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Dynamics in a environmental model with tourism
taxation

PAOLO RUSSU

Abstract–The purpose of this work is to analyze

the dynamics of a model describing the interaction

between tourists (T ) and environmental resource (E)
in the presence or absence of a tourist tax β, used

to protect the environmental resource. The model

highlights how the introduction of tourist tax compli-

cates the dynamics of the system, thus giving origin a

new internal equilibrium that is a saddle point, which

the stable manifold separates the basin attraction of

the locally attractive internal positive point from the

one equilibrium point (K, 0), which is also locally

stable. Moreover, starting from a system with β = 0,

which has an unstable internal equilibrium, a suitable

combination of tourist tax and defensive expenditures

leads to a stabilization the protect system.

Key–Words–tourism economics, tourism taxa-

tion, Hopf bifurcation, environmental quality, eco-

nomic modelling

I. INTRODUCTION

The increasing importance of tourism has trig-

gered an interest in public intervention. For instance,

some tourism economies strive for a change of the

pattern of specialization from the mass tourism to

”quality” tourism. In some cases as well, there is a

demand for public intervention to correct environ-

mental externalities generated by the tourism sector.

To reach these targets several policy instruments

have been used such as tourism taxes (room taxes,

entry taxes and exit taxes), quality requirements

imposed on the suppliers of tourism services, or

the provision of public infrastructures related to the

tourism activity. Moreover, an important share of

the tourism sector is its interdependency with the

environmental quality of the destination. On one

hand, tourism, as well as all the economics activities,

directly affects the environment. The tourism sector

and policy makers are interested in investing on the

environmental quality and on a sustainable utilization
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of the local resources. However, on the other

hand, the tourism sector depends on the natural

environment; the environmental quality of a tourism

destination is therefore an important tool that hotels

have to hold the tourism demand. From a tourist

point of view, the importance of the environmental

quality is out of the question, since tourists are mainly

interested in it. In this respect, [11] analyze the

impact of the environment on holiday destination

choices of prospective UK tourists. These authors

found out that tourists are willing to pay more in order

to visit a destination with high environmental quality

(see also [16] and [5]). From all those studies appears

clear that environmental quality is important for

tourists and that in a large number of cases, they are

willing to pay for quality From a tourist point of view,

the importance of the environmental quality is out of

the question, since tourists are mainly interested in it.

From all those studies appears clear that environmen-

tal quality is important for tourists and that in a large

number of cases, they are willing to pay for quality.

This is another peculiar characteristic of the tourism

demand, and one of the components of the model

analyzed in this paper. Tourist taxes have become

an important source of revenue for many tourist

destinations. Taxes on accommodation are upheld

by their proponents as a way of shifting the local tax

burden on to non-residents, while the travel industry

claims that these levies do significant damage to their

level of competitiveness. Additionally, we assume the

existence of a lump sum tax in the accommodation

sector. Taxing became in fact a very common policy

instrument, with the aim of controlling the negative

impact of tourism on the environment. There are

many economic studies about tourism taxation, as

for example [8], [1], [2], [10], [3], [17], [7] and [13].

Especially [14] investigates how the introduction

of user fees and defensive expenditures change the

complex dynamics of a discrete-time model, which

represents the interaction between visitors and envi-

ronmental quality in a Open-Access Protected-Area.

In this paper is analyzed a continuous-time model.

Further [15] modeling the difference between the

revenues from visitors and the sum of expenditures

on recreation investments and defensive expenditures



for ensuring the preservation of natural and cultural

heritage by formulating a optimal control problem.

II. THE MODEL

Renewable environmental resources such as fisheries

and forests reproduce and grow, but are also subject

to both natural mortality and human disturbance. If

left undisturbed, renewable resources are typically as-

sumed to reach a maximum level at which birth and

growth exactly balance decay and death ( see [9]).

This point, denoted the natural carrying capacity of

the resource, is sustainable (see [4]). Because, how-

ever, the carrying capacity is only obtainable for re-

sources left undisturbed by human use, it is generally

not a viable option for resources supporting a tourism

industry. Although most tourism depends on multi-

attribute bundles of environmental resources, we sim-

plify the model by assuming that the condition of all

renewable resources in the community may be appro-

priately measured by one composite index variable,

E, which we denote environmental quality. This in-

dex consolidates the notions of resource quality and

ecosystem productivity for all types of renewable re-

sources into a single index. Also for simplicity, we as-

sume that all resources on which tourism depends are

renewable to some degree; nonrenewable resources

are not considered. These simplifications allow us to

emphasize the fundamental trade off between visitors

and environmental quality ( see [6]). For a renewable

resource, we assume that environmental quality grad-

ually renews itself, or grows, in proportion to the un-

derlying stock of the resource. The growth function-

here specified using the simple function based on an

underlying logistic growth function h(E)implies that

natural renewal or growth of environmental quality is

a mathematical function of E. That is, when environ-

mental quality is highly degraded (i.e.,small), the nat-

ural improvement in quality, h(E), will be relatively

small. When environmental quality is pristine (at its

maximum level or carrying capacity, K), there can be

no natural improvement; by definition, h(K) = 0.

Growth will be fastest at some point between zero and

K, peaking at a point of maximum sustainable yield

(i.e [12]). The dynamic of the environmental quality

combines the negative influence of visitors (T ), the

positive influence of natural growth h(E) and the pro-

tection of the natural resource. It is natural to think

that the dynamics of the tourists is positively affected

by the environmental quality and negatively effected

by the tourist tax and crowding effect. Thus we can

write the dynamical system of the model as







Ė = r(1−
E

K
)E − αT 2 + βρT

Ṫ = T (−β − aT + σE)
(1)

where r measures the rate of growth of the envi-

ronmental quality, α measures the environmental

impact associated with a unit of visitors , ρ is the

technology parameter that measures the effectiveness

of protection the natural resource policy and β
represents the tourist tax. Further the parameter a and

σ represent the crowding effect and tourist preference

respectively. All parameters are strictly greater than

zero except β, which may take the value zero.

In fact now analyze the case where you do not include

any tax stay (β = 0) and then if it is asked by police

makers a tourist tax (β > 0).

III. DYNAMICS WITH NO TOURIST TAXATION

(β = 0)

The model (1) becomes







Ė = r(1−
E

K
)E − αT 2

Ṫ = T (−aT + σE)
(2)

Proposition 1. For all parameters values, (2) has

three fixed points:

a) O(0, 0)

b) P (K, 0)

c) S(E∞, T∞)

where E∞ =
ra2K

ra2 + σ2αK
, T∞ =

raσK

ra2 + ασ2K
.

Note that the phase portrait of the system (2), is

constituted from an ellipse with center Ce = (
K

2
, 0)

and from a straight(r1) with equation E =
a

σ
T .

Let E∗ and T ∗ the values of the fixed point O,

P , S, then the characteristic equation of dynamic

system (2) is

λ2 + [aT ∗ + r(1−
2E∗

K
)]λ+

T ∗[2σαT ∗ − ra(1−
2E∗

K
)] = 0 (3)

Therefore, we can state the following propositions:



Proposition 2. The fixed point O(0, 0), for all values

of the parameters is a non-hyperbolic point.

Proof. From (3) the eigenvalues are λ1 = 0, λ2 =
r.

Proposition 3. The fixed point P (K, 0), for all values

of the parameters is a saddle point.

Proof. From (3), the eigenvalues are λ1 = −r, λ2 =
σK.

Proposition 4. The fixed point S(E∞, T∞), is an at-

tractor point if and only if ασ2K − a2(r + σK) < 0,

else it is a repellor point.

Proof. We consider the following equations obtained

from the coefficients of the characteristic polynomial

(3)











aT ∗ − r(1−
2E∗

K
) = 0

2σαT ∗ − ra(1−
2E∗

K
) = 0

(4)

these are two straights (respective r3 and r2). Sub-

stituting the fixed point S(E∞, T∞) in (4) and

by straightforward computations we obtain that the

straight r3 passes for the points (Ce,
T ∗

2
), while the

straight r2 passes for the points (Ce,
rσK

2ar + aσK
).

By Routh-Hurwitz criterion if the right-hand sides of

(4) are strictly positive then the fixed point S is an at-

tractor, being always T3 < T ∗ then this happens if and

only if T2 < T ∗, namely when ασ2K−a2(r+σK) <
0 is hold. If T2 > T ∗ then the right-hand side of the

first equation of (4) is strictly negative, so the eigen-

values are either real and strictly positive or with neg-

ative real part (see Figure 1).

A. Hopf bifurcation and limit cycles

In order to analyze the Hopf bifurcation and the

existence of limit cycles, we choose as bifurcation

parameters before σ and after a.

Remember that, the parameter σ represents the

attractiveness associated with high environmental

quality, while the parameter a may be thought as the

crowding coefficient.

Proposition 5. For any choice of the parameter K, r,

and α the equation

ασ2K − a2(r + σK) = 0 (5)

represents a bifurcation curve, moreover

r2

T

r1

O

Ce

•

•

r3

T2 T3 T ∗

S

P
•

E

Figure 1: The graphs of isoclines system (2) (ellipse

Ė = 0 and straight (r1) Ṫ
T
= 0 ) , and straights r2 and

r3 used in the proof of the Proposition 4

a) for any value of σ then a limit cycle arise if a :=

aH = σ

√

αK

r + σK
is hold.

b) for any value of a then a limit cycle arise if σ :=

σH =
a

2α
(a+

√

a2 + 4
αr

K
) is hold.

Proof. The first and crucial condition for a Hopf bi-

furcation concerns the existence of a pair purely imag-

inary eigenvalues. This in turn requires according to

Proposition 4, a solution of the equation (5).

Now we prove the second condition of the Hopf bi-

furcation theorem, namely that the imaginary axis is

crossed at non-zero velocity with respect before to the

bifurcation parameter a and after σ.

Differentiating the real part of the eigenvalues of (2)

with respect to a yields

dRe(λ(a))

da
= −(

2

σK
+1)

2ασ3aK2

(ra2 + ασ2K)2
̸= 0 (6)

for all a and in particular for a = aH .

Differentiating the real part of the eigenvalues of (2)

with respect to σ yields

dRe(λ(σ))

dσ
=

a

2α
(a+

√

a2 +
4αr

K
) ̸= 0 (7)

for all σ and in particular for σ = σH .

Figure 2 show the Hopf bifurcation curve (for a

generic values of the parameters K, r, α). This curve

divides the plane in two regions, a region is charac-

terized by fixed points attractors, other by repellors.
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Figure 2: Hopf bifurcation curve of the system (2), in

the parameter (a, σ)-plane

Fixed the value of attractiveness associated with

high environmental quality, σ, only if the congestion

parameter a is greater of aH is catches up the stable

fixed point. In fact, if tourists are not very sensitive

crowding, then the system is not in equilibrium, the

tourists increase and the environmental resource is

damaged, increasing their sensitivity, the tourists

desert the site tourism bringing the system in the

stable equilibrium.

B. Comparative statics

Consider la T ∗(a) e E∗(a) , Figure 3 shows the

the trend in the number of tourists and the stock of

good environmental at the equilibrium in relation to

the parameter values for a increasing the parameter σ
(ceteris paribus). The function T ∗(a) has a maximum

at aM = σ

√

αK

r
. For values of a > aM the number

of tourists (always equilibrium) decreases namely

because it increases sensitivity tourists to the over-

crowding. One can easily calculate that if aM < aH
then the maximum value of the tourists equilibrium

is always an attractive fixed point. The trend of the

function E∗(a) increases with crowding, to at end

the bearing capacity of the K stock of environmental

resource.

IV. DYNAMICS WITH TOURIST TAXATION

(β > 0)

Analyze the dynamics with β > 0, with reference to

research fixed points of the system (1).

Let P = [r,K, α, β, α, ρ, a, σ] the array of parameter

of system (1) then apply the following proposition

a

T
∗

0

σ3σ2σ1

σ1 < σ2 < σ3

(a)

a

E
∗

0

σ1 < σ2 < σ3

σ3

σ2

σ1

(b)

Figure 3: Comparative static on the parameter σ

Proposition 6. For any choice of the parameters of

the array P , the system (1) has always two fixed

points:

a) O(0, 0)

b) P (K, 0)

Moreover

i.) if β < σK then the system (1), has a unique fixed

point S1 strictly positive;

ii.) if K >
ra

ρσ2
and σK < β < β0 then the system

(1), has two fixed points S1 and S2 (with E∗

1
>

E∗

2
and T ∗

1
> T ∗

2
) strictly positive

where β0 is the solution of the equation

(ρ2−
4r

σ2K
(aρ+α))β2+

2r

σ
(aρ+2α)β+

r2a2

σ2
= 0

(8)

Proof. The fixed points of the system (1), are given

by solution

F (E, T ) = r(1−
E

K
)E − αT 2 + βρT = 0 (9)

G(E, T ) = T (−β − aT + σE) = 0 (10)



Define:

A := (
ra2

σ2K
+ α)

B :=
rβa

σK
+

ra

σ
(
β

σK
− 1)− ρβ

C :=
rβ

σ
(
β

σK
− 1)

Then the fixed points S1 and S2 are

E⋆
1,2 =

a

σ
T ⋆
1,2+

β

σ
T ⋆
1,2 = −

B

2
±

1

2

√

B2 − 4AC

The condition C < 0, that is β < σK, guarantees the

existence of only a fixed point.

Necessary and sufficient conditions for existence of

two fixed points are C > 0, B < 0 and ∆ =
B2 − 4AC > 0 From easy calculation, the first and

second conditions state that β > σK and K >
ra

ρσ2
,

while the third condition is verified if β < β0, with β0
solution of the equation (8) of the Proposition 6

Figure 4 shows the complete classification of

possible cases.

A. Stability analysis

Now we analyze the stability of fixed points of

the system (1). We obtain the following propositions.

Proposition 7. The fixed point O(0, 0) is a saddle

point, while P (K, 0) is a saddle point if β < σK,

else it is a attractor point.

Moreover

If S1 exist it is a attractor or repellor point,

while if S2 exist it is a saddle point

Proof. The Jacobian matrix J(P ⋆), evaluated at a sta-

tionary state P ⋆ = (E⋆, T ⋆) can be expressed as fol-

lows:

J(P ⋆) =

(

r(1− 2
E⋆

K
) −2αT ⋆ + βρ

σT ⋆ −β − 2aT ⋆ + σE⋆

)

The eigenvalues of J(P ⋆) are the roots of the follow-

ing characteristic polynomial:

P1(λ) = λ2 − tr(J)λ+ det(J) (11)

where

tr(J) =r(1− 2
E⋆

K
)− β − 2aT ⋆ + σE⋆ (12)

det(J) =r(1− 2
E⋆

K
)(−β − 2aT ⋆ + σE⋆)− (13)

σT ⋆(−2αT ⋆ + βρ)

Therefore
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Figure 4: Number of fixed points for different values

of β taxation and all the other values as in the previous

figures.



i. if (E⋆, T ⋆) = (0, 0), then the eigenvalues are

λ1 = −r and λ2 = β;

ii. if (E⋆, T ⋆) = (K, 0), then the eigenvalues are

λ1 = −r and λ2 = −(β − σK).

In the case of fixed points strictly positive, since Ṫ =
−β − aT + σE = 0, the trace and the determinant of

the Jacobian matrix becomes

tr(J) = r(1− 2
E⋆

K
)− aT ⋆ (14)

det(J) = T ⋆
(

− ar(1− 2
E⋆

K
)− σ(−2αT ⋆ + βρ)

)

(15)

a) Fixed point S1

It ’s easy to see that for E⋆ >
K

2
, the trace is

negative, so the fixed point is attractive

In case E⋆ <
K

2
, we define the intersection,

between the ellipse Ė = 0, the straight lines

r1 and r2 of equation T = −
2r

aK
E +

r

a
, and

T = −
ar

ασK
E +

ar + σρβ

2ασ
respectively . Be-

low the straight line r1 we have tr(J) > 0, while

below the straight line r2 we have det(J) < 0.

If we choose parameters such that for β = 0 the

fixed points is a repellor (see figure 1), then it is

easy to see that the fixed point is between the two

straight lines, therefore increasing β the fixed

point becomes the intersection between the el-

lipse and the straight line r1, leading to tr(J) =
0 e det(J) > 0, emerging a limit cycles arising

from a Hopf bifurcation of coordinates

(E⋆
H =

K(r + βH)

σK + 2r
,
σ

a
E⋆

H −
βH

a
)

with βH solution of the equation

(4r(α+ ρa) +Ka(a+ 2ρσ))β2+

K(Kσ(a+ ρσ) + ρaσ2 + 2ρarσ)β+

K(Ka2rσ + a2 + r2 − αrσ2K) = 0

Increasing the value of β the fixed point becomes

attractive.

b) Fixed point S2

In this case the determinant of Jacobian matrix is

negative, thus S1 is a saddle fixed point.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

T

E

•

•
S2

O

P S1

Figure 5: The dynamics in the phase space of (1), with

K = .1, α = 0.01, r = .01, a = .03, σ = 0.2,

β = 0.0215, ρ = 0.2

We know that case there exist all equilibrium

points (see Figure 5 and Figure 4(c)). The one of co-

ordinate O = (0, 0) and S2 (marked with the square)

are saddle points, while the other, P and S2 are locally

stable (marked with the bullet). The stable manifold of

the saddle point S2 separates the basin of attraction of

the locally attractive internal positive point from the

ones of the equilibrium points S1 and P = (K, 0),
which is also locally stable.

From the proof of the previous proposition, if the in-

ternal fixed point the system without tourist tax is at-

tractive, the introduction of fees and defensive expen-

ditures keeps the system stable. The question that we

want answered is: Can suitable values of β and ρ sta-

bilize the unstable system?

Figure 6 to answer to this question. It show a Hopf

bifurcation curve(Hbc) varying the parameters β and

ρ. Further, are also shown four points,one in the re-

pulsive an three in attractive area. Starting from a re-

pulsive fixed point A = (βA, ρA) ( we can also think

about starting with β = ρ = 0, that is from origin in

Figure 6), may be that (see Figure 6)

i. increases β, leaving unchanged ρ, then the point

A moves towards the attractive point D =
(βD, ρA) with E⋆ = 0.029, T ⋆ = 0.1567

ii. increases ρ, leaving unchanged β, then the point

A moves towards the attractive point B =
(βA, ρB) with E⋆ = 0.028, T ⋆ = 0.1625

iii. both ρ and β are increased, then the point A
moves towards the attractive point C = (βC , ρC)
with E⋆ = 0.032, T ⋆ = 0.17



In other words, the increase of β (i.) or ρ (ii.) can

stabilize the unstable system, but the increase of both

(iii.) bringing the system to higher values at equi-

librium. The limit to the increase of the parameters

is given by a rapid decrease of T ⋆ for high values

of beta (see Figure 7) or any costs incurred for the

protection of the environment1.

B. Comparative statics
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)
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D=(β
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A
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Figure 6: Hopf bifurcation curve of the system (2), in

the parameter (β, σ)-plane. The parameters are K =
.1, α = 0.01, r = .01, a = .03, σ = 0.2

We should do the usual analysis of comparative

statics on the parameters ρ, β, σ and K If there exist

only two fixed points with E,K > 0, then the one

which interests us is the one which is potentially

attractive. In particular, we are interested to see how

E and T vary when these parameters are varied.

The following propositions investigate the impact of a

change in the parameters (we will focus our analysis

in particular on ρ, β,σ K) on the values of E⋆, K⋆.

By the symbol x ↑ and x ↓ we shall indicate an

increase and a decrease in the parameter or variable x
respectively.

Differentiating equation (9) and (10) with respect to

the parameter y = β, ρ, σ,K, we obtain

F (E,K; y) = 0

G(E,K; y) = 0

1A further study will analyze the dynamics of the problem of

optimal control where, for example, the utility function is

U(T, ρ) = pT −

1

2
qρ

2

with p average price paid by tourists

such that:

∂F

∂E
dE +

∂F

∂T
dK +

∂F

∂y
dy = 0

∂G

∂E
dE +

∂G

∂T
dK +

∂G

∂y
dy = 0

or

J(S1)







∂E

∂y
∂T

∂y






= −







∂F

∂y
∂G

∂y






(16)

where J(S1) is the Jacobian matrix evaluated in the

potential attractive fixed point S1.

Thus, we can state the following proposition

Proposition 8. ρ ↑ (remember that ρ represent the

technology adopt in defensive expenditures) implies

E⋆ ↑ and T ⋆ ↑..

Proof. Posing y = ρ, after some simple mathemati-

cal manipulations,the solution of the system (16) be-

comes

∂E

∂ρ
=

aβT ⋆2

det(J(S1))
> 0

∂T

∂ρ
=

σβT ⋆2

det(J(S1))
> 0

which gives
∂E

∂ρ
=

a

σ

∂T

∂ρ
Remembering that det(J(S1)) > 0 the above propo-

sition is proof.

Proposition 9. K ↑ (remember that K represent the

carrying capacity of the environmental ) implies E⋆ ↑
and T ⋆ ↑.

Proof. Posing y = K, after some simple mathemati-

cal manipulations,the solution of the system (16) be-

comes

∂E

∂K
=

arT ⋆E⋆

K2det(J(S1))
> 0

∂T

∂K
=

σrT ⋆E⋆

K2det(J(S1))
> 0

which gives
∂E

∂K
=

a

σ

∂T

∂K
Remembering that det(J(S1)) > 0 the above propo-

sition is proof.

Proposition 10. σ ↑ (remember that σ represents

the attractiveness associated with high environmental

quality) implies E⋆ ↑ and T ⋆ ↑.



Proof. Posing y = σ, after some simple mathemati-

cal manipulations,the solution of the system (16) be-

comes

∂E

∂σ
=

aT ⋆2E⋆

det(J(S1))
> 0

∂T

∂σ
=

σT ⋆2E⋆

det(J(S1))
> 0

which gives
∂E

∂K
=

a

σ

∂T

∂K
Remembering that det(J(S1)) > 0 the above propo-

sition is proof.

Proposition 11. β ↑ (remember that σ represents the

taxation) implies E⋆ ↑↓ and T ⋆ ↑↓.

Proof. Posing y = β, after some simple mathemati-

cal manipulations,the solution of the system (16) be-

comes

∂E

∂β
=

aρT ⋆2 − T ⋆(−2αT ⋆ + ρβ)

det(J(S1))
≶ 0

∂T

∂β
=

σρT ⋆2 + rT ⋆(1− 2

K
E⋆)

det(J(S1))
≶ 0

In order to the last proposition we can not

uniquely determine the impact of a change of β on

the values of E⋆ and T ⋆.

Figure 7, shows how there exist a value of β such that

T ⋆ decrease. A further increase of β, involves a rapid

decrease of T ⋆, then the defensive expenditures ρβT ⋆

are such as to bring a decrease of environmental

quality E⋆.
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T ⋆

Figure 7: Equilibrium S1 = (E⋆, T ⋆) of the system

(1), varying β with ρ = 0.2. The other parameters are

K = .1, α = 0.01, r = .01, a = .03, σ = 0.2

V. CONCLUSION

The purpose of this work is to analyze the dynamics

of a model describing the interaction between tourists

(T ) and environmental resource (E) in the presence

or absence of a tourist tax β. The model highlights

how the introduction of tourist tax complicates the

dynamics of the system, thus giving origin a new

internal equilibrium that is a saddle point, which the

stable manifold separates the basin attraction of the

locally attractive internal positive point from the one

equilibrium point (K, 0), which is also locally stable.

It turns out that, for reasonable parameter values (σ
and β), a Hopf bifurcation exist. In addition, we have

seen how a change of the parameters β and ρ can

stabilize or destabilize the system.
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