow, Kenneth J. (1959), “Rational Choice Functions and Orderings”, Economica,

N.S., Vol. 26, pp. 121-127.

Bandyopadhyay, Taradas. (April, 1988), “Revealed Preference Theory, Order-

ing and the Axiom of Sequential Path Independence”, in The Review of Economic Studies,

Vol. 55, No. 2, pp. 343-351.

Dudley, Richard M. (1989), Real Analysis and Probability, Cambridge Studies

in Advanced Mathematics, Vol. 74, Cambridge University Press.

Hempel, Carl G. and Oppenheim, Paul. (April, 1948), “Studies in the Logic

of Explanation”, Philosophy of Science, Vol. 15, No. 2, pp. 135-75.

Houthakker, Hendrik S. (1950), “Revealed Preference and the Utility Func-

tion”, Economica, Vol. 17, pp. 159-174.

Richter, Marcel K. (July, 1966), “Revealed Preference Theory”, Econometrica,

Vol. 34, No. 3, pp. 635-645.

Samuelson, Paul A. (1938), “A Note on the Pure Theory of Consumer’s Be-

haviour”, Economica, N.S., Vol. 5, pp. 61-67.

Sen, Amartya K. (July, 1971), “Choice Functions and Revealed Preference”,

The Review of Economic Studies, Vol. 38, No. 3, pp. 307-317.

Sen, Amartya K. (August, 1973), “Behaviour and the Concept of Preference”,

Econometrica, New Series, Vol. 40, No. 159, pp. 241-259.

Sen, Amartya K. (July, 1973), “Maximization and the Act of Choice”, Econometrica,

Vol. 65, No. 4, pp. 745-779.

Suzumura, Kotaro. (Feburary, 1976), “Rational Choice and Revealed Prefer-



17

ence”, The Review of Economic Studies, Vol. 43, No. 1, pp.149-158.

Uzawa, Hirofumi. (1956), “A Note on Preference and Axiom of Choice”,

Annals of Institute of Statistical Mathematics, Vol. 8, pp. 35-40.


	Introduction
	Notations and Definitions.
	Motivation
	Construction and Main Results
	Discussion
	Acknowledgements
	Appendix
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 2

	References

