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Abstract

In this paper, we �rst re-visit the inference problem for interval identi�ed parameters orig-
inally studied in Imbens and Manski (2004) and later extended in Stoye (2007). We take the
general criterion function approach and establish a new con�dence interval that is asymptoti-
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simulation study is conducted to examine the �nite sample performance of our new con�dence
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1 Introduction

Partial identi�cation of parameters of interest is common in many areas of economics, see Manski

(2003) for a survey in microeconometrics, Chernozhukov, Hong, and Tamer (2007) (CHT hence-

forth) for an extensive list of examples in microeconomics, and Moon and Schorfheide (2007) for

examples in macroeconomics. The distribution and quantile of the e¤ects of a binary treatment

studied in Fan and Park (2007a, b), Park (2007a) for randomized experiments and Fan and Wu

(2007) for switching regimes models add to the already extensive list of partially identi�ed para-

meters.

In the seminal paper of Imbens and Manski (2004) (IM henceforth), they proposed con�dence

intervals (CI) for interval identi�ed parameters that are asymptotically uniformly valid under main-

tained assumptions. Since IM, numerous papers on inference for partially identi�ed parameters

have appeared in the literature, including Bugni (2007), Canay (2007), CHT, Galichon and Henry

(2006), Romano and Shaikh (2005a,b), Stoye (2007), Rosen (2005), Soares (2006), Beresteanu and

Molinari (2006), Moon and Schorfheide (2007), and Andrews and Guggenberger (2007) (AG (2007)

henceforth), among others.

The simplicity of the CIs of IM and Stoye (2007) makes them appealing, but their dependence on

the speci�c structure of interval identi�ed parameters and the asymptotic normality of estimators

of the lower and upper bounds on the true parameter makes them hard to generalize to parameters

de�ned by general moment equalities/inequalities. In a series of papers, Andrews and Guggen-

berger (2005a, b, c, 2007, AG hereafter) developed several general methods of constructing uniform

con�dence sets (CS) in non-regular models based on the duality between CSs and hypotheses tests.

CHT �rst applied this idea to constructing CSs for partially identi�ed parameters in a very gen-

eral set-up and referred to it as the criterion function approach. In AG (2007), they proposed a

simple plug-in asymptotic CS (PA-CS) for parameters de�ned by moment equalities/inequalities

and showed that the PA-CS may be asymptotically conservative when there are restrictions on

moment inequalities such that if one moment inequality holds as an equality, then another moment

inequality can not be satis�ed as an equality. A notable example of this is the interval identi�ed

parameter case unless the true parameter is point identi�ed. In contrast, the CIs of IM and Stoye

(2007) take into account such restriction and are not asymptotically conservative.

The current paper builds on the work of IM, Stoye (2007), AG (2007), and CHT. It makes several

contributions to the literature on inference for partially identi�ed parameters. First, we construct

an asymptotically uniformly valid, non-conservative CS for interval identi�ed parameters originally

studied in IM by using the general criterion function approach, see CHT, and show that it reduces

to the CI of IM when there exists a super-e¢cient estimator of the length of the identi�ed interval.

Given that IM is the �rst to propose and develop CIs for partially (interval) identi�ed parameters
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and the CIs of IM have been employed in several empirical work, we feel it�s important to understand

its relation with the CSs established by the general criterion function approach for interval identi�ed

parameters. Second, we show that for interval identi�ed parameters, the PA-CS and the CS we

construct by using the general criterion function approach are in fact CIs, although the form of the

CI depends on how close the estimators of the lower and upper bound of the identi�ed interval are

to each other. We establish the closed-form expressions for the di¤erent intervals that constitute

our CS and the PA-CS. These closed-form expressions greatly simplify the computation of the CS,

as in general, one needs to check if each and every parameter value in the parameter space is in the

CS which can be extremely time consuming. Third, we show that the CI of Stoye (2007) can be

obtained by inverting two one-sided tests for the true parameter. Our CI shares the natural nesting

property with that of IM, i.e., the CI with a larger nominal con�dence level includes the CI with a

smaller nominal con�dence level. As a by-product, we note that our CI can be easily adapted to the

case where estimators of the lower and upper bounds on the true parameter are not asymptotically

normally distributed, provided their asymptotic distribution does not exhibit a discontinuity as a

function of parameters of the model. Fourth, we extend the CI of IM to CSs for parameters de�ned

by general moment equalities/inequalities. For interval identi�ed parameters, the CI of Stoye (2007)

and our new CI take into account the restriction on the interval bounds by estimating the length

of the identi�ed interval with a shrinkage estimator. To construct asymptotically non-conservative

CSs for parameters de�ned by general moment equalities/inequalities, we use shrinkage estimators

of the so-called slackness parameters, one for each moment inequality. The value of a slackness

parameter reveals to what extent the corresponding moment inequality is binding. For interval

identi�ed parameters, a weighted sum of the two slackness parameters is identical to the length

of the identi�ed interval and the use of shrinkage estimators of the slackness parameters plays the

same role as the use of a shrinkage estimator of the length of the identi�ed interval.

We carried out a simulation study on interval data and applied our new con�dence interval, that

of Stoye (2007), and the PA-CS of CHT and AG (2007) to three arti�cially created data generating

processes (DGP) from the March 2000 wave of the Current Population Survey (CPS). The three

DGPs represent respectively the point identi�ed case, interval identi�ed case with a small interval

length, and interval identi�ed case with a large interval length. Our general �nding is that our new

con�dence interval and that of Stoye (2007) perform comparably, but the PA-CS can over-cover

when the length of the identi�ed interval is bounded away from zero especially when the sample

size is large. Moreover, the simulation results support the theoretical �nding of Stoye (2007) and

the current paper, i.e., it is essential to use the shrinkage estimator when the length of the identi�ed

interval is zero or small.

The rest of this paper is organized as follows. In Section 2, we re-examine the case of interval

identi�ed parameters and construct a new CI for the true parameter by inverting a two-sided hy-
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pothesis test. In addition, we show that the CI of Stoye (2007) can be obtained by inverting two

one-sided tests. In Section 3, we extend our new CI for interval identi�ed parameters to a CS for

parameters de�ned by general moment equalities/inequalities and show that it is asymptotically

uniformly valid and non-conservative. Section 4 presents a simulation study and Section 5 con-

cludes. Technical proofs are presented in Appendix A and some algebraic derivations are given in

Appendices B and C, including the closed-form expressions for the CS we develop and the PA-CS

for interval identi�ed parameters.

2 Con�dence Intervals for Interval-Identi�ed Parameters

Let �l � �0 � �u, where �0 = �0 (P ) is the parameter of interest which depends on a probability

distribution P ; P must lie in a set P that is characterized by ex ante constraints. The bounds �l; �u
are identi�ed, but �0 may not be. IM �rst introduced a uniform CI for �0 under the assumption

of asymptotic joint normality of b�l;b�u and other assumptions, including super-e¢ciency of the
estimator of � � �u � �l, where b�l;b�u are consistent estimators of �l; �u respectively. Stoye (2007)
proposed a uniform CI that does not depend on the super-e¢ciency condition.

In addition to examples in IM, other examples of interval identi�ed parameters include the

two-sided mean/interval data example, the quantile/distribution of the treatment e¤ects in Fan

and Park (2007a,b), Park (2007a), and the correlation coe¢cient between the potential outcomes

in a Gaussian switching regimes model (SRM) in Vijverberg (1993).

Example 1 (Two-Sided Mean/Interval Data). The parameter of interest is the population

mean of a random variable Y , E (Y ). We do not observe the realizations of Y , but rather we observe

the realizations of two random variables YL; YU such that P (YL � Y � YU ) = 1. Let fYLi; YUigni=1
be i.i.d. with the same distribution as fYL; YUg. Let �l = E (YL) and �u = E (YU ). Both �l and
�u are point-identi�ed from the sample information, but the parameter of interest �0 = E (Y ) is

interval identi�ed unless �l = �u: �l � �0 � �u. The estimators of the lower and upper bounds are
given by �̂l = n

�1Pn
i=1 YLi and �̂u = n

�1Pn
i=1 YLi.

Example 2 (Quantile of the Treatment e¤ects). We consider a binary treatment and use

Y1 to denote the potential outcome from receiving treatment and Y0 the outcome without treatment.

Let F1(�) and F0(�) denote the distribution functions of Y1 and Y0 respectively. Let � = Y1 � Y0
denote the treatment e¤ects and F�(�) its distribution function. Given the marginals F1 and F0,
sharp bounds on the quantile function of the treatment e¤ects � can be found in Williamson and

Downs (1990), see also Fan and Park (2007a). Speci�cally, for 0 < p < 1, let �0 = F
�1
� (p),

�l = inf
u2[p;1]

[F�11 (u)� F�10 (u� p)]; and �u = sup
u2[0;p]

[F�11 (u)� F�10 (1 + u� p)]:

Then �l � �0 � �u. With randomized data, F1 and F0 are identi�ed and thus �l, �u are identi�ed.
Estimators of �l; �u can be constructed by replacing F1 and F0 in the above expressions with their
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consistent estimators such as the empirical distributions.

Example 3 (Correlation Between the Potential Outcomes). Consider the following

SRM:

Y1i = X 0
i�1 + U1i;

Y0i = X 0
i�0 + U0i;

Di = IfW 0
i
+�i>0g; i = 1; : : : ; n; (1)

where fXi;Wig denote individual i�s observed covariates and fU1i; U0i; �ig individual i�s unobserved
covariates. Here, Di is a binary variable indicating participation of individual i in the program or

treatment; it takes the value 1 if individual i participates in the program and takes the value zero

otherwise, Y1i is the outcome of individual i we observe if she participates in the program, and Y0i

is her outcome if she chooses not to participate in the program. For individual i, we always observe

the covariates fXi;Wig, but observe Y1i if Di = 1 and Y0i if Di = 0. The errors or unobserved

covariates fU1i; U0i; �ig are assumed to be independent of the observed covariates fXi;Wig. We
also assume the existence of an exclusion restriction, i.e., there exists at least one element of Wi

which is not contained in Xi.

The textbook Gaussian model assumes that fU1i; U0i; �ig is trivariate normal:
0
@
U1i
U0i
�i

1
A � N

2
4
0
@
0
0
0

1
A ;

0
@
�21 �1�0�10 �1�1�
�1�0�10 �20 �0�0�
�1�1� �0�0� 1

1
A
3
5 : (2)

Based on the sample information alone, �10 is not identi�ed. Using the fact that the covariance

matrix of the errors is positive semi-de�nite, Vijverberg (1993) showed that �L � �10 � �U , where

�L = �1��0� �
q
(1� �21�)(1� �20�); �U = �1��0� +

q
(1� �21�)(1� �20�):

Note that �L and �U depend on the identi�ed parameters only and hence are themselves identi�ed,

but �10 is only interval identi�ed unless �L = �U . Estimators of �L; �U are straightforward to

construct once the parameters �1�; �0� are estimated by standard methods including maximum

likelihood or the two-step approach of Heckman.

While Example 1 falls in the framework of parameters de�ned by moment inequalities, Examples

2 and 3 do not.

2.1 A Review of IM and Stoye (2007)

IM proposed a CI for �0 as follows:

CIIM �
�
b�l �

c�b�lp
n
;b�u +

c�b�up
n

�
;
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where c� solves

�

 
c� +

p
nb�

max fb�l; b�ug

!
� � (�c�) = 1� �: (3)

in which b� = b�u � b�l and b�l;b�u; b�l; b�u are de�ned in the following assumptions. These are the
assumptions under which IM show the uniform validity of CIIM .

Assumption IM (i) There are estimators b�l;b�u that satisfy

p
n

 
b�l � �l
b�u � �u

!
=) N

��
0
0

�
;

�
�2l ��l�u
��l�u �2u

��

uniformly in P 2 P, and there are estimators
�
b�2l ; b�2u;b�

�
that converge to their population values

uniformly in P 2 P.
(ii) For all P 2 P, �2 � �2l ; �2u � �2 for some positive and �nite �2 and �2, and � � � <1.
(iii) For all � > 0, there are v > 0;K; and N0 such that n � N0 implies that

Pr
�p
njb���j > K�v

�
< �

uniformly in P 2 P.
Under Assumption IM (i)-(iii), IM showed that limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) = 1�

�, i.e., CIIM is asymptotically uniformly valid (limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) � 1��);
and non-conservative (limn!1 inf�2� infP :�0(P )=� P (�0 2 CIIM) = 1� �).

Stoye (2007) pointed out that Assumption IM (iii) is a super-e¢ciency condition on the esti-

mator b� of the length of the identi�ed interval and may be violated in important applications. In

addition, Assumption IM (i)-(ii) and (iii) are mutually consistent for sequences of distributions Pn

such that �n ! 0 only if �2l � �2u ! 0 and �! 1 for all those sequences. To relax Assumption IM

(iii), Stoye (2007) proposed the following CI for �0 and veri�ed its asymptotic uniform validity and

non-conservativeness under Assumption IM (i) and (ii) only:

CIS �
( h

b�l � clb�lp
n
;b�u + cub�up

n

i
if b�l � clb�lp

n
� b�u + cub�up

n

? otherwise
;

where (cl; cu) minimize (clb�l + cub�u) subject to the constraint that

Pr

�
�cl � Z1 ^ b�Z1 � cu +

p
n��

b�u
+

q
1� b�2Z2

�
� 1� �;

Pr

�
�cl �

p
n��

b�l
+

q
1� b�2Z2 � b�Z1 ^ Z1 � cu

�
� 1� �; (4)

in which Z1 and Z2 are independent standard normal random variables, and �� is a shrinkage

estimator of � de�ned as

�� =

� b� if b� > bn
0 otherwise

; (5)
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and bn is some pre-assigned sequence such that bn ! 0 and bn
p
n!1. As shown in Stoye (2007),

if Assumption IM (iii) holds, then CIS reduces to that of IM (2004) except that CIS uses �
� and

CIIM uses b�. As emphasized in Stoye (2007), the CI of Stoye is empty, i.e., CIS = ? if

b�l is far larger than b�u so that b�l � clb�lp
n
> b�u + cub�up

n
or
p
nb� < � (clb�l + cub�u) < 0.

2.2 A New Con�dence Interval for �0

The CIs of IM and Stoye (2007) are computationally simple, but they rely heavily on the asymptotic

normality of
�
b�l;b�u

�
, i.e., Assumption IM (i), and the speci�c structure of the identi�ed set [�l; �u]

through the use of b� or ��, see e.g., (3) and (4). As pointed out in Rosen (2005), Soares (2006),

Pakes, Porter, Ho, and Ishii (2006) (PPHI henceforth), and AG (2007), many economic models

imply moment equality/inequality constraints on parameters of interest and the identi�ed set for

these parameters may not be of a simple interval form.

In this subsection, we re-visit the issue of constructing CIs for interval identi�ed parameter �0

by using the general approach of inverting a hypothesis test, aiming at understanding the roles

played by the asymptotic normality of
�
b�l;b�u

�
and the estimator of the length of the identi�ed

interval. By taking into account the interval structure of the identi�ed set for �0, we establish an

asymptotically non-conservative CI and show its uniform validity under Assumption IM (i) and (ii)

only. Like Stoye (2007), we show that our CI reduces to that of IM when supere¢ciency holds.

In addition, our CI shares the natural nesting property with that of IM, i.e., CIs with a larger

nominal con�dence level include CIs with a smaller nominal con�dence level. More importantly,

this approach allows us to generalize the CI of IM to some asymptotically non-normally distributed�
b�l;b�u

�
and parameters de�ned by moment equalities/inequalities.

We follow the notation in AG (2007). So, 
1 = (
1l; 
1u) with 
1l = (� � �l) =�l and 
1u =
(�u � �) =�u, 
2 = (�; �), 
3 denotes the remaining parameters in P . The parameter space is

� =

�

 � (
1; 
2; 
3) : for some (�; P ) 2 P; where P is de�ned in Assumption IM (i) and (ii),


1l � 0; 
1u � 0; �u
1u + �l
1l = �;�1 � � � 1

�
:

Noting that

�0 = argmin
�

(�
�l � �
�l

�2

+

+

�
�u � �
�u

�2

�

)
;

where (x)� = min fx; 0g, (x)+ = max fx; 0g, we use the test statistic Tn(�0) de�ned below to

construct CSs for �0:

Tn(�0) = n

 
b�l � �0
b�l

!2

+

+ n

 
b�u � �0
b�u

!2

�
: (6)

A 1�� CS for �0 is de�ned as

CSn = f� : Tn(�) � c1�� (�)g ;
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where c1�� (�) is an appropriately chosen critical value to guarantee that CSn has uniform asymp-

totic coverage rate of 1 � �. As discussed in AG (2007), other test statistics can be used as well,

but CSs based on them may not reduce to the CI of IM with super-e¢ciency.

Let
�

!n;h : n � 1

	
�
��

!n;h;1; 
!n;h;2; 
!n;h;3

�
: n � 1

	
denote a sequence of parameters in �

for which !
1=2
n 
!n;h;1 ! h1 � (hl; hu) ; 
!n;h;2 ! h2 � (h�; h�). De�ne

H =
�
(h1; h2) 2 R2+1 �R� [0; 1] : 9 a subsequence f!ng of fng and a sequence

�

!n;h : n � 1

		
:

Let h = (h1; h2) and Jh denote the limiting distribution of Tn(�) under
�

!n;h

	
. We show in Ap-

pendix A that Jh is the distribution function of the random variable
�
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
�,

where
�
Zl;h�
Zu;h�

�
� N

��
0
0

�
;

�
1 h�
h� 1

��
:

Since Jh depends on h2 only through h�, we use cv1�� (hl; hu; h�) to denote the 1� � quantile
of Jh. Likewise we denote Jh as J(hl;hu;h�). We construct two CSs for �0 using Jh corresponding

to di¤erent values of h. The �rst one de�nes the critical value c1�� (�) in CSn as cv1�� (0; 0;b�).
This is the analog of PA-CS introduced in AG (2007) for parameters de�ned by moment equali-

ties/inequalities, see also CHT. Speci�cally,

CIPA = f� : Tn(�) � cv1�� (0; 0;b�)g :

We show in Appendix C that CIPA is in fact an interval, since cv1�� (0; 0;b�) does not depend on
�. Note that hl � 0, hu � 0, and Jh is stochastically decreasing in hl; hu, implying

cv1�� (0; 0; h�) = sup
hl�0;hu�0

cv1�� (hl; hu; h�) .

Since h� can be consistently estimated by b�, it follows that CIPA is asymptotically uniformly valid,
but it is conservative when � is bounded away from zero or when � is a known but non-zero

constant. The reason for the latter is that (0; 0; h�; h�) may not belong to H unless �l = �u, as

hl; hu satisfy �uhu + �lhl = lim (
p
n�). In the special case where b� = 1, J(0;0;1) is �2[1] and CIPA

reduces to the symmetric CI for the identi�cation region [�l; �u] �rst proposed in Horowitz and

Manski (2000):
�
b�l �

z�b�lp
n
;b�u +

z�b�up
n

�
;

see also (2) in IM, where z� is chosen such that

� (z�)� � (�z�) = 1� �:

An asymptotically non-conservative CI can be constructed by taking into account the restriction:

�uhu + �lhl = lim (
p
n�). De�ne

CIFP =
�
� : Tn(�) � c�1�� (b�)

	
;
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where

c�1�� (b�) = sup
hl�0;hu�0;b�uhu+b�lhl=

p
n��

cv1�� (hl; hu;b�) (7)

in which �� is the shrinkage estimator de�ned in (5). We show in Appendix A that CIFP is

asymptotically uniformly valid and non-conservative.

THEOREM 2.1 Suppose Assumption IM (i) and (ii) hold and 0 < � < 1=2. Then CIFP satis�es

limn!1 inf�2� infP :�0(P )=� Pr (�0 2 CIFP) = 1� �.

We now show that in fact c�1�� (b�) can be computed easily without any optimization involved.
De�ne

W (hl) �
�
Zl;b� � hl

�2
+
+
�
Zu;b� + hu

�2
�

=
�
Zl;b� � hl

�2
+
+

�
Zu;b� +

p
n��

b�u
� b�l
b�u
hl

�2

�
:

Since W (hl) is convex on
h
0;
p
n��

b�l

i
a.s., we obtain

sup
hl2

h
0;
p
n��
b�l

iW (hl) = max

�
W (0) ;W

�p
n��

b�l

��

= max

(
�
Zl;b�
�2
+
+

�
Zu;b� +

p
n��

b�u

�2

�
;

�
Zl;b� �

p
n��

b�l

�2

+

+
�
Zu;b�

�2
�

)
;

i.e.,

c�1�� (b�) = max
�
cv1��

�
0;

p
n��

b�u
;b�
�
; cv1��

�p
n��

b�l
; 0;b�

��
:

From the symmetry of the joint distribution of
�
Zl;b�; Zu;b�

�
, it follows that the random variable

�
Zl;b�
�2
+
+
�
Zu;b� +

p
n��

b�u

�2
�
has the same distribution function as the random variable

�
Zl;b� �

p
n��

b�u

�2
+
+

�
Zu;b�

�2
�. Thus, cv1��

�
0;
p
n��

b�u ;b�
�
= cv1��

�p
n��

b�u ; 0;b�
�
. But since

�
Zl;b� �

p
n��

b�l

�2
+
+
�
Zu;b�

�2
� is

stochastically increasing in b�l, we have

c�1�� (b�) = cv1��
� p

n��

max fb�l; b�ug
; 0;b�

�
: (8)

The expression in (8) greatly simpli�es the computation of c�1�� (b�), in particular, no optimiza-
tion is needed. One method for computing c�1�� (b�) is by simulation. Alternatively, one can invert
Jh numerically. In Appendix B, we show that for j�j < 1;

Jh(x) � J(hl;hu;�) (x)

= �
�
hl +

p
x
�
�
Z hl+

p
x

�1
�

0
@�

�z + hu +
q
x� (z � hl)2+p
1� �2

1
A d� (z) ;
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for � = 1;

Jh(x) = �
�
hl +

p
x
�
� �

�
�hu �

p
x
�
;

for � = �1,

Jh(x) =

8
<
:

� (hmin +
p
x) if x � (hmax � hmin)2

�

�
hmax+hmin+

p
2x�(hmax�hmin)2
2

�
if (hmax � hmin)2 < x

;

where hmax = max fhl; hug and hmin = min fhl; hug. For any �xed x, the value of Jh(x) can
be computed numerically using the above expressions. We have written a Gauss program for

computing c�1�� (b�) which is available upon request.
Similar to CIPA, CIFP is an interval, as c

�
1�� (b�) does not depend on �. Interestingly, if � = 1,

then c�1�� (1) is the (1� �) quantile of the distribution �
� p

n��

maxfb�l;b�ug +
p
x
�
� � (�px) and thus

satis�es1

�

� p
n��

max fb�l; b�ug
+
q
c�1�� (1)

�
� �

�
�
q
c�1�� (1)

�
= 1� �: (9)

It follows from (9) and the form of CIFP established in Appendix C that when b� = 1, CIFP reduces
to the uniform CI for �0 proposed in IM except that CIFP uses �

�, while IM uses b�. In this sense,
CIFP can be regarded as a natural extension of IM from � = 1 to any �.

The explicit expressions for CIFP are the following. Let �̂min = min f�̂l; �̂ug and
�̂max = max f�̂l; �̂ug :

CIFP =

8
>>>>>>>>>><
>>>>>>>>>>:

h
�̂l �

q
c�1�� (b�) �̂lpn ; �̂u +

q
c�1�� (b�) �̂upn

i
if b� � �

q
c�1�� (b�) �̂minp

nh
�̂l �

q
c�1�� (b�) �̂lpn ; B

i
if �

q
c�1�� (b�) �̂lpn � b� <

q
c�1�� (b�) �̂upnh

A; �̂u +
q
c�1�� (b�) �̂upn

i
if �

q
c�1�� (b�) �̂upn � b� <

q
c�1�� (b�) �̂lpn

[A;B] if �
q
c�1�� (b�)

p
�̂2u+�̂

2

lp
n

� b� < �
q
c�1�� (b�) �̂maxp

n

? if b� < �
q
c�1�� (b�)

p
�̂2u+�̂

2

lp
n

;

(10)

where

A � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

�

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
"
c�1�� (b�)�

nb�2�
�̂2u + �̂

2
l

�
#
;

B � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
"
c�1�� (b�)�

nb�2�
�̂2u + �̂

2
l

�
#
:

1As explicitly stated in (9), the critical values for IM in (3) are comparable with
p
c�
1�� (1) instead of c

�
1�� (1),

due to the di¤erent ways in which CIFP and CIIM are expressed.
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Consider a simple case that �̂l = �̂u in order to understand the implication of CIFP.

When �̂l = �̂u = �̂,

CIFP =

8
>>><
>>>:

h
�̂l �

q
c�1�� (b�) �̂pn ; �̂u +

q
c�1�� (b�) �̂pn

i
if b� � �

q
c�1�� (b�) �̂pn

[A;B] if �
q
2c�1�� (b�) �̂pn � b� < �

q
c�1�� (b�) �̂pn

? if b� < �
q
2c�1�� (b�) �̂pn

(11)

and A and B become

A � �̂l + �̂u
2

� �̂

2
p
n

s

c�1�� (b�)�
nb�2
2�̂2

; B � �̂l + �̂u
2

+
�̂

2
p
n

s

c�1�� (b�)�
nb�2
2�̂2

:

Similarly to the CI of Stoye (2007), the CIFP is empty when b�l is too far above b�u
such that

p
nb�=b� < �

q
2c�1�� (b�) and it takes the standard form if

p
nb�=b� � �

q
c�1�� (b�).

But interestingly, there is a middle case where b�l is larger than b�u, but b� satis�es

�
q
2c�1�� (b�) �

p
nb�=b� < �

q
c�1�� (b�). In this case, our CI is not empty and is constructed

from the average of �̂l, �̂u. Intuitively, this accounts for the case where b�l is larger
than b�u, because �l = �u. In this case, it is known that the �optimal� estimator of

the common value �l or �u is, as is evident in the original de�nition of A and B, a

weighted average of the two estimators �̂l, �̂u and our CI automatically makes use of

the �optimal� estimator. Appendix C provides the detailed derivation.

Remark 1. (i) It is easy to see that CIFP is nested; (ii) It is straightforward to extend

CIFP with c
�
1�� (b�) de�ned in (7) to the case where the asymptotic distribution of

�
�̂l; �̂u

�
is

non-normal, as long as it does not exhibit discontinuity as a function of parameters in the model;

(iii) The distribution of the treatment e¤ects in Fan and Park (2007b) provides an example of

interval identi�ed parameters for which the asymptotic distribution of estimators of the sharp

bounds exhibits discontinuity as a function of parameters in the model. Park (2007a) is working

on an extension of CIFP to inference for the distribution of the treatment e¤ects for randomized

data.

Remark 2. It follows from the proof of Theorem 2.1 that CIFP remains to be asymptotically

uniformly valid and non-conservative even when � is a known but non-zero constant or when �

is bounded away from zero. In contrast, CIPA is conservative when � is a known but non-zero

constant or when � is bounded away from zero.
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2.3 A Comparison of the New CI with the CI of Stoye (2007)

Instead of inverting a two-sided test, we can also invert two one-sided tests for H0. For example,

de�ne

Tnl(�0) = n

 
b�l � �0
b�l

!2

+

and Tnu(�0) = n

 
b�u � �0
b�u

!2

�
:

Then a CI for �0 can be de�ned as

CIS = f� : Tnl(�) � cl ^ Tnu(�) � cug

=

( h
b�l �

p
clb�lp
n
;b�u +

p
cub�up
n

i
if b�l �

p
clb�lp
n
� b�u +

p
cub�up
n

? otherwise
; (12)

where cl; cu are chosen to guarantee the correct level of coverage.
2 (12) reveals that CIS is of the

same form as the CI proposed by Stoye (2007). Note that under
�

!n;h

	
,

�
Tnl(�)
Tnu(�)

�
=)

 �
Zl;h� � hl

�2
+�

Zu;h� + hu
�2
�

!
:

We obtain

inf
hl�0;hu�0;b�uhu+b�lhl=

p
n��

Pr
�
� 2 CIS

�

= Pr
�
Zl;h� � hl +

p
cl ^ Zu;h� � �hu �

p
cu
�

= min

8
<
:
Pr
�
Zl;h� �

p
cl ^ Zu;h� � �

p
n��

b�u �pcu
�
;

Pr
�p

n��

b�l + Zl;h� �
p
cl ^ Zu;h� � �

p
cu

�
9
=
;

= min

8
<
:
�
�p
cu +

p
n��

b�u

�
� �

�
�pcl;

p
cu +

p
n��

b�u ;h�

�
;

�
�p
cu
�
� �

�
�pcl �

p
n��

b�l ;
p
cu;h�

�
9
=
; (13)

where

� (x; y; �) =

Z y

�1

Z x

�1

1

2�
p
1� �2

exp

�
�1
2

�
s2 � 2�st+ t2

1� �2
��

dsdt:

The second equality follows from concavity of Pr
�
Zl;h� � hl +

p
cl ^ Zu;h� � �hu �

p
cu
�
expressed

as a function of hl (Stoye 2007).

To determine cl and cu, we minimize the length of the CIS : �̂u
p
cu + �̂l

p
cl + �̂ such that

min

8
<
:
�
�p
cu +

p
n��

b�u

�
� �

�
�pcl;

p
cu +

p
n��

b�u ;b�
�
;

�
�p
cu
�
� �

�
�pcl �

p
n��

b�l ;
p
cu;b�

�
9
=
; = 1� �:

It can be easily shown that this leads to the CI of Stoye (2007).

2We changed the de�nitions of cl and cu in (4) to be consistent with other parts in the paper. As a result, cl and
cu in (4) are

p
cl and

p
cu in (12). We will use

p
cl and

p
cu hereafter.
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3 Parameters De�ned by Moment Equalities/Inequalities

We follow the notation of AG (2007). Suppose there exists a true value �0 that satis�es the moment

conditions:

Emj (Wi; �0) � 0 for j = 1; :::; p and (14)

Emj (Wi; �0) = 0 for j = p+ 1; :::; p+ v;

where fmj (�; �) : j = 1; :::; p+ vg are known real-valued moment functions and fWi : i � 1g are
observed i.i.d. random vectors3 with joint distribution P . The true value �0 is not necessarily

point identi�ed, but the moment equalities/inequalities in (14) restrict the set of values of �0,

referred to as the identi�ed set of �0. In many economic/econometric models, the parameters

of interest are de�ned by a �nite number of moment equalities/inequalities in (14). One widely

studied example of partially identi�ed models in microeconometric literature is an entry game

with stochastic payo¤ functions, see Bresnahan and Reiss (1991), Berry (1992), Tamer (2003),

and Ciliberto and Tamer (2004). In the simple version with only two players, depending on the

entry decision of the second �rm, Firm 1 either does not enter market, or operates as monopolist,

or operates as duopolist. Assuming that the outcome of the entry game in each market is a pure

strategy Nash equilibrium, it is straightforward to show that the Nash equilibrium is unique, except

when both �rms are pro�table as monopolist but not as duopolist. In the latter case, the model

is silent about which �rm actually enters the market. As a result, it only delivers bounds for the

probability of observing a particular monopoly. Example 5 below provides a brief summary of the

inequality moment constraints. For a complete description of this problem, see Tamer (2003) or

Moon and Schorfheide (2007).

Example 5 (Simultaneous Entry Game). Let Yj be the player j�s entry decision for

j = 1; 2. Yj = 1 if the stochastic payo¤ function �j (Yj ; Y�j) > 0; 0 otherwise. Let�s assume a

simple linear payo¤ function, that is, �j (Yj ; Y�j) = Xj�j � djY�j + vj , E [vj jXj ; X�j ] = 0, and

dj > 0: Then, because there exist multiple equilibria when both �rms are pro�table as monopolist

but not as duopolist, E [Y1 (1� Y0) jX1; X2] = P (Y1 = 1; Y0 = 0jX1; X2) satis�es

P(1;0)L � P (Y1 = 1; Y0 = 0jX1; X2) � P(1;0)U ;

where

P(1;0)L = P (v1 > �X1�1 + d1; v2 � �X2�2 + d2)

+P (�X1�1 < v1 � �X1�1 + d1; v2 � �X2�2) ;

P(1;0)U = P (v1 > �X1�1; v2 � �X2�2 + d2) :
3The i.i.d. assumption is made for ease of exposition. This can be relaxed, see AG (2007).
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Similar bounds can be constructed for E [Y1 (1� Y0) jX1; X2] = P (Y1 = 0; Y0 = 1jX1; X2). To-
gether they imply moment inequality constraints on the model parameters.

Another example of parameters de�ned by moment equalities/inequalities is that of regression

models with interval outcomes in Manski and Tamer (2002).

Example 6 (Regression Models with Interval Outcomes). Suppose a regressor vector

Xi is available and the conditional mean of unobserved Yi is modeled using the linear function X
0
i�.

It is known that P (YLi � Yi � YUi) = 1. The parameter � satis�es

E [YLijXi] � X 0
i� � E [YUijXi] :

These conditional restrictions imply the inequalities

E [YLiZi] � �0E [XiZi] � E [YUiZi] ; (15)

where Zi is a vector of positive transformations of Xi, see CHT. Let Zi be of dimension q. This

falls in the moment inequality framework of (14) with p = 2q; v = 0, see also CHT, AG (2007), and

Beresteanu and Molinari (2006).

Additional examples can be found in the references cited in the Introduction. In general, the

identi�ed set for �0 de�ned in (14) does not have a simple interval structure, preventing CIFP and

CIS from being directly applicable. The purpose of this section is to extend CIFP to �0 in (14) and

clarify its relation to existing non-resampling based CSs in Rosen (2005), Soares (2006), PPHI, and

AG (2007).

Let

m (Wi; �) = (m1 (Wi; �) ; :::;mk (Wi; �))
0 ;

where k = p + v. We make the same assumptions as in (3.3) of AG (2007) which are restated

as Assumption MI in Appendix A. De�ne 
1 =
�

1;1; :::; 
1;p

�0 2 Rp+ by writing the moment

inequalities in (14) as moment equalities:

��1j (�)Emj (Wi; �)� 
1;j = 0 for j = 1; :::; p;

where �2j (�) = V ar (mj (Wi; �)). Moon and Schorfheide (2007) refer parameters 
1;j ; j = 1; ::; p as

the slackness parameters. Let

Tn (�) = n

pX

j=1

�
mn;j (�)

b�n;j (�)

�2

�
+ n

p+vX

j=p+1

�
mn;j (�)

b�n;j (�)

�2
;

where mn;j (�) = n
�1

nX

i=1

mj (Wi; �) and b�2n;j (�) is a consistent estimator of �2j (�). Let 
 = 
(�) =

Corr (m (Wi; �)) and mn (�) = (mn;1 (�) ; :::;mn;k (�)).
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Let 
2 =
�

2;1; 
2;2

�
= (�; vech� (
)), where vech� (
) denotes the vector of elements of 
 that

lie below the main diagonal, and 
3 the remaining parameters in the model. AG (2007) showed

that under the local sequence
�

!n;h

	
,

Tn (�) =)
pX

j=1

�
Zh2;2;j + h1

�2
� +

p+vX

j=p+1

�
Zh2;2;j

�2
;

where h = (h1; h2) in which h1 = lim
�
!
1=2
n 
!n;h;1

�
and h2 � (h2;1; h2;2) = lim

�
!
1=2
n 
!n;h;2

�
,

Zh2;2 =
�
Zh2;2;1; :::; Zh2;2;k

�0 � N
�
0k;
h2;2

�
and 
h2;2 can be consistently estimated by

b
n (�) = bD�1=2n (�) b�n (�) bD�1=2n (�)

with bDn (�) = Diag
�
b�n (�)

�
and

b�n (�) = n�1
nX

i=1

(m (Wi; �)�mn (�)) (m (Wi; �)�mn (�))
0 :

Let Jh denote the distribution function of the random variable
Pp
j=1

�
Zh2;2;j + h1

�2
�+
Pp+v
j=p+1

�
Zh2;2;j

�2
.

Let cv1�� (h1; h2) denote the 1 � � quantile of Jh. Note that two types of parameters appear in
Jh: h1 and h2;2 or 
h2;2 . To ease the exposition, we rewrite cv1�� (h1; h2) as a function of h1 and


h2;2 : cv1��
�
h1;
h2;2

�
. 
h2;2 can be consistently estimated whereas h1 cannot. To circumvent

this problem, AG (2007) proposed a PA-CS for �0 by using the critical value cv1��
�
0; b
n (�)

�
.

They show that the PA-CS is not asymptotically conservative provided there are no restrictions on

the moment inequalities such that satisfaction of one inequality as an equality implies violation of

another. But as they noted, such restrictions do arise in some examples, including the two-sided

mean example and regression models with interval outcome data. In these examples, the vector of

slackness parameters 
1 is restricted to be in a subset of R
p
+. For example, for the two-sided mean

or interval identi�ed parameters, 
1 2 f
1l � 0; 
1u � 0; �u
1u + �l
1l = �g � R2+ unless � = 0.

Provided �0 is not point identi�ed, the restriction: �u
1u+�l
1l = �; implies that if one inequality

is satis�ed as an equality, e.g., 
1l = 0, then the other inequality can not be satis�ed as an equality,

as 
1u = �=�u > 0. By taking into account this speci�c structure or restriction on the moment

inequalities, the CI we constructed for interval identi�ed parameters is not asymptotically conser-

vative even when � is bounded away from zero. However, it does not allow for a straightforward

generalization to parameters de�ned by general moment equalities/inequalities, as there is no such

simple characterization of restrictions of this type. Instead we propose the following remedy: for

j = 1; :::; p; we de�ne


�1;j (�) =

(
mn;j(�)
b�n;j(�) if mn;j (�) > bn

0 otherwise
:
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Let 
�1 (�) =
�

�1;1 (�) ; :::; 


�
1;p (�)

�
and de�ne4

CSMC =
n
� : Tn(�) � cv1��

�p
n
�1 (�) ; b
n (�)

�o
;

THEOREM 3.1 Under the same assumptions as those in Theorem 2 (a) of AG (2007), i.e.,

Assumption MI stated in Appendix A, we have

lim
n!1

inf
�2�

inf
P :�0(P )=�

Pr (�0 2 CSMC) = 1� �:

Remark 2. Like CIFP, CSMC remains to be asymptotically uniformly valid and non-conservative

even when the vector of slackness parameters 
1 is bounded away from zero, implying there are re-

strictions on the moment inequalities such that satisfaction of one inequality as an equality implies

violation of another.

It is interesting to observe that the CSs of Rosen (2005), Soares (2006), and the PA-CS of AG

(2007) and CHT are all5 based on cv1��
�
h1; b
n (�)

�
except that they use di¤erent values of h1: PA-

CS uses cv1��
�
0; b
n (�)

�
and is thus asymptotically conservative when 
1 is bounded away from

zero; Rosen (2005) and Soares (2006) use cv1��
�
0; :::; 0;1; :::;1; b
n (�)

�
with p� zeros, where p� is

an upper bound on the number of binding inequality constraints in Rosen (2006) and is the number

of binding moment inequalities chosen via some moment selection criterion in Soares (2006). It is

thus expected that the CS of Soares (2006) is less conservative than that of Rosen (2005) and the

PA-CS. However, as Soares (2006) pointed out, this procedure may be computationally intensive

depending on the dimension of �.

Interval-Identi�ed Parameters. Instead of estimating� = �u��l by the shrinkage estimator
��, we can also �estimate� 
1l and 
1u by shrinkage:


�1l =

(
��b�l
b�l if � � b�l > bn
0 otherwise

; 
�1u =

(
b�u��
b�u if b�u � � > bn
0 otherwise

:

An alternative CS for �0 can be de�ned as follows:

CSIP =
�
� : Tn(�) � cv1��

�p
n
�1l;

p
n
�1u;b�

�	
:

Note that the use of shrinkage �estimators� 
�1l and 

�
1u in CSIP automatically takes into account

the restriction on the moment inequalities. To see this, suppose 
1l = 0 so that � = �l. This implies


1u = � > 0 unless � = 0. For large enough samples, � � b�l would be smaller than bn and thus,
4 Independently, Andrews and Soares (2007) proposed similar con�dence sets in this context. Instead of using

p
n
�

1
(�) to replace h1 in cv

�
h1;
h2;2

�
, they used functions of

��1n
p
n (mn;1 (�) =b�n;1 (�) ; :::;mn;p (�) =b�n;p (�)) ;

where �n !1 and ��1n
p
n!1 as n!1.

5Rosen (2005) uses a di¤erent test statistic from Tn (�).
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�1l = 0. In contrast, 

�
1u would approach �=�u. At the boundaries, the two CSs: CIFP and CSIP

behave similarly.

Regression Models with Interval Outcomes. Obviously, CSMC is valid for regression

models with interval outcomes. In addition, if q = 1, we can also extend CIFP to �0. Let Wi =

(YLi; YUi; Xi; Zi),

m1 (Wi; �) = �
0 [XiZi]� YLiZi; and m2 (Wi; �) = YUiZi � �0 [XiZi] :

Let
�
Zl;�
Zu;�

�
� N

��
0
0

�
;

�
1 � (�)
� (�) 1

��
;

where � (�) = Corr: (m1 (Wi; �) ;m2 (Wi; �)). Let J(hl;hu;�) denote the distribution function of the

random variable (Zl;� � hl)2+ + (Zu;� + hu)
2
� with � = � (�). Note that � � mu (�) � ml (�) =

E [YUiZi]� E [YLiZi] is point identi�ed and can be consistently estimated by

b� = 1

n

nX

i=1

(YUi � YLi)Zi:

Let cv1�� (hl; hu; �) denote the 1�� quantile of J(hl;hu;�). An alternative CS for �0 uses the following
critical value:

c1�� (�) = cv1��

� p
n��

max fb�n;1 (�) ; b�n;2 (�)g
; 0;b� (�)

�
; (16)

where �� is a shrinkage estimator of � de�ned as

�� =

� b�; if b� > bn
0 otherwise

and

b� (�) = n�1
Pn
i=1 [m1 (Wi; �)�mn;1 (�)] [m2 (Wi; �)�mn;2 (�)]

b�n;1 (�) b�n;2 (�)
:

4 Numerical Studies

In this section, we �rst present a numerical comparison of the critical values of four CIs at 0.95

nominal level: CIFP, CIS, CIPA, and CIIM , and then present some results from a small-scale

simulation study on the �nite sample performance of CIFP, CIS, and CIPA.

4.1 Comparison of Critical Values

The CIs: CIPA and CIIM are respectively based on cv1�� (0; 0; �) and
p
cv1�� (0; 0; 1). Let � = 0:05.

In Figure 1 below, we plotted
p
cv0:95 (0; 0; �) against � 2 [�1; 1]. We note that

p
cv0:95 (0; 0; �)
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decreases as � increases and approaches to ��1 (1� �=2) = 1:96 as �! 1: But for small values of

�, cv1�� (0; 0; �) can be much larger than cv1�� (0; 0; 1). If � is bounded away from zero, it follows

from the proof of Theorem 2.1 and the monotonicity of
p
cv0:95 (0; 0; �) that

lim
n!1

inf
�2�

inf
P :�0(P )=�

Pr (�0 2 CSPA) = Pr
�
Zl;� �

p
cv0:95 (0; 0; 1)

�
= 0:975.

Figure 1.
p
cv0:95 (0; 0; �) and �

�1 (0:975)

In Figure 2 below, we plotted the critical values for CIFP, CIS, and CIIM against
p
n�=max f�l; �ug

for � = �0:4; 0; 0:4; 1.
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Figure 2. Comparison of critical values

The critical values for CIFP and CIIM depend on �l; �u through
p
n�=max f�l; �ug only. But

the critical value of CIS also depends on the values of �l; �u. We chose two sets of values:
�
�2l ; �

2
u

�
=

(2; 2) and
�
�2l ; �

2
u

�
= (1; 2). When �2l = �

2
u, Stoye�s lower and upper critical values are the same.

They are denoted as Stoye. When �2l 6= �2u, they di¤er and are denoted as StoyeL and StoyeU

respectively. In the graphs, StoyeL > StoyeU for all of the settings.

Several interesting conclusions can be made based on Figure 2. First, when
p
n�=max f�l; �ug >

2:5, all the critical values become almost identical to ��1 (1� �) = 1:645. Second, whenpn�=max f�l; �ug
is small, the critical values for di¤erent CIs di¤er and the di¤erence becomes larger as � approaches

�1. Third, when � is positive and �l = �u, the critical values of CIIM and CIS are numerically

indistinguishable. Lastly, when � = 1, the critical values of CIFP and CIIM coincide and they

coincide with that of CIS if �l = �u. But if �l 6= �u; the critical values of CIS di¤er from that of

CIFP or CIIM .
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4.2 Simulation: Population Mean with Interval Data

We apply CIFP, CIS, and CIPA to the example of two-sided mean or interval data. Like CHT (2004)

and Beresteanu and Molinari (2006), we use the March 2000 wave of the Current Population Survey

(CPS) data. The variable Y is the logarithm of wages and salaries of white men ages 20 to 50 only.

The �population� of study consists of 13290 observations summarized in the following table.

Table 1: Summary Statistics of DGP1: CPS Data
Variable # of Values Mean Std Dev Min Max

exp (Y ) (wages and salaries, in $) 13290 66943:2 52465:0 1 513472
Y 13290 4:539 0:985 0 5:711

In the simulation, the �population� or DGP consists of population values of the lower bound YL

and the corresponding values of the upper bound YU : From this DGP, we draw random samples of

sizes n = 500; 1000; 2000; 8000 respectively denoted as fYLi; YUigni=1. The estimators of the lower
and upper bounds are given by �̂l = n

�1P
i YLi and �̂u = n

�1P
i YLi.

We considered three DGPs designed to shed light on the performance of CIFP, CIS, and CIPA

in three typical cases: point-identi�ed case, interval identi�ed case with a small �, and interval

identi�ed case with a large �. For point identi�ed case, the DGP (DGP1) is the CPS data set, from

which we draw two types of random samples fYLi; YUigni=1; one with YLi = YUi = Yi for i = 1; :::; n
and the other with fYLigni=1; fYUigni=1 being independent. For interval identi�ed case with small
�, the DGP (DGP2) consists of the logarithms of the bracketed wages and salaries data in CHT

(2004) and Beresteanu and Molinari (2006). There are 16 brackets: the values of YL and YU are

the logarithms of the bracketed wages and salaries. These brackets are (written in thousand $):

[0.001,5], [5,7.5], [7.5,10], [10,12.5], [12.5,15], [15,20], [20,25], [25,30], [30,35], [35,40], [40,50], [50,60],

[60,75], [75,100], [100,150], [150,100000]. For large �, we combined the �rst eight brackets into

one: [0.001,30] and the last eight into the other one: [30,100000] and the DGP (DGP3) consists of

the logarithms of the two bracketed wages and salaries. The summary statistics of [YL; YU ] for the

latter two DGPs are presented in Table 2 below.

Table 2: Summary Statistics of DGP2 and DGP3
Brackets Variable # of Values [�l; �u] [�l; �u] � �

16 [YL; YU ] 13290 [4:4409; 4:9059] [1:10; 0:861] 0:495 0:4650

2 [YL; YU ] 13290 [3:5283; 7:5234] [1:830; 1:440] 1:0 3:7251
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The length of the identi�ed interval � in the 16 bracket case is eight times smaller than that of

the 2-bracket case. Moreover, the magnitude of � in the 16 bracket experiment is almost half of �l

and �u. So, �l and �u in the 16 bracket case are close enough for us to expect bn to play a role at

least in small samples. In contrast, in the two bracket case, � is large almost twice of max f�l; �ug.
To implement CIFP and CIS, we need to choose bn. We used bn = s:d:

�
�̂
�
c= ln (n) with

c 2 f0; 3:5; 4g. When c = 0, bn = 0 which does not satisfy our conditions on bn in Theorem 2.1.

We chose this bn to illustrate two points. First, when the parameter �0 is point identi�ed or when

� is small, it�s possible that b�l is larger than b�u in which case, the e¤ect of using the shrinkage
estimator with bn = 0 is to replace negative b��s with zero; Second, when � is large enough, the

shrinkage estimator with bn = 0 is the same as the original estimator and in this case, we�ll observe

the performance of CIFP and CIS using the original estimator b�. When c = 3:5; 4, bn satis�es the
conditions of Theorem 2.1, CIFP and CIS are uniformly asymptotically valid and non-conservative

in all cases.

Throughout the simulation, we used � = 0:05 and 2000 replications. We compare the �nite

sample performance of CIFP, CIS, and CIPA via their minimum coverage rates referred to as �nite

sample con�dence sizes, see AG (2007). Given that their asymptotic con�dence sizes are achieved

at either �l (hl = 0) or �u (hu = 0), we report the respective coverage rates of CIFP, CIS, and

CIPA for � = �l; �u.

4.2.1 Point-Identi�ed Case

We �rst present results for YLi = YUi for i = 1; ::; n. In this case, b�l = b�u, so b� = 0 and all three

CIs are the same given by:

CIn =

�
b�l �

1:96b�lp
n
;b�l +

1:96b�lp
n

�
:

This is also the CI of IM and Horowitz and Manski (2000). Its coverage rates denoted by CR(�0)

and width over 2000 simulations are reported in Table 3 below.

Table 3: Summary Statistics for CIn
n CR(�0) Width

500 0:9485 0:1720

1000 0:9525 0:1219

2000 0:950 0:0861

8000 0:9520 0:0431

As expected, the coverage rate is very close to the nominal level (0:95) for all sample sizes

considered.
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In the second experiment, fYLigni=1 6= fYUig
n
i=1, even though E [YLi] = E [YUi]. In this case,

b�
may not be exactly zero. In fact, it is possible that b� is negative. Since we drew random samples

fYLig and fYUig independently, we would expect this to happen at about 50% of the simulations.

In Table 4 below, we presented the proportion of simulations with �̂ < bn denoted by P (�
�). This

is the proportion of simulations in which the shrinkage estimator �� plays a role. When c = 0,

P (��) shows the proportion of simulations with negative b�. It is about 0.5 for all sample sizes. In
addition, we reported the coverage rates and width of each CI based on each value of bn together

with the average of
p
c1�� denoted as Avg(

p
c1��)6.

Table 4: Summary Statistics when � = 0
n c P (��) Avg(

p
c1��) CR(�0) Width

500 CIS 0 0:497 (1:8487; 1:8268) 0:9495 0:1619
(3:5; 4) 1 (1:9553; 1:9558) 0:9495 0:1722

CIFP 0 0:497 1:9087 0:9480 0:1701
(3:5; 4) 1 2:0569 0:9480 0:1833

CIPA 2:0569 0:9480 0:1833

1000 CIS 0 0:4945 (1:8476; 1:8318) 0:9425 0:1146
3:5; 4 1 (1:9546; 1:9555) 0:9435 0:1218

CIFP 0 0:4945 1:9110 0:9430 0:1206
(3:5; 4) 1 2:0569 0:9445 0:1298

CIPA 2:0569 0:9445 0:1298

2000 CIS 0 0:496 (1:8459; 1:8323) 0:9455 0:0806
(3:5; 4) 1 (1:9551; 1:9547) 0:9455 0:0857

CIFP 0 0:496 1:9101 0:9425 0:0849
(3:5; 4) 1 2:0569 0:9425 0:0915

CIPA 2:0569 0:9425 0:0915

8000 CIS 0 0:499 (1:844; 1:833) 0:9470 0:0404
(3:5; 4) 1 (1:9547; 1:9549) 0:9470 0:0430

CIFP 0 0:499 1:9087 0:9480 0:0425
(3:5; 4) 1 2:0568 0:9480 0:0458

CIPA 2:0568 0:9480 0:0458

Several conclusions emerge from Table 4: First, the con�dence sizes of all three CIs are almost

the same for all sample sizes and are close to the nominal level, ranging from 0.9421 to 0.9495;

Second, the coverage rates of each of CIFP and CIS are almost the same across the three values of

c. The one with c = 0 shows slightly narrower CI than c = 3:5; 4; Third, CIFP with c = 3:5; 4 is

the same as CIPA, as P (�
�) = 1 in both cases; Fourth, the critical values in this case are no longer

1.96 as in the case fYLigni=1 = fYUig
n
i=1, as � = 0 in this case.

6For CIS , we provide
�p
cl;1��;

p
cu;1��

�
which correspond to (cl;1��; cu;1��) in the original Stoye�s notation.
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4.2.2 Interval-Identi�ed Case

Sixteen Brackets: A small � The coverage rates for �l and �u along with some summary

statistics are presented in Table 5 below.

Table 5: Summary Statistics for 16 Brackets
n c P (��) Avg(

p
c1��) Width CR(�l) CR(�u)

500 CIS 0 0 (1:6449; 1:6449) 0:6082 0:9235 0:9360
(3:5; 4) 1 (1:9024; 2:0263) 0:6353 0:9550 0:9725

CIFP 0 0 1:6449 0:6082 0:9235 0:9360
(3:5; 4) 1 1:9759 0:6371 0:9595 0:9655

CIPA 1:9759 0:6371 0:9595 0:9655

1000 CIS 0 0 (1:6449; 1:6449) 0:5653 0:9230 0:9340
3:5; 4 1 (1:9020; 2:0260) 0:5845 0:9535 0:9715

CIFP 0 0 1:6449 0:5653 0:9230 0:9340
(3:5; 4) 1 1:9760 0:5857 0:9570 0:9630

CIPA 1:9760 0:5857 0:9570 0:9630

2000 CIS 0 0 (1:6449; 1:6449) 0:5367 0:9335 0:9370
3:5 0:4655 (1:7641; 1:8228) 0:5429 0:9515 0:9625
4 1 (1:9015; 2:0263) 0:5503 0:9570 0:9685

CIFP 0 0 1:6449 0:5367 0:9335 0:9370
3:5 0:4655 1:7990 0:5433 0:9570 0:9580
4 1 1:9761 0:5512 0:9640 0:9630

CIPA 1:9761 0:5512 0:9640 0:9630

8000 CIS (0; 3:5; 4) 0 (1:6449; 1:6449) 0:5013 0:9450 0:9435
CIFP (0; 3:5; 4) 0 1:6449 0:5013 0:9450 0:9435
CIPA 1:9761 0:5086 0:9720 0:9705

In sharp contrast to the point identi�ed case, the con�dence sizes of CIFP and CIS in this case

di¤er signi�cantly for c = 0 and c = 3:5; 4. Note that when c = 0, P (��) = 0; so the shrinkage

estimator didn�t play any role in CIFP and CIS. Comparing the con�dence sizes of CIFP and

CIS for c = 0 and c = 3:5, we see clearly the role played by the shrinkage estimator ��: When

c = 0, P (��) = 0 and both CIFP and CIS under cover except when n = 8000, but when c = 3:5;

P (��) = 1 for n = 500; 1000 and P (��) = 0:4655 for n = 2000, the con�dence sizes of both CIFP

and CIS are closer to 0.95. When c = 4; P (�
�) = 1 for n = 500; 1000; 2000 and the con�dence size

of CIFP is the same as that of CIPA. When n = 8000; P (�
�) = 0 for all c and the con�dence size

of both CIFP and CIS is 0:9435 as opposed to 0:9705 for CIPA, con�rming the non-conservative

nature of CIFP and CIS. In general the width of CIFP is slightly larger than that of CIS.

It is very interesting to compare the con�dence sizes of CIFP for c = 0 across n. For all n, CIFP

for c = 0 uses the one-sided critical value ��1 (1� �). But when n = 500; 1000; 2000, pn� is not
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large enough for the asymptotics to take e¤ect leading to smaller con�dence size. In contrast, when

n = 8000,
p
n� is large enough leading to the con�dence size of 0:9435, the same as the con�dence

size for c = 3:5; 4. These results demonstrate clearly the role of c or bn when
p
n� is not large

enough (see n = 500, e.g.): increase the critical values so as to correct the con�dence size. When
p
n� is large enough, c or bn is no longer e¤ective and the asymptotics kick in.

Two Brackets: A large � In this case,
p
n� is large enough for all sample sizes considered

and bn does not play any role, i.e., P (�
�) = 0 for all c and all sample sizes.

Table 6: Summary Statistics for Two Brackets

n Avg(
p
c1��) Width CR(�l) CR(�u)

500 CIS (1:6449; 1:6449) 3:9655 0:9435 0:9580
CIFP 1:6449 3:9655 0:9435 0:9580
CIPA 1:960 4:0115 0:9655 0:9775

1000 CIS (1:6449; 1:6449) 3:8949 0:9455 0:9495
CIFP 1:6449 3:8949 0:9455 0:9495
CIPA 1:960 3:8949 0:9685 0:9785

2000 CIS (1:6449; 1:6449) 3:8453 0:9480 0:9495
CIFP 1:6449 3:8453 0:9480 0:9495
CIPA 1:960 3:8453 0:9680 0:9745

8000 CIS (1:6449; 1:6449) 3:8753 0:9465 0:9515
CIFP 1:6449 3:8753 0:9465 0:9515
CIPA 1:960 3:8753 0:9760 0:9735

The �rst observation from Table 6 is that CIS and CIFP are identical with con�dence size

being very close to the nominal level 0.95 for all sample sizes. However, CIPA is quite di¤erent

from CIS and CIFP: it overcovers for all sample sizes. Secondly, the critical value for CIPA is

��1 (1� �=2) = 1:96; because �̂ = 1; while that for CIS and CIFP is ��1 (1� �) = 1:645, because
p
n� is large enough for all sample sizes considered.

5 Conclusion and Current Research

In this paper, we provided a detailed theoretical and numerical study on CIs for interval identi�ed

parameters. By inverting a two-sided test for the value of the interval identi�ed parameter, we

not only developed a new CI, but also established its relationship with existing CIs, including

that of IM, Horowitz and Manski (2000), Stoye (2007), and AG (2007). This approach allows

straightforward extensions to interval identi�ed parameters for which the estimators of the interval

bounds are not asymptotically normally distributed, provided they do not have discontinuity as a

function of model parameters. Moreover, we are able to generalize our new CI for interval identi�ed
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parameters to parameters de�ned by general moment equalities/inequalities.

The simulation results presented in this paper support the theoretical �nding of Stoye (2007)

and the current paper: it is essential to use the shrinkage estimator of the length of the identi�ed

interval or that of the slackness parameters in the general case of parameters de�ned by moment

equalities/inequalities. The shrinkage estimator essentially distinguishes between binding and non-

binding moment inequalities.

The CI or CS developed in this paper has applicability in a wide range of economic/econometric

models with partially identi�ed parameters. Moreover, the idea underlying them can be extended

to partially identi�ed models for which at least one of the assumptions in this paper is violated. For

example, the validity of CIFP relies on the assumption that the asymptotic distribution of
�
b�l;b�u

�

does not have a discontinuity in the model parameters. This may be violated in some applications.

One of the authors is currently working on two such applications.

Park (2007a) investigates inference for the distribution of the treatment e¤ects of a binary

treatment. Using the same notation as in Example 2, but de�ne �0 = F�(�), �l = supymax(F1(y)�
F0(y � �); 0) and �u = 1 + infymin(F1(y) � F0(y � �); 0). Then it is known that �l � �0 � �u.

Again, with randomized data, F1 and F0 are identi�ed and thus �l, �u are identi�ed. Estimators

of �l; �u can be constructed by replacing F1 and F0 with their consistent estimators such as the

empirical distributions in the above expressions. However, the estimators of �l; �u do not satisfy

Assumption IM (i), as their asymptotic distribution exhibits discontinuity depending on the value

of supy(F1(y)�F0(y� �)) and infy(F1(y)�F0(y� �)). Fan and Park (2007b) considered inference
on the bounds themselves.

Another example violating Assumption IM (i) concerns the �mixing problem� discussed by Man-

ski (1997, 2003). The �mixing problem� arises, for example, when we want to �extrapolate the results

from a randomized experiment,� see Manski (2003). Since we do not know the �treatment shares,�

i.e., the possibility that people comply the rule and do not, the probability for a certain range of out-

comes, say y 2 B, to occur lies in [max fP1 (y 2 B) + P0 (y 2 B)� 1; 0g ;min fP1 (y 2 B) + P0 (y 2 B) ; 1g],
where Pj ; j = 1; 0; is the probability measure corresponding to Fj . Park (2007c) studies the statis-

tical inference for this problem and provides some empirical applications.

Park (2007b) provides an application of the tools developed in Fan and Park (2007b) and Park

(2007a, 2007c) to the Project STAR. Project STAR, conducted by Tennessee State Department of

Education in 1985-1988, is a randomized experiment to investigate the e¤ect of class size reduction

(CSR) on students� performances. Although the potential heterogeneity of treatment e¤ects of

Project STAR has been documented in the literature (see e.g., Ding and Lehrer 2005), it has not

been fully investigated empirically.
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6 Appendix A: Technical Proofs

For convenience, we restate the assumptions (3.3) in AG (2007) as Assumption MI below.

Assumption MI. For i.i.d. observations, the parameter space for (�; P ) is the set of all (�; P )

that satisfy:

(i) Emj (Wi; �0) � 0 for j = 1; :::; p;

(ii) Emj (Wi; �0) = 0 for j = p+ 1; :::; k;

(iii) fWigni=1 are i.i.d.,

(iv) �2j (�) 2 (0;1) for j = 1; :::; k;

(v) Corr (m (Wi; �)) 2 	, and

(vi) Ejmj (Wi; �) =�j (�) j2+� �M for j = 1; :::; k;

where 	 is the set of correlation matrices, and M <1; � > 0 are �xed constants.
Proof of Theorem 2.1. Similar to the proof of Theorem 2 in AG (2007), it is straightforward

to show that under Assumption IM (i) and (ii), Assumption A0 and Assumption B0 in AG (2007)

are satis�ed with Jh the distribution function of the random variable
�
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
�.

Similar to Stoye (2007), we let cn =
�
n�1=2bn

�1=2
. Then cn ! 0 and n1=2cn !1. We consider two

cases: Case I. �n � cn; Case II. �n < cn.
Case I. �n � cn. In this case, n1=2�n � n1=2cn ! 1, so either hl = 1 or hu = 1 or both.

Suppose hl =1. Then under the local sequence
�

!n;h

	
, we obtain

Pr [� 2 CIFP] = Pr

�
Tn (�) � cv1��

� p
n��

max fb�l; b�ug
; 0;b�

��

! Pr

��
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
� � cv1��

� p
n��

max fb�l; b�ug
; 0;b�

��

! Pr

��
Zu;h� + hu

�2
� � cv1��

� p
n��

max fb�l; b�ug
; 0;b�

��

! Pr
h�
Zu;h� + hu

�2
� � cv1�� (1; 0; �)

i

� Pr
h
(Zu;�)

2
� � cv1�� (1; 0; �)

i

� 1� �,

where we have used the result that the random variable
�
Zu;h� + hu

�2
� is stochastically decreasing

in hu � 0 and the result that Pr
h
�� = b�

i
! 1 because Pr

h
b� > bn

i
! 1. The proof for hu = 1

is similar. Suppose both hl =1 and hu =1. Then it is easy to see that Pr [� 2 CIFP]! 1.
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Case II. �n < cn. In this case, Stoye (2007) shows that �� = 0 � � with probability

approaching one. Note that under the local sequence
�

!n;h

	
,

Pr [� 2 CIFP] = Pr

�
Tn (�) � cv1��

� p
n��

max fb�l; b�ug
; 0;b�

��

! Pr

��
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
� � cv1��

� p
n��

max fb�l; b�ug
; 0;b�

��

! Pr
h�
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
� � cv1�� (0; 0; �)

i

� Pr
h�
Zl;h�

�2
+
+
�
Zu;h�

�2
� � cv1�� (0; 0; �)

i

= 1� �,

where we have used the result that the random variable
�
Zl;h� � hl

�2
+
+
�
Zu;h� + hu

�2
� is sto-

chastically decreasing in hl � 0; hu � 0. The proof is completed by noting that when � = 0,

Pr [� 2 CIFP]! 1� �.
Proof of Theorem 3.1. We prove the result when p = 2. The general case is similar. Similar

to the proof of Theorem 2.1, we need to justify the use of 
�1 (�) =
�

�1;1 (�) ; 


�
1;2 (�)

�
, where


�1;j (�) =

(
mn;j(�)
b�n;j(�) if mn;j (�) > bn

0 otherwise
:

Let cn =
�
n�1=2bn

�1=2
. Then cn ! 0 and n1=2cn !1.

Case I. 
1;j (�) � cn, j = 1; 2. In this case, n1=2
1;j (�) � n1=2cn !1. Thus,

Pr (� 2 CSMC) ! Pr

0
@

p+vX

j=p+1

�
Zh2;2;j

�2 � cv1�� (1;1;
n (�))

1
A

= 1� �:

Case II. 
1;j (�) < cn, j = 1; 2. Similar to Stoye (2007), one can show that 

�
1;j (�) = 0 � 
1;j

with probability approaching one. Thus,

Pr (� 2 CSMC) ! Pr

0
@

pX

j=1

�
Zh2;2;j + h1

�2
� +

p+vX

j=p+1

�
Zh2;2;j

�2 � cv1�� (0; 0;
n (�))

1
A

� Pr

0
@

pX

j=1

�
Zh2;2;j

�2
� +

p+vX

j=p+1

�
Zh2;2;j

�2 � cv1�� (0; 0;
n (�))

1
A

= 1� �:

Case III. Suppose 
1;1 (�) < cn, but 
1;2 (�) � cn. The other case is similar. Then 
�1;1 (�) =
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0 � 
1;1 with probability approaching one and n1=2
1;2 (�) � n1=2cn !1. Thus,

Pr (� 2 CSMC) ! Pr

0
@

pX

j=1

�
Zh2;2;j + h1

�2
� +

p+vX

j=p+1

�
Zh2;2;j

�2 � cv1�� (0;1;
n (�))

1
A

� Pr

0
@�Zh2;2;1

�2
� +

p+vX

j=p+1

�
Zh2;2;j

�2 � cv1�� (0;1;
n (�))

1
A

= 1� �:

The proof is completed by noting that when all the inequalities are binding, Pr (� 2 CSMC)!
1� �.

7 Appendix B: An Expression for Jh (x)

In this section, we derive a closed-form expression for Jh (x). This should be useful in construct-

ing CSs in moment inequality models when there are two moment constraints. Let � (zl; zu; �)

and � (zl; zu; �) denote respectively the pdf and cdf of (Zl;�; Zu;�): the standard bivariate normal

distribution with correlation coe¢cient �. De�ne

A1 (x) =
�
(zl; zu) 2 R2 : zl < hl ^ zu > �hu

	
;

A2 (x) =
�
(zl; zu) 2 R2 : zl < hl ^ �hu �

p
x � zu � �hu

	
;

A3 (x) =
�
(zl; zu) 2 R2 : hl � zl � hl +

p
x ^ zu > �hu

	
;

A4 (x) =
n
(zl; zu) 2 R2 : hl � zl � hl +

p
x ^ �hu �

p
x � zu � �hu ^ (zl � hl)2 + (zu + hu)2 � x

o
;

A (x) = A1 (x) [A2 (x) [A3 (x) [A4 (x) :

If j�j < 1, then

Jh (x) = J(hl;hu;�) (x)

= P
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�

= P ((Zl;�; Zu;�) 2 A1 (x) [A2 (x) [A3 (x) [A4 (x))

=

Z 1

�1

Z 1

�1
I f(zl; zu) 2 A (x)g� (zl; zu; �) dzldzu;

where I (A) = 1 if A happens; 0 otherwise. Graphically, A (x) is given by the shaded area below.
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Hence,

Jh (x) = Pr
h
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

i

= �
�
hl +

p
x
�
� �

�
hl;�hu �

p
x
�
�
Z hl+

p
x

hl

Z �hu�
q
x�(zl;��hl)

2

�1
� (zl; zu; �) dzudzl

= �
�
hl +

p
x
�
�
Z hl

�1
� (z) �

 
��z + hu +

p
xp

1� �2

!
dz �

Z hl+
p
x

hl

� (z) �

0
@�

�z + hu +
q
x� (z � hl)2p

1� �2

1
A dz

= �
�
hl +

p
x
�
�
Z hl+

p
x

�1
� (z) �

0
@�

�z + hu +
q
x� (z � hl)2+p
1� �2

1
A dz:

If � = 1, then

n
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

o
=
n
Z : (Z � hl)2+ + (Z + hu)

2
� � x

o
,

where Z is a standard normal random variable. A similar analysis shows that

n
Z : (Z � hl)2+ + (Z + hu)

2
� � x

o

=
�
hl < Z � hl +

p
x
	
[
�
�hu �

p
x � Z < �hu

	
[ f�hu � Z � hlg

=
�
�hu �

p
x < Z � hl +

p
x
	
:

Therefore, we get

J(hl;hu;1) (x) = Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�

= �
�
hl +

p
x
�
� �

�
�hu �

p
x
�
:
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If � = �1, then

Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�
= Pr

�
(Z � hl)2+ + (�Z + hu)

2
� � x

�

= Pr
�
(Z � hl)2+ + (Z � hu)

2
+ � x

�
:

Letmax fhl; hug = hmax andmin fhl; hug = hmin. We can rewrite the event
n
(Z � hl)2+ + (Z � hu)

2
+ � x

o

as:

n
(Z � hl)2+ + (Z � hu)

2
+ � x

o
= B1 (x) [B2 (x) [B3 (x) [B4 (x) ;

where Bj (x), j = 1; 2; 3; 4 correspond to the four possibilities in terms of the signs of (Z � hl) ;
(Z � hu). For example,

B1 (x) =
n
Z : Z � hl > 0 ^ Z � hu > 0 ^ (Z � hl)2+ + (Z � hu)

2
+ � x

o
:

Note that Z � hl > 0 and Z � hu > 0 is equivalent to Z > hmax. In this case,
n
Z : (Z � hl)2+ + (Z � hu)

2
+ � x

o

=

(
Z :

�
Z � hl + hu

2

�2
� 2x� (hl � hu)2

4

)

=

8
<
:Z : Z �

hl + hu +
q
2x� (hl � hu)2

2

9
=
; provided 2x � (hl � hu)2

=

8
<
:Z : Z �

hmax + hmin +
q
2x� (hmax � hmin)2

2

9
=
; provided 2x � (hmax � hmin)2 :

Also,

hmax <
hmax + hmin +

q
2x� (hmax � hmin)2

2
=) (hmax � hmin)2 < x:

Therefore, we get

B1 (x) =

8
<
:

�
Z : hmax < Z � hmax+hmin+

p
2x�(hmax�hmin)2
2

�
if x > (hmax � hmin)2 ;

? otherwise

Similarly, we can show:

B2 (x) =
�
Z : hmin � Z < min

�
hmax; hmin +

p
x
		

B3 (x) =
�
Z : hmin � Z < min

�
hmax; hmin +

p
x
		

B4 (x) = fZ : Z � hming :
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Combining them altogether, we get

n
(Z � hl)2+ + (Z � hu)

2
+ � x

o

=
�
�1;min

�
hmax; hmin +

p
x
	�
[

8
<
:

? if x � (hmax � hmin)2�
hmax;

hl+hu+
p
2x�(hmax�hmin)2

2

�
otherwise

=

8
<
:

(�1; hmin +
p
x) if x � (hmax � hmin)2�

�1; hl+hu+
p
2x�(hmax�hmin)2

2

�
otherwise

Therefore,

Pr
�
(Zl;� � hl)2+ + (Zu;� + hu)

2
� � x

�

=

8
<
:

� (hmin +
p
x) if x � (hmax � hmin)2

�

�
hmax+hmin+

p
2x�(hmax�hmin)2
2

�
otherwise

:

8 Appendix C. The Forms of CIPA and CIFP

In this section, we show that both CIPA and CIFP are intervals because their critical values do not

depend on �. In general, CSn de�ned as

CSn = f� : Tn (�) � c1��g

=

8
<
:� : n

 
�̂l � �
�̂l

!2

+

+ n

 
�̂u � �
�̂u

!2

�
� c1��

9
=
;

with a constant critical value c1�� has the following alternative expressions:

CSn =

8
>>>>>>>>><
>>>>>>>>>:

h
�̂l �

p
c1��

�̂lp
n
; �̂u +

p
c1��

�̂up
n

i
if
p
nb� � �pc1��min f�̂l; �̂ugh

�̂l �
p
c1��

�̂lp
n
; B
i

if �pc1���̂l �
p
nb� < pc1���̂uh

A; �̂u +
p
c1��

�̂up
n

i
if �pc1���̂u �

p
nb� < pc1���̂l

[A;B] if �
q
c1��

�
�̂2u + �̂

2
l

�
� pnb� < �pc1��max f�̂l; �̂ug

? if
p
nb� < �

q
c1��

�
�̂2l + �̂

2
u

�

(17)

where

A � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

�

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
"
c1�� �

nb�2�
�̂2u + �̂

2
l

�
#
;

B � �̂2u�̂l + �̂
2
l �̂u

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
"
c1�� �

nb�2�
�̂2u + �̂

2
l

�
#
:
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We need to distinguish between two cases: Case I. �̂l � �̂u and Case II. �̂l > �̂u. For Case

I, it is easy to show that

CSn =

�
� : �̂l �

p
c1��

�̂lp
n
� �̂l

�
[
�
� : �̂u � � � �̂u +

p
c1��

�̂up
n

�
[
n
�̂l � � � �̂u

o

=

�
� : �̂l �

p
c1��

�̂lp
n
� � � �̂u +

p
c1��

�̂up
n

�
:

For Case II, one may think

CSn =

�
�1; �̂u +

p
c1��

�̂up
n

�
\
�
�̂l �

p
c1��

�̂lp
n
;1
�
:

However, it is more complicated. We�ll examine it in detail. Note that

CSn = CSn1 [ CSn2 [ CSn3;

where

CSn1 =

8
<
:� : n

 
�̂l � �
�̂l

!2

+

+ n

 
�̂u � �
�̂u

!2

�
� c1�� ^ � � �̂u < �̂l

9
=
; ;

CSn2 =

8
<
:� : n

 
�̂l � �
�̂l

!2

+

+ n

 
�̂u � �
�̂u

!2

�
� c1�� ^ �̂u < �̂l � �

9
=
; ;

CSn3 =

8
<
:� : n

 
�̂l � �
�̂l

!2

+

+ n

 
�̂u � �
�̂u

!2

�
� c1�� ^ �̂u � � � �̂l

9
=
; :

By de�nition, we obtain

CSn1 =

8
<
:� : n

 
�̂l � �
�̂l

!2
� c1��

9
=
; \

n
� : � � �̂u < �̂l

o

=

�
� : �̂l �

p
c1��

�̂lp
n
� �
�
\
n
� : � � �̂u < �̂l

o

=

( h
�̂l �

p
c1��

�̂lp
n
; �̂u

i
if n�̂2 � c1���̂2l

? otherwise
;

and

CSn2 =

8
<
:� : n

 
�̂u � �
�̂u

!2

�
� c1��

9
=
; \

n
�̂u < �̂l � �

o

=

8
<
:� : n

 
� � �̂u
�̂u

!2

+

� c1��

9
=
; \

n
�̂u < �̂l � �

o

=

�
� : � � �̂u +

p
c1��

�̂up
n

�
\
n
�̂u < �̂l � �

o

=

( h
�̂l; �̂u +

p
c1��

�̂up
n

i
if n�̂2 � c1���̂2u

? otherwise
:
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Now,

CSn3

=

8
<
:� : n

 
�̂l � �
�̂l

!2

+

+ n

 
� � �̂u
�̂u

!2

+

� c1��

9
=
; \

n
�̂u � � � �̂l

o

=
n
� :
�
�̂2u + �̂

2
l

�
�2 � 2

�
�̂2u�̂l + �̂

2
l �̂u

�
� + �̂2u�̂

2

l + �̂
2
l �̂
2

u �
c1��
n
�̂2l �̂

2
u

o
\
n
�̂u � � � �̂l

o

=

8
><
>:
� :

 
� �

 
�̂2u�̂l + �̂

2
l �̂u

�̂2u + �̂
2
l

!!2
� �̂2l �̂

2
u

n
�
�̂2u + �̂

2
l

�

2
64c1�� �

n
�
�̂l � �̂u

�2
�
�̂2u + �̂

2
l

�

3
75

9
>=
>;
\
n
�̂u � � � �̂l

o

=

(
� :

�
� � A+B

2

�2
�
�
B �A
2

�2)
\
n
�̂u � � � �̂l

o

= [A;B] \
h
�̂u; �̂l

i

1. Simple algebra shows that �̂u � B and �̂l � A implying

CSn3 =

( h
max

n
A; �̂u

o
;min

n
B; �̂l

oi
if nb�2 � c1��

�
�̂2l + �̂

2
u

�

? otherwise
:

Now, one can show:

�̂u �A =
�̂2u b�
�̂2u + �̂

2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
"
c1�� �

nb�2�
�̂2u + �̂

2
l

�
#

=

(
> 0 if c1�� > n

�̂2l

b�2

� 0 if c1�� � n
�̂2l

b�2 =)

8
<
:
max

n
A; �̂u

o
= �̂u if nb�2 < c1���̂2l

max
n
A; �̂u

o
= A if nb�2 � c1���̂2l

;

and

B � �̂l =
�̂2l
b�

�̂2u + �̂
2
l

+

vuut �̂2l �̂
2
u

n
�
�̂2u + �̂

2
l

�
"
c1�� �

nb�2�
�̂2u + �̂

2
l

�
#

=

(
> 0 if c1�� > n

�̂2u
b�2

� 0 if c1�� � n
�̂2u
b�2 =)

8
<
:
min

n
B; �̂l

o
= �̂l if nb�2 < c1���̂2u

min
n
B; �̂l

o
= B if nb�2 � c1���̂2u

:

Summarizing, we get

CSn = CSn1 [ CSn3 [ CSn2

=

8
>>>>>>><
>>>>>>>:

h
�̂l �

p
c1��

�̂lp
n
; �̂u +

p
c1��

�̂up
n

i
if nb�2 � c1��min

�
�̂2l ; �̂

2
u

	
h
�̂l �

p
c1��

�̂lp
n
; B
i

if c1���̂
2
u < n

b�2 � c1���̂2lh
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p
c1��

�̂up
n

i
if c1���̂

2
l < n
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�
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2
u

	
< nb�2 � c1��

�
�̂2u + �̂

2
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�
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2
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