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Abstract 

Recent industry-based empirical studies among countries demonstrate that individual 

industry's per capita capital stock and output grow at industry's own steady state 

growth rate. The industry growth rate is highly correlated to industry's technical 

progress measured by total factor productivity (TFP) of the industry, which exhibits 

large difference across industries as reported recently by Syverson (2011). Let us refer 

to this phenomenon as "unbalanced growth among industries." Very few researches 

concerned with this phenomenon have been done yet. Some exceptions are Echevarria 

(1997), Kongsamut, Rebelo and Xie (2001), and Acemoglu and Guerrieri (2008) among 

others. However their models and analytical methods are different from mine. Applying 

the theoretical method developed by McKenzie and Scheinkman in turnpike theory, I 

now construct a two-sector optimal growth model with an industry specific 

Hicks-neutral technical progress and show that each sector's per capita capital stock 

and output grow at the rate of the sector's technical progress (the sector’s TFP growth 

rate). 

 

JEL Classification: O14,O21,O24,O41 
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1. INTRODUCTION 

    Since the seminal papers by Romer (1986) and Lucas (1988), economics has 

witnessed a strong revival of interest in growth theory under the name of "Endogenous 

growth theory." Neoclassical optimal growth models have been applied as benchmarks 

and studied intensively since the late 1960. However, these analytical models have a 

serious drawback: they are based on highly aggregated macro-production functions and 

cannot explain the important empirical evidence that I discuss in the following section. 

Recent industry-based empirical studies among countries clearly revealed that growth in 

an individual industry's per capita capital stock and output grow at industry's own 

growth rate, which is closely related to its technical progress measured by total factor 

productivity (TFP) of the industry. For example, per capita capital stock and output of 

the agriculture industry grow at 5% per annum along its own steady-state, whereas they 

grow at 10% annually in the manufacturing industry, also paralleling the industry's 

steady state. Syverson (2011) has recently reviewed these arguments discussed above. 

Let us refer this phenomenon as "unbalanced growth among industries." The attempt 

to understand this phenomenon has generated a strong theoretical demand for 

constructing a multi-sector growth model, yet very little progress has been made so far. 

Some exceptions are Echevarria (1997), Kongsamut, Rebelo and Xie (2001), and 
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Acemoglu and Guerrieri (2008). However their models and analytical methods are 

different from mine. Setting up an optimal growth model with three sectors: primary, 

manufacturing and service, Echevarria (1997) has applied a numerical analysis to solve 

the model. Kongsamut, Rebelo and Xie (2001) has constructed the similar model to the 

one of Echevarria (1997), while they have investigated the model under a much stronger 

assumption than her: each sector produces goods with the same technology. On the 

other hand, Acemoglu and Guerrieri (2008) has studied the model with two 

intermediate-goods sectors and single final-goods sector. Note that the last two models 

will share a common character: consumption goods and capital goods are identical. 

Contrastingly, my model presented here exhibits a sharp contrast with them. Since I 

assume that each good is produced with a different technology, consumption goods and 

capital goods are completely different goods. As I will demonstrate later, this feature of 

the model will make the characteristics of the model far complicated. 

    The optimal growth model with heterogeneous capital goods has been studied 

intensively since the early 1970' under the title of turnpike theory by McKenzie (1976, 

1982, 1983 and 1986) and Scheinkman (1976). Turnpike theory shows that any optimal 

path converges asymptotically to the corresponding optimal steady state path without 

initial stock sensitivity. In other words, the turnpike property implies that the per capita 
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capital stock and output of each industry eventually converge to an industry-specific 

constant ratio. Therefore, turnpike theory too, cannot explain the empirical 

phenomenon: unbalanced growth among industries. McKenzie (1998) has articulated 

this point: "Almost all the attention to asymptotic convergence has been concentrated on 

convergence to balanced paths, although it is not clear that optimal balanced growth 

path will exist. This type of path is virtually impossible to believe in, if the model is 

disaggregated beyond the division into human capital and physical capital, and new 

goods and new methods of production appear from time to time." An additional point is 

that the turnpike result established in a reduced form model has not been fully applied to 

a structural neoclassical optimal growth model. A serious obstacle in applying the 

results from the reduced form model is that the transforming of a neoclassical optimal 

growth model into a reduced form model will not yield a strictly concave reduced form 

utility function, but just a concave one. In this context, McKenzie (1983) has extended 

the turnpike property to the case in which the reduced form utility function is not strictly 

concave, that is, there is a flat segment on the surface, which contains an optimal steady 

state. This flat segment is often referred to as the Neumann-McKenzie facet. Yano 

(1990) has studied a neoclassical optimal growth model with heterogeneous capital 

goods in a trade theoretic context. However, in case of the Neumann-Mckenzie facet 
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with a positive dimension, Yano explicitly assumed the "dominant diagonal block 

condition" concerned with the reduced form utility function ( see Araujo and 

Scheinkman (1978) and McKenzie (1986)). Thus, he still did not fully exploit the 

structure of the neoclassical optimal growth model, especially the dynamics of the path 

on the Neumann-McKenzie facet, to obtain the turnpike property. 

    By applying the theoretical method developed in turnpike theory, this study seeks 

to fill the gap between the results derived by the theoretical research explained above 

and the empirical evidence from recent studies at the industry level among countries. 

First, I will set up a multi-industry optimal growth model, in which each industry 

exhibits the Hicks-neutral technical progress with an industry specific rate. This model 

will be regarded as a multi-industry optimal growth version of the Solow model with 

the Hicks neutral technical progress. Second, I will rewrite the original model into a per 

capita efficiency unit model. Third, I will transform the efficiency unit model into a 

reduced form model, after which the method developed in turnpike theory will be 

applied. The neighborhood turnpike theorem demonstrated in McKenzie (1983) 

indicates that any optimal path will be trapped in a neighborhood of the corresponding 

optimal steady state path when discount factors are sufficiently close to 1, and the 

neighborhood can be minimized by choosing a discount factor arbitrarily close to 1. I 
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will demonstrate the local stability theorem by applying the logic used by Scheinkman 

(1976): a stable manifold extends over today's capital stock plane. As we see later, the 

dynamics of the Neumann-McKenzie facet are important in demonstrating both the 

theorems. Combining the neighborhood turnpike and the local stability produces the 

complete turnpike property: any optimal path converges to a corresponding optimal 

steady state when discount factors are sufficiently close to 1. For establishing both 

theorems, we assume generalized capital intensity conditions, which are the generalized 

versions of those in a two-sector model. The complete turnpike property means that 

each sector's optimal per capita capital stock and output converge to its own steady state 

path with the rate of technical progress determined by the industry's TFP. 

    The paper is organized in the following manner: In Section 2, I will provide a 

several empirical facts based on the recent database at the industry level among 

countries. In Section 3, the model and assumptions are presented and show some 

existence theorem. In Section 4, the Neumann-McKenzie facet is introduced and the 

Neighborhood Turnpike Theorem is demonstrated. The results obtained in Section 4 

will be used repeatedly in the proofs of main theorems. In Section 5, I show the 

complete turnpike theorem. Some comments are given in Section 6. 
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2. SOME EMPIRICS 

In Takahashi, Mashiyama and Sakagami (2011), we have empirically examined the 

Post-war Japanese economy and other OECD countries based on a two-sector growth 

model setting originally investigated by Uzawa. We have found the following facts 

among others. 

 Through the observation period (1955-1995), per-capita capital stocks grew 

exponentially at a sector specific constant rate. Furthermore, the per-capita 

capital stock of the consumption sector grew much faster than the investment 

sector (see Figure 1).  

<Insert Figure 1 here> 

 During the High-speed Growth Era (1960-1975), the investment sector was more 

capital-intensive than the consumption good sector. After the 1973 oil-shock, the 

consumption good sector turned out to be more capital-intensive than the 

investment good sector. In other words, “the capital-intensity reversal” took place 

(see Figure 2). 

<Insert Figure 2 here> 

 In other OECD countries, the capital-intensity reversal cannot be observed as 

shown in Figure 3, and the consumption good sector is more capital intensive 
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than the investment good sector over the observation period (1970-1990).  

<Insert Figure 3 here> 

The first fact implies that each sector’s steady state has a sector specific positive growth 

rate. Following Baumol (1967), we may call this phenomenon “unbalanced growth.” 

The second and the third facts imply that in the long-run, the consumption sector 

generally turns out to be more capital intensive than the investment sector.  

Let us compare our explanation of the post-war Japanese economy based on the 

two-sector growth model with that of the one-sector growth model by Valdes (2005). 

His exposition has totally based on his observation of the long-run Japanese real 

per-capita GDP data reported in Maddison (1995), which is depicted as Figure 4. 

<Insert Figure 4 here> 

He has applied a theoretical framework of the Solow-Swan growth model with a 

technical progress to the post-war Japanese economy for understanding the basis of 

Japan’s high-growth period. Superimposing three trend lines of steady-state paths 

denoted by A, B and C in Figure 4, he has identified the fact that the high-growth period 

was regarded as a transition process and the Japanese economy converged from the old 

steady-state to the new one, which had a higher per-capita GDP level than the old one 

(called a level-effect), but has a similar positive slope as that of the old one. Based on 
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the Solow-Swan growth framework, he has concluded that the high saving rate caused 

the level-effect and a slowdown of the technical progress brought about the end of the 

transition process. Contrastingly, we have measured the two-sector capital intensities in 

the post-war Japanese economy and found several characteristic facts. One of the 

striking facts is that a capital-intensity reversal had occurred around 1975, and 

simultaneously the Japanese high-speed growth ended. We have accommodated the 

two-sector growth framework to identify the cause of the High-speed Growth Era as the 

magnification effect arising from differences in capital-intensity between sectors during 

the transition process. Clearly, one-sector growth models failed to account for this 

phenomenon.  

  We applied the same method to the post-war Korean economy and found empirical 

evidence such that, by 1995, the two-sector capital-intensity ratio had reached 0.96. This 

may imply that, sooner or later, we could observe the appearance of a capital-intensity 

reversal in Korea, too. Unfortunately, we don’t have enough data to estimate after 1995. 

Because the capital stock data of Taiwan and China were not obtained at this time, we 

gave up estimating the capital intensities of both countries.  

  From the empirical evidence examined above, we may therefore conclude that the 

two-sector model that we will set up in Section 2 should satisfy the following three 
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important characteristics: 

1) The per-capita capital stocks of the consumption and investment sectors grow at a 

sector specific growth rate, which is closely related to a sector’s TFP growth rate.  

2) The per-capita growth rate of the consumption sector is greater than that of the 

investment good sector. 

3) Along the steady state path, the consumption good sector is more capital-intensive 

than the capital good sector. 

In Section 3, we will set up a two-sector growth model which satisfies the above 

properties. 

 

3. The Model 

 Our model is a discrete two-sector optimal growth model studied by Uzawa (1964) 

with the sector-specific Hicks-neutral technical progress, which will be measured as 

sector-specific total factor productivity. Our model is the following: 

0

1
( ( ))

1

: (0) (0) ,

t

t

Max u C t
r

subject to K K and L L

∞

=

 
 + 

= =

∑
 

 ( ) (1 ) ( ) ( 1) 0,Y t K t K tδ+ − − + =  (1) 
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 0

0 0 0( ) ( ) ( ( ), ( )),C t A t F K t L t=  (2) 

 1

1 1 1( ) ( ) ( ( ), ( )),Y t A t F K t L t=  (3) 

 0 1( ) ( ) ( ),L t L t L t+ =  (4) 

 0 1( ) ( ) ( )K t K t K t+ =  (5) 

, and the notation is as follows: 

r    : a subjective rate of discount, ,r g≥  

( )C t +∈   : the total goods consumed at ,t  

( )Y t +∈   : the t
th

 period capital output of the capital goods sector, 

( )K t +∈
  : the total capital goods at t,

 

(0)K +∈
  : the initial total capital goods,

 

( )iK t +∈
  : the t

th
 period capital stock of the i

th
 sector,

 

0 2( ) :F + +⋅      : a production function of the consumption goods sector, 

1 2( ) :F + +⋅      : a production function of the capital goods sector, 

( )L t +∈
  : the total labor input at t,

 

(0)L +∈
  : the initial total labor input,

 

( )iL t +∈
  : the t

th
 labor input of the i

th
 sector, 

 

δ    : the depreciation rate, 

( )iA t
   : the t

th
 period Hicks neutral technical-progress of the i

th
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sector.
 

, where 0i = and 1i = indicated the consumption goods sector and the capital goods 

sector respectively. 

Assumption 1. 

 1) The utility function u(・) is defined on + as the following: 

( )
, ( ,1)

( ( ))

log ( ), 0.

C t
if

u C t

C t if

t

t
t

t


∈ −∞

= 
 =


 

2) ( ) (1 ) (0)t
L t g L= + , where g is a rate of population growth.  

3) ( ) (1 ) (0)t

i i i
A t Aα= + , where iα  is a rate of output-augmented (the Hicks-neutral) 

technical-progress of the i
th

 sector and given as 1iα < . 

  Note that 3) of Assumption 1 means that the sectoral TFP is measured by the sectoral 

output-augmented technical progress (the Hicks-neutral technical progress), which is 

externally given. 

Assumption 2.  

1) All the goods are produced non-jointly with the production functions ( ) ( 0,1)i
F i⋅ =

which are defined on 2

+ , homogeneous of degree one, strictly quasi-concave and 

continuously differentiable for positive inputs. 

 



12 
 

2) Any good ( 0,1)i i = cannot be produced unless 0 0i iK or L= = . 

 

Dividing all the variables by ( ) ( )iA t L t , we will transform the original model into 

per-capita efficiency unit model. Firstly, let us transform the capital goods sector’s 

production function as follows; dividing both side of Eq.(1.3) by 1( ) ( )A t L t , we have: 

 

1 1

1

( )( )( )
, ,

( ) ( ) ( ) ( )

iL tK tY t
F

A t L t L t L t

 
=  

 
 

 

And similarly, for the consumption goods sector’s production function, we obtain¥ 

0 0 0

0

( ) ( )( )
, .

( ) ( ) ( ) ( )

K t L tC t
F

A t L t L t L t

 
=  

   

 

Now let us define the following normalized variables: 

 

01
1 0

1 0

01
1 0

( )( )( ) ( )
( ) , ( ) , ( ) , ( ) ,

( ) ( ) ( ) ( ) ( ) ( )

( )( )
( ) , ( ) .

( ) ( )

K tK tY t C t
y t c t k t k t

A t L t A t L T L T L T

L tL t
t t

L T L T

= = = =

= = 
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By normalizing the production functions with respect to ( ) ( ) ( 0,1)iA t L T i = ,  

1 0

1 1 0 0( ) ( ( ), ( )) ( ) ( ( ), ( )).y t f k t t and c t f k t t= =   

Moreover normalize the accumulation equation similarly, we have 

1 1 1

( ) ( ) ( 1)
(1 ) 0.

( ) ( ) ( ) ( ) ( ) ( )

Y t K t K t

A t L t A t L t A t L t
δ +

+ − − =  

Substituting the following relation into this: 

 

1
1

1 1 1

(1 )(1 ) ( 1)( 1)
(1 )(1 ) ( 1)

( ) ( ) [(1 ) ( )]{(1 ) ( )]

g K tK t
g k t

A t L t A t g L t

α α
α
+ + ++

= = + + +
+ +

 

 

where 

 
1 1

( ) ( 1)
( ) ( 1) .

( ) ( ) ( 1) ( 1)

K t K t
k t and k t

A t L t A t L t

+
= + =

+ +
 

We have finally the following normalized accumulation equation: 

  
1( ) (1 ) ( ) (1 )(1 ) ( 1) 0y t k t g k tδ α+ − − + + + = . 

We can also rewrite the objective function in terms of per-capita as follows: Substituting 

the following relation into the objective function yields: 

0 0 0 0

( ) ( ) ( )
( )

( ) ( ) (1 ) (1 ) (0) (0) (1 ) (1 )t t t t

C t C t C t
c t

A t L t g A L gα α
= = =

+ + + +


 

where we assume that 0 (0) (0) 1A L = . 

Finally, it follows that 
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0

0 0

(1 ) (1 ) ( )
( ( ))

(1 )

t

t

t t

g c t
u c t

r

tt tα r
t

∞ ∞

= =

 + +
= + 

∑ ∑
   

where  

0(1 ) (1 )
.

(1 )

g

r

t tαr + +
=

+  

  Now the original model can be rewritten as the per-capita efficiency unit model as 

shown below: 

-The Per-capita Efficiency Unit Model- 


0

( ( ))

. . (0) ,

t

t

Max u c t

s t k k

r
∞

=

=

∑ 
 

 0

0 0( ) ( ( ), ( )),c t f k t t=   (6) 

  1

1 1( ) ( ( ), ( )),y t f k t t=   (7) 

   
1( ) (1 ) ( ) (1 )(1 ) ( 1) 0,y t k t g k tδ α+ − − + + + =  (8) 

 0 1( ) ( ) ( ),t t t+ =    (9) 

 0 1

1

( ) ( )
( ).

( )

k t k t
k t

A t

+
=  (10) 

  We may add the following extra assumption and prove the basic property below: 

Assumption 3. 0 (0) (0) 1 0 1.A L and r= < <  

Remark1. The value of r consists of four parameters; the coefficient of relative risk 

averse (1 ),t− the rate of population growth ( g ), the rate of subjective discount rate 

(γ ) and the rate of technical progress in consumption goods sector ( 0α ). Note that the 
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rate of population growth could be negative. For example, we may consider the case 

where 00.5, 0.2, 0.2 0.2.g andt γ α= = − = =  

Lemma 1. Under Assumption 2, Equations (6)-(10) except Equation (8) are 

summarized as the social production function  ( ) ( ( ), ( ))c t T y t k t= which is continuously 

differentiable in the interior of 2

+ and concave. 

Proof.  Solving the following problem (*) we can derive the social production 

function: 





0

0 0

1

1 1

0 1
0 1

1

( ( ), ( ))

(*) . . ( ) ( ( ), ( )),

( ) ( )
( ) ( ) 1 ( ).

( )




 =
 + + = =






 

Max f k t t

s t y t f k t t

k t k t
t t and k t

A t

 

See in detail Benhabib and Nishimura (1979).■ 

  If x and z indicate initial and terminal capital stocks respectively, the reduced form 

utility function ( , )V x z and the feasible set D can be defined as follows: 

 

1( , ) ( [(1 )(1 ) (1 ) , ])V x z u T g z x xα δ= + + − −  

and 

{ }1( , ) : [(1 )(1 ) (1 ) 0D x z T g z xα δ+ += ∈ × + + − − ≥   

where  ( ) ( 1).x k t and z k t= = + Note that we eliminate time index for simplicity. 
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  Finally, the per-capita efficiency-unit model will be summarized as the 

following standard reduced form model, which have been studied in detail by 

McKenzie (1986) and Scheinkman (1976). 

-The Reduced Form Model- 

 

  

0

( ( ), ( 1))

. .

( ( ), ( 1)) 0 (0) .

t

t

Max V k t k t

s t

k t k t D for t and k k

r
∞

=

+

+ ∈ ≥ =

∑
 

Also note that any interior optimal path must satisfy the following Euler 

equation, which shows an intertemporal efficiency allocation: 

    ( ( 1), ( )) ( ( ), ( 1)) 0 0
z x

V k t k t V k t k t for all tr− + + = ≥  (11) 

where the partial derivatives mean that 

   


   


( ( ), ( 1)) ( ( 1), ( ))
( ( ), ( 1)) , ( ( 1), ( )) .

( ) ( )
x z

V k t k t V k t k t
V k t k t V k t k t

k t k t

∂ + ∂ −
+ = − =

∂ ∂
 

Note that under the differentiability assumptions, all the prices will be obtained by the 

following relations: 

 


 


 
0

( ) ( , ) ( , )
1, , , ,

du c T y k T y k
q p q w q w qc p y wk

dc y k

∂ ∂
= = = − = = + −

∂ ∂

 
  

where we normalize the price of consumption goods as 1. 

Definition. An optimal steady state path (OSS) k
r  is an optimal path which solves the 
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per-capita efficient unit model and   ( ) ( 1) 0.k k t k t for all t
r
= = + ≥  

 

Due to the homogeneity assumption of each sector’s production function, it is often 

convenient to express a chosen technology as a technology matrix. Now let us define 

the technology matrix as follows: 

00 01

10 11

a a

A

a a

 
 =  
 
 

 

where  
0 0 1 1

00 01 10 11, , , .
k k

a a a a
c c y y

= = = =
 
   

Assumption 4 (Viability). For a given ( )r g≥ , a chosen technology coefficient 11a
γ

 

satisfy 111 ( ) 0.r a
γ

δ− + >  

    The following extra assumption will be made. 

Assumption 5. 0 11 0α α> > >  

Remark 2. This assumption means that the TFP growth rate in the consumption goods 

sector is the highest one among both sectors. As we have examined in Section 2, 

Takahashi, Mashiyama and Sakagami (2011) have observed the empirical evidence such 

that in the Post-war Japanese economy, along the steady state path, the consumption 

sector has exhibited a higher per-capita output growth rate than that of the capital goods 

sector.  
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  McKenzie (1983,1984) has demonstrated the existence theorem for both an 

optimal and an optimal steady state paths in the reduced form model. Applying a same 

logic as that of McKenzie’s, we can prove the following existence theorem under our 

Assumptions 1 through 5. 

Existence Theorem (McKenzie). Under Assumptions 1 through 5, there exists an 

optimal steady state path k
r

for (0,1]r∈  and an optimal path { }( )k t
r ∞

from any 

sufficient initial stock (0)k
1
. 

Proof. We need to demonstrate that under Assumptions 1 through 3, all the conditions 

listed below in Theorem 1 of McKenzie (1983) and McKenzie (1984) are satisfied.  

McKenzie’s Conditionds: 

1) ( , )V x z  is defined on a closed convex set D . 

2) There is a 0η >  such that ( , ) ξ∈ < < ∞x z D and z  implies .η< < ∞z  

3) If ( ) ( , ) , , 0 .∈ ∈ ≥ ≤ ≤ x z D then x z D for all x x and z z  Moreover ( , ) ( , ).≥V x z V x z  

4) There is 0 ( , ) , (0 1).ς ς λ λ> > ∈ < < <such that x implies for any x y D z x  

5) There is ( , ) .r∈ >x z D such that z x  

It is straightforward to show that Assumptions 1 through 3 satisfy McKenzie’s 

Conditions 1) through 4). We will show that Assumptions 4 and 5 satisfies Condition 5) 

                                                   
1 A capital stock x is “sufficient” if there is a finite sequence (k(0),k(1),…,k(T)) such that x=k(0), (k(t), k(T+1))∈D 

and k(T) is expansible. K(T) is “expansible” if there is k(T+1) such that k(T+1)>>k(T) and 

(k(T),k(T+1))∈D. 
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as follws: 

 

( ) 

( )

11

11

1 11 1

(1 )(1 ) (1 )(1 )
1 1

(1 )(1 )1 11 (1 ) ,
(1 )(1 )

1

1 11
(1 )(1 )

1

(1 )1 11 (1 ) (1 )
1 1(1 )(1 ) (1 ) (1 )1 0

z x y x x
g g

g
a y

g

by the fact that
g

r a
g g

γ

γ

δr r
α α

α
δ

α r

δ r
α

α
δ γ γα α

−− −− = + −
+ + + +

 + +   > + − −  + +     
− −< <

+ +

  +  = + − − +  − −+ +  + +  



( ) 

[ ]( ){ } 

1
11

1 0

11

1

,

(1 )1
1 (1 ) (1 ) ( 1),

(1 )(1 ) (1 )

1
1 (1 ) (1 ) ( 5),

(1 )(1 )

y

r a y by
g

r a y by Assumption
g

γ

γ

αδ γ
α α

δ
α






  + > + − − + =  + + +   

> + − − +
+ +

 

 

[ ]( ){ } 

[ ]( ){ } 

11

1

11

1

1
1 (1 ) (1 )

(1 )(1 )

1
1 ( ) 0. ( 4)

(1 )(1 )

r a
g

y

r a y by Assumption
g

γ

γ

δ
α

δ
α

= + − − +
+ +

= − + >
+ +

 

Therefore y will be chosen so that 
1 0z xr −− ≥ where ( , )x z D∈ .■  

 

Remark 3. It should be noticed that since 
1 1

( ) ( )
,

( ) ( ) ( )

K t k t
k

A t L t A t

r rr
= = it follows that 
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
1 1( ) (1 ) (0)t

k t A k
rr α= + . Hence the original series of the sector’s optimal per-capita 

stock ( )k t
r

is growing at the rate of its own sector’s TFP growth rate 1α . 

  Suppose that k
r

is an interior OSS in the efficiency unit with a given r , it must also 

satisfy the Euler equation: 

   ( , ) ( , ) 0z xV k k V k k
r r r r

r+ = . 

Note that the following relations hold: 

   
1( , ) (1 ) , ( , ) (1 )(1 ) .x zV k k p w and V k k g p

r r r rr r rδ α= − + = − + +  

Substituting above relations into the Euler equation will lead to the following equation: 

1[ (1 )] (1 )(1 ) 0w p g p
r r rr δ α+ − − + + = . 

  We will not prove the following important theorem, but it has been established by 

applying the well-known non-substitution theorem in a multi-sector model by Takahashi 

(2011). 

Lemma 2. When (0,1]r∈ , there exists a unique OSS k
r

>0 with the corresponding 

unique positive prices 0 0.p and w
r r> >  

  From this lemma, along the OSS with r , the nonsingular technology matrix A
r will 

be chosen, and the cost-minimization and the full-employment conditions will be 

expressed as follows: 

0 1(1, ) ( , ) (1, ) ( , ).p w w A and k A c y
r r r r r r r r= =  
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If A
r has an inverse matrix B

r , solving above equations yields, 

  

101 01
11 10 01 11

00 00 00

101 01
11 10 01 11

00 00 00

1
( ) ,

1
( ) ,

a a
p w a a a w b

a a a

and

a a
k a a a y b y

a a a

r r
r r r r r r r

r r r

r r
r r rr r r r

r r r

−

−

 
= − + = + 

 

 
= − + = + 
 

 

where 
11b
r  is the element of the matrix B

r defined as follows: 

( )
00 01

1

10

b b

B A

b b

r r

r r

r r

−
 
 

= =  
 
 

. 

  From now on, we are concentrated on the OSS with 1r = denoted by 
*

k . We will 

also use the symbol “*” to indicate the elements and variables evaluated at *k . 

 

Definition (Capital-intensity Conditions). When 
11 01 10 00

/ /a a a a
r r r r<  is established, the 

consumption goods sector is capital intensive in comparison with the capital goods 

sector. For 
11 01 10 00

/ /a a a a
r r r r> , the consemption goods sector is labor intensive in 

comparison with the capital goods sector.  

  As we have examined in Section 2 based on Takahashi, Mashiyama and Sakagami 

(2011), we have found that there exists a firm evidence that any country exhibit that the 

consumption goods sector is capital intensive. So it will be justified to make the 
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following assumption: 

Assumption 6. 
11 01 10 00

/ /a a a a
r r r r<

. 

Note that under Assumption 6, it follows that  

1

11 10 01

00

1
( ) 0.b a a a

a

r r r r
r

− = − <
 

Now we can show the following Lemma 5. 

Lemma 5. Under Assumption 5, there exists a positive r such that for [ ,1],r r∈ the 

OSS k
r is unique and is a continuous function of r , namely  ( ).k k

r
r=  

Proof. From the Euler equation, its Jacobian can be calculated as 

( , ) ( , ) ( , ) ( , ) ( , ).xx xz zx zzJ k V k k V k k V k k V k kr r r= + + +  

Evaluating it at *k yields 

        * * * * * * * * *

( ,1) ( , ) ( , ) ( , ) ( , ).xx xz zx zzJ k V k k V k k V k k V k k= + + +  

Applying the same logic used in Takahashi (2011), we finally obtain 

*
* 2 * 1 2

1

* 2 * 1 2

1

( ,1) [ ((1 )(1 ) ( 1)] [( ) ]

[ ( )] [( ) ] 0 ( 0),

zz

zz

J k b g b T

b g b T

α δ

α δ

−

−

= − + + + −

= − + < ≠
 

where zzT is an element of the Hessian matrix of the social transformation 

function ( , )T x z and negative. Thus the result follows from the Implicit 

Function Theorem.■ 
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4. Neumann-McKenzie Facet and Turnpikes 

Now we will introduce the Neumann-McKenzie Facet (denoted by “NMF” for short), 

which plays an important role in stability arguments regarding neoclassical growth 

models as studied in Takahashi (1985) and Takahashi (1992), and has been intensively 

studied in the reduced-form models by McKenzie (1983). The NMF will be defined in 

the reduced form model as follows: 

Definition. The Neumann-McKenzie Facet of an OSS, denoted by  ( , )F k k
r r

, is defined 

as: 

   { }( , ) ( , ) : ( ) ( ) ,F k k x z D u c p z p x u c p k p k
r r r r rr r r rr r= ∈ + − = + −  

where k
r

is the OSS and p
r

is the supporting price of the OSS when a subjective 

discount rate r is given. 

  Due to this definition, if a path will happen to deviate from the NMF, then a 

value-loss will take place, which will be defined as follows: 

Definition. The value-lossδ is defined as, 

 ( ( ) ) ( ( ) ), ( , ) .u c p z p x u c p k p k for x z D
r r rr r r rδ r r= + − − + − ∈  

  Let make the following assumption in order to make the NMF have non-zero 

dimension. 

Assumption 7. ( )u c is linear in the neighborhood of the OSS k
r ( ( )u c c

r r
=  ). 
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By the definition above, the NMF is a set of capital stock vector ( , )x z which arise from 

the exact same net benefit as that of the OSS when it is evaluated by the prices of the 

OSS. Also, the NMF is the projection of a flat segment on the surface of the utility 

function V that is supported by the price vector ( , ,1)p p
r rr− onto the ( , )x z -space. In 

the two-sector model, we can examine the NMF diagrammatically. Based on the 

assumption that the consumption goods sector is capital intensive, it is possible to draw 

a graph on the coordinates ( ( ), ( ))y t c t , which is often used in trade theory.  

 

<Insert Figure 5 here> 

Here, ( , )y c
r r  is a production vector corresponding to the OSS and is written as a 

point of intersection for the labor-constraint line and the capital-constraint line. Also, the 

fact that the labor-constraint line intersects the capital-constraint line from the above is 

due to the capital intensity assumed above. Note that production specialization occurs at 

points A and B. Now, suppose that 10( ) ( 1/ )k t a
r< , which is greater than OSS, { }k

r
were 

given. Then, if we leave the capital-constraint line and the price vector as they are, then 

move upward along the labor-constraint line, a new point of intersection “E” is obtained. 

Also, the corresponding production vector ( ( ), ( ))y t c t  is obtained at point E. Also, by 

substituting this value for accumulation equation (1.2), the next period’s capital stock 
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( 1)k t +  can be attained. The capital stock pairs ( ( ), ( 1))k t k t +  obtained in this manner 

can be plotted as point E on plane ( , )x z . By further altering ( )k t  and repeatedly 

conducting the similar procedure, line AB can be drawn on plane ( , )x z  in the manner 

of figure 6. Now, it can be understood that labor-constraint line AB on the production 

plane ( , )y c  directly corresponds to line AB on plane ( , )x z . The portions of this line 

AB excluding the ends are the von Neumann-McKenzie facet as dipicted in Figure 6. 

<Insert Figure 6 here> 

  Since k and p
r r

are continuous functions of r as shown in Lemma 5, based on the 

above discussion, we may observe the following: 

Lemma 6. The NMF is a continuous correspondence of [ ,1).r r∈  

Proof. A formal proof will leave for Takahashi (1985).■ 

This property will guarantee that if a path will be away from a ε -neighborhood of 

the NMF, then there exists aδ such that 0δ δ≥ > .δ is referred to as the uniform value 

loss .   

Based on the above discussion again, it is possible to redefine NMF in a neoclassical 

model as follows.  

Definition (Characterization of NMF). 

   ( , ) {( ( ), ( 1)) :F t t Dk k k k
r r

≡ + ∈  There exist ( ) 0c t ≥ and ( ) 0y t ≥ such that they satisfy 
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following conditions (1) through (5): (1)
0 00 101 w a w a
r r r r= + , (2)

0 01 11p w a w a
r r r r r= + , (3)

00 101 ( ) ( )a c t a y t
r r= + , (4)  

01 11( ) ( ) ( )k t a c t a y t
r r= + , (5)   ( 1) ( ) (1 ) ( ))},k t y t k tδ+ = + −  

where the consumption good’s price is normalized as 1; also, for simplification, the 

population growth rate has been postulated as zero.  

Equations (1) and (2) are cost minimization conditions; equations (3) and (4) are 

equilibrium conditions for labor and capital goods. Also, (5) is a capital good 

accumulation equation.  

Based on (3) and (4),  

  
01( ) ( )y t bk t b
r= +  (12)        

Here, b
r  and 10b

r  are defined before as elements of the matrix B
r . Also, based on 

accumulation equation (5) and equation (12), we obtain the following difference 

equation: 

  
10( 1) [ (1 )] ( ) .k t b k t b

r rδ+ = + − +  (13)        

By defining  ( 1) ( )t k t k
r

η + = − , difference equation (3.2) is rewritten as 

 ( 1) [ (1 )] ( )t b t
rη δ η+ = + −  (14)        

It is clear that the behaviors of the path on the NMF can be obtained by investigating 

this differential equation.  

Now, by making a suitable selection of units, it is possible to normalize the element 
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b
r of the matrix B

r as follows.  

00 00 11 01 10/( ) 1b a a a a a
r r r r r r= − < . 

Since 0b
r < , it follows that 1 (1 ) 1b

r δ− < + − < . Therefore, the difference equation (14) 

will exhibit stability and the NMF will become a linear stable manifold. Let us 

introduce the following definition: 

 

Definition. The NMF is stable if there are no cyclic paths on it. 

Thus we have proved that the NMF is stable and we may prove the following turnpike 

property, which I leave for McKenzie (1983). 

 

Theorem 1(Neighborhood Turnpike Theorem). Provided that the NMF is stable. 

Then for any 0ε > , there exists a r such that for [ ,1)r r∈ and the corresponding 

( )ε r , any optimal path ( )k t
r

with a sufficient initial capital stock (0)k eventually lies 

in the neighborhoodε − of k
r

. Furthermore, as 1, ( ) 0.r ε r→ →  

  The neighborhood turnpike theorem means that any optimal path must be trapped in a 

neighborhood of the corresponding OSS and the neighborhood can be taken as small as 

possible by making r sufficiently close to 1. 

Note that by expanding the Euler equation around k
r , we have the following 
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characteristic equation: 

 2 ( ) 0.xz xx zz zxV V V V
r r r rλ λ+ + + =  (15) 

The local stability will be determined by this equation and the following property 

concerned with it is well-known. 

Lemma . Provided that 0xzV
r ≠ , the characteristic equation (15) has λ as a root, then it 

also has 
1

rλ
. 

Proof. See Levhari and Liviatan (1976)■. 

  Since the NMF is stable, it implies that the one characteristic root along the NMF has 

an absolute value less than 1. In the two-sector model, 12V
r

 is calculated as follows (see 

in detail Benhabib and Nishimura (1985)).  

 1 2(( ) ) (1 )xz

w
V b b

k

r r r δ− ∂   = − + −   ∂ 
 (16)        

Based on this, Equation (16) does not become zero other than in (1 )b
r δ= − − . By 

assuming that (1 )b
r δ≠ − − , we can apply the Lemma and obtain that the both 

characteristics of Equation (15) have absolute values less than 1. This implies that the 

OSS k
r

is locally stable; any path near the OSS will converge to the OSS. Thus we 

have proved the following local stability concerned with the OSS: 

Theorem 2 (Local Stability). The OSS  [ ,1)k for
r

r r∈ satisfies the local stability. 

   Suppose that the optimal path k
r

 would satisfy the neighborhood turnpike 
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theorem; for any 0ε > , there exists a r such that for [ ,1)r r∈ and the corresponding 

( )ε r , any optimal path  ( )k t
r

with a sufficient initial capital stock (0)k k= eventually 

lies in the neighborhoodε − of k
r

 and 1, ( ) 0.r ε r→ →  By choosing r close 

enough to 1 such that the local stability will also hold. We have now proved the 

following complete turnpike theorem: 

Complete Turnpike Theorem. There is a 0r > ฀close enough to 1 such that for any 

[ ,1)r r∈ ฀ , an optimal path  ( )k t
r ฀ with the sufficient initial capital stock 

(0)k k= ฀will asymptotically converge to the optimal steady state 
k
r ฀. 

   Note that the complete turnpike means that each sector’s optimal path will converge 

to its own optimal steady state;  ( ( ), ( )) ( , )c t y t c y as t
r r r r

→ →∞  . It follows that in 

original model of series, sector’s per-capita capital stock and output grow at the rate of 

sector’s TFP growth: 
0 1( ) (1 ) ( ) (1 )t t

c t c and y t y
r rr rα α= + = + . Thus our original 

purpose, stated below as the proposition, have accomplished by demonstrating the 

complete turnpike theorem. 

Proposition (Unbalanced Growth). Under our assumptions, each sector’s optimal 

path converges to the own optimal steady state with a sector-specific TFP growth rate. 
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5. Conclusion 

We have demonstrated turnpike property under two types of generalized capital 

intensity conditions. As I mentioned before, the complete turnpike property means that 

each industry's per capita capital stock and output converge to the industry-specific 

optimal steady state paths with the rate of technical progress determined by industry's 

TFP. It means that, the per-capita capital stock of the agriculture industry grows at its 

own rate of technical progress along its optimal steady state and another industry, say 

the manufacturing industry grows at its own rate of technical progress along its own 

optimal steady state. A similar explanation can be applicable to other industries. 

Therefore, our established theoretical results are consistent with the evidence obtained 

in recent empirical research. 

 

References 

Acemoglu, D. and V. Guerrieri (2008) "Capital deepening and nonbalanced economic 

growth," Journal of Political Economy 116, 467-498. 

Benhabib, J. and K. Nishimura (1979) "On the uniqueness of steady state in an economy 

with heterogeneous capital goods," International Economic Review 20, 59-81. 

Benhabib, J. and K. Nishimura (1981) "Stability of equilibrium in dynamic models of 

capital theory," International Economic Review 22, 275-293. 

Benhabib, J. and K. Nishimura (1985) "Competitive equilibrium cycles," Journal of 

Economic Theory 35, 284-306. 

Benhabib, J. and A. Rustichini (1990) "Equilibrium cycling with small discounting," 

Journal of Economic Theory 52, 423-432. 



31 
 

Burmeister, E. and A. Dobell (1970) Mathematical Theory of Economic Growth 

(Macmillan, London). 

Burmeister, E. and D. Grahm (1975) "Price expectations and global stability in 

economic systems," Automatica 11, 487-497. 

Echevarria, C. (1997) "Changes in sectoral composition associated with economic 

growth," International Economic Review 38, 431-452. 

Gantmacher, F. (1960) The Theory of Matrices vol. 1 (Chelsea, New York). 

Inada, K. (1971) "The production coefficient matrix and the Stolper-Samuelson 

condition," Econometrica 39, 88-93. 

Jones, R., S. Marjit and T. Mitra (1993) "The Stolper-Samuelson theorem: Links to 

dominant diagonals," in: R. Becker, M. Boldrin, R. Jones and W. Thomson, eds., 

General Equilibrium, Growth and Trade II-the legacy of Lionel McKenzie 

(Academic Press, San Diego). 

Kongsamut, P., S. Rebelo and D. Xie (2001) "Beyond balanced growth," Review of 

Economic Studies 68, 869-882. 

Levhari, D. and N. Liviatan (1972) "On stability in the saddle-point sense," Journal of 

Economic Theory 4,88-93. 

Lucas, R. (1988) "A Mechanics of Economic Development," Journal of Monetary 

Economics 22, 3-42. 

Mangasarian, O. (1966) "Sufficient conditions for the optimal control of nonlinear 

systems," Journal of SIAM Control 4,139-152. 

McKenzie, L. (1960) "Matrices with dominant diagonal and economic theory," in: K. 

Arrow, S. Karin and P. Suppes, eds., Mathematical Methods in the Social Sciences, 

(Stanford University Press). 

McKenzie, L. (1983) "Turnpike theory, discounted utility, and the von Neumann facet," 

Journal of Economic Theory 30, 330-352. 

McKenzie, L. (1984) "Optimal economic growth and turnpike theorems," in: K. Arrow 

and M. Intriligator, eds., Handbook of Mathematical Economics Vol.3, 

( North-Holland, New York). 

McKenzie, L. (1998) "Turnpikes," American Economic Review 88, 1-14. 

Murata, Y. (1977) Mathematics for Stability and Optimization of Economic Systems 

(Academic Press, New York). 

Neuman, P. (1961) "Approaches to stability analysis," Economica 28, 12-29. 

OECD (2003) The Sources of Economic Growth in OECD Countries. 

Samuelson, P. (1945) Foundations of Economic Analysis (Harvard University Press). 

Scheinkman, J. (1976) "An optimal steady state of n-sector growth model when utility is 



32 
 

discounted," Journal of Economic Theory 12, 11-20. 

Romer, P. (1986) "Increasing Returns and Lomg-run growth," Journal of Political 

Economy 94, 1002-1037. 

Srinivasan, T. (1964) "Optimal savings in a two-sector model of growth," Econometrica 

32, 358-373. 

Takahashi, H. (1985) Characterizations of Optimal Programs in Infinite Economies, 

Ph.D. Dissertation, the University of Rochester. 

Takahashi, H. (1992) "The von Neumann facet and a global asymptotic stability," 

Annals of Operations Research 37, 273-282. 

Takahashi, H. (2001) "A stable optimal cycle with small discounting in a two-sector 

discrete-time model," Japanese Economic Review 52, No. 3, 328-338. 

Takahashi, H., K. Mashiyama, T. Sakagami (2009) "Why did Japan grow so fast during 

1955-1973 and the Era of High-speed Growth end after the Oil-shock?: Measuring 

capital intensity in the postwar Japanese economy," forthcoming Macroeconomic 

Dynamics. 

Yano, M. (1990) "Von Neumann facets and the dynamic stability of perfect foresight 

equilibrium paths in Neo-classical trade models," Journal of Economics 51, 27-69. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

 

 

 

Fig.1 Capital Intensities in Two sectors 

 

 

 

Fig.2: Capital Intensity Ratio in the Postwar Japanese Economy 
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Fig.3: Capital-intensity Ratios in OECD Countries 

 

 

 

Fig. 4: Japanese Per-capita Real GDP (1885-1994)  

 

Source: Data from Maddison (1995, Table C-18) 
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-Figure 5: Derivation of the NMF in the two-sector model- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

-Figure 6: The NMF of the two-sector model- 
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