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Abstract 

    We explore in this paper how trading noise, when considered as a market friction, 

reacts to trading activity. Transactions cost is a good explanation for intraday trading 

behavior in the market according to our data. Particularly, we show that in general 

trading brings friction to market. However, trading friction at market open is the 

lowest during the day, as trading causes less friction then relatively. This is due to the 

behavioral difference among investors. When market opens, individual trading 

removes, while institutional trading brings, market friction. Situation in the rest of the 

day is just the opposite, where individual, instead of institutional, trading brings 

friction. The uneven behavior of trading noise across investors and time of day makes 

it a specific, rather than general, transactions cost, as opposed to Stoll (2000). Intraday 

trading activity suppresses both order width and depth, as proxies for trading intensity, 

therefore creates more noise or friction in the market. Width and depth contribute to 

trading noise in a polarized way, so that individual trading hurts friction in small cap 

stocks at open, but benefits it at close. Institutional trading brings extremely strong 

friction to large cap stocks, but less so at market close. So trading noise as a specific, 

rather than general, transactions cost is prominent only to certain investors, at certain 

time and for certain stocks in the market. Our findings lend itself to the justification of 

the new financial transactions tax proposed by the European Union. 
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I. Introduction 

 

Trading in markets involves general transaction costs applicable to the entire market as well as 

specific costs only born by certain investors. The former acts as a friction in trading, which could be 

noises as argued in Stoll (2000) or herding out of information cascades (see Nofsinger and Sias 

(1999), Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992) and Avery and Zemsky 

(1999, AZ), among others). The latter could also take the form of information asymmetry (as 

discussed in Diamond and Verrecchia (1981), Glosten and Milgrom (1985), Kyle (1985), Admati 

(1991), Easley and O’Hara (1992) and Easley, Kiefer, and O’Hara (1997)). This study addresses the 

role of trading noise as a friction to market participants, especially in the presence of trading 

concentration. Our interest is in whether trading activity itself adds to or drives down this friction, 

and how the relationship is affected by investor type, market capitalization of stocks and time of 

day the trading takes place. If trading brings friction, then our findings provide support to financial 

transactions tax which encounters much resistance. 

We attempt to verify in this study if trading noise really qualifies to be a general transactions 

cost, or a market-wide friction, in an intraday framework. It has been well documented in Amihud 

and Mendelson (1987), Stoll and Whaley (1990), and Stoll (2000) that stock return volatility is the 

highest right after market opens. Stoll (2000) suggests that the high volatility is caused by friction, a 

general transaction cost for everyone in the market. Alternatively, Lakonishok, Shleifer, and Vishny 

(1992, LSV) and Wermers (1999) stress that volatility is closely related to information-induced 

herding behavior. However, Lin, Tsai and Sun (2011) argue that comparative advantage in search 

cost dictates a polarization of trading activity across investors, firm size and time of day. Based on 

that notion, an investor can optimize by allocating trades when transaction cost is the most 

favorable. Hu (2006) applied a return decomposition mechanism to conclude that specific 

transactions cost causes the market to be the most volatile at open since frictional noises are the 

smallest during the day. We adopt this concept but attempt to identify its driving factors. 

 We find in this study that trading activity brings friction to market. However, friction at market 

open tends to be the lowest during the day, as trading causes less friction relatively at that time. This 

is due to the behavioral difference among investors. When market opens, individual trading 

removes, while institutional trading brings, market friction. Situation in the rest of the day is just the 

opposite, where individual, instead of institutional, trading brings friction. The uneven behavior 

pattern of trading noise across investors and time of day makes it a specific, rather than general, 

transactions cost, as opposed to Stoll (2000). We also find that noise component of return volatility 
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is stronger when trading is more concentrated, different from the prediction of Lin, Sanger, and 

Booth (1995) and Hu (2006). Although in general the time needed to fill an order, or the inverse of 

the number of orders matched with a certain time window, is inversely related to trading noise, it is 

quite the contrary at market open. Moreover, we argue that noise is influenced more by trading 

concentration, at open than at close. We also find that market width of limit order book, which 

measures how tightly the orders are placed to each other or how closely they are to the mid-quote, affect 

trading noise. Market depth exhibits similar influence. Response of noise to market width and depth 

differs by market capitalizations as well as by trading hours. Individual trading aggravates at open, but 

benefits at close, friction in the trading of small cap stocks. Despite that institutional trading brings 

extremely strong friction to large cap trading, it still contributes relatively less to trading friction at 

market close. 

 We consider in this study trading intensity more in a dynamic sense by measuring order 

intensity rather than quantity, with sequences of buy or sell runs based on Patterson and Sharma 

(2006, PS). It captures intraday order flows better than the popular LSV method, which is more 

suitable for longer time frame. The dynamic trading intensity helps us capturing how ‘friction’ 

really arises from trades. Although noise proportion of stock returns is high on individual orders 

and low on institutional orders, its behavior at market open is entirely different from the rest of the 

day. Noises for small cap stocks, unlike volatilities, are lower than those for large cap stocks. For 

individuals, noise benefits trading stocks of smaller firms, while for institutional investors it its 

market width and depth that benefit trading stocks of larger firms. This distinct pattern of trading 

activity is not compatible with information-based explanation, especially why market width is lower, 

at market open, when trading is extremely heavy. Institutionals prefer to trade large cap stocks, 

especially at market close, while individuals are more eager to trade small caps at market open. So 

trading noise is just a specific transaction cost, as information cost, prominent only to certain 

investors in the market. If trading noise is not compatible with general market phenomena, then it 

may not be a general transaction cost as argued in Stoll (2000). Trading noise is just another kind of 

specific cost, rather than a market-wide friction. 

As we find trading brings friction, our findings provide support to the new financial 

transactions tax proposed by the European Union, which has invited lots of criticism. The results of 

this study also indicate that uneven trading noise makes market trading polarized. Transactions cost, 

rather than information dissemination, is the more important factor causing the result. Our study 

also helps identifying for various types of investors a more cost-efficient time to trade. Both 

individual and foreign institutional investors (FII’s) in Taiwan bear relatively much lower general 

transaction cost caused by noise, especially at market open, when there is significantly intensive 
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trading. But foreign institutional benefit more from trading at market close than at market open 

when trading does not concentrate. A brief literature review and discussion is given in Section II. 

Data and empirical results are laid out in Section III. Conclusion is given in Section IV. 

 

II. Noise and Trading 

Trading noise has long been considered a crucial factor to asset returns. When market trading 

is more heavily concentrated, noise plays a more important role. Literature has modeled noise as 

investor irrationality or information barrier, among others. Although the direct effect of noise 

trading to a securities market seems to be reducing informational efficiency, there are views on the 

positive side of noise. Greater noise trading induces rational agents to trade more aggressively on 

their existing information and provides them with incentives to acquire better information. As a 

result, Grossman and Stiglitz (1980) and Kyle (1985), argue that noise trading does not reduce 

informational efficiency. Furthermore, Kyle (1985) suggests that noise trading improves 

informational efficiency. 

Various models consider rational agents not being able to fully offset noise traders’ demands 

because of limits to arbitrage. De Long, Shleifer, Summers, and Waldmann (1990) indicate that 

rational arbitrageurs may magnify demand shocks from noise traders because anticipated worsening 

mispricing in the short-run. Relative to the issue of trading noise, Bikhchandani and Sharma (2001) 

classify herding behavior into rational and irrational ones. Rational herding takes place when 

investors make the same response to a piece of information or when they exhibit similar preference 

for a stock, while irrational herding occurs as investors ignore their own information but imitate or 

follow others’ trades. These views are not compatible with how noise trading is modeled. 

Other than Kyle (1985), many have also studied trading against one's own private information 

(e.g., Jarrow (1992), Chakraborty and Yilmaz (2004)) in market manipulation, where the informed 

may trade in a wrong direction to increase noise in trading volume. Herding behavior is also 

considered a challenge to the efficient market paradigm. At a group level it is considered irrational 

as it leads to mispricing, but it can be rational at an individual level. Literature argues that the 

herding arises from agents copying one another in trading decisions. The models of BHW and 

Bannerjee (1992) consider that individuals make their decisions sequentially at a time, taking into 

account the decisions of the individuals preceding them. The model proposed by Cont and 

Bouchaud (2000) consider, instead of a sequential decision process, a random communication 

structure. Random interactions among agents lead to a heterogeneous market structure. AZ argues, 

on the other hand, that information cascades that induce herding will be short-lived and fragile as 
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one contrarian trade from the herd can quickly stop an information cascade. 

Noise and Information 

Following the definition of Hu (2006), we make the following decomposition of the log price 

of a given stock, 

ttt nmP += , 0][ =+ jtt nE , and 0][ =+ jttt nnE as j→∞ (1) 

where tm  is considered as the permanent component of the stock price and follows a random walk 

process,  

ttt umm += −1
, 0][1 =− tt uE , 22 ][ utuE σ= , and 0][ =−ittnuE , i=1,2,… (2) 

Where tu  is a white noise and is orthogonal to 1−tm . The other component of tP , tn , is a 

temporary noise which disappears over time. After simple algebra, we would obtain 

tjttt nPPE =− + ][ as j→∞  

The volatility of stock return )( 1−− tt PPVar  can be decomposed into )( tuVar , )( 1−− tt nnVar  and 

),( 1−− ttt nnuCov . The ratio  

)(

)(

1

1

−

−

−

−
=

tt

tt

t
PPVar

nnVar
N  (3) 

will be used as a relative measure of noise within stock return volatility subsequently. When noise 

ratio of the entire market is computed, transactions price is used. But the midpoint of buy and sell 

order price is used in place of market price when noise ratio of a certain type of investor is to be 

computed. 

 Table I reports noise proportion and return volatility computed according to the definition 

above, by market capitalization and intraday interval. This noise proportion is shown I to be, at any 

given day, the lowest at market open. Also, noises for small cap stocks, unlike volatilities, are lower 

than those for large cap stocks, contrary to findings of Stoll (2000). Volatilities and noise 

proportions of small-cap stocks exhibit in general a U-shaped pattern across a trading day, but noise 

for large-cap stocks tend to go up from open to close. The intraday distribution of noise ratio for 

small-caps is consistent with similar friction measures found in Hong Kong by Anh and Cheung 

(1999). 
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A measure of herding 

 We consider trading activity more in an dynamic sense by measuring order intensity not by 

quantity, but by it sequences based on Patterson and Sharma (2006, PS). It captures intraday order 

flows better than the popular LSV method, which is more suitable for longer time frame. In the 

context of investor herding, we adopt a cost-based framework of trading concentration to see how 

return volatility decomposition should be evaluated. The dynamic trading intensity allows us 

capturing how ‘friction’ really arises from trades. As search cost goes up, so does noise. However, 

search generates less noise at market open than at market close. Therefore, noise is lower when 

specific search cost prevails, and noise gets higher when general friction rises. 

To gauge the extent of trading concentration, we have adopted a dynamic measure specifically 

for a high frequency trading environment. The common LSV measure computes the proportion of 

market participants buying or selling within a given period and hence cannot capture dynamic order 

flows. Its inference relies on conventional t-test, making it subject to distributional imperfections 

especially with high frequency data. As a result, various measures have been proposed lately to 

overcome its limitations. Radalj and McAleer (1993) noted that the main reason for the lack of 

empirical evidence of herding may lie in the choice of data frequency, in the sense that too 

infrequent data sampling would lead to intra-interval herding being missed (at monthly, weekly, 

daily or even intra-daily intervals). For the purposes of our investigation we used the PS measure, 

which we consider the most suitable, since it overcomes this problem of intraday data. Constructed 

from intraday data, it has a major advantage of not assuming herding to vary with extreme market 

conditions, and considering the market as a whole rather than a just the institutional investors.  

PS statistic measures herding intensity in terms of the number of runs. The bootstrapped 

runs test of PS uses run numbers of buy and sells orders
3
. As our data set contains identification of 

buy or sell orders, we would not need Lee and Ready (1991) and Finucane (2002) to determine 

directions of investors’ trading directions. If traders engage in systematic herding, the statistic 

should take significantly negative values, since the actual number of runs will be lower than 

expected. The standardized and adjusted type i runs for stock j on day t in PS is defined as  

2,1
)1()

2
1(

),,( 　　　 =
−−+

= i
n

pnpr
tjix

iii

  (4) 

Where ir  is the actual number of type i runs (up runs, down runs or zero runs), n is the total number of 

                                                
3 The formula of runs is according to Mood (1940), but with non-trading adjustments. 
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trades executed on asset j on day t, ½ is a discontinuity adjustment parameter and ip  is the 

probability of finding a type of run i. Under asymptotic conditions, the statistic ),,( tjix  has a 

normal distribution with zero mean and variance 

222 )1(3)1(),,( iiii pppptji −−−=σ   (5) 

So the herding intensity statistic is expressed as 

),,(

),,(
),,(

2
tji

tjix
tjiH

σ
=   (6) 

which has an asymptotic distribution of N(0,1). Mood (1940) requires state variables to be 

independent and i.i.d. as well as continuously distributed. As realized transaction price of stock is 

discrete, ),,( tjiH  would have a non-normal distribution and critical values for testing the 

existence of herding would have to be constructed through bootstrapping the sample. 

The distribution of significant herding percentage, as shown in Table II, suggests that intraday 

trading concentration is heavier in the opening interval. At the 5% significance level, there are 

7.35% of the trading days exhibit herding phenomenon in the first half hour of a day’s trading 

session. The percentage falls as with time of day and goes down to only 3.74% for the final half 

hour of trading. Table III gives the sizes of buy and sell orders, in lots of one thousand shares, for all 

days where herding is significant at 1%. The average order size at market close is much larger than 

in other periods. The ratios of average buy orders to average sell orders, for days when herding is 

significant at 1%, is slightly higher than for the entire period. Among investor types, buy-sell ratios 

are greater than 1 for all institutionals during days of herding. Looking further into the opening 

intervals, we find that overall buy-sell ratios during significant herding days are actually lower than 

the entire period. But for the closing interval, not only the ratios are generally higher than those in 

the opening interval, but those in significant herding days are also higher than in the entire period. 

This pattern coincides with intraday trading noise, which rises from open to close. If we look at 

stocks in the top and bottom return deciles, the buy-sell ratios are, as expected, higher in the top 

return decile. In the bottom return decile, buy-sell ratios are in general smaller than 1. Buy-sell 

ratios in the closing intervals are uniformly higher, around 20%, than in the opening intervals. Even 

for the bottom return decile, there appears to be a stronger, about 24% in magnitude, buying force 

near market close than right after market open.  
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Market Width 

Limit order book dispersion can describe the tightness of the book by examining how far apart 

from each other (or from the midquote) the limit orders are placed in the book. It can also be considered 

as the width of a market and it captures the execution price innovation expected by the limit order trader 

when he sacrifices demand of immediacy and instead provides liquidity to the market. Foucault, Kadam, 

and Kandel (2005) suggest that the limit order book dispersion is linked with the patience of limit order 

traders and the pick-off risk they face. We adopt the following market width measure by modifying the 

dispersion measure of Kang and Yeo (2008). The market width of stock i in a given day is defined as  
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where 
b

jDst is the price interval between the jth best buy order price and its next better order price, and 

similarly 
s

jDst  is that for the sell order price. The buy and sell price intervals, up to the fifth best limit 

orders are weighted by 
b

jw  and 
s

jw , the size of the corresponding buy or sell limit orders. For the 

whole market, transaction prices are used to compute the first price interval, while for each type of 

investors, average of buy and sell order price at each priority level is used instead. This dispersion, or 

market width, measure is designed to show how clustered or dispersed the limit orders are in the book. It 

measures how tightly the orders are placed to each other or how closely they are to the midquote. The 

higher the dispersion is, the less tight the book is, and the lower amount of liquidity the limit order book 

provides. 

It is a well known fact in Taiwan that, due to funding liquidity, individual investors tend to hold 

and trade stocks with lower prices, while institutional investors concentrate more on high price stocks. 

Therefore, 
b

jDst
 
and 

s

jDst
 
in (7) are computed using the raw price distance divided by tick size of 

the stock, so that only the relative price distance is used, allowing iMW  to be comparable across stocks 

and various types of investors. 

 

Market Depth 

Bloomfield, O’Hara, and Saar (2005) argue that informed traders would submit more limit 

orders than market orders in an electronic market. McKenzie (2007) argues that in the emerging 

markets especially the ability to forecast future price movements is related to the depth of those 

markets. Therefore, beside the tightness measure, limit order book helps examining how well the 
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book handles large volume of market orders. A deep limit order book can absorb a sudden surge in 

the demand of liquidity without inducing much price deviation. Without the interference of the 

specialist and before new limit orders can replenish the book, market buy (sell) orders will first be 

executed against the limit sell (buy) orders at the best offer (bid) quote. If the volume of the market 

order(s) is larger than the best offer (bid) size, the remainder of the unexecuted market orders will 

be executed against the limit orders queuing at the next best offer (bid) quote. In other words, large 

volume of market buy (sell) orders will walk up (down) the limit order book to get filled. The 

further away the market orders walk up or down the book, the larger the difference between the 

execution price and the mid-quote is, and therefore the more costly the trading process will be for 

the market order traders. Motivated by the mechanism described above, we modify the market 

depth measure of Kang and Yeo (2008), which can be thought of as an enhanced depth measure for 

the limit order book.  
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This study employs intra-day order book data from the Taiwan Stock Exchange starting from 

March 1
st
, 2005 to December 31

st
, 2006, covering stocks of 525 firms over a period of 461 trading 

days. Excluded from the complete pool of stocks listed on the exchange are those with irregularities 

and unusual exchange sanctions. As the Taiwan Stock Exchange would only release limit book data 

two years after an order or trade is realized, the data period the latest we could obtain. Each data 

record includes date, exact time in hours, minutes and seconds, stock code, price and quantity of all 

orders, filled or not, submitted during the data period. Individual stock returns, market 

capitalizations, daily turnover and price-book ratios are obtained from the Taiwan Economic Journal 

(TEJ) database. 

Each daily session is then divided further into 9 intervals between 9:00 AM and 1:30 PM, with 

30 minutes in each interval. As our data contains flags identifying each investor as either a  

proprietary dealer, an investment trust, a FII or an individual, we are able to extend our analysis 

according to investor types. Over the last ten years, percentages of trades in Taiwan stock market 

accounted for by FII’s have apparently grown much faster than the other two types of local 

institutionals. As a matter of fact, FII’S owns one third of the total market capitalization and account 

for one quarter of daily volume as of end of 2009 in Taiwan. On average, about 15% of the daily 

orders are submitted during the first half hour of a regular four and half hour trading session. In the 

last half hour period, the percentages range between 9% and 19%. Trading in other periods is 

usually slower than open and close. 

To construct the herding intensity measures required for our study, we begin by sorting the 

trades for each day (having excluded all those executed outside normal trading hours) by stock code 

and count the numbers of up and down runs of order prices submitted within a given day, as well as 

within each of the nine 30-minute intervals. We then compute herding statistic in the respective 

periods according to PS (2006). The definition (6) usually makes computed herding measures take 

on negative values. In computing PS herding measures, only the orders actually filled are included 

in the computation to avoid reporting unrealistic herding phenomenon. The computed daily herding 

measures in are larger in magnitudes than when they are computed intra-day, consistent with Dorn, 

Huberman and Sengmueller (2008) which argue that herding measures should rise with length of 

period. For all and each type of investors, we bootstrapped their 1%, 5% and 10% critical values. 

Among all types of investors, FII’s exhibit the strongest herding behavior in the opening interval, 

followed by individuals and investment trusts. Herding of proprietary dealers is quite different from 

the other three types, peaking at mid-day sessions.  

We report in Table IV the noise proportion in return volatility in the presence of trading 

concentration, where trading noise falls from open to close, contrary to Anh and Cheung (1999). We 
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intend to identify possible factor driving trading noise. Does trading noise get heavier when market 

is extremely active? According to the argument of Hu (2006) and Stoll (2000), a general transaction 

cost should apply to everyone in the market, regardless of market capitalization of stocks or which 

trading hour it is. Although noise is high on individual orders and low on institutional orders, it is 

especially low at market open than in the rest of the day. For individuals, noise rises with 

significance of herding as shown in Table IV, but not so for institutional investors. So trading noise 

maybe just a specific transaction cost, as information cost, prominent to only certain investors in the 

market.  

In order to explore the effects of herding alone on noise in trading, we use the model below to 

see its influences. We perform a panel regression with generalized least squares random effect based 

on  

tktktk AHN ,,, εβα ++=
 

(9) 

where N stands for noise as defined in (3), and H is defined according to (6). Also, t=1,…,461 (for 

trading days) and k=1,…,525 (for stocks) . A greater � in magnitude implies stronger noise is 

produced by more intensive trading activity. Table V gives the result of this model, where a negative 

� estimate would indicates that trading activity brings in more trading noise, as herding measure 

summarized in Table II in general takes on negative values. For the entire observations, the 

magnitudes of coefficients in general peak at mid-day, with the closing interval having the weakest 

coefficient. If we narrow the observations down to only those with significant herding at 10%, the 

magnitudes of coefficients fall by 50%. When market opens, trading brings in the least amount of 

noise. In another word, although noise does rise with herding, but when herding is very strong, its 

influence on trading noise is actually smaller. When trading is not heavy, it affects noise more, but 

not otherwise.  

Table V reports the summary statistics of the market width measure, which shows why trading 

could bring in more friction in the market. MW at each intraday interval, for the whole market or 

various types of investors, is achieved by first subtracting the daily measure and then dividing by it, 

which assures comparability across investor type. The market width measures are reported with a 

layout with time-size blocks. As the computed value of measure is affected in practice by the arrival 

rate of orders within a given time, figures in the table is modified to reflect the percentage each cell 

in the block is above or below corresponding daily averages. MW increases in market capitalization, 

as various friction measures mentioned in Stoll (2000). Also, it falls roughly from open to close, 

again consistent with Anh and Cheung (1999), but the difference between open and close decreases 

with firm size. Intraday trading activity suppresses width of orders submitted, therefore creates 



 13

more friction in the market. Taking investor type into consideration, we are able to see more 

prominent northwest-southeast block polarization, with MW being polarized the most for 

individuals and the least for FII’s. In fact, order width goes up with firm size on orders submitted by 

FII’s and domestic institutional investors (DII’s), contrary to the direction for individuals. The block 

distribution by investor type in Table VI suggests that, across time of day, order width benefits 

trading. But in the category of individuals, it benefits more when trading stocks of the smaller firms, 

while for institutional investors higher dispersion benefits trading stocks of larger firms. This kind 

of clientele distribution of trading activity is not compatible with information-based explanation, 

especially why order price dispersion is higher, at market open, when trading is extremely heavy. 

However, if MW is just a form of economic rent imposed by limit order traders to reflect the 

benefits each trader can enjoy through shorter search time. 

 According to Table VII, the distribution of market depth, proxied by the depth of a limit order 

book, is also compatible with our findings in previous tables. MD falls in general with both time of 

day and firm size, uniformly across all types of investors. Order depth across firm size is compatible 

with what frictions behave in Stoll (2000). The distribution across time of day is also consistent 

with the findings of Anh and Cheung (1999) on intraday friction measures. Intraday trading activity 

lowers order depth, and hence elevates market friction. Although stocks of larger firms possess 

better depth, orders from individuals have on average more depth than those from institutional 

investors. At market open, this edge is about 2.4 times, and increases to 3.9 times at market close. 

Along the direction of firm size, individuals’ edge in order book depth at market open is 2.1 times 

on small cap and 2.3 times on large cap, but is 3.7 times and 2.7 times respectively at market close. 

So the results on market depth measure in Table VII implies that it is in the interest of FII’s and 

DII’s to trade large cap stocks, especially at market close. For individuals, order book depth 

indicated they should make the similar trading decision as the institutional investors to avoid higher 

execution cost in trading small cap stocks at market open. However, the search cost advantage 

dominates the execution cost. Apparently, for individuals finding a counterparty to complete an 

intended trade is more important than walking up a few ticks on the limit order book and paying for 

a slightly higher transacted price. After all, not being able to submit a market order in the Taiwan 

market is itself a strong protection against shallow limit order book. Besides, there is also a 7% 

price limit on either direction. Actual trading intensity may depend in part on the relative strength of 

search and execution costs. 

Based on a framework of time-size block, we show why intraday trading could actually result 

more friction in a market. The relation is, however, on the level of broad categories. To determine 

on average what dictates behavior of market friction at every incidence, we need to conduct further 
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point estimations. We use the following model to find out how order width affects actual time it 

takes to fill a buy order. A fixed effect panel regression is performed on 

tktktk MWN ,,1, εγα ++=  (10) 

where t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1)
4
 

adjustments on residuals and reported in Table VIII, which suggests that order width affects market 

friction in different ways across investor type and time of day. Similar to the previous models, the 

model for domestic institutional does not pass the validation test again and only results for the 

largest market capitalization are available for FII’s. For FII’s dispersion suppresses trading noise 

significantly except for the first intraday interval. For the individuals, however, dispersion elevates 

trading noise except for the first intraday interval regardless of market capitalizations. The exact 

mirror type pattern that distinguish FII’s from individuals supports notion that heavy trading of 

individuals at market open induces noise. For FII’s, aggressive order price pattern, or lower 

dispersion, just produces lower trading noises at market open. In other intraday intervals, only more 

aggressive order price pattern would produce greater trading noise, confirming the findings of Table 

VI.  

 Table IX gives results showing how market depth affects trading noise. The following 

model is considered for this purpose, 

tktktk MDN ,,1, εγα ++=  (11) 

where t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments 

on residuals. Table IX shows a similar pattern to that in Table VIII. Market depth of orders from 

institutional investors, which is lower than the depth in individuals’ orders, contributes to trading 

noise positively at market open. However, for the rest of the day, market depth of institutionals’ 

orders tends to suppress trading noise. The relation between trading noise and market depth is the 

opposite of that at market open. For the institutional investors, market depth affects noise only 

weakly on small cap stocks. Results from Tables VIII and IX validate the pattern of noise across a 

day, as reported in Table IV. When the market is very active, in width or depth, trading noise of 

investors actually benefit from heavy trading. This is especially true for individual investors at 

market open, when poor width and depth actually hurts the institutional investors in bearing higher 

trading noise.      

 

                                                
4 We have verified that the model with AR(1) residuals are supported by the SBC criterion. 
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IV. Conclusion 

This study examines intra-day order book data to study whether trading activity incites or 

suppresses certain market friction, particularly when trading is heavy. We adopt a measure of 

trading concentration specifically ideal for high frequency data. The measure is not only constructed 

on a daily level, but also within intra-day time intervals. Trading concentration is found to bring in 

noise or friction to the market. As we find trading brings friction, our findings provide support to 

the new financial transactions tax proposed by the European Union, which has invited lots of 

criticism. 

We have also introduced measures on width and depth of a limit order book to explain why 

market friction reacts to trading activity as we find it. We find strong evidences against the idea of 

trading noise being a general transaction cost, or a general friction in market trading. Specifically, 

trading noise behaves, and reacts to market width and depth, differently across investor type, market 

capitalization and time of day. Trading noise is just a specific transaction cost, as information cost, 

prominent at certain aspect in the market. 

Although this noise is high on individual orders and low on institutional orders, its behavior at 

market open is entirely different from the rest of the day. Noises for small cap stocks, unlike 

volatilities, are lower than those for large cap stocks. Intraday trading activity suppresses width, as 

well as depth, of orders submitted, therefore creates more noise in the market. At market open, 

behaviors of noise from institutional and individual orders are opposite to each other, but they 

switch positions in the rest of the day. Noise from high-cap stocks is actually more responsive than 

that from low-cap ones across investors. So trading noise is a specific transactions cost, prominent 

to only certain investors, at certain time and for certain stocks in the market, rather than a general 

market friction as argued in Stoll (2000). This transactions cost is inversely related to order width 

and depth, which depends on investor, trading hour of day and market capitalization of stocks. 

Although we have presented valid arguments regarding the central issue of this study, there are 

areas yet to be worked on. We have to investigate further behavior of trading noise and its 

interaction with investors. Other analysis, such as trading motives of investors, evidence on 

sequence or development of trading concentration and the dynamics of trading noise need to be 

added to the current model as well.  
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Table I  Noise as Proportion of Stock Returns by Market Capitalization and Intraday Interval 
 Averaged across 525 firms and over 461 days 

  
9:00~9:30  9:30~10:00  10:00~10:30 10:30~11:00 11:00~11:30 11:30~12:00 12:00~12:30 12:30~13:00 13:00~13:30 all day  

MV10*  
Noise Ratio 0.342278  0.349138  0.351538  0.353061  0.353678  0.353752  0.353574  0.35327  0.350522  0.346329  

Volatility  2.94E-06  2.04E-06  1.89E-06  1.83E-06  1.82E-06  1.87E-06  1.87E-06  1.90E-06  2.28E-06  2.06E-06  

MV9  
Noise Ratio 0.299264  0.306318  0.309945  0.310761  0.312009  0.31237  0.311695  0.311612  0.308912  0.301522  

Volatility  5.31E-06  3.48E-06  3.17E-06  3.06E-06  2.98E-06  3.19E-06  3.10E-06  3.10E-06  3.71E-06  3.46E-06  

MV8  
Noise Ratio 0.312762  0.31705  0.318713  0.320591  0.319912  0.320309  0.320878  0.321037  0.318995  0.310814  

Volatility  7.03E-06  4.61E-06  4.15E-06  3.98E-06  3.84E-06  4.23E-06  3.95E-06  4.04E-06  4.93E-06  4.51E-06  

MV7  
Noise Ratio 0.265489  0.270462  0.273346  0.273981  0.274287  0.272752  0.274185  0.274522  0.27341  0.262707  

Volatility  7.94E-06  4.99E-06  4.35E-06  4.16E-06  4.08E-06  4.93E-06  4.17E-06  4.32E-06  5.33E-06  4.93E-06  

MV6  
Noise Ratio 0.273087  0.276788  0.279308  0.279894  0.279174  0.278379  0.279982  0.279452  0.279812  0.268396  

Volatility  8.75E-06  5.54E-06  4.84E-06  4.51E-06  4.61E-06  5.38E-06  4.63E-06  4.73E-06  5.74E-06  5.44E-06  

MV5  
Noise Ratio 0.267541  0.269733  0.272056  0.270965  0.271129  0.27107  0.27164  0.273007  0.273653  0.260174  

Volatility  1.10E-05  6.86E-06  5.83E-06  5.65E-06  5.60E-06  6.40E-06  5.60E-06  5.78E-06  7.18E-06  6.71E-06  

MV4  
Noise Ratio 0.275499  0.275677  0.277627  0.276941  0.276011  0.276052  0.275425  0.278486  0.280638  0.264206  

Volatility  1.38E-05  8.78E-06  7.43E-06  7.32E-06  6.88E-06  8.01E-06  6.98E-06  7.10E-06  8.90E-06  8.41E-06  

MV3  
Noise Ratio 0.253431  0.255456  0.257726  0.260689  0.259907  0.258176  0.259207  0.259522  0.259299  0.242237  

Volatility  1.59E-05  1.00E-05  8.39E-06  7.94E-06  7.76E-06  8.81E-06  7.60E-06  8.11E-06  1.01E-05  9.56E-06  

MV1  
Noise Ratio 0.266264  0.268133  0.269037  0.266463  0.27026  0.264406  0.26723  0.267985  0.270713  0.25229  

Volatility  2.00E-05  1.29E-05  1.11E-05  1.03E-05  1.02E-05  1.11E-05  9.99E-06  1.02E-05  1.31E-05  1.21E-05  

MV1  
Noise Ratio 0.282314  0.280608  0.281831  0.283886  0.281262  0.279193  0.280412  0.282529  0.282901  0.264302  

Volatility  3.37E-05  2.24E-05  1.87E-05  1.77E-05  1.73E-05  1.64E-05  1.65E-05  1.71E-05  2.14E-05  2.04E-05  

* MV10 denotes the decile containing stocks with the largest market capitalization. 
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Table II  Bootstrapped Intra-day Critical Values and Herding Significance Percentages 
 by Intraday Intervals and Investor Type, Averaged across 525 firms and over 495 days 

 

Significance 
Critical 

Values 

9:00~  

9:30 

9:30~  

10:00 

10:00~ 

10:30 

10:30~ 

11:00 

11:00~ 

11:30 

11:30~ 

12:00 

12:00~ 

12:30 

12:30~ 

13:00 

13:00~ 

13:30 

All Investors 

1% -9.182  1.70% 1.29% 1.01% 0.94% 0.82% 0.82% 0.79% 0.85% 0.72% 

5% -5.080 7.35% 6.28% 5.26% 4.93% 4.50% 4.37% 4.09% 4.31% 3.74% 

10% -3.676 13.90% 12.38% 10.75% 10.00% 9.21% 8.89% 8.18% 8.66% 7.76% 

Proprietary Dealers 

1% -5.528 0.81% 1.03% 1.15% 1.17% 1.13% 1.13% 1.08% 1.05% 0.81% 

5% -3.497 5.72% 4.63% 5.11% 4.95% 4.55% 5.61% 4.89% 5.04% 3.98% 

10% -3.676 11.80% 9.44% 10.09% 9.27% 9.69% 10.88% 9.87% 10.16% 7.93% 

Investment Trusts 

1% -6.084 1.42% 0.90% 0.77% 0.82% 0.98% 0.99% 1.07% 1.16% 0.49% 

5% -4.264 6.88% 4.75% 4.34% 4.56% 4.82% 4.94% 5.51% 5.17% 3.00% 

10% -3.463 13.31% 10.01% 9.12% 9.23% 9.82% 10.05% 10.95% 10.45% 6.28% 

FII’s 

1% -12.073 1.85% 1.02% 0.83% 0.81% 0.81% 0.80% 0.90% 1.05% 0.84% 

5% -8.068 7.06% 5.10% 4.43% 4.50% 4.63% 4.48% 4.84% 5.27% 4.36% 

10% -6.347 13.23% 10.11% 9.18% 9.18% 9.40% 9.35% 9.65% 10.40% 8.92% 

Individuals 

1% -9.627 1.55% 1.22% 1.01% 0.97% 0.87% 0.86% 0.83% 0.92% 0.73% 

5% -5.093 7.17% 6.10% 5.23% 4.90% 4.50% 4.43% 4.22% 4.48% 3.82% 

10% -3.645 13.93% 12.17% 10.52% 9.84% 9.11% 8.80% 8.31% 8.85% 7.97% 
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Table III  Daily and Intra-day Buy and Sell Orders, All Days and When Herding Is Significant at 1% 

By Investor Type 

Investor Type 

9:00~9:30 13:00~13:30 All Day 

All days Days when herding 

is significant at 1% 

All days Days when herding 

is significant at 1% 

All days Days when herding 

is significant at 1% 

 Ave. buy 

orders per 

lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders 

per lot 

Ave. buy 

orders 

per lot 

Ave. sell 

orders per 

lot 

Ave. buy 

orders per 

lot 

Ave. sell 

orders per 

lot 

All Stocks 

All 14.19  14.24  15.09  18.33  19.92  18.07  22.82  18.53  8.50 8.45 9.64 9.56 

Proprietary Dealers 29.77  24.81  68.96  15.11 23.37  25.39  26.57  19.69  21.66  22.17  26.22  8.61 

Investment Trusts 41.53  31.41  56.62  29.49  31.58  27.62  66.09  53.32  28.68  25.34  13.77  12.88  
FII’s 27.12  26.18  43.95  25.22  69.19  59.72  130.17 26.60 17.10  17.34  14.05  12.39  
Individual 10.54  11.12 10.05  22.82  9.76 10.18  9.66 17.31  7.29 7.36 7.02 7.67 

 Top Stock Return Decile 

All 5.43 5.24 6.46 5.87 5.67 5.29 7.15 5.65 5.44 5.28 5.99 5.96 

Proprietary Dealers 17.95  15.20  6.36 12.28  11.91 12.60  9.25 12.80  14.96  14.39  6.49 5.33 

Investment Trusts 25.99  17.91  25.48  18.95  22.56  17.95  14.28  5.22 19.33  16.13  11.66 11.08 

FII’s 7.93 6.76 4.73 3.95 13.30  12.61  5.88 4.24 7.52 7.06 4.28 3.90 

Individual 5.02 4.95 5.47 5.32 5.00 4.83 3.00 3.07 5.02 4.94 5.18 5.33 

 Bottom Stock Return Decile 

All 10.81  10.64  15.53  13.06  12.39  12.39  18.76  12.67  10.53  10.85  10.17  12.83  
Proprietary Dealers 32.68  31.13  34.55  20.14  26.12  29.81  56.59  37.77  25.82  28.30  31.04  12.15  
Investment Trusts 58.67  46.06  180.25 24.81  41.04  31.32  45.81  56.36  39.80  34.26  14.58  13.49  
FII’s 18.88  18.87  19.95  6.95 45.79  46.07  39.87  42.69  20.61  20.84  18.02  10.53  
Individual 10.22  9.98 12.58  12.53  9.92 10.18  9.35 10.77  9.64 9.91 8.64 10.71  

 

In thousand shares 



21 

Table IV  Noise as Proportion of Stock Returns by Herding Significance 
 Averaged across 525 firms and over 495 days 

 

Significance All Day 
9:00~  

9:30 

9:30~  

10:00 

10:00~ 

10:30 

10:30~ 

11:00 

11:00~ 

11:30 

11:30~ 

12:00 

12:00~ 

12:30 

12:30~ 

13:00 

13:00~ 

13:30 

All Investors 

1% 0.3242 0.2718 0.3010 0.3082 0.3183 0.3161 0.3122 0.3144 0.3162 0.3066 

5% 0.2981 0.2651 0.2833 0.2918 0.2972 0.2995 0.2984 0.2970 0.2957 0.2944 

10% 0.2916 0.2678 0.2816 0.2880 0.2929 0.2958 0.2944 0.2949 0.2924 0.2943 

Proprietary Dealers 

1% 0.2977 0.2467 0.2462 0.2557 0.2791 0.2822 0.2973 0.3038 0.3349 0.3206 

5% 0.3144 0.2624 0.2822 0.3006 0.3082 0.2957 0.3253 0.3101 0.3165 0.3036 

10% 0.3144 0.2705 0.2849 0.3056 0.3031 0.3076 0.3304 0.3205 0.3187 0.3017 

Investment Trusts 

1% 0.2751 0.1924 0.2358 0.2688 0.2456 0.2773 0.2862 0.2736 0.2778 0.2861 

5% 0.2602 0.2042 0.2429 0.2583 0.2573 0.2675 0.2758 0.2774 0.2870 0.2917 

10% 0.2581 0.2118 0.2410 0.2554 0.2570 0.2673 0.2729 0.2737 0.2805 0.2873 

FII’s 

1% 0.3067 0.2766 0.3084 0.3100 0.3214 0.3166 0.3217 0.3224 0.3218 0.3215 

5% 0.3098 0.2968 0.3099 0.3158 0.3205 0.321 0.3241 0.3211 0.3198 0.3192 

10% 0.3136 0.305 0.3153 0.3188 0.3200 0.3241 0.325 0.3217 0.3224 0.3224 

Individuals 

1% 0.3387 0.2855 0.3129 0.3212 0.3268 0.3294 0.3291 0.3336 0.3383 0.3346 

5% 0.3030 0.2703 0.2871 0.2964 0.3006 0.3011 0.3016 0.3044 0.3037 0.3050 

10% 0.2926 0.2703 0.2837 0.2885 0.2939 0.2959 0.2947 0.2969 0.2959 0.2992 
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Table V  Effects of Herding on Noise in Panel Regression 

 Intraday Intervals 

In order to explore the effects of trading concentration alone on trading noise, we use the model below to see 

what could have influenced noise. We performed a panel regression with generalized least squares random effect 

based on  

tktktk HN ,,, εβα ++=  

where N stands for noise as defined in (3), and H is defined according to (6). Also, t=1,…,461 (for trading days) 

and k=1,…,525 (for stocks) . A greater � in magnitude implies stronger noise is produced by more 

intensive trading activity. 

 

Intraday interval � (x100) No of obs. 

   

All days 

 9:00-9:30 -1.32(0.0128)*** 222,711 

 9:30-10:00 -1.21(0.0140)*** 217,529 

 10:00-10:30 -1.34(0.0153)*** 213,436 

 10:30-11:00 -1.45(0.0161)*** 209,637 

 11:00-11:30 -1.53(0.0168)*** 206,076 

 11:30-12:00 -1.59(0.0170)*** 202,803 

 12:00-12:30 -1.56(0.0173)*** 202,750 

 12:30-13:00 -1.30(0.0166)*** 208,049 

 13:00-13:30 -0.98(0.0161)*** 222,387 

   

Days when herding is significant at 10% 

 9:00-9:30 -0.25(0.0128)*** 22,298 

 9:30-10:00 -0.45(0.0140)*** 21,815 

 10:00-10:30 -0.62(0.0153)*** 21,402 

 10:30-11:00 -0.79(0.0161)*** 20,944 

 11:00-11:30 -0.83(0.0168)*** 20,650 

 11:30-12:00 -0.85(0.0170)*** 20,416 

 12:00-12:30 -0.86(0.0173)*** 20,464 

 12:30-13:00 -0.74(0.0166)*** 20,959 

 13:00-13:30 -0.54(0.0161)*** 22,497 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 
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Table VI  Summary Statistics of Intraday Market Width Relative to Daily Average 

525 firms and over 461 days 

The dispersion measure of stock i in a given day is defined as  
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where i=1,2,…,525 and Ticki is the tick size of the respective stock. )( 1, ijji

B

ij BidBidD −= − , which is the price 

interval between the jth best bid order price and the  next better quote, whereas )( 1, ijji

S

ij OfferOfferD −= − , which 

is the price interval between the jth best offer order price and the next better quote, with ijw  being the size of the 

corresponding bid or offer order. For the whole market, transaction prices are used to compute the first price interval, 

while for each type of investors, average of buy and sell order price at each priority level is used instead. As the 

computed value of measure is affected in practice by the arrival rate of orders within a given time, figures in the table is 

modified to reflect the percentage each cell in the block is above or below corresponding daily averages.  
 

Market 

Caps* 

9:00~ 

9:30

9:30~ 

10:00

10:00~ 

10:30

10:30~ 

11:00

11:00~ 

11:30

11:30~ 

12:00

12:00~ 

12:30

12:30~ 

13:00

13:00~ 

13:30 

 All Investors 

All 20.50% 5.63% 0.72% -1.74% -3.46% -4.51% -5.33% -5.78% -6.03% 

1 30.57% 10.19% 2.16% -2.22% -5.19% -`7.18% -8.59% -9.56% -10.18% 

2 25.19% 7.16% 0.98% -2.15% -4.45% -5.66% -6.63% -7.16% -7.38% 

3 20.35% 5.04% 0.40% -1.80% -3.36% -4.35% -5.15% -5.47% -5.66% 

4 17.03% 4.04% 0.18% -1.59% -2.86% -3.55% -4.18% -4.45% -4.62% 

5 9.36% 1.71% -0.13% -0.95% -1.52% -1.81% -2.11% -2.25% -2.30% 

 Individuals 

All 20.20% 5.79% 0.85% -1.64% -3.39% -4.43% -5.28% -5.83% -6.26% 

1 30.40% 10.18% 2.21% -2.19% -5.16% -`7.15% -8.59% -9.59% -10.11% 

2 24.95% 7.21% 1.06% -2.08% -4.28% -5.60% -6.64% -7.23% -7.41% 

3 19.87% 5.12% 0.52% -1.67% -3.26% -4.23% -5.04% -5.49% -5.81% 

4 16.16% 4.17% 0.38% -1.37% -2.70% -3.35% -3.99% -4.41% -4.88% 

5 9.62% 2.27% 0.09% -0.88% -1.57% -1.82% -2.17% -2.46% -3.08% 

 FII’s 

All 8.97% 3.38% 0.82% -0.66% -1.78% -2.53% -3.08% -3.03% -2.09% 

1 0.22% 0.09% -0.00% -0.04% -0.05% -0.08% -0.10% -0.08% 0.04% 

2 0.90% 0.46% 0.16% -0.01% -0.19% -0.31% -0.39% -0.39% -0.24% 

3 3.00% 1.38% 0.49% -0.09% -0.60% -0.97% -1.24% -1.20% -0.77% 

4 7.73% 3.36% 1.12% -3.63% -1.52% -2.39% -2.97% -2.99% -1.20% 

5 32.97% 11.62% 2.31% -2.80% -6.53% -8.90% -10.69% -10.52% -7.47% 

 DII’s 

All 11.41% 3.72% 0.46% -1.22% -2.46% -3.18% -3.40% -2.81% -2.53% 

1 1.17% 0.52% 0.15% -0.06% -0.18% -`0.29% -0.29% -0.23% -0.80% 

2 3.25% 1.37% 0.33% -0.25% -0.78% -1.04% -1.04% -0.76% -1.09% 

3 7.54% 2.73% 0.41% -0.83% -1.76% -2.26% -2.45% -1.80% -1.57% 

4 15.09% 5.47% 0.97% -1.42% -3.25% -4.37% -4.79% -4.11% -3.59% 

5 30.02% 8.55% 0.46% -3.57% -6.33% -7.95% -8.43% -7.16% -5.60% 

* Firms with the lowest market capitalization is assigned with 1, while the largest firms are assigned with 5.  
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Table VII  Summary Statistics of Intraday Market Depth 
Across 525 firms over 461 trading days 
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where i=1,2,…,525. iMQ  is the midpoint of the nearest buy and sell quote prices, TNSi is the total number of shares 

traded within the time interval of interest, 
B

kP  is the best bid price, 
S

kP  is the best offer price and,  
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Market 

Caps* 

9:00~ 

9:30 

9:30~ 

10:00 

10:00~ 

10:30 

10:30~ 

11:00 

11:00~ 

11:30 

11:30~ 

12:00 

12:00~ 

12:30 

12:30~ 

13:00 

13:00~ 

13:30 

 All Investors (x1000) 

All 13.0079 9.8449 8.6888 8.1036 7.6669 7.3865 7.1746 7.0736 6.9958 
1 17.8589 14.1373 12.5737 11.7438 11.1532 10.7470 10.4468 10.1948 9.9790 
2 14.1931 10.6952 9.4177 8.7636 8.2676 7.9675 7.7290 7.6085 7.5207 
3 12.3820 9.2101 8.0962 7.5566 7.1474 6.8688 6.6576 6.5776 6.5194 
4 11.4488 8.4558 7.4450 6.9397 6.5596 6.3176 6.1297 6.0875 6.0521 
5 9.1591 6.7281 5.9134 5.5160 5.2082 5.0333 4.9114 4.9011 4.9092 
 Individuals (x1000) 

All 13.3955 10.4136 9.2868 8.7193 8.2999 8.0390 7.8118 7.6603 7.5285 
1 18.0690 14.3891 12.8305 11.9916 11.3952 10.9884 10.6776 10.4073 10.2155 
2 14.2668 10.8553 9.5973 8.9522 8.4784 8.1937 7.9314 7.7879 7.7046 
3 12.6287 9.5807 8.4841 7.9552 7.5623 7.2972 7.0700 6.9430 6.8464 
4 11.9329 9.2087 8.2513 7.7756 7.4143 7.2065 7.0072 6.9023 6.7844 
5 10.0826 8.0364 7.2727 6.9234 6.6509 6.5103 6.3740 6.2626 6.0931 
 FII’s (x1000) 

All 31.6742 30.7326 30.2594 29.9569 29.6639 29.4932 29.3019 29.3110 29.4198 
1 38.2287 38.1884 38.1322 38.0976 38.0382 38.0152 38.0066 38.0051 38.0210 
2 38.4410 38.2997 38.2193 38.1541 38.0731 38.0783 37.9811 37.9710 38.0837 
3 30.5419 30.2111 30.0790 30.0179 29.8711 29.7989 29.7067 29.7387 29.9595 
4 25.5691 25.8143 25.3715 25.1059 24.8172 24.6598 24.4530 24.4801 24.8677 
5 24.5935 21.1536 19.4991 18.4132 17.5244 16.9181 16.3665 16.3646 16.1717 
 DII’s (x1000) 

All 35.3645 32.8618 31.9597 31.4973 31.0950 30.8792 30.8544 31.1076 30.5155 
1 49.1130 48.7376 48.5554 48.3584 48.2354 48.1506 48.1809 48.2515 47.0022 
2 38.9963 38.0760 37.6922 37.4903 37.2298 37.1191 37.1422 37.3311 36.4473 
3 33.0821 31.3160 30.5527 30.2103 29.8196 29.6622 29.6451 29.9616 29.5253 
4 30.7961 27.2124 25.8983 25.2023 24.6050 24.2437 24.0973 24.4305 24.1344 
5 24.8420 18.9749 17.1083 16.2339 15.5939 15.2289 15.2152 15.5719 15.4765 

 * Firms with the lowest market capitalization is assigned with 1, while the largest firms are assigned with 5.  
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Table VIII  Effects of Market Width on Noise 

Foreign Institutional and Individual Investors, by Market Caps 

To explore the effects of search motive on trading noise on an intraday level, we use the model 

below to see what could have influenced noise. We performed a panel regression with 

generalized least squares random effect based on  

tktktk MWN ,,1, εγα ++=  with 
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and t=1,…,461 and k=1,…,525. tkMW , follows the same definition as in (7). Results are 

estimated using a panel GLS with AR(1) adjustments on residuals.  

 

Intraday interval FII’s Individuals 

 �1 (x1000) No. of Obs. �1 (x100) No. of Obs. 

     

Smallest Market Caps 

 9:00-9:30   -1.67(0.23)***  34,016 

 9:30-10:00   -0.93(0.36)***  30,295 

 10:00-10:30   3.08(0.48)***  27,200 

 10:30-11:00   5.24(0.78)***  24,886 

 11:00-11:30   5.05(0.58)***  22,835 

 11:30-12:00   7.11(0.63)***  21,360 

 12:00-12:30   6.80(0.60)***  20,936 

 12:30-13:00   6.97(0.51)***  23,243 

 13:00-13:30   5.31(0.32)***  34,183 

     

Middle Market Caps 

 9:00-9:30   -2.44(0.40)***  44,497 

 9:30-10:00   1.34(0.63)**  45,936 

 10:00-10:30   8.56(0.82)***  43,296 

 10:30-11:00   17.00(0.92)***  42,194 

 11:00-11:30   20.95(1.01)***  41,344 

 11:30-12:00   25.95(1.01)***  40,481 

 12:00-12:30   23.28(0.98)***  40,388 

 12:30-13:00   24.45(0.85)***  41,653 

 13:00-13:30   16.12(0.65)***  45,273 

       

 Largest Market Caps 

 9:00-9:30 0.56(0.11)***  34,166 -1.20(0.47)***  48,159 

 9:30-10:00 -0.48(0.13)***  32,370 1.79(0.74)***  47,914 

 10:00-10:30 -0.62(0.16)***  30,476 3.04(0.90)***  47,595 

 10:30-11:00 -0.65(0.19)***  30,213 10.77(1.07)***  47,329 

 11:00-11:30 -0.57(0.20)***  29,797 17.84(1.20)***  47,050 

 11:30-12:00 -0.58(0.19)***  30,258 23.59(1.21)***  46,864 

 12:00-12:30 -0.24(0.19)***  30,549 23.13(1.15)***  46,846 

 12:30-13:00 -0.40(0.17)**  32,114 20.38(1.00)***  47,239 

 13:00-13:30 -0.36(0.10)***  38,055 11.99(0.82)***  48,091 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 
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Table IX  Effects of Market Depth on Noise 

Foreign Institutional and Individual Investors, by Market Caps 

To explore the effects of search motive on trading noise on an intraday level, we use the model 

below to see what could have influenced noise. We performed a panel regression with 

generalized least squares random effect based on  

tktktk MDN ,,1, εγα ++=  with 
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and t=1,…,461 and k=1,…,525. Results are estimated using a panel GLS with AR(1) adjustments 

on residuals.  

 

Intraday interval FII’s Individuals 

 �1(x10) No. of Obs. �1 No. of Obs. 

     

Smallest Market Caps 

 9:00-9:30 0.09(0.03)**  34,016 -0.54 (0.12)***  34,016 

 9:30-10:00 -0.07(0.04)**  30,295 0.61(0.15)***  30,295 

 10:00-10:30 -0.13(0.06)**  27,200 0.82(0.16)***  27,200 

 10:30-11:00 -0.14(0.07)*  24,886 4.45(0.21)***  24,886 

 11:00-11:30 -0.11(0.07)  22,835 5.00(0.22)***  22,835 

 11:30-12:00 -0.15(0.08)  21,360 7.29(0.26)***  21,360 

 12:00-12:30 -0.04(0.03)  20,936 6.92(0.25)***  20,936 

 12:30-13:00 -0.07(0.05)**  23,243 4.11(0.20)***  23,243 

 13:00-13:30 -0.05(0.02)**  34,183 3.37(0.19)***  34,183 

     

Middle Market Caps 

 9:00-9:30 0.18(0.03)***  44,497 -0.62(0.16)***  44,497 

 9:30-10:00 -0.14(0.04)***  45,936 0.77(0.22)***  45,936 

 10:00-10:30 -0.20(0.06)***  43,296 1.31(0.27)***  43,296 

 10:30-11:00 -0.22(0.08)**  42,194 5.09(0.21)***  42,194 

 11:00-11:30 -0.16(0.07)*  41,344 7.58(0.35)***  41,344 

 11:30-12:00 -0.19(0.08)*  40,481 9.87(0.40)***  40,481 

 12:00-12:30 -0.06(0.03)*  40,388 8.47(0.52)***  40,388 

 12:30-13:00 -0.12(0.05)**  41,653 6.33(0.31)***  41,653 

 13:00-13:30 -0.09(0.03)***  45,273 4.08(0.22)***  45,273 

       

 Largest Market Caps 

 9:00-9:30 0.29(0.06)***  34,166 -0.65(0.17)***  48,159 

 9:30-10:00 -0.23(0.05)***  32,370 0.89(0.25)***  47,914 

 10:00-10:30 -0.29(0.06)***  30,476 1.66(0.31)***  47,595 

 10:30-11:00 -0.35(0.08)***  30,213 5.33(0.26)***  47,329 

 11:00-11:30 -0.29(0.07)***  29,797 8.12(0.47)***  47,050 

 11:30-12:00 -0.30(0.09)***  30,258 10.44(0.57)***  46,864 

 12:00-12:30 -0.14(0.04)***  30,549 10.95(0.61)***  46,846 

 12:30-13:00 -0.24(0.06)**  32,114 8.60(0.49)***  47,239 

 13:00-13:30 -0.17(0.04)***  38,055 5.13(0.39)***  48,091 

1. Standard deviations are in the parentheses. 

2. *: Significant at 10%; **: Significant at5%; ***: Significant at1%. 

 


