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MARKET EFFECTS OF GENERIC ENTRY: THE ROLE OF PHYSICIANS  
AND OF NON-BIOEQUIVALENT COMPETITORS 

 
Abstract 

Patent expiration represents a turning point for the brand losing patent protection as bioequivalent generic 

versions of the drug quickly enter the market at reduced prices. In this paper, we study how physician 

characteristics and their prescribing decisions impact the competition among molecules of a therapeutic 

class, once generic versions of one of these molecules enter the market. Specifically, we study the 

evolution of the Selective Serotonine Reuptake Inhibitors (SSRIs) after the introduction of generic 

versions of fluoxetine (brand name Prozac) in the United Kingdom (UK). 

 Our results suggest that, to fully understand the market evolution after generic entry, public health 

officials need to consider the marketing activities of pharmaceutical companies and determine how (1) 

individual physicians prescribe all competing drugs, and (2) respond to drug prices and marketing actions. 

For example, we find that a group of physicians sensitive to detailing switch from fluoxetine to non-

bioequivalent branded alternatives after patent expiration, as Prozac significantly reduces its marketing 

support. Consequently, the market share of fluoxetine decreases despite being available at significant 

price discount under generic form, and despite the increase of prescriptions by price-sensitive physicians. 

Hence, governments interested in assessing generics diffusion should consider the prescribing across all 

competitors, whether or not bioequivalent, and determine the size of physician segments sensitive to 

pharmaceutical marketing activity and prices. 

 

Key words: Generic entry, Pharmaceuticals, Heterogeneity, Competition 



 

3 

1. Introduction 

With a significant number of major blockbuster molecules no longer protected by patents, or nearing 

patent expiration, drug companies have demonstrated an increased interest in studying generic drug 

competition and its market penetration. For example, over the next five to ten years about US$40 

billion of prescription revenue is expected to be affected by patent expiration and consequent generic 

entry (Van Arnum, 2004). Drug companies are not the only market agents interested in better 

understanding the substitution patterns between generic versus branded versions of a molecule.  

Rising health care costs have become a major public concern in recent years.  

 Prescription drugs represent a significant component of such costs, with shares ranging from 

four percent in the United States (US) to nearly 18 percent in France and Italy (Kyle, 2003). As a 

result, one of the avenues pursued by public health officials to reduce health-related expenditures has 

been to foster the substitution of branded molecules with lower priced generic versions (Gleckman, 

2002). The benefits from such substitution can be substantial. For example, Fischer and Avorn (2003) 

analyze state-by-state Medicaid prescription drug spending in the US for the year 2000 and find that 

states would have saved US$229 million with a greater use of generic drugs. Total savings would 

have reached US$450 million if the best available prices from each state had been used nationally. 

The interest of both drug companies and public health officials has spurred significant research 

efforts in the area of generic drug competition and adoption. A significant portion of this recent literature 

has focused on the institutional factors and supply side issues that affect generic demand (e.g., Caves, 

Whinston & Hurwitz 1992; Scott-Morton, 1999, 2000 and 2002; Danzon & Chao 2000), and on the 

aggregate effects of generic entry on the branded drug losing patent protection (e.g., Frank & Salkever, 

1992 and 1997; Magazzini, Pammolli, Riccaboni & Magazzini, 2004; Lexchin, 2004). The role of 

physicians on the demand for generics and on generic competition has received far less attention (e.g., 

Hellerstein, 1998), though a critical feature of prescription pharmaceuticals is that the end consumer, the 

patient, does not select the drug she will consume. Instead, the physician decides the drug therapy and, in 
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most western countries, whether the patient will receive a branded drug or its generic alternative, once 

generics become available in the market.  

Using a unique panel data that tracks physician prescription behavior before and after entry of a 

generic drug, we study how physician characteristics (observable and unobservable) and their prescribing 

decisions impact the competition among molecules of a therapeutic class, once generic versions of one of 

these molecules enter the market. Specifically, we study the evolution of the Selective Serotonin 

Reuptake Inhibitors (SSRIs), a subcategory of antidepressants, after the introduction of generic versions 

of fluoxetine (brand name Prozac) in the United Kingdom (UK). 

Unlike previous research, we analyze simultaneously the competition between the entering generics 

and the brand that faces patent expiration (within-molecule competition), and the competition among all 

of the molecules in the therapeutic class (between-molecule competition). In the analysis, we control for 

the marketing activity targeted to physicians and for drug similarity due to bioequivalence as in the case 

of branded molecules and their generic counterparts. These are factors ignored by previous research. In 

addition, we compare the behavior of physicians before and after patent expiration. This allows us to 

study how physician characteristics, measured before patent expiration (e.g., drug preference, sensitivity 

to marketing activity, and sensitivity to prices) are predictive of the market evolution of generics, of the 

brand facing patent expiration, and of the remaining brands in the therapeutic class. 

Our findings are of interest for both managers and policy makers. For example, in this empirical 

application we find that the market share of the molecule losing patent protection, (also called the multi-

source molecule because of its availability under branded and generic versions) decreased after patent 

expiration, a pattern undesirable by most governments but not uncommon (see Caves et al., 1992). This 

reduction occurred despite the availability of generics at significant price discounts, and despite the more 

favorable price differential for the multi-source molecule versus the remaining drugs in the category. We 

argue that this is due to a significant reduction of marketing support by the brand losing patent protection, 

in expectation of significant free-riding from generics. As a result, physicians sensitive to marketing 

activities switch from the multi-source molecule to other (branded) non-bioequivalent molecules. A 
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smaller segment of price-sensitive physicians, who increase prescribing of the multi-source molecule, is 

however unable to fully compensate for the behavior of physicians who are sensitive to marketing 

activities, like detailing.  

These results suggest that, to fully understand the market impact of generic drug entry and its 

subsequent adoption, it is essential to (1) study the full competitive market dynamics (both the within- 

and the between-molecule competition), (2) account for the marketing activity of pharmaceutical 

companies, and determine how physicians respond to the marketing actions and drug prices at the 

individual level, and (3) investigate the prescription habits of physicians even before drugs lose patent 

protection. 

Our findings also suggest that the design of proper incentive schemes by companies and 

governments should carefully consider the responsiveness of physicians to prices and to marketing 

activity, the size of the different physician segments, and the likely competitive responses of all players in 

the market (e.g., in this case non-bioequivalent competitors had little reason to fear from generic entry 

and a deep price cuts would have not been warranted). Even if very detailed information is not available 

for the all physicians, companies and governments could determine which physicians to target using 

observable physician characteristics. In this data set, for example, women prescribe generics more often 

than men, and physicians working in larger practices prescribe more generics than those in smaller 

practices. 

This paper is organized as follows. Next, we present the literature review and the findings relevant 

to this work. Then we describe the adopted methodology, present the data used, and provide more 

information on the empirical application setting and estimation issues. Finally, we present the results and 

elaborate on the implications for policy makers and drug companies. We then conclude with limitations 

and areas for future research. 

2. Literature Review 

The importance of generic consumption has created a fertile ground for research on generic drug 
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competition and adoption. These studies rely mostly on aggregated data and rarely consider the individual 

physician influence. 

2.1 Aggregate Level Studies 

A significant portion of the recent literature on generics has focused on the effect of institutional 

and supply side factors. Such work comprises the analysis of topics such as: the effect of regulation on 

competition (Danzon & Chao, 2000; Aronsson, Bergman & Rudholm, 2001; Kyle, 2003), the role of 

buying system characteristics such as insurance and Medicaid coverage (Jayachandran, Nevins & 

Bearden, 2003), advertising and licensing as entry deterrents (Grabowski & Vernon, 1992; Scott-Morton, 

2000; Königbauer, 2005), the integrated production of generics and branded drugs (Ferrándiz, 1999; 

Scott-Morton, 2002), and factors influencing generic entry (Bae, 1997; Scott-Morton, 1999 and 2000). 

Another significant stream of research investigates the dynamics of market shares, quantity sold, 

and prices after generic entry (e.g., Hurwitz & Caves, 1988; Caves et al., 1992; Frank & Salkever, 1992 

and 1997; Aronsson et al., 2001; Reiffen & Ward, 2003; Lexchin, 2004; Magazzini et al., 2004). Results 

have not always been in agreement, depending often on data and methodology employed, though several 

important conclusions can be made. For example, most studies report a significant decrease in market 

share of the original brand after patent expiration, with major brand names in recent years typically losing 

half of their market share within one year of patent expiration (e.g., Grabowski & Vernon, 1996). In 

contrast, prices of original brands increase (e.g., Grabowski & Vernon, 1992; Frank & Salkever, 1997) or 

remain mostly unchanged (e.g., Caves et al., 1992; Lexchin, 2004) though the net effect is an average 

price reduction for a prescription (Frank & Salkever, 1997).  

2.2 Physician Role 

With few exceptions, the role of physicians' characteristics and physician decision-making is often 

ignored, despite the central role that physicians play in prescription drug markets. Recently the few 

studies that analyze physician-level prescribing data have shed some light on the influence of physicians 

on generic adoption. Hellerstein (1998) uses US physician prescription data to examine physician choice 
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of drug version (branded vs. generic) for molecules whose patents had recently expired. She concludes 

that some physicians are significantly more likely to prescribe generics whereas others are more likely to 

prescribe brands (though almost all physicians prescribe both versions), and that physicians are indeed 

important agents in shaping the fate of generics. Two other studies on physician role in generic 

prescribing, Coscelli (2000) and Lundin (2000), draw similar conclusions. Mainly, these studies show that 

physician habit has a significant influence on generic versus brand-name choices. 

Though these recent studies provide important insights regarding the role of physician in shaping 

within-molecule competition, several questions remain unanswered. First, competition in pharmaceuticals 

exists both within a molecule (branded vs. generic, prescription vs. over-the-counter) and between 

different molecules that treat the same condition. Hellerstein (1998), Coscelli (2000), and Lundin (2000) 

do not incorporate nor study the competition among non-bioequivalent drugs in the same therapeutic class 

(between-molecule competition), despite previous studies that show the importance of intermolecular 

competition. For example, Stern (1996) shows that cross-price elasticities between branded and generic 

versions of a molecule are low and that the cross-price elasticities between therapeutic substitutes are 

high. Lichtenberg and Philipson (2000) find also that the loss in sales due to the entry of new drugs to the 

therapeutic class reduces the value of a drug considerably more than the entry of bioequivalent generics. 

Second, the works of Hellerstein (1998), Coscelli (2000), and Lundin (2000) have not incorporated 

pharmaceutical marketing and individual physician response to marketing actions. Marketing actions have 

a real impact on physician prescribing (e.g., Gönül, Carter, Petrova & Srinivasan, 2001; Wittink, 2002; 

Venkataraman & Stremersch, 2007) and constitute a major competitive force by which firms strive to 

differentiate their products and soften price competition. Pharmaceutical firms invest heavily in product 

promotion, spending as much on marketing as they do on research and development (promotion-to-sales 

ratios are among the highest of all manufactured goods; Hurwitz & Caves, 1988). Prior studies have also 

shown that physicians differ in their drug preferences and in their responsiveness to marketing activities 

and prices (e.g., Venkataraman & Stremersch, 2007), making it essential to incorporate physician 

heterogeneity in studying generic adoption. Incorporating individual level heterogeneity is also important 
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from the perspective of brand and generic managers, as the brand losing patent protection tends to 

significantly reduce its marketing effort, and generic versions do not invest in goodwill building activities 

(Caves et al., 1992).This structural change is likely to alter the incentives of some physicians and 

transform the competitive landscape.  

In this study we investigate how physician characteristics (observable and unobservable) and 

physician prescribing decisions impact the competition among all molecules of a therapeutic class (e.g., 

SSRIs, a subcategory of antidepressants), once generic versions of one of these molecules (e.g., 

fluoxetine) enter the market. In our analysis, and unlike previous research, we will study both within- and 

between-molecule competition and account for drug price changes. In addition, we control for 

pharmaceutical marketing activity, physician heterogeneity in response, and drug similarity due to 

bioequivalence. Next we will present the modeling approach and describe the setting of the empirical 

application. 

3. Modeling Approach 

We adopt a two-step approach to investigate how both physician characteristics and prescribing decisions 

impact the competition among molecules of a therapeutic class, once generic versions of one of these 

molecules enter the market. In the first phase, we study physician prescribing behavior to characterize 

physicians in terms of unobservable characteristics like brand and drug preference, responsiveness to 

marketing activity, and price sensitivity. In the second phase, we study drug prescribing after the initial 

market settling period, and model the prescribing of the molecule losing patent expiration versus (1) all 

other drugs in the therapeutic category (between-molecule competition) and (2) the generic competitors 

(within-molecule competition). For the second phase, we use as covariates the estimates from the first 

phase and test whether the level of physician detailing sensitivity and other unobservable physician 

characteristics allow a better understanding of physician prescribing after patent expiration. 

3.1 Phase 1: Random Effects Multinomial Nested Logit Model 

In the first phase, we model the physician decision of drug choice for each patient visit given a 
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prescription in the focal therapeutic category as a two-level process: physicians select which molecule to 

prescribe given a prescription in the category (e.g., fluoxetine versus citalopram given an SSRI 

prescription) and then which version (e.g., branded versus generic). This modeling approach creates a 

two-level tree structure (Figure 1) that can be estimated using the well-known multinomial nested logit 

(for model details and derivation please see Appendix A). We estimate individual level parameters (e.g., 

underlying preferences, responsiveness to marketing activity and prices) via a random effects formulation 

and use these to characterize physicians. The model is estimated using Bayesian simulation methods (for 

details see Appendix B). 

 During this first phase we observe physicians for a significant period before generic entry and 

during the initial stages of generic entry while the market settles (we call this Period 1). This allows the 

reliable measurement of physician characteristics and the measurement of physician’s preference for drug 

version (generic vs. branded). Physicians are not always indifferent between the two because generics do 

not benefit from previous investments in goodwill (e.g., advertising) and from years of market presence 

and experience as do branded versions. Physicians can then see generics as a trade-off between cost and 

(perceived) quality (see Caves et al., 1992).  

We believe that the proposed random effects multinomial nested logit approach is the most 

appropriate. First, multinomial logit models are well known, robust, and widely used to study choice 

behavior when full competitive information is available. Previous applications include the analysis of 

pharmaceuticals (e.g., Narayanan, Manchanda & Chintagunta 2005; Gönül et al., 2001), transportation 

mode (e.g, Ben-Akiva & Lerman, 1985), and packaged goods (e.g., Bucklin & Gupta, 1992). Prior studies 

of drug performance (Jayachandran et al., 2003) also suggest that the entry of generic pharmaceuticals 

does not lead to appreciable market expansion and the data used for this study also supports this 

contention. As a result, we can account for the full competitive actions when modeling drug choice 

conditional on a prescription using a multinomial choice model. In addition, previous studies on 

pharmaceuticals have shown that, at a given patient visit, physicians are influenced by their own previous 

prescription choices (e.g., Janakiraman, Dutta, Sismeiro & Stern, 2007). As a result, by modeling the 
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prescription decision for each individual patient, we can account for these carryover effects. 

Finally, the nested structure avoids the Independence of Irrelevant Alternatives property (IIA) that 

is present in standard multinomial logit models. Government agencies evaluate and approve the 

bioequivalence of generic drugs, and though controversy persists about the bioequivalence of a handful of 

medications, nearly all other generic drugs provide identical therapeutic benefits (Fischer & Avorn, 

2003). In contrast, different branded molecules in a therapeutic class can be used to treat the same illness, 

but are not therapeutically equivalent, and patients can differ in their susceptibility towards them. 

Standard models cannot account for this closer similarity of two or more alternatives2 because of the IIA 

property (see Ben-Akiva & Lerman, 1985). This is avoided using the nested structure. 

3.2 Phase 2: Binomial Models 

In the second phase of the analysis, we study drug prescribing after the initial market settling 

period. We will denote this time period as Period 2 (the same physicians are tracked in Period 1 and 2). 

Using the data in Period 2, we model (1) the prescribing of the molecule losing patent protection, generic 

and branded versions combined, versus all other drugs in the therapeutic category (between-molecule 

competition) and (2) the prescribing of the brand losing patent protection versus its generic competitors 

(within-molecule competition). In these between- and within-molecule competition analyses we will 

study whether observable (e.g., gender and practice size) and unobservable (e.g., responsiveness to 

marketing actions and price) physician characteristics can predict the market evolution after generic entry. 

To measure the unobservable physician characteristics we will use the physician parameters obtained in 

the first modeling phase (using the random effects multinomial nested logit model).  

To study prescriptions of the molecule losing patent expiry versus all other drugs in the therapeutic 

category (between-molecule competition), we estimate a binomial model (details in Appendix A). We 

                                                 
2 Though generics and branded drugs are bioequivalent with respect to their active ingredients, they do not necessarily contain 

the same inactive ingredients, nor are sold under the same dosages or formats. That is why the two versions are “more similar” 
and not “exactly the same”. For example, Fridman, Jaffe, and Steinhardt (1987) found that only half of 245 physicians surveyed 
believed that generic drugs are as effective as the original branded version. As explained before, the structure of the nested 
multinomial logit will also allow us to test the level of substitution within and between molecules by looking at the inclusive 
value parameter. 
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assume that, after patent expiration, for physician i and across all ni prescriptions in the category, the 

probability of prescribing the multi-source molecule irrespective of its form (pi) is a function of (1) 

physician-specific unobservable (estimated in the first phase) and observable characteristics, and (2) a 

prescription baseline. Hence, the prescription probability is then given by: 

( )
( )θα

θα

ii

ii
i

Zs

Zs
p

+++
++

=
exp1

exp
,  (1) 

 

where, Zi is a (1×q) vector of physician characteristics (observable and unobservable), θ is the (q×1) 

vector of parameters, α represents the model intercept, and si is the prescription baseline.  

 We estimate two alternative model formulations that correspond to two alternative baselines. One 

model formulation will allow the study of prescribing changes from Period 1 to Period 2. To do so we set 

as prescription baseline the logit transformation of the prescription share of the multi-source drug for each 

physician, that is, si = log(SHAREi / (1-SHAREi)) where SHAREi is the prescription share for the multi-

source molecule (vs. all molecules of the category) during Period 1 (we call this Model I; see Table 1).  

The interpretation is straightforward (assume for simplicity that α = 0): if the observable and 

unobservable physician characteristics are not predictive of prescribing changes from Period 1 to  Period 

2,  then the θ will not be significantly different from zero and the best model will set the probability of 

prescribing the molecule equal to the previous prescribing share for that physician (pi = SHAREi), 

otherwise θ will be significantly different from zero and it will shift the prescription probability of each 

physician away from her own previous prescribing share. 

 The second model formulation will allow the study of how physicians split their prescribing into 

the different drug alternatives in Period 2. In this case, we set to zero the prescribing baseline (si = 0; we 

call this Model II) and are able to study how different physicians prescribe the drug after patent expiry. 

We adopt similar model formulations to study within-molecule competition. In this case the variables of 

the binomial likelihood will correspond to branded prescriptions of Period 2 versus total multi-source 
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prescriptions of Period 2. Both baseline formulations are possible for the within-molecule binomial model 

and these models are called Model IV and Model III (see Table 1 for a summary). 

4. Data 

We use a dataset on physician prescribing behavior and competitive marketing activity from a continuous 

panel of General Practitioners (GP) in the UK, tracked from September 1998 to September 2000. The 

category of prescriptions tracked are those of Selective Serotonin Reuptake Inhibitors (SSRIs), a 

subcategory of antidepressants, and the time-period under analysis covers the patent expiration of 

fluoxetine (brand name Prozac), which occurred in January 2000.  

4.1 The Selective Serotonine Reuptake Inhibitors Category in the UK 

Fluoxetine Hydrochloride was the first SSRI, marketed worldwide under the name of Prozac. It 

was launched in 1988 and quickly became a success. Proclaimed as a wonder drug, it benefited from the 

unprecedented media attention, the marketing efforts of Eli-Lilly (its manufacturer), milder side effects, 

and the novel benefit of non-lethal overdoses. This success led to introductions of more SSRIs during the 

1990s: Seroxat (Glaxo-Smithkline-Beecham) and Lustral (Pfizer) both introduced in 1991, and Cipramil 

(Lundbeck) introduced in 1995.3 On January 2000, the last patent held by Eli-Lilly in the UK on its 

blockbuster drug ended, and 14 companies launched generic versions of fluoxetine. At the end of 2000 

generic versions of fluoxetine had overcome Prozac in unit sales, and the amount of money paid by the 

UK National Health System for Prozac 20mg (the most common format) plunged from £88.1 million in 

1999 to £61 million in 2000. In 2000, the average prescription price for Prozac was £26.12 whereas 

generic versions were priced at £15.29 (Department of Health UK, 2002). 

The UK market development after the entry of generic fluoxetine is similar to those in other 

markets and pharmaceutical categories: the original brand tends to lose market share rapidly because 

generics are offered at deep discount; however, the molecule as a whole does not necessarily grow. This 

makes the example of Prozac/fluoxetine in the UK an ideal case to study. In addition, the specific features 
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of the UK market are also especially appealing for this study. First, direct to consumer advertising of 

prescription drugs is not allowed in the UK and drugs can only be advertised in medical journals. Also 

medical insurance and the actions of Health Management Organizations (Gönül et al., 2001) do not play a 

significant role in the UK due to the ubiquity of the National Health Service (NHS). Patients pay a flat 

rate for prescription drugs, regardless of the cost of the drug (e.g., in 2004 UK patients paid £5.25 per 

prescription, which covered 40% of the average prescription cost). Thus patients tend to exert a weak 

influence on physician prescription decisions due to weak cost-related incentives and lack of information. 

Furthermore, in the UK, prices of drugs under patent are the outcome of negotiations between 

pharmaceutical companies and the NHS, translating into small price variations across drugs and for each 

drug across time. For example, in this sample there was only one significant price change across all 

brands during the two-year period under analysis, and this change was motivated by exogenous and not 

strategic reasons (NHS Report, 2002).4 Hence, there is little incentive for patients to keep track of prices. 

Lastly, physicians in the UK (as in most Western economies) play an important role in deciding 

under which format, generic or branded, patients will receive the multi-source drug. If a prescription is 

written under the molecule name the pharmacist can dispense any product containing the molecule; if a 

brand name is prescribed, the pharmacist has to dispense the brand. Because pharmacists have strong 

incentives to dispense generics if they want to remain competitive5, the format choice of a specific 

molecule will be mostly at the hands of the physician. 

4.2 Detailed Data Description 

For each physician we have information on (1) new SSRI prescriptions and changes of SSRI 

                                                                                                                                                             
3 The brand names in the US are Paxil (Seroxat), Zoloft (Lustral) and Celexa (Cipramil). 
4 The Pharmaceutical Price Regulation Scheme (PPRS) regulates the prices that drugs protected by patents receive from the 

NHS. Under the PPRS, companies are obliged to reduce prices of a drug if the financial returns for that drug exceed certain 
threshold. One of the price reductions observed in the data was indeed imposed by PPRS; the other significant change was due to 
the entry of generics. 
5
 Legislation in the UK fosters competition at the retail level. Generally speaking, the NHS calculates an average price for each 

drug in the UK and reimburses the pharmacist according to this price. Therefore, drugstores feel the pressure to be efficient in 
buying, and the cheapest alternatives tend to be generics. A complete description of how this system works is beyond this 
manuscript. For details, shortcomings and suggested ways of improving the system, read “Fundamental Review of the Generic 
Drugs Market,” a Report prepared by OXERA on behalf of the Department of Health (July 2001). 
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medication for each patient treated, (2) frequency and timing of sales representatives’ visits to physicians 

from all competing drugs in the market, and (3) physician specific information (gender and practice size). 

We retained all the records in which Prozac (fluoxetine), Seroxat (paroxetine), Lustral (sertraline), and 

Cipramil (citalopram) had been prescribed. These are the four key players for this category during the two 

years covered by the data, and represent over 98% of all SSRI prescriptions. We do not include the 

remaining (much smaller) drugs in the analysis because of their limited impact, although our approach  

could be easily extended to include them. 

In addition, we analyze only those physicians who are active in the category. This is common 

practice in the industry and allows for the estimation of reliable individual-level parameters. Hence, we 

retained the prescription choices of physicians who wrote at least ten new SSRI prescriptions and 

received at least one sales call from any of the four key players in the two-year period under analysis. 

This subset of 170 physicians provides a good indicator of the whole sample as it accounts for more than 

80% of all SSRI prescriptions in the time period under analysis. 

Table 2 provides the summary statistics of prescriptions and detailing visits per molecule for the 

final dataset. Period 1 includes the 19 months from September 1998 till March 2000, and Period 2 

includes the 6 months from April 2000 till September 2000. The final dataset comprises the records of 

170 physicians, who wrote a total of 10,079 SSRI prescriptions. Over the entire sample period, SSRIs 

were prescribed about 403 times each month and engaged in 100 detailing visits monthly. There was 

significant heterogeneity both in the number of prescriptions and the number of detailing visits across 

physicians. The minimum number of total prescriptions per physician for Period 1 and 2 combined was 

11, and the maximum was 236; for the number of detailing visits, the minimum was two and the 

maximum 66. 

Fluoxetine (Prozac) and paroxetine (Seroxat) were the two market leaders, followed by 

Citalopram (Cipramil), with Sertraline (Lustral) the fourth largest SSRI brand. An important change in 
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Period 2 is the reduction in prescription share of 2.2 percent points of fluoxetine as a whole (generic plus 

brand name) after generic entry. Aggregate data from the NHS also confirms this declining trend (details 

are available from the authors upon request). Though not novel in the literature (e.g., Caves et al., 1992), 

this is a surprising result considering that the average prices of fluoxetine dropped 37% immediately after 

generic entry.  

A possible explanation for such market evolution could be the changes in the marketing activity 

by the branded drugs which retain patent protection. In Period 1 all drugs have similar detailing levels. In 

contrast, detailing shares shift dramatically in Period 2: Lundbeck increased the detailing of citalopram 

reaching a share of voice of 39%, Eli Lilly virtually stops Prozac detailing, and generic versions of 

fluoxetine do not engage in detailing activities. As a result, the detailing share of fluoxetine drops to 4%. 

This first statistic is very significant as it suggests the importance of analyzing the competition from non-

bioequivalent molecules, before and after a patent expires, to study the impact of generic entry. Next, we 

describe the variables we extracted from the final dataset that were used in the analysis of within- and 

between-molecule competition.  

4.3 Variable Definition for the Random Effects Multinomial Nested Logit Model 

A long stream of literature has demonstrated that detailing visits have a major impact on physician 

prescribing (e.g., Gönül et al., 2001; Wittink, 2002; Venkataraman & Stremersch, 2007). Following 

previous research (e.g., Gönül et al., 2001), we account for the effect of detailing using a parsimonious 

and flexible exponential smoothing formulation that allows detailing meetings to have an impact on 

prescriptions even if they did not occur immediately before a prescription occasion, though it will give 

more weight to recent detailing visits. Hence, we define the detailing variable, SDijt as: 

)(tijijt SDDSD ω= ,  for I = 1, …, N, j = 1, …, J, and t = 1, …, Ti, and (2) 

τ

κ

τ

τκ
κ δ ijDij DSDD ∑

=

−=
1

, (3) 
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where J is the number of alternative molecules, N is the number of physicians observed, Ti is the number 

of times the physician i prescribes in the category, ω(t) is a function that maps the prescribing occasion t 

to its corresponding calendar day τ, δD is the parameter of daily decay (0 < δD < 1)6, and Dijτ is a dummy 

variable that takes the value of one if molecule j is detailed to physician i in calendar day τ, the value zero 

otherwise. With this formulation, the mean of the stock of detailing variables was between 0.18 

(Cipramil) and 0.27 (Lustral).  

 Unlike detailing, price effects have been subject to greater controversy. For example, the results 

of Arosson et al. (2001) and Lundin (2000) suggest that physicians consider the price patients effectively 

pay for the drugs when deciding which drug to prescribe. The results of Newhouse (1993) and Gönül et 

al. (2001) suggest the opposite. Because it is yet unclear whether physicians are or not price sensitive, we 

will measure physician sensitivity to price. During the time-period under analysis there was only one 

significant price change unrelated to the entry of generic fluoxetine in the market: a price reduction of 

38% of Lustral in June 1999 imposed by the government (Department of Health UK, 2002). We account 

for this price cut by incorporating a dummy variable, PDjt, that takes the value of one if j = Lustral and if 

a prescription occasion takes place after Lustral’s price reduction; PDjt will then be zero all other times. 

(We do not add a second price dummy for the price reduction of fluoxetine after generic entry because 

this is part of the overall market impact of generic entry and cannot be modeled independently; the nested 

structure of the model will account for such changes.) 

 Finally, another important factor affecting physician prescribing is state-dependence in physician 

choices which affects the correct measurement of marketing and price responsiveness (Janakiraman et al., 

2007). Following previous research we incorporate information about physicians' past prescriptions using 

a dummy variable, SXijt, that takes the value of one if physician i selects drug j in prescribing occasion t-1, 

and that takes the value of zero otherwise (we have tested alternative state dependence specifications and 

                                                 
6 In our empirical application the daily decay parameter of detailing is fixed so that a detailing visit has a halftime 
life of 1 month, which means that if detailing is one on the day of the visit, it will be about one half, 30 days after 

(δD = 0.997). We tested for alternative values of the decay parameter and concluded that for halftime lives between 
15 and 45 days final results do not change significantly. These are values consistent with previous research.  
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found that the lagged dummy provides the best fit; details available from the authors upon request). 

The final model formulation can then be written as: 

 3210 ijtijjtijijtijijtijijijt GPDSXSDV εββββ +++++= ,  (4) 

 

where Vijt is the valuation of molecule j for physician i at prescription occasion t, εijt is a general extreme 

value distributed error term (Train, 2003), and β0ij, β1ij, β2ij and β3ij represent the intercepts (baseline 

preference), the responsiveness to detailing, the effect of past prescriptions, and the responsiveness to 

price, respectively. The term Gij is an extra factor that is only present if the molecule is available in 

generic form. It represents the change in valuation due to the trade-off between the significant price 

discounts of generic versions and their perceived quality. Finally, all of the parameters are physician and 

drug specific though some constraints are necessary in the nested multinomial logit model for 

identification purposes (see Appendix A for details on the constraints).  

4.4 Variable Definition for the Binomial Models of Within- and Between-Molecule Competition 

We model the within- and between-molecule competition as a function of observable and 

unobservable physician characteristics. For the observable characteristics we use as covariates physician 

gender and practice size: gender is defined as a dummy variable that takes the value of one if the 

physician is male and zero if female; practice size is defined as the number of physicians working in the 

physician's practice. For the unobservable characteristics we include as explanatory variables the values 

of the individual-level parameters estimated using the multinomial nested logit. To reduce noise, we build 

90% probability intervals for each physician-parameter combination based on 2000 draws from the 

posterior distribution, and kept only the mean values significantly different from zero. All others were set 

to zero. The parameters of interest that were included are: the responsiveness to Prozac detailing 

(β1i_Prozac), the responsiveness to Lustral’s price cut (β3i), and the inclusive value parameter (λi). We also 

included the intrinsic attractiveness of Prozac for all the physicians as indicator of the preference for 

fluoxetine. The other individual level parameters provided little information. 

To prevent confounding the responsiveness to detailing and the intrinsic physician preference with 
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the level of detailing activity and the prescribing levels, we have also included several control variables. 

These include the number of detailing visits from Prozac and from its competitors during Period 1 and 

Period 2, and the level of physician prescribing of drugs competing with the multisource molecule during 

Period 1. Next, we discuss in detail the results, highlight the potential explanations for the market 

evolution, and elaborate on the implications for policy makers and drug companies. Finally, we conclude 

with the limitations and areas for future research. 

5. Results 

First we will discuss briefly the results from the first modeling phase. Then we will discuss in more detail 

the results from the binomial model that uses as covariates the parameters estimates from the first phase.  

 5.1 Random Effects Multinomial Nested Logit Model 

 Table 3 presents the posterior means and 95% probability intervals for the population level 

estimates of the random effects multinomial nested logit. Consistent with previous research we find 

significant state-dependence across physicians' drug choices (the posterior mean of the population-level 

parameter of past prescriptions, β2, is 0.31 with a probability interval of [0.23, 0.39]). The parameter 

associated with the price cut of Lustral, β3, is also positive but marginally significant, with a posterior 

mean of 0.29 and a probability interval of [0.03, 0.54]. This positive but weak effect is consistent with 

mixed results in prior studies on the impact of prior cuts. Regarding the intercepts, we find an overall 

preference for Prozac (fluoxetine) and Seroxat (paroxetine), consistent with their market shares (36% and 

33% respectively). 

 The parameter associated with Prozac detailing has a posterior mean of 0.15, with a wide 95% 

probability interval that includes zero. The parameters associated with the detailing of the remaining 

molecules are all significant (i.e., have 95% probability intervals that do not include zero) and positive. 

Hence, on average for Period 1, Prozac detailing has little or no impact which is consistent with its high 

level of brand awareness. Detailing from the remaining, newer, and less popular drugs has a positive and 

significant impact on physician prescribing. In addition, and consistent with previous research, we find 
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considerable heterogeneity across physicians which confirms the need of modeling individual physician 

response and of using individual physician data to study physician prescribing (e.g., 12% of the 

physicians have positive and significant individual parameters for Prozac detailing, with posterior mean 

values that range from 0.57 to 2.93; the remaining physicians have parameters that were not significant). 

 Regarding the parameters associated with the nested structure of the model7, we find the posterior 

mean of the factor associated with generic versions of fluoxetine (G) to be 2.15, with the 95% probability 

interval of [1.64, 2.69]. This means that fluoxetine generics are being prescribed more often than Prozac, 

on those occasions that the molecule fluoxetine is prescribed. This is consistent with previous findings in 

the literature that describe a very fast share erosion of brand name molecules once generics become 

available.  

 The posterior mean of the inclusive value parameter (λ) is related to the degree of within-

molecule competition8. When λ equals unity, the model tree collapses to a multinomial logit without a 

nested structure (consistent with generic versions of a multi-source molecule being viewed as completely 

different drugs from the branded alternative). If, in the limit, λ equals zero (λ → 0), each molecule 

(irrespective of format) represents separate choice alternatives. Finally, if λ is positive, but less than one, 

physicians are indeed influenced by the low price of the generic alternative once generic versions of a 

given molecule enter the market and will change the valuation of the molecule nest and prescribe more of 

the molecule losing patent protection9 (the molecule as a whole becomes more competitive compared to 

the other molecules). Hence, the magnitude of the λ parameter provides a measure of how generics are 

perceived by physicians and of their impact once they enter the market. In our case the parameter is very 

                                                 
7
 To test for the use of the nested structure, and for the absence of serious structural breaks in the data, we have also estimated the 

multinomial logit model with only the data before generic entry. The model parameters and the remaining results for the binomial 
models remain largely unchanged from the results we present in the paper. This suggests that the multinomial nested logit is a 
valid model to capture the introduction of a generic in a category as we do in this analysis. 
8 We also estimated a multinomial logit (without nested structure) for the choice of molecule (irrespective of format) with a 

dummy variable for prescriptions after generic entry (as an alternative model formulation). The posterior mean estimates of the 
inclusive value parameters and the generic entry dummies are highly correlated, which indicates that a nested logit model is able 
to capture the changes at the molecule level after patent expiration. The nested logit has the added advantage of modelling also 
the prescription of the version (branded vs. generic) of the multi-source that is prescribed. 
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close to zero (posterior mean of 0.02 with a 95% probability interval of [0.01, 0.05]) suggesting that the 

introduction of fluoxetine in generic format, with the corresponding price reduction, had little or no 

impact on most physician choices after patent expiry.  

We can infer from these results that most physicians perceive generic and branded alternatives of 

a molecule as very similar in terms of price-quality tradeoffs (they are almost indifferent in prescribing 

one or the other), and that generic entry does not change significantly the overall perception of the 

molecule as a whole, that is, similar in terms of price-quality tradeoffs (they are almost indifferent in 

prescribing one or the other), and that generic entry does not change significantly the overall perception 

of the molecule as a whole, that is, it did not lead to an expansion in molecule prescription due to its 

lower price after patent expiration.  In addition, even for those physicians who change their behavior, 

changes are quite small (the posterior means for the inclusive value parameters range from 0.01 to 0.08).  

5.2 Binomial Model Estimations Post Generic Entry 

Tables 4 and 5 present the results of the binomial regressions of between- and within-molecule 

competition, respectively, estimated after generics have been introduced (what we called Period 2). All 

variables in the binomial models deemed non-significant at a 5% significance level were dropped from 

further analysis, and we only present the parameters estimated for the retained variables. Based on 

Bayesian Information Criterion (BIC) comparisons the full models are also significant. 

 In these binomial models, we use as covariates the estimates of unobservable characteristics 

obtained from the nested logit (these include the sensitivity to detailing and prices). Because such 

estimates have significant measurement error (e.g., the individual-level parameters obtained from the first 

stage of the analysis have wide confidence intervals) we need to assess the robustness of our estimates. To 

do so we use a bootstrap procedure. We re-estimate the binomial models 100 times including as 

covariates the posterior means of the parameters from the nested logit computed using 100 different 

random samples of physician-specific draws (we retained 2000 draws during estimation of the nested 

                                                                                                                                                             
9
 Note that in applications with little price variation and with generics entering the market at deep price discounts, it will be 
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logit for each physician and each sub-sample has 200 draws; re-sampling was performed with 

replacement). We report the parameters of the binomial models (posterior means used as covariates are 

computed across the 2000 draws) and the range of the empirical distribution of the t-statistic for the 

different replications.  

Physicians Sensitive to Prozac Detailing Decrease Fluoxetine Prescribing A first significant result 

from the binomial models is the reduction of fluoxetine prescribing (Prozac plus generics) in Period 2 by 

those physicians sensitive to Prozac detailing in Period 1. The first and second columns of Table 4 present 

the results of Model I (model of between-molecule competition that uses the share of fluoxetine 

prescribing from Period 1 as baseline). This model is adequate to explain the changes in prescribing of 

fluoxetine (Prozac plus generics) versus other SSRIs from Period 1 to Period 2. The binomial parameter 

associated with Prozac detailing is  −0.22 and significant across all replications. This means that those 

physicians who are more sensitive to Prozac detailing are the ones who ‘move away from’ fluoxetine the 

most (Prozac plus generics) in Period 2 compared to Period 1. 

 This prescription reduction is quite significant. Based on physician’s individual probability 

intervals for the parameter of Prozac detailing, we have classified physicians into those sensitive to 

Prozac detailing (HIGH Group) and those not sensitive (LOW Group). About 12% of the physicians were 

classified as being sensitive (HIGH) and on average these physicians prescribe 8.08% less fluoxetine 

(Prozac plus generic versions) in Period 2 than what would have been expected considering their 

prescribing levels from Period 1. Using a Chi-square test we conclude this is a significant change at a 5% 

significance level. The remaining 88% of  physicians classified as LOW, (that is, not responsive to Prozac 

detailing) did not exhibit any significant change in their prescription behavior in Period 2 from what 

would have been expected given their prescribing behavior in Period 1 (the average change in fluoxetine 

prescriptions was −1.30% and not significant). 

                                                                                                                                                             
impossible to separate the effects due to price sensitivity for the molecule, and those effects due to perceived quality differences 
between a generic version and the brand name alternative. 
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 The reaction of detail sensitive physicians is perhaps due to the sudden reduction, and subsequent 

elimination, of Prozac detailing (generics do not engage in marketing activities in this market). Physicians 

who were greatly influenced by marketing activities end up reducing their fluoxetine prescribing once the 

marketing actions of Prozac stop, switching to the other SSRIs that maintain (or even increase) their 

marketing effort like detailing. This means that predictions of generic impact must consider the marketing 

reactions of the incumbent brands which will retain patent protection and not just the direct effects of 

generics on the brand losing patent protection.   

 With respect to the cross-sectional variation of prescribing in Period 2, we note that the 

responsiveness to Prozac detailing does not explain the physician prescribing split into fluoxetine and 

other drugs across all physicians (the variable is not significant in Model II; see Table 4) though it 

explains the prescribing \of Prozac versus generic versions of fluoxetine, once fluoxetine is the prescribed 

molecule. Physicians responsive to Prozac detailing in Period 1 prescribe generics fewer times, given that 

the fluoxetine molecule is chosen (the variable has a negative impact, θResponseProzacDetailing = −0.82, and is 

significant in Model IV, the within-molecule model without baseline; see Table 5). This is an interesting 

result from a public policy point of view. Though physicians sensitive to Prozac detailing (all else 

constant) do not prescribe the molecule fluoxetine differently from those not responsive (only the changes 

from Period 1 to Period 2 at the individual-level are affected), once the molecule is chosen physicians 

prescribe fewer generics if they were sensitive to Prozac detailing. In this case, detailing has a long lasting 

effect on the market even after it is no longer used by the company: it created loyalty to the brand. This 

result would have not been discovered had we used traditional regression based techniques using 

aggregate level data. 

Price Sensitive Physicians Increase Fluoxetine Prescribing Physicians with higher inclusive value 

switch from other SSRI molecules to fluoxetine in Period 2 (θλ = 18.73 in Model I; recall that this 

parameter measures also the responsiveness of physicians to price, i.e., the farther away from zero, the 

more physicians increase the use of fluoxetine because of the presence of low cost generics). The same 
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pattern is present for physicians sensitive to Lustral’s price cut (θResponsePriceCut = 0.27 in Model I), even 

though the effect is less pronounced (this parameter was not significant in 13 replications, out of 100, and 

we should consider the result cautiously). This pattern is simple to explain: price sensitive physicians see 

a greater advantage in using fluoxetine, versus all other drugs in the category, because of its reduced price 

after generic entry. These physicians will then prescribe more fluoxetine than before, and reduce the use 

of the remaining molecules (switch from other SSRIs to fluoxetine).  

 Again, the prescription changes are significant. For example, physicians classified as LOW with 

respect to the inclusive value parameter (about 80% of the sample) reduce their fluoxetine prescriptions 

by 3.83%; those classified as HIGH (about 20%) increase the use of fluoxetine by 5.07% more than 

would have been expected given their prescribing in Period 1. Both changes are statistically significant. 

However, the increase in fluoxetine prescribing (a result desired from a public policy perspective after 

generic entry) was not able to compensate the reduction of fluoxetine prescription from other physicians 

that are not especially price conscious and might be sensitive to other marketing actions such detailing. In 

addition, the move towards fluoxetine is fuelled by generic prescribing and not Prozac prescribing (as 

expected and hoped for by most public officials). This can be seen from the results of Model IV (Table 5): 

physicians with higher inclusive values and higher response to the price cut prescribe more generics than 

those with lower values for these parameters (θResponsePriceCut = 0.93 and θλ = 42.78 in Model IV). 

Observable Physician Characteristics can help to predict Generic Use        Consistent with previous 

research (e.g., Hellerstein 1998), we find that observable physician characteristics can explain part of the 

variance of format choice decisions. The results in Table 5 (models of within-molecule competition) 

provide clear evidence that though there is a total increase in generic prescribing, male doctors and those 

working in smaller practices are less proactive in increasing these levels (θGender = −2.34 and 

θPracticeSize = 0.22 in Model III). In addition, all else constant, we find that physicians in smaller practices 

and male physicians prescribe fewer generics than the remaining physicians In Period 2, when fluoxetine 

is the chosen molecule we get similar results (θGender = −1.07 and θPracticeSize = 0.178 in Model IV). 
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However, it is not clear why we obtain such result. One possible explanation, for example, is that smaller 

practices are not as well informed about the potential cost benefits of generic prescribing. Another 

possible explanation for the practice size result is that current incentives are designed to benefit mostly 

bigger practices. It is difficult to find explanations for why male physicians prescribe fewer generics. It is 

possible that gender is working as a proxy for some other factor we are not accounting for and that further 

research is required to fully understand this result.  Such understanding will be important if the UK 

government is to increase generic prescribing.  

6. Conclusion 

Patent expiration represents a turning point for the brand losing patent protection as generic versions of 

the drug, certified to be bioequivalent, quickly enter the market at reduced prices. Consequently, for 

managers of branded drugs this entry changes market dynamics and could be a threat for some while it 

could provide an opportunity for others. For public health officials it also represents an opportunity to 

reduce healthcare costs without jeopardizing therapeutic effectiveness. In studying what factors might 

influence the adoption of generic drugs, and provide an opportunity for cost reduction from new generic 

entry, previous research has focused mostly on how generics impact prices and market shares of the drug 

losing patent protection (within-molecule competition). In this paper, we suggest that if managers and 

public officials want to get a more comprehensive idea of the impact of generic entry, they need to look 

beyond within-molecule competition. In particular, we suggest that they need to study the full competitive 

landscape in the relevant therapeutic class, and include the actions of non-bioequivalent competitors. In 

addition, managers and policy makers need to consider carefully the role of individual physicians and 

their prescribing behavior across all competing molecules, and study not only their reaction to prices but 

also to marketing activity.  

 To provide support for this contention, we study the evolution of Selective Serotonin Reuptake 

Inhibitors (SSRI) in the UK after generic versions of fluoxetine (brand name Prozac) were introduced. 

Using a data set on physician prescribing and competitive marketing activity, we study how the 
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prescribing decisions of physicians and their characteristics (observable and unobservable) impact the 

competition among all molecules after generic entry. We find that the market share of the molecule losing 

patent protection (fluoxetine) decreased after patent expiration, despite the availability of generics at 

significant price discounts. Our approach allows us to offer new insight to managers about the market 

share of fluoxetine. We suggest that this reduction occurred because a segment of physicians prescribed 

less of the multi-source molecule and more of other drugs in the category after generic entry (between-

molecule effect).  These were physicians sensitive to the marketing activities of Prozac, which were 

significantly reduced after generic entry. We also find that a segment of price sensitive physicians did 

increase prescribing of fluoxetine due to its lower average price, but this increase was unable to 

compensate the reduction of fluoxetine prescribing by physicians sensitive to marketing activities.  

 Our findings suggest that introduction of generics could be an opportunity for managers of 

competing brands that are still under patent protection. For example, when the US appeals court in 

Washington D.C. set a sooner-than-expected end to the Prozac patent protection in the US, analysts 

warned that the sales of one of the most important competitors to Prozac, Cipramil also known in the US 

as Celexa, could be damaged by competition form generic versions of Prozac. Our results might explain 

why Celexa managers were not disturbed by such predictions (McCarthy, 2000): perhaps Celexa 

managers anticipated a reduction of Prozac marketing efforts and an increase in prescribing of their own 

molecule by a significant number of physicians given the responsiveness profile of physicians. Indeed, 

this article shows that it is necessary to study physicians' choice behavior and their responsiveness to 

price and detailing to fully understand and better predict the market events. 

We also show an approach that managers could use to simulate outcomes of both generic entry and 

incumbent responses to assess resource allocation decisions post generic entry. In addition we provide a 

rationale for one manufacturer to market more than one drug in the same category, with different patent 

protection timescales (which could be achieved through acquisition or in-licensing). When one of the 

patents expires, the manufacturer could switch marketing support to other brands still under patent 

protection. There is a parallel here in the way that manufacturers in fast moving consumer goods markets 
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such as detergents, offer multiple brands within the category and use one or more of the brands to protect 

the market position of the portfolio. 

 In addition, from a public policy perspective, this study reveals that cost-reduction strategies 

promoting the increase of generic prescribing should study both within- and between-molecule dynamics 

and determine physician characteristics and their segmentation. Analyses that consider only within-

molecule dynamics or that are performed at the aggregate-level would be myopic and could lead to the 

development of ineffective incentive schemes. For example, to impose the substitution of branded 

versions by their generic alternatives at pharmacies might not produce the expected and desired cost 

reductions if physicians switch to other branded molecules of the same category that are still under patent 

protection. The importance of between-molecule competition and the responsiveness to marketing activity 

is perhaps what explains why some states in the US engage in counter-detailing activities (Mizik and 

Jacobson, 2004), that is, encourage detailing visits promoting the generic versions of molecules.  

The analyses in this paper were based solely on UK data for the SSRI category because this was the 

only dataset available with the level of detail required to answer our research question: our analyses 

require the use of individual level physician data covering a significant period of time and comprising 

information on drug choice for each patient visit, and on the marketing activity targeted to physicians. 

Datasets with such detail are not common for a multitude of categories and countries. Previous research 

indicates that institutional features of each market have a great influence on prescribing behavior and on 

the effects of generic entry. In addition, each pharmaceutical category might reveal different market 

evolutions and dynamics (e.g., Danzon & Chao, 2000). It might then be difficult to extrapolate our results 

to other countries and drugs. 

However, given the importance of side effects in the use of SSRI's, we believe this empirical 

example is conservative regarding the impact of price and detailing changes, which is likely bigger in 

contexts where drugs have fewer and less severe side effects. We also believe that the impact of detailing 

in this empirical application is particularly small because of the age of the drugs and the experience of 

physicians. We would expect that physicians starting their professional career, and those considering the 
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adoption of new drugs, would be more influenced by the informative role of detailing (Narayanan et al., 

2005). In addition, we would also expect price effects to be more important in those countries or 

situations in which final consumers are more price sensitive (e.g., countries in which final consumers bear 

a greater share of the cost). 

An area for future research is the replication of our approach in different countries and across 

multiple categories. It would then be possible to understand how institutional features of each market 

interact with the physician segmentation and the competitive dynamics. Specifically, it would be very 

interesting to establish which kind of incentives drive physicians to be more price conscious and what 

drive physicians away from generic prescribing. Further analysis of these issues is warranted to articulate 

more effective policies that can significantly reduce healthcare expenditures without affecting patient 

welfare. 
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APPENDIX A 

A.1 Multinomia Nested Logit Model: Define Vijt as physician i valuation of drug j for patient-visit t as:  

ijtijijijtijt GXV εβ ++= , for i = 1, …, N, j = 1, …, J, and t = 1, …, Ti, (A.1)

where Xijt is a (1×k) vector of explanatory variables, βij is the corresponding (k×1) vector of physician 
specific parameters, J is the number of alternative drugs, N is the number of physicians observed, Ti is the 

number of prescription occasions of physician i, and εijt is a general extreme value distributed error term 
(Train 2003). The term Gij is an extra factor that is only present if the molecule is available in generic 
form. It represents the change in valuation due to the trade-off between the significant price discounts of 
generic versions and their perceived quality. 
 If we assume that physcians prescribe the drug with the maximum valuation, we obtain a nested 
multinomial logit model. Physician’s i probability of prescribing molecule j at occasion t is then defined 
as: 
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The term Iijt  is the “inclusive value” of physician i, which is equal to ( )( )iijG λexp1ln +  if a generic 

version is available for molecule j at patient visit t, or equal to zero if a generic is not available; λi is the 
physician-specific inclusive value parameter. Note that these inclusive value parameters should lie 
between zero and one. For those molecules available under generic and brand-name formulations, the 
probability of prescribing molecule j under generic version is: 
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and the probability of prescribing molecule j under brand version is: 
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 The final choice probability is decomposed in two parts: one is the probability of selecting the 
molecule (pijt) which corresponds to the upper level nests, and the other is the probability of selecting the 
format of the molecule given molecule choice (choice of format within the molecule nest).  
 Finally, we adopt a random effects formulation to model physician-specific effects and estimated 
the final model via Bayesian simulation methods (estimation details presented in Appendix B). Random 
effects are commonly used in economics and management to account for differences across individual 
units. Previous models of pharmaceutical demand have also used a random effects formulation to account 
for heterogeneity (e.g., Manchanda et al 2004; Narayanan et al., 2005). Specifically, we assume that 

physician-specific parameters are normally distributed, ),( Σ∝ ββ MVNij  where β is the (k×1) vector of 

population level means and Σ is the corresponding (k× k) variance-covariance matrix. 
 Finally, all of the parameters are physician and drug specific though some constraints are 
necessary for identification purposes. Physician specific intercepts for Seroxat (Paroxetine) are set to zero 

for each physician, and price effects are set to be equal for all molecules (β3ij = β3i , for all j). Because we 
are doing an individual level analysis we are also interested in reducing the number of parameters to a 
minimum. After several tests, we have further constrained past prescription parameters to be equal across 

all drugs (β2ij = β2i , for all j and for all physicians). This final specification requires the estimation of only 
11 parameters for each one of the 170 physicians and is very similar to the unconstrained version in terms 
of fit (details available from the authors upon request).  
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 These parameters are estimated using traditional Markov Chain Monte Carlo (MCMC) methods 
with a Gibbs-Sampler to draw from the closed-form conditional distributions, and a Metropolis-Hastings 
step to explore the posterior distribution of the parameters without closed form conditionals (Appendix B 
presents the detailed description of priors and estimation procedure). 
 

A.2 Binomial Models: Define pj as physician i probability of prescribing the option u1 in Period 2 across 
all prescriptions occasions. The likelihood for each physician is then given by:  
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where, ri is the number of prescriptions of option u1 for physician i during Period 2 and ni is the number 
of prescription occasions; pi is the probability of prescribing u1. The proposed models (see Table 1 in the 
paper for the different alternatives) are estimated via maximum likelihood. Variables are tested for 
inclusion using a 5% significance level and if deemed non-significant are removed from the final model.  

APPENDIX B 

1. Specification of Priors. 

 
We specify a multivariate normal prior for the between-physician conditional mean parameters and an 
inverted Wishart for the variance-covariance matrix of the random coefficient nested logit model. We 
take diffuse priors to induce a mild amount of shrinkage. We did a robustness check estimating the 
models with three different priors. Some of the physicians were classified in different groups with the 
different prior specifications but agreement rate was above 93%; findings were also the same regardless 
of the prior used.  
 The likelihood for physician i with the proposed random coefficient nested logit model has the 
following form: 
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with the probabilities defined in Equations A.3 and A.4 and yt defined as a dummy variable equal to one 
when drug j in generic/brand version was chosen by physician i in prescription occasion t. Heterogeneity 

is introduced in the model  as ),( Σ∝ ββ MVNi  and we use the following priors 
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2. Full conditionals and simulation algorithm. 

 
(1) Set starting values for the unknown parameters. 
 

(2) Draw iβ from a Metropolis-Hasting algorithm. Let us denote i
pβ  the previous draw for iβ  and 

i
nβ  the candidate draw. The acceptance probability of the candidate draw is given by:  
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(3) Draw β  from the conditional distribution: 
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(4) Draw Σ  from the conditional distribution: 
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Figure1: Choice tree of multi-source drugs 
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Table 1: The Four Binomial Models Estimated 

 With Baseline 

Analyze Prescription Change 

With No Baseline 

Analyze Prescription Split 

Between-Molecule Competition 

Model the number of times the multi-source 

molecule (e.g.,  branded fluoxetine and 

generic fluoxetine) has been prescribed 

across all prescriptions in the category (e.g., 

SSRIs) 

Model I 

( )( )ii

I

i SHARESHAREs −= 1log  

SHARE = share of multi-source 

molecule prescriptions (fluoxetine) 

across all prescriptions in the category  

Model II  

 

II

is = 0 

Within-Molecule Competition 

Model the number of times the generic 

version of the multi-source molecule (e.g.,  

generic fluoxetine) has been prescribed 

across all prescriptions of fluoxetine (e.g., 

branded fluoxetine and generic fluoxetine) 

Model III 

( )( )ii

III

i SHARESHAREs −= 1log

SHARE = Share of generic prescriptions 

of the multi-source molecule across all 

multi-source molecule prescriptions 

Model IV 

 

 

IV

is = 0 
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Table 2: Summary Statistics of Prescriptions and Detailing Visits for our Sample*  

Monthly Prescriptions By  All 170 Physicians Monthly Detailings To All 170 Physicians 

Number Percentage Number Percentage 

  

Molecule 

(Brand Name) Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 

Fluoxetine 

(Prozac) 
145 142 36% 34% 28 3 26% 4% 

Paroxetine 

(Seroxat) 
137 128 34% 31% 25 19 23% 26% 

Citalopram 

(Cipramil) 
78 106 20% 26% 25 29 23% 39% 

Sertraline 

(Lustral) 
39 40 10% 10% 29 23 27% 31% 

Total 399 417 100% 100% 108 74 100% 100% 

* Cipramil is the brand name of citalopram produced by Lundbeck; Lustral is the brand name of sertraline produced 
by Pfizer; Prozac is the brand name of fluoxetine produced by Eli-Lily; and Seroxat is the brand name of paroxetine 
produced by GSK. For fluoxetine, Period 2 prescription values include the prescriptions of branded and generic 
alternatives.  
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Table 3: Random Effects Multinomial Nested Logit 

(Posterior Means and 95% Probability Intervals)*  

  Posterior Mean 
95% Probability 

Intervals 

Intercepts (β0)    

       Prozac+Fluoxetine 0.02 [-0.19, 0.23] 

       Lustral -1.91 [-2.23, -1.66] 

       Cipramil -1.09 [-1.35, -0.85] 

Detailing (β1)  [0.00, 0.00] 

   Prozac 0.15 [-0.22, 0.53] 

   Lustral 0.58 [0.36, 0.86] 

   Cipramil 0.83 [0.59, 1.05] 

   Seroxat 0.47 [0.29, 0.64] 

Past Prescription (β2) 0.31 [0.23, 0.39] 

Price Dummy Lustral (β3) 0.29 [0.03, 0.54] 

Inclusive Value (λ) 0.02 [0.01, 0.05] 

Generic Fluoxetine (G) 2.15 [1.64, 2.69] 

*Values in bold mean the 95% probability interval for the parameter does not include zero. 
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Table 4: Summary of Results for the Binomial Models of Between-Molecule Competition* 

  

Model I: With Baseline  

(Analyze Change) 

( )( )ii SHARESHARE
I

is −= 1log  

Model II : With No Baseline 

(Analyze Levels) 

II

is = 0 

  Estimate 

Standard 

Error 

t-statistic* 

Estimate 

Standard 

Error 

t-statistic* 

Intercept -0.745 0.198 [−4.45, −2.92] -0.733 0.185 [−4.64, −2.94] 

Observable Characteristics             

     Gender n.s. n.s. —  n.s. n.s.  — 

     Practice Size −0.061 0.026 [−2.62, −2.04] -0.085 0.024 [−3.8, −3.17] 

Unobservable Characteristics             

     Response to Prozac Detailing −0.220 0.075 [−3.89, −1.98] n.s. n.s.  — 

     Response to Price Cut  0.272 0.120 [1.5, 2.74] (87) n.s. n.s.  — 

     Inclusive Value  18.731 4.595 [3.04, 5.37] 18.967 4.407 [2.88, 5.56] 

     Preference for Prozac n.s. n.s.  — 0.763 0.053 [13.67, 14.73] 

Control Variables              

     # Prescriptions Period 1 0.018 0.007 [4.2, 4.96] n.s. n.s.  — 

     # Details Period1 0.007 0.002 [2.13, 2.66] n.s. n.s. —  

     # Details Period2 n.s. n.s.  — −0.064 0.022 [−3.18, −2.75] 

Model BIC      873.94     NA     

Null Model** BIC      911.52     NA     

* Range of the t-statistic for the 100 replications of the posterior mean of the Unobservable Characteristics. In 
parenthesis, number of times that |t-stat|>1.96 (i.e. 95% significant cut-off point). 
** Null Model is a binomial model in which we allow physicians to change their prescriptions by a constant. 
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Table 5: Summary of Results for the Binomial Models of Within-Molecule Competition*  

  

Model III: With Baseline  

(Analyze Change) 

( )( )ii SHARESHARE
IV

is −= 1log  

Model IV : With No Baseline 

(Analyze Levels) 

III

is = 0 

  
Estimate 

Standard 

Error 
t-statistic* Estimate 

Standard 

Error 
t-statistic* 

Intercept 2.382 0.697 3.42 −0.614 0.439 [−2.28, −0.08] (5) 

Observable Characteristics             

     Gender −2.337 0.629 −3.72 −1.074 0.270 [−4.41, −3.48] 

     Practice Size 0.219 0.111 1.97 0.178 0.048 [3.35 4.27] 

Unobservable Characteristics             

     Response to Prozac Detailing  n.s. n.s.   −0.821 0.125 [−7.21, -5.15] 

     Response to Price Cut  n.s. n.s.   0.930 0.356 [2.00, 3.99] 

     Inclusive Value  n.s. n.s.   42.784 10.306 [2.25, 5.64] 

     Preference Prozac (β0_Prozac) n.s. n.s.   n.s. n.s.   

Control Variables             

     # Prescriptions Period 1 n.s. n.s.   0.031 0.006 [4.91, 5.8] 

     # Details Period1 n.s. n.s.   0.037 0.016 [1.65, 2.71] (62) 

     # Details Period2 n.s. n.s.   n.s. n.s.  

Model BIC 347.39     NA    

Null Model** BIC 375.64     NA    

* Range of the t-statistic for the 100 replications of the posterior mean of the Unobservable Characteristics. In 
parenthesis, number of times when |t-stat|>1.96 (i.e. 95% significant cut-off point). 
** Null Model is a binomial model in which we allow physicians to change their prescriptions by a constant.  

 
 
 
 
 
 


